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Abstract: The resonant near-field microwave sounding is 

an actively developing area of researches the main aim of 
which is a diagnosis in medicine for different pathologies 

in human tissues. The microwave sounding is associated 

with visualization of heterogeneous dielectric mediums 

on the basis of scan data of tissue in the microwave 

range. With the help of microwave sounding, it is 

possible to determine dielectric capacitivity and 

conductivity of tissues of different physical nature. These 

electrodynamic characteristics depend on the physical 

features of environment, its structural, physical and 

chemical composition and may be used for diagnostic 

purposes in the medicine. In theoretical researches the 

decision algorithm of bidimensional reverse problems of 
change of dielectric capacitivity inhomogeneities in 

biological environment based on the scanned data of the 

diffraction field in the near zone of heterogeneities was 

offered. The algorithm is based on integral representation 

of the diffraction field using the "equivalent sources" and 

method of Lavrentiev regularization. 

Keywords: Microwave sounding, reverse problem, 

regularization, dielectric capacitivity of tissues. 

 

1. Introduction  

In medical applications the definition of complex 
dielectric capacitivity of biological tissues is the basic 

information during the diagnosis for different pathologic 

process in human tissues, in particular, skin and 

oncological diseases [1-4]. 

The microwave sounding is for the pathologies 

diagnosis at early stages of its progression. 

This is due to the fact that during a disease the water 

content of tissues is changed and this in turn leads to 

changes in its dielectric capacitivity. 

Besides that, during the microwave sounding 

there is a possibility to research hotbeds of disease with 
flat contrast for classical methods of supersonic and 

roentgen soundings. Some aspects of the new approach to 

the study of bidimensional reverse problems of the 

resonant near-field microwave sounding are discussed in 

this work. This approach is based on integral 

representations of the diffraction field using the 

"equivalent sources" [5] and method of Lavrentiev 

regularization [6]. 

The resonant near-field microwave sounding is 

an actively developing area of researches the main aim of 

which is diagnosis and visualization of heterogeneous 

dielectric mediums on the basis of scan data of tissue in 

the microwave range [1,2]. With the help of microwave 
sounding, it is possible to determine dielectric 

capacitivity and conductivity of tissues of different 

physical nature. These electrodynamic characteristics 

depend on the physical features of environment, its 

structural, physical and chemical composition and may 

be used for diagnostic purposes [5]. 

 

2. Research method 

The absence of effective solution of 

interpretation problem of the parameters of microwave 

sounding during its interaction with inhomogeneities of 

biological environment is the major obstacles on the way 
of technological development of the microwave 

sounding. It is necessary to take into account the whole 

range of such effects as dispersion, absorption, reflection, 

diffraction and etc. in the case where characteristic 

dimensions of inhomogeneities of biological environment 

are comparable with the wave-length of applied 

microwave sounding for wave advance process 

description in the studied biological environment. 

This greatly complicates the construction of 

effective solutions of relevant reverse problems on 

restoration of the structure of inhomogeneities 
distribution. Despite the already developed methods for 

reverse problems solution, there is a need to develop new 

methods for the analysis of internal structure of 

biological environments, which more fully take into 

account the effects of the interaction of the microwave 

sounding with inhomogeneities in biological 

environments. 

 

3. Research results 

The two-dimensional area D  is considered as 

electrodynamic model of the biological environment 
inhomogeneity. It is expected that the dielectric 

capacitivity of environment filling of area D  is the 

function of two spatial variables x  and  yxy , . 

Outside the area D  the dielectric capacitivity of 

environment is constant 0 , and magnetic permittivity 

aligns with magnetic permittivity of vacuum. Let the 

source of the microwave radiation is situated at the point 

 mmm yxr ,  which is outside the area D . This source 
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creates monochromatic cylindrical electromagnetic wave 

with electric-field intensity  iUE ,0,0


: 

    ,-
4

, m

1

0
0 rrkH

iU
yxU i                        (1) 

 

where    ,/,, ckyxr   – circular 

frequency, 

c  – speed of light in vacuum, 
  1

0H   –  Hankel function of first kind. 

The diffraction field with intensity 

 ss UE ,0,0


 results from interaction of sounding 

wave (1) with inhomogeneity D . As it follows from [7], 
this field satisfies the integral equation: 

 

                                  

        ydxdyxUyxhyxyxGkyxU
D

s ,,,,,, 2

 .                               
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Here: 
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    .1,,, 1

0   yxyxhUUU si
  

The problem of determining the electromagnetic 

properties of inhomogeneity D  is as follows. Let 
sD  is 

a general area without inhomogeneity D  and  21,kk  is 

an arbitrary interval of frequency parameter 

ck /0  of sounding wave (1). It is necessary to 

determine the dielectric capacitivity  yx,  of 

inhomogeneity D  using the diffraction field  yxU s ,  

known (measured) for frequency parameter  21,kkk  

and points   sDyx , . 

The construction for reverse problems solution is 

based on the equation (2). It is easily seen that this non 

linear integral equation relative to the dielectric 

capacitivity  yx, . As the diffraction field non linear 

depends on function  yx, , that’s why in some cases 

is it possible to linearize the equation (2). (For example if 

h  (see (2)) is sufficiently small for   Dyx , .) This is 

so called Born approximation [8]. In this case the 

equation (2) comes to linear integral equation of first kind 

relative to function  yxh , : 

 

      ydxdyxUyxhyxyxGkU i

D
Ds s ,,,,,2

 . (4) 

 

 

 The regularization methods of ill-defined 

problem are used for the numerical solution of this 

equation. 
 In the general case when the integral operator 

defined in the right part (2) is non linear, the different 

iterative algorithms were offered based on the classical 

method of Newton – Kantorovich [9], which allows to 

linearize the connection between the desired dielectric 

capacitivity of inhomogeneity and its diffraction 

characteristics as a source of data. The effectiveness of 

these algorithms build the solution of the reverse problem 

is determined by the following factors:  

- knowledge of a good initial approximation (there is no 

universal recommendation for its selection), available 
analytical or numerical ways for calculating of Fresnel 

non linear integral operator; 

- performance characteristics of algorithms for 

constructing solutions of direct problems of diffraction 

(guaranteed calculation accuracy, speed, etc.). 

 Without going into details, we note that using 

these variants of linearization a sufficiently broad range 

of relevant, practically important revere problems of 

remote sounding and nondestructive testing can be 

considered. However, for medical applications, when it is 

not enough information about the initial approximation 

(dielectric capacitivity of inhomogeneity of the biological 
environment) these algorithms, apparently, unsuitable. 

 The following results for new inversion 

algorithm does not require information of the first 

approximation. 

Inversion algorithm. As previously noted, the base for 

construction of solution for considered reverse problem is 

the system of non linear integral equations: 

,),(),(),,,(2


D

D

s ydxdyxUyxnyxyxGkU
s

                         

(5) 

 

,),(),(),,,(2


D

i ydxdyxUyxnyxyxGkUU

.),( Dyx                      (6) 

 

In this equations the unknown quantities are 

functions ),( yxU  and ),( yxn , and  known  quantities 

(basic data) is sounding wave 
iU  and diffraction  field 

sU  in defined area
sD . 

Specify the position of the reverse problem. Let 

in the area 
sD  set М points 

Mmyxr mmm ,...,1),,(  , and Q  frequency 

parameters Qqkk q ,..,1,   in interval 

),( 21 kkkq  . Let ),( mm

ssq

m yxUU  denote as value 

of the diffraction field obtained in the result of 

measurements with location of source of the sounding 

wave (1) at the point ),( mmm yxr   frequency 

parameters .qkk   

These values of the diffraction field are used as 

basic data for solution of the reverse problem. 
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The first step of the algorithm construction 

consists of finding of "equivalent sources" with equation 

(5). Derive the function of "equivalent sources" by 
formula: 

 

).,(),(),( yxUyxnyxW                              (7) 

 

Here ),(),(),( yxUyxUyxU si   – full 

field on the area of inhomogeneity, 

.1),(),( 1

0   yxyxn  It is obvious that 

),( yxW  finite function, equal to zero outside the area 

of inhomogeneity.  

Assume that the area of inhomogeneity D  is in 

rectangle    .,, dcba   Split this rectangle to squares of 

side h  and centers at points 

.,...,2,1),,( Nnyxr nnn   Let h  is so small, that 

function ),( yxW in rectangle with centers at points 

),( nnn yxr  takes constant value equal to 

.),(),( nnn WyxWyxW   The integral in (5) can be 

approximately represented as follows 

 

 



D

N

n
nmnmm WGydxdyxWyxyxG

1

.),(),,,(   (8) 

 

We can show that if the function ),( yxW  is 

continuously differentiable then the formula error (8) has 

order 
2h . The values mnG   are calculated in an explicit 

form 
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where (...)(...),, )1(

1

)1(

0 HH
h

a


  –  a Hankel 

cylindrical function of first kind. Substitute (8) and (5) 

we have  

 

.,...,1

,,...,1
,

1 Qq

Mm
WGU

N

n
n

q

mn

sq

m




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         (10) 

 

The index q denotes, that values mnG  are 

calculated with the frequency parameter .qkk   

From the equation (10) we can denote the 

function value of "equivalent source" at points ),( nn yx  

in the area of inhomogeneity .D  Lets use method of 

Lavrentiev regularization [6]. 

Assume (10) in matrix form: 
 

.WGU q
sq                      (11) 

 

Here 

Nn

Mm
q

mnq

T

N

Tsq

M

sqsq GGWWWUUU
,...1

,...,111 ,),...,(,),...,(




, index T  denotes an operation of transposition. 

In general case matrix qG  is rectangle with 

.NM  That’s why equation system (11) is no defined 

(the number of equation is smaller than dimensionality). 

The method of regularization [6] is applied for its 

solution. Derive the new unknown column-vector by 

formula: 

,*VGW q                               (12) 

 

where  *

1 ,),...,( q

T

M GVVV is conjugate matrix .qG   

Substitute (12) in (11) we will have: 

.*VGGU qq

sq                                    (13) 

 

It is easy to see *

qqGG  square matrix size 

MM  . In accordance with (5), together with equation 
(13), we view the equation: 

 

,* VVGGU qq

sq                           (14) 

where .0  

For every 0 , equation (14) has unique 

solution: 

 

.)( 1* sq

qq UGGIV                                 (15) 

 

Besides that as shown in (5), with 0  

such that 0 : 

 





Q

q
qq VVVV

1

22
.0  

 

Value   is determined by measurement errors 

of the diffraction field 
sq

mU , аnd V normal solution of  

equation (13). 

So, the function of "equivalent source" with (15) 

and (12) may be represented as follows: 

 

.)( 1** sq

qqq UGGIGW                            (16) 

 

The parameter value   (regularization 

parameter) must be consistent with measurement errors 

  of the diffraction field. We can do it on basis of 

principle of the residual ([10]: 

 

.*   VGGU qq

sq
                       (17) 
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The value   is determined from the equation 

(17) for this error . 

The next step is to calculate the full field in the 

area of inhomogeneity D . We will use the equation (6) 

and formula (16) for the function of "equivalent source". 

From (6) we have: 

 





N

p

q

p

q

nq

iq

n

q

n WGUU
1

,                         (18) 

 

where ),(),,( nn

iiq

nnn

q

n yxUUyxUU  - values of 

the full field and the sounding wave at the points 

).,(),,( nn

q

nnnn yxWWyxr   The index q  

determines that all values are calculated for frequency 

parameter .,...,1, Qqkk q   

So, the formulae (16) and (18) allow to calculate 

the function of "equivalent source" and the full field in 

the area of inhomogeneity using basic data (diffraction 

field and sounding wave). Let’s see the reconstruction 

algorithm of the dielectric capacitivity ),( yx  in the 

area of inhomogeneity  

Let   Nnyx nnn ,...,1,,   values of 

unknown dielectric capacitivity are at the point 

),( nnn yxr  . So the function of "equivalent source" 

and the full field are known at this points, derive the 

quadrature functional:  

    .1
2

1 1

1

0
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 
M

m

Q

q

q

nmn

q

nmn UW       (19) 

 

Here 
q

nmW  и 
q

nmU  – values of the function of "equivalent 

source" and the full field calculated at the point 

),( nnn yxr  with location of the source of sounding 

wave at the point ),( mmm yxr   and frequency 

parameter .qkk   

Determine values n , which give minimum to 

functional (19). For this is enough to find the solution of 

equation: 

 

0ndd                                                 (20) 

From (20) with (19), after transformations we 

have: 
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where * is complex conjugation operation. 

So, formula (21) give the solution of reverse 

problem of the reconstruction of dielectric capacitivity 

according to the data of the microwave sounding.  

 

4. Conclusion 

The analysis of problems in medicine shows that 
the microwave sounding is necessary for early diagnosis 

of hotbeds of diseases in human tissues (for example, 

oncological diseases). Due to its delicacy the microwave 

sounding can surpass the classic sounding methods of 

hotbeds of tissue diseases using supersonic and roentgen. 

This is due to the fact that water content is changed in 

hotbeds of tissue diseases and human skin. 

Finally we can make 2 main conclusions from 

our research: 

1. It is necessary to use the obtained results in the 

performance of bidimensional reverse problems with 
heterogeneous dielectric mediums for development of 

the method of microwave sounding of hotbeds of 

diseases in human tissues. 

2. It is necessary to use the developed algorithm for the 

reconstruction of dielectric capacitivity of tissues on the 

measured values of the diffraction field near 

inhomogeneities. 
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