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ABSTRACT ARTICLE HISTORY
Image fusion aims to spatially enhance a low-resolution multispec- Received 3 July 2019
tral (MS) image by utilizing a high-resolution panchromatic (Pan)  Accepted 6 November 2019
band. Various image fusion methodologies have been proposed

with the aim to improve the spatial detail quality without deterior-

ating the colour content of the input MS image. Previous studies

revealed the fact that there is no such thing as ‘the best image

fusion method’ since all fusion methods cause either spectral dis-

tortion or spatial detail loss to some extent, which motivates the

researchers to develop more advanced methods to keep the colour

content while increasing the spatial detail quality. This study pro-

posed to use the Symbiotic Organisms Search (SOS) metaheuristic

algorithm in hybrid image fusion methods to achieve the optimum

colour quality in the fused images. The SOS algorithm was used in

two hybrid fusion approaches, one including the Intensity-Hue-

Saturation (IHS) and Discrete Wavelet Transform (DWT) methods

and the other one including the IHS and Discrete Wavelet Frame

Transform (DWFT) methods. The results of the proposed methods

were qualitatively and quantitatively compared in three test sites

against those of eighteen widely-used image fusion methods. It was

concluded that the proposed methods led to superior colour qual-

ity with both singlesensor and multisensor input images, regardless

of the spatial resolution difference between the input images. The

proposed methods were also found to be very successful in shar-

pening the images, despite the fact that their main purpose was to

keep the colour content as much as possible.

1. Introduction

Image fusion integrates the spectral characteristics of a low-resolution multispectral (MS)
image and spatial features of a high-resolution panchromatic (Pan) band, producing an
image of superior colour and spatial detail quality (Yilmaz and Gungor 2016a). In parallel
to the developments in the sensor technology of the satellites and manned/unmanned
aerial vehicles, image fusion has been one of the hottest topics of image processing since
the 1980s. The main objective of image fusion is to increase the useful information
content of an image to improve the performance of further image processing applications
such as feature extraction and segmentation (Li, Manjunath, and Mitra 1995).
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The success of image fusion process depends on some factors: (1) It is rather easier to
fuse the MS and Pan bands that are acquired from the same sensor, since they cover the
same wavelength interval in the electromagnetic spectrum. However, when using
multisensor input images, wavelength differences may lead to significant colour distor-
tions even if the images are acquired on the same date. (2) The spatial resolution
difference between the input images is another factor that should be considered before
fusing the images. The greater spatial resolution difference between the input images,
the more challenging fusion process (Yilmaz and Gungor 2016a). (3) The input images
should be co-registered to the same projection; otherwise, artificial colours or features
will occur on the fused images (Pohl and Van Genderen 1998). (4) If needed, prior to
fusion, atmospheric and radiometric correction should be applied on the input images
to avoid any colour distortions. (5) The operator’s fusion experience is also another
factor that plays an important role in the success of the fusion process (Zhang 2004).A
wide variety of image fusion methods have been proposed in the literature so far. A very
comprehensive and helpful literature review on the image fusion methods was provided
by Pohl and Van Genderen (1998), 2016). The analysts who are in the need to fuse
images should keep in mind that there is no such thing as ‘the best image fusion
method’ (Pohl and van Genderen 2016). The reason for this is that all fusion methods
are expected to distort the colour characteristics of the input MS image and to deterio-
rate the spatial details of the input Pan band to some extent. Hence, any method
ensuring the optimum spatial and spectral quality is considered successful.

Image fusion methods can be classified into four categories as the component
substitution (CS) based, multiresolution analysis (MRA) based, colour based (CB) and
hybrid methods. The CS based methods transform the input MS image into another
space where the spatial characteristics are separated from the colour content in
different components. Then, the component containing the spatial content is substi-
tuted with the input Pan band. A reverse transformation to the original space results in
the fused image (Ghassemian 2016). The Intensity-Hue-Saturation (IHS) (Haydn et al.
1982), Brovey (BRV) (Hallada and Cox 1983), Principal Component Analysis (PCA)
(Chavez and Kwarteng 1989) and Gram-Schmidt (GS) (Laben and Brower 2000) are
among the most famous members of this fusion family. According to Ghassemian
(2016), the MRA methods, so-called multi-scale decomposition based methods, include
three main steps: (1) The input images are decomposed into several scales through
some transforms such as wavelet, curvelet, contourlet etc. (2) The fusion takes place at
each level of decomposition. (3) An inverse transform is applied to obtain the fused
bands. The Additive Wavelet Luminance Proportional (AWLP) (Otazu et al. 2005),
Generalized Laplacian Pyramid (GLP) with Modulation Transfer Function (MTF) matched
filter (MTF-GLP) (Aiazzi et al. 2006), MTF-GLP with High-Pass Modulation (MTF-GLP-
HPM) (Vivone et al. 2014), GLP with MTF-matched filter and Context-Based Decision
(CBD) injection scheme (MTF-GLP-CBD) (Alparone et al. 2007) methods are some of the
most widely-used MRA methods. The CB methods aim to keep the statistical character-
istics of the MS bands after fusion. The most commonly-used CB methods include the
Local Mean Matching (LMM) (de Béthune, Muller, and Binard 1997), Local Mean
Variance Matching (LMVM) (de Béthune, Muller, and Binard 1997), Smoothing Filter-
based Intensity Modulation (SFIM) (Liu 2000) and Nearest Neighbour Diffuse (NND)
(Sun, Chen, and Messinger 2014). The hybrid fusion methods combine the superiorities
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of the methods from several categories to keep the colour content while transferring
the spatial details.

1.1. Motivation

El-Samie, Hadhoud, and El-Khamy (2012) indicated that it is possible to combine the IHS
and MRA based methods Discrete Wavelet Transform (DWT) and Discrete Wavelet Frame
Transform (DWFT). Such a hybrid fusion approach allows for making full use of both IHS
method'’s spatial detail transfer advantage and wavelet decomposition’s colour preserva-
tion advantage. On the other hand, the performance of the IHS method depends heavily
on the procedure used to compute the intensity component to be swapped with the
input Pan band, which attaches importance on finding the optimum band weights to
achieve the optimum intensity component. The most commonly-used IHS transformation
procedures consider equal band weights to compute the intensity component. However,
this approach is not efficient for image fusion because, in reality, each input MS band has
a different effect on the intensity component and, of course, on the fusion result. Hence,
more effective strategies should be developed to optimize the intensity component used
by the IHS fusion method. To this aim, this study, for the first time in the literature,
proposed a hybrid image fusion framework that uses the Symbiotic Organisms Search
(SOS) metaheuristic algorithm (Cheng and Prayogo 2014) to calculate the optimum
intensity component to be used within the IHS transform. The second step of the frame-
work includes the wavelet decomposition of the input bands. A detailed literature review
revealed the fact that very few studies focused on using metaheuristic algorithms to
obtain the optimum fusion results. The Genetic Algorithm (GA) (Holland 1975), the first
metaheuristic algorithm used for optimization purposes, was previously used to improve
the performance of the Generalized IHS (Garzelli and Nencini 2006a), ATWT (Garzelli and
Nencini 2006b), IHS (Masoudi and Kabiri 2014; Niazi, Zade, and Zadeh 2016) and Synthetic
Variable Ratio (Yilmaz, Serifoglu Yilmaz, and Gungor 2019) methods. However, to the best
of our knowledge, the SOS algorithm has never been used to improve the performance of
such a hybrid approach that includes both the IHS and DWT/DWFT methods. This study
will fill this gap in the literature.

2. IHS, DWT and DWFT methods
2.1. IHS method

The IHS is one of the most widely-used conventional image fusion methods. The very first
step of this method is to upsample the input MS bands to the size of the input Pan band. The
upsampled bands are then transformed into the intensity, hue and saturation components.
The hue is related to the pure colours of the objects and is represented by an angle. The
saturation shows to what degree a pure colour is diluted by white colour. The intensity,
which is measurable and interpretable, is the most useful descriptor of monochromatic
images (El-Samie, Hadhoud, and El-Khamy 2012). Transformation from the RGB to IHS space
stores the colour features in the hue and saturation components and most of the spatial
detail content in the intensity component. After the IHS transform, the histogram of the Pan
band is matched to that of the intensity component to reduce the colour distortion after
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fusion. As a final step, an inverse IHS transform is applied using the hue, saturation
and histogram-matched Pan band to obtain the fused bands in the RGB space (Haydn
et al. 1982). The conventional IHS fusion method can handle MS images with three MS
bands, which is the biggest limitation of this method. Siddiqui (2003) introduced a modified
IHS (MIHS) method that is able to cope with images with more than three MS bands.

Various transformation procedures have been introduced in the literature to transform
the MS bands from RGB into IHS space, and vice versa. This study used one of the most
widely-used transformation models given as (Elkaffas et al. 2006; Gonzalez and Woods
2007; El-Samie, Hadhoud, and El-Khamy 2012);

DN, 3 i3 DNg

Vi | =2 =2 2 || DN (1)
1 2

V2 % % O DNB

H=tan™' <Vz> (2)
1

S=\/V24V2 (3)

Transformation from IHS to RGB space is given as;

—1 1
DNg 1 V2 V2 DNpan
DNe | = |1 H% 3 2 (4)
DNg 1 \/i 0 Vs

where, DNg, DNg, DNg, DN, and DNp,,, refer to a digital number (i.e. grey value) in the red
band, green band, blue band, intensity component and input Pan band, respectively. V;
and V, are also constants.

2.2. DWT and DWFT methods

The wavelet transform decomposes an image into multiple wavelet planes based on local
frequency content, producing images with coarser resolutions. Various wavelet trans-
form-based fusion approaches have been used in the literature. Li, Kwok, and Wang (2002)
presented a general four-step framework for wavelet-based fusion approaches as: (1) The
input images are registered and resampled to the same size. (2) The images are decom-
posed to the same resolution using the DWT. (3) Corresponding wavelet coefficients are
combined with respect to a fusion rule. (4) An inverse wavelet transform is applied to
produce the fused image.

The DWT fusion method used in this study is applied as follows. As a first step, the input
Pan band is decomposed into wavelet planes using the DWT until the spatial resolution of
the input MS image is reached. Note that each decomposition generates four wavelet
planes with half resolution. The first wavelet plane includes the approximation coefficients
that are related to the colour characteristics of the Pan band. The other three wavelet planes
comprise the high-frequency details (i.e. spatial details) in horizontal, vertical and diagonal
directions. Once the wavelet decompositions are done, all input MS bands are replaced by
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the approximation coefficients at the coarsest resolution one by one and the whole
procedure is reversed back by applying an inverse DWT to obtain the fused bands.

The main difference between the DWT and DWFT methods is that the DWT method
uses decimation and the DWFT does not (El-Samie, Hadhoud, and El-Khamy 2012). The
DWEFT uses the a trous algorithm to decompose an image into additive components, each
being a sub-band of the image. This procedure enables the isolation of different fre-
guency components into different planes without being have to apply downsampling as
in the DWT. The differences between two successive approximations are used as the
wavelet detail planes. The first step of the DWFT method is to decompose the input MS
and Pan bands using the DWFT. The high-frequency detail components obtained from the
Pan band are then combined with the lowest-frequency approximation component
obtained from each MS band. An inverse DWFT is applied to produce the fused bands
(Li, Kwok, and Wang 2002; El-Samie, Hadhoud, and EI-Khamy 2012). Interested readers are
referred to the works by Gonzalez and Woods (2007) and El-Samie, Hadhoud, and EI-
Khamy (2012) for further details about wavelet-based image fusion.

2.3. Hybrid fusion approach based on the IHS and DWT/DWFT

El-Samie, Hadhoud, and El-Khamy (2012) indicated that it is possible to combine the IHS
with the DWT and DWFT methods to produce fused images with superior colour and
spatial fidelity. The steps for such fusion was given as: (1) The input MS and Pan bands are
co-registered. (2) The MS image is transformed into the IHS space. (3) The histogram of the
input Pan band is matched to that of the intensity component to preserve the colour
balance after fusion. (4) A DWT or DWFT is applied on both the histogram-matched Pan
band and intensity component. (5) The approximation component obtained from the
intensity component is substituted by its average with the approximation component
obtained from the histogram-matched Pan band. (6) A new intensity component is
produced by applying an inverse DWT or DWFT on the approximation component and
high-frequency detail components. (7) An inverse IHS transform is applied on the new
intensity, hue and saturation components to produce the fused image in the RGB space
(El-Samie, Hadhoud, and El-Khamy 2012). Such a hybrid fusion approach based on the IHS
and wavelet decomposition was also used by Zhang and Hong (2005).

3. SOS algorithm

The SOS algorithm, proposed by Cheng and Prayogo (2014), searches for the optimum
solutions for many tough optimization problems, even if the search space is very large
and complex. It is based on the symbiotic relationships between living organisms. The
SOS algorithm starts by randomly generating a group of ‘organisms’, each including
the parameters that are candidate for optimal solution. All organisms form the ‘eco-
system’. Next generations of the ecosystem are formed through the imitation of the
symbiotic relationship between two organisms. The mutualism, commensalism and
parasitism are the most common symbiotic relationships exist in nature (Cheng and
Prayogo 2014).

The mutualism refers to a symbiotic relationship that is beneficial for both of the
organisms of different species involved in the association. According to this operator,
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candidate solutions are modified by calculating the difference between the optimal
solution and the mean of two organisms. Let X; be an organism that is matched to the
i™ member of the ecosystem. Another organism X; is randomly selected from the
ecosystem. Both organisms ‘work together’ in a mutualistic relationship to increase the
mutual survival advantage in the ecosystem. New candidate solutions (Xj_new, Xj_new) for

these organisms are calculated as (Cheng and Prayogo 2014);

Xinew = Xi +r(0,1) X (Xpest — M x By) (5)

X new = X; +r(0,1) X (Xpest — M x By) (6)
Xi+ X,

M= %

where, M is the mutual vector, Xpes is the ecosystem member (organism) with the best
fitness value, r(0, 1) is a vector comprising random numbers between 0 and 1. By and B,
refer to the benefit factors that specify to what degree each organism benefits from this
relationship. B; and B, get values of 1 or 2.

The commensalism, which originated from the Latin word ‘commensalis’ (derived from
the words ‘com’ (together) and ‘mensa’ (table), meaning ‘eating at the same table’), is
a symbiotic relationship between two organisms where only one benefits without harm-
ing the other one. The commensalism operator calculates the difference between solu-
tions to modify a solution. Let X; be an organism that is randomly selected from the
ecosystem. The commensal symbiosis between X; and X; is considered to obtain the new
candidate solution for X; (X;_new). The organism X; is updated only when the computed
fitness value is better than the pre-interaction fitness value (Cheng and Prayogo 2014).

Xinew = Xi + r(_1a 1) X (Xbest _Xf) ®)

where, r(—1,1) is a random vector of numbers ranging between —1 and 1, and Xpest
defines the organism with the best fitness value.

The parasitism refers to a symbiotic relationship between two organisms in which one,
the parasite, gains benefits and the other one, the host, is harmed. The parasitism
operator, which ensures the mutation in the ecosystem, modifies the solution by making
random changes in the organisms. After the application of the mutation operator, any
organism that is found to be harmed perishes whereas the organisms that benefitted are
evolved to a fitter organism. The best organism in the ecosystem is updated once the
mutualism, commensalism and parasitism operators are applied to each organism (Cheng
and Prayogo 2014). The SOS algorithm iterates until a stopping criterion is satisfied or
maximum iteration number is reached (Tran, Cheng, and Prayogo 2016).

4. Material and methodology
4.1. Test sites and data used

This study was conducted in three test sites in the city of Trabzon, which is located on the
northeast coast of Turkey. Plenty of attention was paid to define the test sites that
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included many types of land cover to ensure a comprehensive performance comparison
between the proposed approaches and other image fusion methods used.

The first test site, which was a mixture of urban and rural area, was acquired in 2012
by the WorldView-2 satellite that collects the electromagnetic energy in eight MS bands
(i.e. coastal, blue, green, yellow, red, red edge, near-infrared 1 and near-infrared 2) with
2 m spatial resolution and a Pan band with 0.5 m spatial resolution.

The second test site, which had similar land cover features as the first site, was acquired
in 2003 by the IKONOS satellite that offers four MS bands (i.e. blue, green, red and near-
infrared) with 4 m spatial resolution. The Pan band for the second site was produced by
averaging the MS bands (i.e. blue, green, red and near-infrared) of a QuickBird panshar-
pened image, which was acquired in 2005 and had a spatial resolution of 60 cm. Despite the
two-year difference in the acquisition dates of the input images of this site, there were no
land cover changes within this period that would have led to significant fusion problems.

The third test site, which was a highland area including a mixture of buildings and
vegetation, was acquired by the WorldView-2 satellite in 2013. The Pan band used for
this site was generated by averaging an orthophoto, which was produced by processing
the aerial photos captured in 2013 by a 10-MP RICOH GR DIGITAL IV digital camera
mounted on a Gatewing X100 unmanned aerial vehicle (UAV). With a 40-min flight, 256
aerial photos (8 bits) were captured from an altitude of 185 m. The Agisoft Photoscan
Professional software was used to produce the orthophoto. Since the WorldView-2
imagery had a radiometric resolution of 11 bits, the orthophoto was scaled to 11 bits
to match the dynamic ranges. The input MS image of this site was co-registered with
respect to the Pan band so that both images were aligned to be fused properly. The
input Pan band of the third site had a spatial resolution of 20 cm and the input MS image
had a spatial resolution of 2 m, which made the fusion process more challenging in this
site, compared to the other sites. Figure 1 shows the test sites.

4.2. Proposed SOS-based hybrid image fusion frameworks

The biggest problem with the CS-based image fusion methods is that they tend to distort
the colour content of the input MS image (Ghassemian 2016), due to the procedures used
to generate the intensity component. The performance of the IHS fusion method depends
on the IHS transform model used. Despite the fact that different transformation models
with different complexities have been proposed so far, all of them produce similar values
for the hue and saturation components. However, the models differ in the procedure
utilized to compute the intensity component (Nunez et al. 1999). As seen in Equation T,
weights for the red, green and blue bands are considered equal, which is the main reason
for the colour distortion caused by the IHS method. A similar problem can be observed in
the BRV method, which uses equal band weights to construct the intensity component.
Munechika et al. (1993) and Zhang (1999) focused on using regression analysis to estimate
more efficient band weights to minimize the colour distortion in CS-based methods.
The proposed fusion frameworks follow these steps:

(1) The input MS image is upsampled to the size of the input Pan band.
(2) The ecosystem is generated randomly. Each organism is a vector comprising
numbers that are randomly generated between 0 and 1. The experiments revealed
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Figure 1. Test sites.

the fact that the SOS algorithm converged very fast and that there was no need for
greater ecosystem sizes. Hence, the ecosystem sizes of 100, 100 and 200 were
considered adequate for the sites 1, 2 and 3, respectively.

The IHS-DWT or IHS-DWFT methods are applied as the objective functions of the
SOS algorithm. The dependent and independent variables of the objective func-
tions are the band weights and input bands, respectively. In this step, the IHS
method is applied by using the Equations 1, 2 and 3 in order to transform the MS
bands from the RGB to IHS space. Instead of using equal band weights for all MS
bands (as in the Equation 1), the proposed approach uses the members of each
organism as the band weights and calculates an intensity component as the
weighted average of the input MS bands. Once the intensity component is pro-
duced, the histogram of the input Pan band is matched to that of the intensity
component to keep the colour content as much as possible. A DWT or DWFT is
applied on both the histogram-matched Pan band and the intensity component.
The approximation component obtained from the intensity component is replaced
by its average with the approximation component obtained from the histogram-
matched Pan band. An inverse DWT or DWFT is then applied on the approximation
component and high-frequency components to produce a new intensity
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component. The fused image is produced by applying an inverse IHS transform
(Equation 4) on the new intensity, hue and saturation components.

(4) The fitness function is computed for each fused image. The Erreur Relative Globale
Adimensionnelle de Synthése (ERGAS) (Wald 2000) metric was used as the fitness
function of the SOS algorithm. The ERGAS metric was calculated between the input
MS bands and corresponding fused bands. The reason for using the ERGAS metric
as the fitness function was that this metric has been proven to be one of the best
indicators of colour quality between images. Since the optimum ERGAS value is 0,
the algorithm tried to minimize the ERGAS value in each SOS iteration.

(5) If the stopping criterion is not satisfied, the SOS algorithm employs the mutualism
(using the Equations 5, 6 and 7), commensalism (using the Equation 8) and parasitism
operators to generate a new ecosystem with new organisms. The difference between
the best fitness (ERGAS) value and global minimum ERGAS value within each itera-
tion was set as the stopping criterion. In light of this, in this study, a difference value
below 1E-03 was selected as the stopping criterion of the SOS algorithm.
Theoretically, it was not possible to obtain an ERGAS value of 0 (otherwise, the
fused image would be identical to the input MS image); hence, a maximum iteration
number of 300 was selected for all test sites to terminate the iterations.

(6) The SOS iterations continue with new ecosystems until the stopping criterion is satisfied
or the maximum number of iterations is reached. Since all input MS images had more
than three MS bands, the proposed frameworks were applied using trilateral combina-
tions of the MS bands. It should also be noted that the proposed frameworks were
encoded in MATLAB environment. The optimum band weights of 0.12, 0.14, 0.21, 0.28,
0.06, 0.08, 0.04 and 0.05; 0.24, 0.26, 0.34 and 0.18; and 0.10, 0.16, 0.17, 0.31, 0.08, 0.05,
0.06 and 0.06 were achieved for the input MS images of the sites 1, 2 and 3, respectively.
The flowchart of the proposed SOS-based IHS-DWT (SIHS-DWT) and SOS-based IHS-
DWFT (SIHS-DWFT) frameworks are shown in Figure 2.

4.3. Image fusion methods used

This subsection provides brief theoretical information about the methodologies of the
image fusion methods compared against the proposed fusion frameworks. This study
used the CS-based methods IHS, BRV, PCA, GS, Ehlers (Ehl), BDSD and HCS. The BRV
method normalizes the MS image by dividing it with an intensity component obtained
by summing all MS bands and multiplies the result by the Pan band to produce the
fused bands (Hallada and Cox 1983). The PCA method transforms the MS image into
a new space where most of the spatial detail content is stored in the first principal
component (PC1) and the spectral information is mapped into other components. Then,
the PC1 is substituted by the Pan band, whose mean and variance information is
matched to those of the PC1. Finally, an inverse PCA transform is applied to compute
the fused image (Chavez and Kwarteng 1989). The GS, which is another statistical
method, is a generalized version of the PCA method. As a first step, the GS method
interpolates all MS bands to the scale of the input Pan band. All input bands are then
converted to vectors. Afterwards, a low-resolution Pan band is simulated using the MS
vectors. Then, the MS and simulated Pan vectors are combined, simulated Pan vector
being the first. A GS transform is applied on the combined data and the first GS
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The input MS image is upsampled.

The ecosystem is generated randomly. Each organism of the ecosystem is a vector
comprising numbers that are randomly generated between 0 and 1.

Iteration number = Iteration number + 1

*

Apply IHS transform using the Equations 1, 2 and 3. Intensity is computed as the
weighted average of the input MS bands. The weights are the members of each
organism.

* Match the histogram of the input Pan band to that of the intensity component.

*  Apply DWT or DWEFT fusion methods.

* Replace the intensity approximation by its average with the histogram-matched Pan
approximation.

* Apply inverse DWT or DWFT.
Apply inverse IHS transform using the Equation 4.

—

Identify the best organism (optimum band weights) using the ERGAS metric given as;

RMSE,,

h 2
ERGAS = 1007 —Z( (Mk))

The ERGAS metric is computed between the input MS bands and corresponding fused
bands. In each iteration, the SOS algorithm tries to minimize the ERGAS value by achieving
the band weights providing the minimum ERGAS value.

Yes . .
Is termination criterion met? Optimum fusion result

Apply the mutualism operator using the Equations 5, 6 and 7.

Apply the commensalism operator using the Equation 8.

Apply the parasitism operator by making random changes in the organism.

Figure 2. Flowchart of the proposed fusion methods.
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component is replaced by the input Pan vector. A reverse GS transform results in the
fused image (Laben and Brower 2000). The Ehl, one of the most widely-used fusion
methods, utilizes both the IHS and Fast Fourier Transforms (FFT). As a first step, an IHS
transform is applied on the input MS image and an FFT is applied on both the input Pan
band and intensity component obtained from the IHS transformation. The intensity
spectrum is filtered with a low-pass filter and the Pan spectrum is filtered with a high-
pass filter. An intermediary intensity component is generated by adding the filtered
spectrums. The fused image is obtained through an inverse IHS transformation applied
on the new intensity, hue and saturation components (Ehlers 2004; Klonus and Ehlers
2007). The Band Dependent Spatial Detail (BDSD) method, proposed by Garzelli,
Nencini, and Capobianco (2008), spatially enhances a degraded version of the input
MS image from a degraded version of the Pan band, minimizing the squared error
between the MS bands and fused bands. The coefficients of the weighted summation of
the MS bands are defined band dependent, calculating a different optimal detail image
for each MS band (Garzelli, Nencini, and Capobianco 2008; Imani 2018). The
Hyperspherical Colour Space (HCS) method transforms the input MS image from the
native colour space (i.e. RGB) to HCS colour space, which consists of an intensity
component and N — 1 angular components, N being the number of input MS bands.
An adjusted intensity is then produced by dividing the Pan band by a smoothed version
of the Pan band and multiplying the result by the intensity component. The adjusted
intensity is replaced by the intensity component and an inverse HCS transformation
results in the fused image (Padwick et al. 2010).

The MRA-based fusion methods used in this study were the AWLP, MTF-GLP, MTF-
GLP-HPM and MTF-GLP-CBD. The AWLP method keeps the proportion between pixel
vectors by proportionally injecting the high-frequency details extracted with the a trous
wavelet transformation into the MS bands (Otazu et al. 2005). The MTF-GLP fusion
method injects the spatial details of the input Pan band considering a constraint of
thoroughly retaining the spectral characteristics of the coarser-resolution input MS
image. A MTF of the input MS image is used to form a GLP reduction filter. The
Interband Structure Model (IBSM), which is computed at the coarser scale, where the
input MS and Pan bands are available, is extended to a finer scale (Aiazzi et al. 2006).
The MTF-GLP-HPM method uses the MTF before downsampling and employs the HPM
injection procedure (Vivone et al. 2014). The MTF-GLP-CBD method employs a decision
model based on locally thresholding Pearson’s correlation coefficient (r) between each
resampled MS band and the low-pass approximation of the input Pan band (Alparone
et al. 2007).

This study used the CB methods LMM, LMVM, SFIM and NND. The LMM method, as the
name implies, matches the local mean values of the Pan image with those of the MS
bands by using normalization functions at a local scale (de Béthune, Muller, and Binard
1997). The LMVM method matches the local mean and variance values between the input
images (de Béthune, Muller, and Binard 1997). The SFIM method, as a first step, applies
a low-pass filter on the Pan band. Then, each MS band is multiplied by the Pan band and
the result is divided by the low-pass filtered Pan band (Liu 2000). The NND method
considers each pixel spectrum in the fused image as a weighted linear mixture of the
spectra of the neighbouring superpixels (Sun, Chen, and Messinger 2014).
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5. Results and discussion

The spectral fidelities of all fusion results were evaluated qualitatively and quantitatively.
The performances of the proposed SIHS-DWT and SIHS-DWFT frameworks were compared
against those of widely-used image fusion methods BRV, MIHS, HCS, Ehl, PCA, GS, BDSD,
LMM, LMVM, NND, DWT, DWFT, MTF-GLP, MTF-GLP-CBD, MTF-GLP-HPM, SFIM and AWLP.
According to Wald'’s first property (Wald, Ranchin, and Mangolini 1997), a fused image
that is downsampled to the size of the input MS image should be as identical as possible
to the MS image. Hence, to evaluate the spectral quality of the fused images, the Root
Mean Square Error (RMSE) (Wald and Ranchin 2002), Relative Average Spectral Error
(RASE) (Ranchin and Wald 2000), ERGAS, Information Content Weighted Structural
Similarity (IW-SSIM) (Wang and Li 2011), Universal Image Quality Index (UIQI) (Wang and
Bovik 2002), Multi-Scale Structural Similarity (MS-SSIM) (Wang, Simoncelli, and Bovik
2003), Structural Similarity Index (SSIM) (Wang et al. 2004), Spectral Information
Divergence (SID) (Strait, Rahmani, and Markurjev 2008), Spectral Angular Mapper (SAM)
(Alparone et al. 2006, 2007) and r (Zeng et al. 2010) metrics were computed between the
input MS bands and fused bands that were downsampled to the size of the input MS
image. The SSIM, IW-SSIM, r and Spatial Correlation Coefficient (r;) (Zhou, Civco, and
Silander 1998) metrics were also computed between the input Pan band and fused
bands in order to evaluate the spatial quality of the fused images. Table 1 shows the
mathematical theories of the quality metrics used in this study. Note that the optimum

Table 1. Mathematical theories of the quality metrics used.
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where, M is the input MS image, P is the fused image, n is the total number of pixels, h is the spatial resolution of the input
Pan image, / is the spatial resolution of the input MS image, K is the total number of bands, M is the mean radiance, y
refers to mean, x is the MS pixel vector, y is the fused pixel vector, - refers to dot product, o refers to variance, w is the
information content weight,C; and G; are constants calculated as C; = (Y1L)2 and G; = (YzL)Z, Y is a small constant, L
is the dynamic range of the pixel values, and ocr, B; and y; are used to adjust the relative importance of different
components.



INTERNATIONAL JOURNAL OF REMOTE SENSING @ 4005

value for the RMSE, RASE, ERGAS, SID and SAM metrics is 0, whereas the optimum value
for the IW-SSIM, UIQI, MS-SSIM, SSIM and r metrics is 1.

5.1. Qualitative evaluation

Qualitative evaluation, which provides a general overview about the performance of the
fusion method used, aims to visually interpret the fused images to see whether the fusion
method managed to keep the colour content of the input MS image. Figures 3-5 show
the fusion results of the sites 1, 2 and 3, respectively. All images in these figures are
displayed in true colour (RGB) band combination. Note that all fused images are displayed
without any contrast stretch to ensure a fair comparison among the fusion results. It can
be inferred from Figures 3-5 that all fusion methods made changes on the colour
characteristics to some extent, which was expected.

As seen in Figure 3, the BRV, MIHS, PCA, GS, NND and DWFT methods caused significant
changes in the global colour characteristics of the site 1. These methods caused colour
distortions on the vegetation, road and water land classes. On the other hand, the HCS,
Ehl, LMM, LMVM, DWT, SFIM, AWLP, SIHS-DWT and SIHS-DWFT methods resulted in more
realistic colours in this site. Figure 4 shows that, in the site 2, the BRV, MIHS, HCS, Ehl, NND
and DWFT methods caused a greater amount of global colour distortion, compared to the
other methods used. The PCA, GS, BDSD, LMVM, DWT, SFIM, SIHS-DWT and SIHS-DWFT
methods presented a better performance in terms of keeping the global colour content in
the site 2. Another interesting conclusion drawn from the fusion results of the site 2 is that
the NND method caused drastic changes in the colours of the shadowy areas. As seen in
Figure 5, the MIHS, GS, NND, DWFT, MTF-GLP-HPM and SFIM methods did not manage to
preserve the global colour characteristics of the site 3. The BDSD, LMVM, DWT, MTF-GLP,
MTF-GLP-CBD, AWLP, SIHS-DWT and SIHS-DWFT methods were found to be more suc-
cessful in this regard. It is also apparent in Figure 5 that the MTF-GLP and MTF-GLP-CBD
methods produced blurry images in the site 3.

High visual quality of the colours does not always indicate that the used fusion method
achieved to preserve the spectral quality. However, there may be colour artefacts that
cannot be observed by the human eye. Since the qualitative evaluation is highly sub-
jective and depends on both the monitor specifications and analyst’s point of view,
quantitative evaluation was conducted to ensure a more robust performance evaluation
for the fusion methods used in this study.

5.2. Quantitative evaluation

Table 2 presents the spectral quality evaluation metric results for the test sites. In the table,
the two fusion results with best metric values for each test site are highlighted with grey. As
seen in the table, the proposed SIHS-DWT and SIHS-DWFT methods dominated the other
fusion methods in keeping the colour content, especially in the sites 1 and 2. In the site 1,
the best two RMSE, RASE, ERGAS, IW-SSIM, UIQI, MS-SSIM, SSIM, SID, SAM and r values of
were achieved by the results of the proposed SIHS-DWT and SIHS-DWFT methods. The SIHS-
DWT result got the RMSE, RASE, ERGAS, IW-SSIM, UIQI, MS-SSIM, SSIM, SID, SAM and r values
of 23.977, 1.315, 2.444, 0.897, 0.532, 0.961, 0.961, 0.006, 1.311 and 0.986, correspondingly.
On the other hand, the SIHS-DWFT result achieved the RMSE, RASE, ERGAS, IW-SSIM, UIQI,
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AWLP SIHS-DWFT SIHS-DWT

Figure 3. Fusion results for the site 1.
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AWLP SIHS-DWFT SIHS-DWT
Figure 4. Fusion results for the site 2.
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Figure 5. Fusion results for the site 3.
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Table 2. Spectral quality evaluation metric values for all test sites.

Site Method RMSE RASE ERGAS IW-SSIM  UIQI  MS-SSIM - SSIM - SID SAM r

1 BRV 100.377 5526 10377 0292 0.079 0553 0498 0.031 5.734 0.734
MIHS 100.301 5500 10464 0287 0.073  0.551 0488 0.053 6.926 0.737
HCS 101.113 5545 10346 0270 0.076  0.551 0480 0.032 5736 0.734
Ehl 87.054 4774 5702 0785 0363 0892 0816 0.095 11.970 0.955
PCA 75.296 4129 9.260 0.788 0384 0878 0.841 0215 5223 0.926
GS 101.335 5557 10442 0301 0079 0562 0499 0.067 7.487 0.746
BDSD 103.264 5663 10621 0298 0.075 0555 0501 0.061 6.927 0.747
LMM 93.381 5.121 9.602 0.288 0.088 0569 0,516 0.043 5361 0.763
LMVM 91.143 4.998 9406 0299 0.095 0589 0.537 0.037 5254 0.778
NND 71333 3.912 8265 0636 0246 0817 0.756 0.008 2709 0.918
DWT 47.525 2.606 4991 0698 0.198 0.839 0.809 0.045 3.876 0.943
DWFT 50.667 2.778 5101 0836 0468 0913 0.894 0.017 5551 0.950
MTF-GLP 102.523 5622 10563 0312 0076 0573 0518 0.074 6.181 0.753

MTF-GLP-CBD 100.090 5489 10090 0314 0080 0577 0524 0.067 6.028 0.758
MTF-GLP-HPM  103.393 5670 10620 0312 0.078 0578 0524 0.033 6.025 0.751

SFIM 99.056 5432 10251 0285 0.072 0562 0514 0.032 5.924 0.750
AWLP 101.521 5567 10339 0281 0.072 0559 0510 0.052 5.945 0.747
SIHS-DWT 23.977 1.315 2444 0897 0532 0961 0961 0.006 1311 0.986
SIHS-DWFT 22.034 1.208 2157 0954 0727 0981 0.978 0.003 2171 0.990
2 BRV 85.177 7.243 5570 0586 0348 0808 0422 0.007 2740 0.806
MIHS 83.693 7117 5566 0575 0345 0.801 0415 0.010 3.281 0.798
HCS 125.651  10.685 8470 0508 0262 0749 0320 0.013 3.040 0.772
Ehl 90.888 7.729 5322 0625 0389 0837 0467 0021 6328 0.863
PCA 73.483 6.249 4777 0638 0387 0.848 0469 0.009 3.150 0.859
GS 84.405 7177 5583 0593 0353 0819 0429 0011 3483 0.819
BDSD 100.997 8.588 6.629 0557 0326  0.801 0.389__0.013 _ 4.587 0.837
LMM 82.009 6.974 5426 0620 0369 0843 0437 0005 2225 0.839
LMVM 69.010 5.868 4505 0642 0382 0885 0497 0.009 3.210 0.881
NND 191.062  16.247 9.564 0307 0.139 0573 0.185 0.023 4316 0.615
DWT 93.231 7.928 6.107 0567 0312 0803 0382 0.018 4764 0.795
DWFT 65.323 5.555 4242 0721 0536 0898 0.603 0.020 4.947 0.890
MTF-GLP 99.623 8.471 6446 0602 0369 0859 0432 0.014 4314 0.857

MTF-GLP-CBD 100.423 8.539 6.447 0.605 0371 0.860 0.435 0.015 4.473 0.858
MTF-GLP-HPM  113.820 9.679 7434 0599 0364 0857 0430 0.010 3486 0.839

SFIM 92.806 7.892 6.137 0623 0357 0867 0429 0009 3.297 0.835
AWLP 93.522 7.953 5991 0628 0370 0870 _ 0.445 0.013  3.486 0.845
SIHS-DWT 43.536 3.702 2.878 0749  0.541 0.923  0.622 0.001 1.283 0.944
SIHS-DWFT 59.343 5.046 4160 0.749 0563 0903 0631 0.011 1806 0914
3 BRV 151.223 6.799 11993 0.112 0.023 0205 0203 0.091 10543 0417
MIHS 149.775 6.733 13.289  0.098  0.021 0.179  0.155 0.225 12.085 0.436
HCS 135.806 6.105 10905 0.147 0.026 0287 0.260 0.091 10.544 0.538
Ehl 81.210 3.651 6.082 0394 0.149 0590 0423 0.031 6.593 0.839
PCA 210.155 9.448 8.887 0446 0.148  0.571 0.513 0.185 10.607 0.612
GS 149.991 6.743 12527 0106 0.022 0192 0.178 0.235 11.697 0.433
BDSD 146.855 6.602 11.813 0.154 0035 0299 0297 0.125 12154 0.534
LMM 133.636 6.008 10.805 0.155 0.046 0.292 0.267 0.084 10.160 0.546
LMVM 129.555 5824 10430 0375 0062 0330 0334 0.120___9.966__0.562
NND 1347942  60.596 32939 0.065 0.032 0.131 0.069 0.260° 4585 0.231
DWT 86.998 3911 6917 0347 0.088 0575 0414 0.028 5731 0.810
DWFT 89.709 4.033 5979 0490 0287 0623 0560 0.038 6.598 0.813
MTF-GLP 132.896 5975 10672 0.182 0.078 0318 0309 0.131 10410 0.559

MTF-GLP-CBD 131.306 5903 10581 0203 0.111 0336 0347 0.088 10.325 0.563
MTF-GLP-HPM  706.690 317.706 680.043 0.169 0.076 0302  0.301 0.354 11.125 0424

SFIM 467464 21016 72797 0.141  0.025 0278 0.256 0.354 11516 0.438
AWLP 136.921 6.156 10913 0.152 _ 0.027 _ 0.296___0.277 0.110__10.654 0.539
SIHS-DWT 76.974 3.461 4670 0574 0334 0719 0.648 0.018 5351 0.890
SIHS-DWFT 84.905 3.817 4991 0541 0303 0691 0621 0.024 6.587 0874

MS-SSIM, SSIM, SID, SAM and r values of 22.034, 1.208, 2.157, 0.954,0.727,0.981, 0.978, 0.003,
2.171 and 0.990, respectively. As can be seen, in the site 1, the colour qualities of the fused
images obtained from the SIHS-DWT and SIHS-DWFT methods were significantly better than
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the results of the other methods used. In the site 2, the proposed methods achieved the best
two RMSE, RASE, ERGAS, IW-SSIM, UIQI, MS-SSIM, SSIM, SAM and r values. As seen in Table 2,
the SIHS-DWT result got the RMSE, RASE, ERGAS, IW-SSIM, UIQI, MS-SSIM, SSIM, SID, SAM
and r values of 43.536, 3.702, 2.878, 0.749, 0.541, 0.923, 0.622, 0.001, 1.283 and 0.944,
respectively. On the other hand, in the site 2, the RMSE, RASE, ERGAS, IW-SSIM, UIQI, MS-
SSIM, SSIM, SAM and r values of 59.343, 5.046, 4.160, 0.749, 0.563, 0.903, 0.631, 1.806 and
0.914, correspondingly. It is obvious that the metric values achieved by the SIHS-DWT and
SIHS-DWFT results were significantly better than those obtained from the results of the
other fusion methods used. In the site 3, the best two ERGAS, IW-SSIM, UIQI, MS-SSIM, SSIM,
SID and r values were obtained by the proposed methods. The SIHS-DWT result achieved
the RMSE, RASE, ERGAS, IW-SSIM, UIQI, MS-SSIM, SSIM, SID, SAM and r values of 76.974,
3.461,4.670,0.574, 0.334,0.719, 0.648, 0.018, 5.351 and 0.890, respectively. In the site 3, the
ERGAS, IW-SSIM, UIQI, MS-SSIM, SSIM, SID and r values of 4.991, 0.541, 0.303, 0.691, 0.621,
0.024 and 0.874 were obtained by the SIHS-DWFT result, correspondingly. It can be con-
cluded that the SIHS-DWT and SIHS-DWFT methods led to superior metric values in the site
3. It is obvious that the SIHS-DWT and SIHS-DWFT methods managed to find the optimum
band weights that achieved the optimum spectral fidelity. Matching the histogram of the
input Pan band to that of the intensity component was the other factor that helped preserve
the colour content. The biggest advantage of the SIHS-DWT and SIHS-DWFT methods is that
they are easy to implement and use only one user-defined parameter (i.e. ecosystem size),
which enables the analysts to obtain the optimum results in a short span of time without
being have to try different values for different parameters. Another advantage of the SIHS-
DWT and SIHS-DWFT methods is that they converge very fast. The reason for this conver-
gence speed is that the commensalism operator uses the optimum solution of a generation
as a reference to specify promising regions around the optimum solution. The parasitism
operator ensures the naturalness of the ecosystem and enables the SIHS-DWT and SIHS-
DWFT methods to achieve the optimum solutions from all parts of the ecosystem.
Increasing the ecosystem size parameter helps obtain more reasonable band weights,
increasing the spectral quality. The wavelet transform is very successful in separating the
colour and spatial details; however, it may cause spatial detail loss due to the fact that it
extracts the spatial details only in horizontal, vertical and diagonal directions. The SIHS-DWT
and SIHS-DWFT methods ensure the spectral and spatial consistency by substituting the
approximation component obtained from the intensity component by its average with the
approximation component obtained from the histogram-matched Pan band. It is also
possible to achieve a better colour quality by using a greater weight for the approximation
component obtained from the intensity component, and a better spatial quality by using
a greater weight for the approximation component obtained from the histogram-matched
Pan band. This study used equal weights for both components to achieve a compromise
between the spectral and spatial quality.

As seen in Table 2, the DWFT results got the best global spectral metric values after the
SIHS-DWT and SIHS-DWFT methods. The DWFT method performed best in the site 1 with
the RMSE, RASE, ERGAS, IW-SSIM, UIQI, MS-SSIM, SSIM, SID, SAM and r values of 50.667,
2.778, 5.101, 0.836, 0.468, 0.913, 0.894, 0.017, 5.551 and 0.950, respectively. The DWFT
method is based on the DWT and does not employ a downsampling process, which leads
to the same image size after transformation. The DWFT method, on the other hand, does
not consider regional characteristics, since each part of the scene has its own local
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features. This is a huge disadvantage for this method. Unlike the DWFT, the DWT method
applies downsampling, which changes the size of the images. This change is likely to have
a negative effect on the fusion result, especially when the input images are not perfectly
registered.

The Ehl method, which provided spectrally consistent images in all test sites (see Table 2),
filters the intensity and Pan spectrums in fourier domain, which helps retain the colour
characteristics of the input MS image and transfer the spatial details of the input Pan band.
The Ehl method applies an IHS transform, which attaches importance on the IHS transform
procedure used. It also uses successive three-band selections to perform the IHS transform
until all bands are fused (Klonus and Ehlers 2009), which increases the computation time.
A more efficient IHS transform procedure can be used to alleviate the workload. One of the
biggest advantages of the Ehl method is that it allows the users to change the filter design
to achieve maximum colour preservation or spatial enhancement. If maximum colour
quality is needed, then the filter is shifted to the higher frequencies of the power spectrum
to suppress the spatial information. However, if the focus is on maximum spatial detail
quality, then the filter is shifted to the lower frequencies to include more spatial detail
content. A compromise between the colour preservation and spatial enhancement can be
found by moving the cut-off frequency, as done in this study.

Table 2 shows that the LMM and LMVM methods provided satisfactory colour pre-
servation in all test sites. In addition, they showed similar performances. These methods
aim to match the local intensities through matching windows, which places emphasis on
the selection of the optimum window size. Smaller window sizes result in less colour
distortion, whereas larger window sizes produce sharper images. In order to make
a compromise between the colour and spatial quality, this study used a window whose
size was the minimum odd number that is greater than the ratio between the input MS
and Pan bands. This approach allowed for controlling the frequency distribution at a local
scale.

As seen in Table 2, the PCA is one of the other methods that provided satisfactory
colour preservation. This method is a statistical procedure, which means that its perfor-
mance is dependent on both the scene characteristics and statistical relevance between
the input images. Unlike the input images of the sites 2 and 3, the input images of the site
1 were acquired from the same sensor, which is why the PCA method yielded generally
better global spectral metric values in the site 1, compared to the sites 2 and 3. The PCA
result, in the site 1, got the RMSE, RASE, ERGAS, IW-SSIM, UIQI, MS-SSIM, SSIM, SID, SAM
and r values of 75.296, 4.129, 9.260, 0.788, 0.384, 0.878, 0.841, 0.215, 5.223 and 0.926,
respectively. The GS, another statistical procedure similar to the PCA, did not manage to
keep the colour content of the input MS images (see Table 2 and Figures 3-5). The GS
method simulates a low-resolution Pan band, which is used as the first component of the
intermediary image to which the GS is applied. However, how to estimate the optimum
weights for the input MS and Pan bands to compute the simulated Pan band is still not
clear. It is possible to estimate the band weights either from the sensor’s spectral
sensitivity curves or from linear regression methods (Pohl and van Genderen 2016). A low-
resolution Pan band can also be calculated by averaging the input MS bands. It is also
possible to define another low-resolution Pan band, instead of computing a new one.
Since there were no other low-resolution Pan band for the test sites, this study generated
low-resolution Pan bands by averaging the input MS bands. The GS method changed the
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spectral interrelation between different objects as can be observed in Figures 3-5. Both
the PCA and GS methods performed worst in the site 3, compared to the other sites. This
was because the spectral overlap between the input MS and Pan bands was the smallest
in the site 3.

Table 2 shows that, in all test sites, the MTF-GLP, MTF-GLP-CBD and AWLP methods
showed an overall performance in keeping the colour content, whereas the MTF-GLP-
HPM method caused a greater amount of spectral distortion that cannot be observed by
the human eye (see Figures 3-5). The MTF-GLP method designs the GLP reduction filter
by using the MTFs of the imaging sensor. The Pan band is reduced with the MTF filter
and the histogram-matched Pan band is interpolated. The low-resolution Pan band is
subtracted from the original Pan band to obtain the spatial detail information to be
added into the input MS bands. Producing the detail information this way caused some
colour distortion and blurry effects, especially where the frequency changed drastically
(See Figure 4). The MTF-GLP-HPM method follows the same steps as the MTF-GLP
method, except for the high-pass modulation injection procedure, which is based on
simply multiplying the spatial details. This procedure deteriorated the colour content, as
can be seen from the metric values given in Table 2. A procedure that considers the
regional characteristics may be of help to better keep the colour features. The MTF-GLP-
CBD method optimizes the spatial detail injection coefficients by least square fitting.
The image is patched in nonoverlapping zones to locally optimize the injection coeffi-
cients. This approach enabled the preservation of the colour characteristics to some
extent. The AWLP method utilizes the IHS transform to obtain an intensity component
to be used to modify the histogram of the Pan band, which led to fair spectral metric
values in all test sites (see Table 2). The AWLP method also relatively injects the spatial
details into the MS bands, which helped keep the chromatic relationship between the
MS bands to a certain extent.

As seen in Table 2, the BRV, SFIM and NND methods were found to deteriorate the
colour characteristics in all test sites. The BRV method normalizes the MS image by
dividing it with an intensity component produced by summing all MS bands. However,
this is not always efficient for all types of input images since each spectral band should
have its own weight. Estimating the band weights in a more efficient way would enable
the BRV method to better preserve the colour characteristics. The SFIM method employs
a low-pass filter on the input Pan band. The input Pan band is then divided by the
smoothed Pan band to extract the spatial details. Hence, plenty of attention should be
paid to design the low-pass filter used. Otherwise, spectral distortion or spatial detail loss
would be inevitable, especially for terrains with high colour frequency. The challenge in
finding the optimum low-pass filter design was the reason for the spectral distortion in
the site 3 (see Table 2 and Figure 5). Greater filter sizes lead to smoother images, causing
colour distortion in the final fused image. Hence, a compromise should be found between
the colour quality and spatial fidelity. More efficient smoothing filters such as Gaussian or
Kuwahara may be of help to keep the colour content while preserving the spatial details.
The NND method considers only positive diffusion weights caused by the exponent,
which was the main reason for the low spectral fidelity of the NND results of all test
sites. The NND method also uses two parameters, which are the spatial smoothness factor
and intensity smoothness factor. Greater intensity smoothness factor values lead to
higher spectral fidelity, but poorer spatial detail quality. The analysts have to try different
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values for these parameters to obtain the optimum spectral and spatial quality, which is
the biggest disadvantage of the NND method. A compromise can be said to found
between the spatial smoothness factor and intensity smoothness factor parameters in
the sites 1 and 2; however, it was very challenging to find the optimum values for these
parameters in the site 3. This was the main reason for the drastic colour change in this site
(see Figure 5).

Table 2 shows that the BDSD, HCS and MIHS methods got the worst metric values in
all test sites. The HCS method uses the ratio between the Pan band and a smoothed
version of the Pan band in order to extract the spatial detail information used to adjust
the intensity component. This, of course, attributes importance to the smoothing
procedure used, just as in the SFIM and MTF-based methods. The HCS method, on the
other hand, performs histogram matching between the intensity and adjusted intensity
components, which absorbs the spatial details to a certain extent, as in the site 1 and 3
(see Figures 3 and 5). The MIHS method preserves the colour features best if the input
MS and Pan bands cover the same part of the electromagnetic spectrum, which was the
main reason that the MIHS method performed worse in the site 3, compared to the
other sites.

Image fusion aims at transferring the spatial details of the input Pan band while
keeping the colour characteristics of the input MS image. Hence, in addition to colour
fidelity, spatial fidelity should also be evaluated. Table 3 shows the spatial quality metric
values computed between the input Pan band and fused bands. Note that the best two
metric values are highlighted with grey colour in the table. As seen in Table 3, the
proposed SIHS-DWT and SIHS-DWFT methods achieved very good spatial metric values
in all test sites. In fact, these methods did not manage to transfer the spatial details as
successful as they kept the colour content. As seen in Table 2, the SIHS-DWT and SIHS-
DWFT methods dominated the others in terms of colour quality, which was not true for
spatial quality (see Table 3). The reason for this was that the proposed methods were
designed to achieve the optimum spectral quality by using the ERGAS metric as the
fitness criterion. Table 3 shows that the DWFT, SIHS-DWT, Ehl and SIHS-DWFT methods
got the best spatial quality metric values in all test sites. On the other hand, the BDSD,
AWLP, SFIM and HCS methods got the worst spatial quality metric values from the fused
images produced with the datasets used.

Too many performance metrics were used in this study to assess the quality of a large
number of image fusion methods, which made it very challenging to interpret the
performance of the image fusion methods used. Hence, a performance score was given
to each fusion result with respect to its metric value. Since a total of 19 image fusion
methods were used in this study, each fusion result was given a score between 1 and 19.
For each metric, the best fusion result got the score of 19, whereas the worst one got the
score of 1. It should also be noted that the performance scores were given considering
only the quantitative evaluation results. This was because the qualitative evaluation is
highly subjective and depends highly on the analyst’s point of view, which negatively
affects the robustness of a fair comparison. Gungor (2008), Yilmaz and Gungor (201643,
2016b), Kwan et al. (2017) and Yilmaz, Serifoglu Yilmaz, and Gungor (2019) also gave
performance scores to each fusion result to ensure a fair comparison. Tables 4 and 5 show
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Table 3. Spatial quality evaluation metric values for all test sites.

Site Method IW-SSIM r SSIM A

1 BRV 0.241 0.587 0.361 0.139
MIHS 0.239 0.580 0.375 0.137
HCS 0.196 0.596 0.341 0.117
Ehl 0.775 0.856 0.737 0.888
PCA 0.744 0.827 0.697 0.629
GS 0.240 0.609 0.381 0.153
BDSD 0.227 0.607 0.343 0.142
LMM 0.199 0.620 0.347 0.178
LMVM 0.210 0.638 0.761 0.241
NND 0.706 0.854 0.667 0.342
DWT 0.664 0.830 0.630 0.533
DWFT 0.832 0.954 0.787 0.928
MTF-GLP 0.258 0.625 0.736 0.124
MTF-GLP-CBD 0.253 0.627 0.741 0.129
MTF-GLP-HPM 0.256 0.620 0.735 0.121
SFIM 0.193 0.609 0.745 0.121
AWLP 0.191 0.606 0.742 0.128
SIHS-DWT 0.724 0.862 0.864 0.822
SIHS-DWFT 0.696 0.874 0.857 0.829

2 BRV 0.707 0.768 0.615 0.516
MIHS 0.725 0.783 0.632 0.522
HCS 0.699 0.774 0.565 0.447
Ehl 0.812 0.872 0.838 0.951
PCA 0.776 0.854 0.801 0.942
GS 0.719 0.789 0.628 0.529
BDSD 0.695 0.770 0.608 0.511
LMM 0.693 0.751 0.597 0.516
LMVM 0.693 0.767 0.836 0.522
NND 0.307 0.409 0.205 0.145
DWT 0.696 0.802 0.687 0.839
DWFT 0.853 0.935 0.840 0.974
MTF-GLP 0.710 0.797 0.766 0.455
MTF-GLP-CBD 0.706 0.796 0.764 0.455
MTF-GLP-HPM 0.701 0.785 0.770 0.438
SFIM 0.636 0.730 0.753 0.440
AWLP 0.639 0.739 0.752 0.437
SIHS-DWT 0.769 0.850 0.770 0.959
SIHS-DWFT 0.775 0.852 0.751 0.926

3 BRV 0.076 0.281 0.125 0.230
MIHS 0.066 0.259 0.095 0.222
HCS 0.056 0.188 0.128 0.203
Ehl 0.438 0.494 0.312 0.896
PCA 0.293 0.751 0.241 0.491
GS 0.074 0.278 0.108 0.235
BDSD 0.055 0.190 0.138 0.198
LMM 0.059 0.193 0.132 0.230
LMVM 0.064 0.202 0.603 0.309
NND 0.083 0.074 0.037 0.053
DWT 0.345 0.459 0.293 0.472
DWFT 0.687 0.818 0.457 0.939
MTF-GLP 0.075 0.204 0.604 0.295
MTF-GLP-CBD 0.070 0.199 0.614 0.392
MTF-GLP-HPM 0.068 0.117 0.597 0.233
SFIM 0.049 0.124 0.583 0.167
AWLP 0.054 0.192 0.588 0.196
SIHS-DWT 0.545 0.637 0.634 0.835
SIHS-DWFT 0.548 0.654 0.632 0.772

the spectral and spatial performance scores given to each fusion method used, respec-
tively. Note that the best two scores for each metric are highlighted with grey colour in
the Tables.
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6. Conclusion

This study proposed two hybrid image fusion methodologies based on the IHS and
DWT/DWFT methods. The proposed methods utilize the SOS optimization algorithm
to find the optimum band weights used to generate the optimum intensity compo-
nent, which plays a significant role in the success of the fusion process. The spectral
and spatial quality of the fused images obtained by the proposed SIHS-DWT and
SIHS-DWFT methods were compared against those of several image fusion methods,
including the BRV, MIHS, HCS, Ehl, PCA, GS, BDSD, LMM, LMVM, NND, DWT, DWFT,
MTF-GLP, MTF-GLP-CBD, MTF-GLP-HPM, SFIM and AWLP. The spectral qualities of the
fused images were compared qualitatively and quantitatively. The RMSE, RASE,
ERGAS, IW-SSIM, UIQI, MS-SSIM, SSIM, SID, SAM and r metrics were used for spectral
quality evaluation, whereas the IW-SSIM, r, SSIM and r; metrics were used for spatial
quality evaluation.

Figure 6 presents the average spectral and spatial performance scores computed
from the scores given in Tables 4 and 5. As seen in the figure, the proposed SIHS-
DWT and SIHS-DWFT methods led to the optimum colour quality with average
spectral performance scores of 18.6 and 18.0, respectively. The DWFT, LMVM, Ehl
and PCA methods were found to be the other methods that achieved to preserve the
colour characteristics with average performance scores of 15.4, 13.0, 12.9 and 12.9,
respectively. Figure 6 also shows that the DWT, LMM and MTF-GLO-CBD methods
presented a fair spectral fidelity in all test sites. It was also concluded that the HCS,
MIHS and BDSD methods caused the greatest amount of colour distortion with
average spectral performance scores of 5.6, 5.5 and 5.2, respectively. When it
comes to spatial quality, the proposed SIHS-DWT and SIHS-DWFT methods were
among the most successful ones. As seen in Figure 6, the DWFT, SIHS-DWT, Ehl, SIHS-
DWFT and PCA methods were the most successful ones in transferring the spatial
details with average spatial performance scores of 18.2, 16.6, 16.2, 16.0 and 14.6,
respectively. Figure 6 also depicts that the DWT, MTF-GLP, MTF-GLP-CBD and LMVM
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Figure 6. Average spectral and spatial performance scores.
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Table 4. Spectral performance scores given to each fusion method.

Site Method RMSE ~ RASE  ERGAS  IW-SSIM  UIQI  MS-SSIM ~ SSIM~ SID  SAM r
1 BRV 7 7 6 6 8 3 3 15 1 1
MIHS 8 8 4 4 3 1 2 7 4 3
HCS 6 6 7 1 5 1 1 13 10 1
Ehl 13 13 15 15 15 16 15 2 1 17
PCA 14 14 13 16 16 15 16 1 15 14
GS 5 5 5 9 8 6 4 4 2 4
BDSD 2 2 1 7 4 4 5 6 3 5
LMM 1" 1" 1 5 1 8 8 10 13 1
LMVM 12 12 12 8 12 12 12 1 14 12
NND 15 15 14 13 14 13 13 17 17 13
DWT 17 17 17 14 13 14 14 9 16 15
DWFT 16 16 16 17 17 17 17 16 12 16
MTF-GLP 3 3 3 10 5 9 9 3 5 9
MTF-GLP-CBD 9 9 10 12 10 10 10 4 6 10
MTF-GLP-HPM 1 1 2 10 7 1" 10 12 7 8
SFIM 10 10 9 3 1 6 7 13 9 7
AWLP 4 4 8 2 1 5 6 8 8 5
SIHS-DWT 18 18 18 18 18 18 18 18 19 18
SIHS-DWFT 19 19 19 19 19 19 19 19 18 19
2 BRV 1 il 1 6 6 6 6 17 16 5
MIHS 13 13 12 5 5 3 5 12 12 4
HCS 2 2 2 2 2 2 2 7 15 2
Ehl 10 10 14 13 16 8 14 2 1 15
PCA 15 15 15 15 15 10 15 14 14 14
GS 12 12 10 7 7 7 7 10 10 6
BDSD 4 4 4 3 4 3 4 7 4 8
LMM 14 14 13 1N 10 9 12 18 17 9
LMVM 16 16 16 16 14 16 16 14 13 16
NND 1 1 1 1 1 1 1 1 6 1
DWT 8 8 8 4 3 5 3 4 3 3
DWFT 17 17 17 17 17 17 17 3 2 17
MTF-GLP 6 6 6 9 10 12 10 6 7 12
MTF-GLP-CBD 5 5 5 10 13 13 1" 5 5 13
MTF-GLP-HPM 3 3 3 8 9 1" 9 12 8 9
SFIM 9 9 7 12 8 14 7 14 1" 7
AWLP 7 7 9 14 12 15 13 7 8 11
SIHS-DWT 19 19 19 18 18 19 18 19 19 19
SIHS-DWFT 18 18 18 18 19 18 19 10 18 18
3 BRV 5 5 6 4 3 4 4 1" 9 2
MIHS 7 7 4 2 1 2 2 5 2 5
HCS 10 10 9 6 5 6 6 1 8 8
Ehl 18 18 16 15 16 16 15 16 15 17
PCA 4 4 14 16 15 14 16 6 7 14
GS 6 6 5 3 2 3 3 4 3 4
BDSD 8 8 7 8 8 9 9 8 1 7
LMM 1 il 10 9 9 7 7 14 12 10
LMVM 14 14 13 I} 10 12 12 9 13 12
NND 1 2 3 1 7 1 1 3 19 1
DWT 16 16 15 14 13 15 14 17 17 15
DWFT 15 15 17 17 17 17 17 15 14 16
MTF-GLP 12 12 1 12 12 1" 1 7 10 1
MTF-GLP-CBD 13 13 12 13 14 13 13 13 1 13
MTF-GLP-HPM 2 1 1 10 1 10 10 1 5 3
SFIM 3 3 2 5 4 5 5 1 4 6
AWLP 9 9 8 7 6 8 8 10 6 9
SIHS-DWT 19 19 19 19 19 19 19 19 18 19
SIHS-DWFT 17 17 18 18 18 18 18 18 16 18

methods presented a satisfying spatial fidelity in all test sites. The BDSD, AWLP, SFIM
and HCS methods were found to cause the lowest spatial quality with average spatial
performance scores of 5.5, 5.5, 5.2 and 4.1, respectively.
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Table 5. Spatial performance scores given to each fusion method.

Site Method IW-SSIM r SSIM rs
1 BRV 9 2 4 8
MIHS 7 1 5 7
HCS 3 3 1 1
Ehl 18 16 12 18
PCA 17 13 9 15
GS 8 6 6 10
BDSD 6 5 2 9
LMM 4 8 3 Il
LMVM 5 12 16 12
NND 15 15 8 13
DWT 13 14 7 14
DWFT 19 19 17 19
MTF-GLP 12 10 1 4
MTF-GLP-CBD 10 1 13 6
MTF-GLP-HPM 1 8 10 2
SFIM 2 6 15 2
AWLP 1 4 14 5
SIHS-DWT 16 17 19 16
SIHS-DWFT 14 18 18 17
2 BRV 1 6 5 9
MIHS 14 9 7 1
HCS 8 8 2 5
Ehl 18 18 18 17
PCA 17 17 16 16
GS 13 1 6 13
BDSD 6 7 4 8
LMM 4 4 3 9
LMVM 4 5 17 1
NND 1 1 1 1
DWT 7 14 8 14
DWFT 19 19 19 19
MTF-GLP 12 13 13 6
MTF-GLP-CBD 10 12 12 6
MTF-GLP-HPM 9 10 14 3
SFIM 2 2 1 4
AWLP 3 3 10 2
SIHS-DWT 15 15 14 18
SIHS-DWFT 16 16 9 15
3 BRV 12 13 4 7
MIHS 7 1 2 6
HCS 4 4 5 5
Ehl 16 15 10 18
PCA 14 18 8 15
GS 10 12 3 10
BDSD 3 5 7 4
LMM 5 7 6 7
LMVM 6 9 15 12
NND 13 1 1 1
DWT 15 14 9 14
DWFT 19 19 1 19
MTF-GLP 1 10 16 1
MTF-GLP-CBD 9 8 17 13
MTF-GLP-HPM 8 2 14 9
SFIM 1 3 12 2
AWLP 2 6 13 3
SIHS-DWT 17 16 19 17
SIHS-DWFT 18 17 18 16

As can be clearly seen, the proposed SIHS-DWT and SIHS-DWFT methods combined
the superiorities of the IHS, DWT/DWFT and SOS algorithms. It was also concluded that
the SIHS-DWT and SIHS-DWFT methods kept the colour characteristics regardless of the
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Table 6. Advantages and disadvantages/limitations of the SIHS-DWT and SIHS-DWFT methods.
Advantages Disadvantages/Limitations

® Able to handle large spatial resolution difference ® Hard to choose the best ecosystem size parameter
between the input images

® Able to search in a very large parameter space ® Hard to choose the optimum weights for the intensity

and Pan approximations

Able to optimize the intensity component

Fast convergence

Easy to implement

Using only one user-defined parameter

No algorithm-specific constraints

spatial resolution between the input MS bands. Another important conclusion drawn
from the quantitative evaluation results is that the SIHS-DWT and SIHS-DWFT methods
showed a very good performance with both singlesensor and multisensor input images.
The advantages and disadvantages/limitations of the SIHS-DWT and SIHS-DWFT meth-
ods are summarized in Table 6.

Generally speaking, the MRA-based methods were found to achieve the optimum
colour quality and spatial detail content. On the other hand, the CS-based methods
caused the greatest amount of colour distortion, whereas the CB methods produced
the images with lowest spatial fidelity.

This study showed the effectiveness of the SOS metaheuristic algorithm in increasing
the performance of the hybrid image fusion methods. Further studies will focus on using
the metaheuristic algorithms to increase the performances of some other image fusion
methods.
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