
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 184, pp. 1-22. 
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

MATHEMATICAL MODELS OF SEISMICS IN COMPOSITE  
MEDIA: ELASTIC AND PORO-ELASTIC COMPONENTS

ANVARBEK M EIRM ANOV, M ARAT NURTAS

A B S T R A C T . In the present paper we consider elastic and poroelastic media 
having a common interface. We derive the macroscopic mathematical models 
for seismic wave propagation through these two different media as a homog
enization o f the exact mathematical model at the microscopic level. They 
consist o f seismic equations for each component and boundary conditions at 
the common interface, which separates different media. T o do this we use the 
two-scale expansion method in the corresponding integral identities, defining 
the weak solution. We illustrate our results with the numerical implementa
tions of the inverse problem for the simplest model.

1. I n t r o d u c t i o n

This article is devoted to a description of seismic wave propagation in composite 
media Q C  R3, consisting of the elastic medium 0 (0), poroelastic medium 0, which 
is perforated by a periodic system of pores filled with a fluid, and common interface 
S (0) between 0 (0) and 0  (see Figures 1, 2). That is, Q =  0  U S (0) U 0 (0) and 
0  =  Of  U Г U 0 s , where 0 s is a solid skeleton, Of  is a pore space (liquid domain), 
and Г is a common boundary “solid skeleton-liquid domain” .

The structure of the heterogeneous medium Q is too complicated and makes 
hard a numerical simulation of seismic waves propagation in multiscale media. The 
main difficulty here is a presence of both components (solid and liquid) in each 
sufficiently small subdomain of Q. It requires to change the governing equations 
(from Lame’s equations to the Stokes equations) at the scale of some tens microns.

There are two basic methods to describe physical processes in such media: the 
phenomenological method and the asymptotical one which is based on the upscal
ing approaches. The phenomenological approach for waves propagation through a 
poroelastic medium [4, 5] leads, in particular, to Biot model [1]- [3]. It based on 
the system of axioms (relations between the parameters of the medium), which 
define the given physical process. But, there can be another system of axioms 
defining the same process. Thus, it is necessary choose the correct authenticity 
criterion of the mathematical description of the process. It can be, for example, 
the physical experiment. As a rule, each phenomenological model contains some
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set of phenomenological constants. Therefore, one can achieve agreement between 
the suggested theory and selected series of experiments changing these parameters.

F i g u r e  1. Domain in consideration

The second method, suggested by Burridge and Keller [6] and Sanchez-Palencia 
[7], based on the homogenization. It consists of:

(1) an exact description of the process at the microscopic level based on the 
fundamental laws of continuum mechanics,and

(2) the rigorous homogenization of the obtained mathematical model.
To explain the method we consider a characteristic function x 0(x) of the pore 

space Q f . Let L is the characteristic size of the physical domain in consideration, 
т is the characteristic time of the physical process, p0 is the mean density of water, 
and g is acceleration due gravity. In dimensionless variables

x w t - tx -
* L ,

w - " ат L , т F
F

,
g

p
P0 ’

the dynamic system for the displacements w and pressure p of the medium takes 
the form [6, 7, 8]:

P

d2w
=  v - P +  QF,

dw , d w
X0 aMD(x, — ) +  (1 -  Х0)а л D(x, w) +  \0av(V • — )

p +  apV  • w  =  0.
p) I,

(1.1)

(1.2)

(1.3)
Equations (1.1)- (1.3) are understood in the sense of distributions as corresponding 
integral identities. They are equivalent to the Stokes equations

dv
Qf Tt = 

Pf
V - Pf +  QfF , d t  +  aP,fV  • v 
= aMD(x, v) +  (a„ (V • v) -  p )l

0, (1.4)

(1.5)

for the velocity v =  and pressure p in the pore space Q f  and the Lame equations 

d2w
Qs-q2  =  V - Ps +  QsF, p +  ap ,sV  • w  =  0, (1.6)

Ps =  а лЮ(ж, w) — pi (1.7)

for the solid displacements w and pressure p in Qs.
At the common boundary Г velocities and normal tensions are continuous:

dw
~dt

v, Ps • n =  Pf • n. (1.8)

Here n is a unit normal to Г.
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In (1.1)- (1.8), D(x, u) =  1 (V u +  V u*) is the symmetric part of V u, I is a unit 
tensor, F is a given vector of distributed mass forces,

ap =  ap,fX0 +  ap,s(1 — X0^ Q =  Qf X0 +  Qs(1 — X0)
L

дт 2
2p 2Л

a.\ =
aT Lg p0

2v
атTLg p0

атTLg p0 ’

_  Qfc
*p,f , ap,sат Lg ат Lg

2
Qs

а =

а v

where p is the dynamic viscosity, v is the bulk viscosity, Л is the elastic constant, 
Qf and qs are the respective mean dimensionless densities of the liquid in pores and 
the solid skeleton, correlated with the mean density of water p0, and Cf and cs are 
the speed of compression sound waves in the pore liquid and in the solid skeleton 
respectively.

F igure 2. The pore structure

The mathematical model (1.1)—(1.3) can not be useful for practical needs, since 
the function x 0 changes its value from 0 to 1 on the scale of a few microns. Fortu
nately, the system possesses a natural small parameter e =  L , where l is the average 
size of pores. Thus, the most suitable way to get a practically significant math
ematical model, which approximate (1.1)—(1.3), is a homogenization or upscaling. 
That is, we suppose the e-periodicity of the solid skeleton, let e to be variable, and 
look for the limit in (1.1)—(1.3) as e ^  0.

There are different homogenized (limiting) systems, depending on of ад ,а\, 
. . .  Some of these numbers might be small and some might be large. We may 
represent them as a power of e , or as functions depending on e .

Let

P0 lim ад (е), v0 =  lim av(e), Л0 =  lim a\(e), £\0 £\0 £\0

Cf,0 fim ap,f(e), £\0 cs,0 lim ap,s(e), 
£\0

2

а дpi =  lim ,£\0 e2 Л1 =  lim £.£\0 e2
It is clear that the choice of these limits depend on our willing. For example, for 
e =  10- 2 and а =  2 • 10- 1 we may state that а =  2 • e- 2, or а =  0.02 • e0. It is
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usual procedure when we neglect some terms in differential equations with small 
coefficients and get more simple equations, still describing the physical process.

The detailed analyses of all possible limiting regimes has been done in [8, 9]. 
To describe the seismic in two different media (elastic and poroelastic), having a 
common interface we must chose one of the two methods discussed above. The first 
method suggests only some guesses, while the second method has a clear algorithm 
for the derivation of the boundary conditions. That is why we choose here the 
second method.

We derive new seismic equations in each component (elastic and poroelastic) and 
the boundary conditions on the common boundary. For these boundary conditions 
the very little is known and only for the liquid filtration (see for example [10]).

For three different sets of p,0, A0, . . .  for each component we derive three dif
ferent mathematical models, which describe the process with different degrees of 
approximation.

We start with the integral identities, defining the weak solution we and pe, and 
use the two-scale expansion method [11, 12], when we look for the solution in the 
form

x x
we(x , t) =  w (x ,t) +  W 0(x , t, - )  +  £ W 1(x ,t, - )  +  o(e),

x x
Pe(x ,t) =  p(x ,t) +  P° (x , t, ) +  £ P 1 (x , t, ) +  o(-)

with 1-periodic in the variable y functions W ;(x , t, y ), Pj(x , t, y ), i =  0 ,1 ,...
This method is rather heuristic and may lead to the wrong answer. But our 

guesses are based upon the strong theory, suggested by G. Nguetseng [13, 14]. For 
the rigorous derivation of seismic equations in poroelastic media, which dictate the 
correct two-scale expansion, see [8].

Finally, to calculate limits as £ ^  0 in corresponding integral identities, we apply 
the well-known result

lim F (x , — ,t) dxdt =  ( F (x , y ,t)dy) dxdt (1.9)
e^°JQ  £ JQ JY

for any smooth 1-periodic in the variable y G Y  function F (x , y , t). 2

2. S t a t e m e n t  o f  t h e  p r o b l e m

For the sake of simplicity we suppose that Q =  { x =  (x1, x2, x3) G R3 : x3 > 0}, 
Q(0) =  { x =  (x1,x 2,x 3) G R3 : 0 < x3 < H }, Q =  { x =  (x1,x 2,x 3) G R3 : x3 > 
H }, F =  0, and

2 2  
aP,f cf , ap,s Cs .

Let Y  be a unit cube in R3, Y  =  Yf U 7 U Ys. We assume that pore space Qf 
is a periodic repetition in Q of the elementary cell -Y f, the solid skeleton Qf is a 
periodic repetition in Q of the elementary cell -Ys, and the boundary Ге between 
a pore space and a solid skeleton is a periodic repetition in Q of the boundary £7 . 
Detailed description of the sets Yf and Ys is done in [8]. From these suppositions,

x
Xo(x ) =  Xe(x ) =  x( - ) ,£

where x (y ) is a 1-periodic function such that x (y ) =  1 for y G Yf and x (y ) =  0 for 
y G Ys.
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For a fixed e > 0 the displacement vector w e and pressure pe satisfy Lame’s 
system

d2w
=  V  • PS0), p  +  cS nV • w e =  0,g(0)_____=  v . P  . p +  ,cs V Я s i F \ 4s,0

pS0) =  «д0) D(x, w e) -  peI

(2.1)

(2.2)

in the domain U(0) for t > 0, and the system (1.1)- (1.3) with x 0 =  ye(x), g =  ge =  
Qf x e +  gs(1 — x e), and ap =  ap =  ap,fXе +  ap,s(1 — Xе) in the domain U for t > 0.

On the common boundary S(0) =  {x  =  (x1, x2, x3) G R3 : x3 =  H } the displace
ment vector and normal tensions are continuous:

lim w e(x, t ) =  lim w e(x, t), x 0 G S (0), (2.3)
x ^ -x0 x ^ x 0
x £Q(0) x ^

lim P(0)(x,t) • e3 =  lim P(x,t) • e3, , x 0 G S (0), (2.4)
x ^ x° x ^ x 0
x eo (0) x ^^

where e3 =  (0, 0, 1).
The problem is complemented with the boundary condition

PS0) • ез =  —p0(x ',t)e3, x ' =  (x i,x 2) (2.5)
on the outer boundary S =  {x  =  (x1,x 2,x 3) G R3 : x3 =  0} for t > 0 and 
homogeneous initial conditions

dw e
w e(x, 0) =  ~ o f  (x, 0) =  0.

Let ? (x) be the characteristic function of the domain U and

Qe =  (1 — ? ) qS0) +  gg£, ap =  (1 — ?)c2,0 +  ? ap.

Then the above formulated problem takes the form
.<92w

dt2
v  • ((1 — ? )p S0) +  ? i

pe +  apv  • w e =  0,
dw a v dpe

P =  Xе apD ( x ^ d f ) +  (1 — Xe')a\ D(x, w e) — (хет у ^ -  +  pe)Ic 2̂ dt

£

g

(2.6)

(2.7)

(2.8)

(2.9)

where in (2.9) we have used the consequence of (2.8) in the form
dwe е a v dpe
S f  > =  —5X f  e c?X£a^ (V

Equation (2.7) is understood in the sense of distributions. That is, for any smooth 
functions p with a compact support in Q the following integral identity

f  , я 2w £ \
J [g £ ~dpT • P + ( ( 1  — ?)PS0) +  ?P  : D (x,p) +  V^ (p0p)J dxdt =  0 (2.10)

holds. We call such solution the weak solution.
In (2.10) QT =  Q x (0 ,T ) and the convolution A : B of two tensors A =  (A j ) 

and B =  (B j ) is defined as A : B =  tr(A • B) =  3 j =1 A jB p .
Using standard methods one can prove that for any positive e > 0 and given 

smooth function p0 there exists a unique weak solution of the problem (2.7)- (2.9)
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which makes sense to the integral identity (2.10). We look for the limit of the weak 
solutions for the following cases:

(I) ^0 =  A0 =  A00) = 0 , ^1 =  A1 =  to, 0 < V0 < to, A00) =  lime^ 0 « Ж
(II) ^0 =  A0 =  A00) =  ^1 =  V0 =  0, A1 =  to;

(III) ^0 =  V0 =  0, 0 < A0, A00), ^1 < to.

3. H o m o g e n i z a t i o n : c a s e  (I)

According to [9], the two-scale expansion for the weak solution of the problem 
(2.7)- (2.9) under conditions (I) has the form

w e(x,t) =  w (x ,t) +  o(e), pe(x,t) =  p(x ,t) +  o(e), 

where lime^ 0 o(e) =  0.
The substitution (3.1) into (2.10) results in the integral identity 

j  ( (X( x  )gf +  (1 -  X( x  ) ) gs) ̂  • v  -  (x ( ̂ ) ̂  ̂  +  P)V  • v )  dxdt

(3.1)

I' t  d 2w
+  V^ (p0v) dxdt +  (pS0)^ - 2  • V — p (V  • v )) dxdt =  o(e).

JQt JQ^ dt

(3.2)

Now we use (1.9) and after the limit in (3.2) as e ^  0 arrive at the integral identity 

>82w

HlT ' dt2 cf JQt

, d2w

f  (g 2 • V — ( m v ° dp +  p )V  • v ) dxdt +  f  V^ (p0v ) dxdt
JQt dt cf dt JQt

j- Q2w
+  (0) ( gS0) -RIT • V — P( V  • v d  dxdt =  0 ,

(3.3)

where g =  mgf +  (1 — m)gs and m =  f Y x(y)dy.
Next we rewrite (2.8) as

(
(1 — -) , - x (  X) , -  (1 — x (X Ж „ е+ + )pe +  V  • w e =  0 . (3.4)

We multiply the result by a smooth function ^(x, t) with a compact support in Q, 
and integrate by parts over domain QT:

f  U ( +  - X 2a1 +  Ж — X(jL^ -)p£ — V ф • w e)  dxdt =  0.
JQt K Ж  f  c2 '' Qt 4 cs,0

As above, we substitute (3.1) into (3.5) and pass to the limit as e ^  0:

, (1 — -) -  m - (1 — m ).
1Ф1 1 1

'Qt cs,0 cf
Integral identities (3.3) and (3.6), complemented with initial conditions

f  (ф ( ^  + '-X  +  )p — V ф • w ) dxdt =  0.
JQt K Ж  f  c2 '

dww(x, 0) =  —  (x, 0) =  0,

(3.5)

(3.6)

(3.7)

20 fs

form mathematical model (I) of seismic in composite media.
In fact, these identities contain the differential equations in Q and Q(0) and the 

boundary conditions on S and S (0).
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Let р be a smooth function with a compact support in Q(0). Rewriting (3.3) as
, d2wr d'2W

Jn(o) (p0) ~дн? +  Vp) • P dxdt = 0

and using the arbitrary choice of р we conclude that
(0) d2w „T0)------=  -V p

dt2
in the domain Q(0) for t > 0.

For functions р with a compact support in Q, (3.3) implies
. d2w

dt2
V0 dp л=  -V (p  +  m ^  — ), p =  mp/ +  (1 -  m)ps 
c/  dt

(3.8)

(3.9)

in the domain Q for t > 0.
Now, if we choose р =  (р 1, р 2, р3) with a compact support in Q and p 3(x, t) =  0 

for x e S (0), then the integration by parts in (3.3) together with (3.8) and (3.9) 
result in

f  v dp+
(p-  -  (p+ +  m^y ) ) p3 dxdt =  0,

Js T0) f  dt
where

p- (xi, X2,t) =  p(xi, X2, H -  0, t), p+(xi, X2, t) =  p(xi, X2, H +  0, t). 
Therefore,

x ——x
x e o ( 0)

x — x
x £ Q

lim p(x,t) =  lim (p(x, t) +  m V° ( x , t ) ) ,  x 0 e S (0). (3.10)
c/  dt

Finally, for functions р with a compact support in Q(0) and p3(x, t) =  0 for x e S 
the integration by parts in (3.3) together with (3.8) result in

(p -  p0)р3 dx dt
St

0,

or
p(x, t ) =  p0(x, t), x  e S. (3.11)

In the same way as above, it can be shown that (3.6) implies continuity equations

J L p  +  V - w =  0 (3.12)
< 0

and

V  +  
c /

(1 -  m)
c p +  V  • w 0

in the domains Q(0) and Q respectively, and the boundary condition 

lim e3 • w (x ,t) =  lim e3 • w(x, t), x 0 e S (0)
x — x 0 x — x 0

x £ Q( 0) x ^

(3.13)

(3.14)

on the common boundary S (0).
Differential equations (3.8), (3.9), (3.12), and (3.13), boundary conditions (3.10), 

(3.11), and (3.14), and initial conditions (3.7) constitute the mathematical model 
(I) in its differential form.
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4. Homogenization: case (II)

For this case we put

(x,t) =  (1 -  $)w (x ,t) +  s x (x )w (/ ’e)(x ,t) +  $(1 -  x (x ))W- (x ,t) +  o(e)

pe(x,t) =  p (x , t ) +  o(e),
(4.1)

where
w (/,e)(x,t) =  W (/) (x, t, —),

£ '
and W (/ ) (x, t, y) is a 1-periodic in the variable y function.

The substitution (4.1) into (2.10) results in the integral identity

f  f  d2w
V  • (p ° f ) dxdt +  I (gS°) 2 • p — p( V  • <p)) dx dt

JQt  ̂Q̂  '
, ,x. d2W (/) . x. ( x .> d2w s > \

+  /^ (Jp/X (£ ) dt2 (x,t, £ ) +  £- ( 1 — X(£ )) -дЦр-) • F — P(V  • f )) dxdt

f Qt

x dw (/,e)
«м x (- )D (x , — —— ) : D(x, p) dx dt +  o(£), 

£ dt

which holds for any smooth function p(x, t). Let
(4.2)

w ( /) (x,(x ,t )=  $ lim x (x  )W (/ )(x,t, x  ) =  $ /  W (/ )(x,t, y)dy
e^ ° £ £ Jyf

be the weak limit of the sequence {w fc}. Then after the limit as £ ^  0 we arrive at 
the integral identity

. d2wr r c)2w
V  • (p°p) dxdt +  I (g -0) 2 • F — p( V  • f )) dx dt

J Qt •'QT
d2w (/ )d w • d2w \

( е / -----+ P- (1 — m )“ dt2̂ ) • F — P(V  • F £  dxdt =  °.

(4.3)

Note that the term aMD(x, aWJt’ ) ) in the right-hand side of (4.2) converges to zero
due to the supposition lime^ ° ам =  lime^° 0:

dw (/,e) d W (/)
« mD  x, --- hi (x ,t)) =  »MP ( x (x,t, -  )) +  —  P ( y, o. ( x , t ^  )).

d W (/)
dt v ’ м v ’ dt £ * £ K dt ■ ■ ■ £

The substitution of (4.1) into the continuity equation (2.8) leads to the integral 
identity

'Qt
* (  ̂  ^  >p

— V £ • ((1 — $)w +  ?xeW (/) (x ,t, xx) +  ? (1 — xe)w->) dxdt =  o(£) .
(4.4)

The limit here as £ ^  0 results in

JJ Qt

)w

К  F — >p+

V £ • ( (1 — $)w +  $w (/) +  $(1 — m)ws> j  dxdt =  0.
(4.5)

qT

/-

/-
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As in previous section we conclude that integral identities (4.3) and (4.5) imply 
differential equations in Q(0) and Q and boundary conditions on the boundaries 
S (0) and S .

Namely, in the domain Q(0) the displacements vector w and pressure p of the 
solid component satisfy the seismic system

(0) S V  
-s dt2 =  -V p ,

z2— p +  V - w =  0.
0s

(4.6)

(4.7)

In the domain Q the displacements vector w s of the solid component, displacements 
vector w (f) of the liquid component, and pressure p of the medium satisfy the 
seismic system

d2w(f )
e r

2w(
~ W +  es (l -  m)

d2Ws

dt2
- V  p,

, m (1 — m ),
)p +  V  • (w (f) +  (1 — m)ws)

On the common boundary S (0) the displacements vectors w, w 
pressure p satisfy continuity conditions

(4.8)

0. (4.9)

and w (f) and
f

lim p(x,t) =  lim p(x,t),
x ——x 0 x ——x 0
x £ Q(0) x ^

lim e3 • w(x, t) =  lim e3 • (w (f)(x, t) +  (1 — m)ws(x, t ) ) .
x — x 0 x — x 0

x e o (0) x ^^
Finally, on the outer boundary S ,

p(x ,t) =  p0(x,t).
As above, we have to add the initial conditions:

. . dw . . . dws .
w(x, 0) =  —  (x, 0) =  w s(x, 0) =  —  (x, 0)

/ d w (f)=  w (f)(x, 0) =  — (x, 0) =  0.

(4.10)

(4.11)

(4.12)

(4.13)

The obtained system of differential equations and boundary and initial conditions 
is still incomplete. We have no differential equation for the liquid displacements 
w (f ) . To find the missing equation we pass to the limit e ^  0 in (4.2) with test 
functions <p£ in the form x

(x, t) =  h (x ,t)^0( e ),

where h is a smooth function with a compact support in Q and y 0(y) is a smooth 
function with a compact support in Yf  (that is p£ vanishes outside of the pore 
space Qf ).

For an arbitrary function y 0(y) the term pV • <p£ becomes unbounded as e ^  0:
x 1 x

V  • p £ =  (V x h(x,t)) • ¥>0( e ) +  ^h(x,tK  V y • Ы  e )).

Therefore, we require that conditions

Vy • ^0( y ) = 0, y e Y f, (4.14)
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¥>o(y) =  0, y € Y (4.15)

hold.
The term aMD(x, ) ) : D(x, y>E) in the right-hand side of (4.2) converges to

zero because of the assumptions lime^ 0 aM = 

, dw (f,E) ,
“ mD x ,— dt—  (x ’ t)) : D(x, Vе)

lime\ 0 a  =  limE\0 a 0:

dW (f ) x ,. 1 . dW (f ) x ,
“ 4 D (x- - Ц Т (x *• Г »  + 1D (y  ~ d T (x '■ г > v :
1 h x  \
2 ((V  h) <g> V0 +  V0 ® (V h)) +  - D(y,tfi0( - ))J =  o(e).

Here a matrix a <g> b is defined as

(a <g) b ) • c =  a (b • c ),

for any vectors a, b , and c .
Thus, the limit as e ^  0 in (4.2) results in the integral identity

'Yf

. d2W (f) , \
(gf — dp—  h -  P (V  • h)) • if0dyj dx dt

h( x, t)
' Yf

. d2W (f ) . \
(g f — d£2-----+ Vp) • <p0dyj dxdt =  0,

(4.16)

which holds for any smooth function h(x, t) with a compact support in H and for 
any smooth solenoidal function y>0(y) with a compact support in Y f .

By arbitrary choice of h(x, t), (4.16) implies

Yf

d 2W (f)
(gf dt2 +  VP)  ̂V0dy =  0. (4.17)

This identity means that the function (gf d W----+Vp) is orthogonal to any solenoidal
function. Therefore there exists some 1-periodic in the variable y function n(x , t, y) 
such that

d2W (f)
gf +  Vp =  - V y П (4.18)dt2 ' ' y

in the domain Yf for any parameters (x, t) € .
There is one equation (4.18) for two unknown functions W (f) and П. To derive 

the second equation we put in (4.4) ф =  eh (x ,t) ф0(x ) with arbitrary smooth 
function h(x, t) and arbitrary smooth 1-periodic function Ф0(у ) and pass to the 
limit as e ^  0:

J  h (x ,t )^ J  у ( у ^ ф 0(у) • W (f)(x ,t ,y )d y jd x  =  0.

After reintegration we obtain the desired microscopic continuity equation

V • W (f) = 0 , y € Yf . (4.19)

A rigorous theory (see [13, 8, 9]) supplies the system (4.18), (4.19) with the bound
ary condition

(W (f )(x,t, y) -  w s(x ,t)) • n(y) =  0 (4.20)

a

aT
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on the boundary 7 with the unit normal n(y), and the homogeneous initial condi
tions

W (f }(x, 0, y) d W (f) 
dt

(x, 0, y) 0. (4.21)

Problem (4.18)- (4.21) has been solved in [9]:

Q f
d2 W (f) 

dt2
d2A d23 .

=  Qf -  (! - J 2 V y П  0  e i ) • (v  p +  Qf ~щ2г)dt2
(4.22)

where ПДу), i =  1, 2, 3 are solutions to the periodic boundary value problems

Л уП  =  0, у e Y f, (Vy П  -  ei) • n(y) = 0, у e 7 .

Thus,

where

d2 w (f ) 
Qf  ~ d t2~ mQf % f  -  B2f) (V  p +  Qf d2As

dt2

3
» 2f) =  ml -  ^

i=1
V y n (f  ̂ dy 0  e i .

(4.23)

(4.24)

Differential equations (4.6)- (4.9), (4.23), boundary conditions (4.10)- (4.12), and 
initial conditions (4.13) form the mathematical model (II) of seismics in composite 
media.

5. H o m o g e n i z a t i o n : c a s e  (III)

According to [8] the set of criteria (III) dictates the form of the two-scale expan
sion:

w e(x,t) =  (1 -  ?)w (x ,t) +  s x ( x )w (f’e)(x,t) +  ?(1 -  x (x ) ) (w s(x,t)

+  ew f(x ,t)) +  o(e), (5.1)
x x

pe(x,t) =  (1 -  ?)p(x,t) +  ? x ( - )pf  (x ,t) +  ?(1 -  x (- ) ) pes ( x , t )+  o(e),

where

w (f’e)(x,t) =  W (f)(x,t, ), w f(x ,t) =  W s(x,t, ), p f(x ,t) =  Ps(x,t, ),
-  -  -

and W (f )(x, t, y), W s(x, t, y), Ps(x, t, y) are 1-periodic in the variable y functions.
Next we express the pressure pS in the solid component in Q using the continuity 

equation (2.8) and two-scale expansion (5.1):

Ps(x,t) -cS (V  • w s(x,t) +  Vy • W s(x,t, — )) +  o(e). (5.2)
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The substitution of (5.1) and (5.2) into (2.10) results in the integral equality

f  V  • (p0p ) dxdt +  f  (pS0) ̂ 2 - • p +  ( ^ D^  w) — p i) : D(x, p )) dx dt 
JQt ot

d2W (f)
+ ( ( / x (—) d W2 (x ,t ,—) + g s ( 1 —x ( x ) ) )  • p ) dxdt

+  [  Ao(1 — x( —)) fN (0) : (D(x, w s) +  D(y, W s(x,t, — ) ) ) )  : D(x, p) dxdt 
./Пт  e v e /

f  x (— ) ( — Р (у, (—,t, —)) — P fi) : D(x ,p ) dxdt +  o(e),
Пт

which holds for any smooth function p(x, t). In (5.3)
3 -2 1

N (0) =  +  ATI 0  I, =  2 (ei 0  ei +  ei 0  e*),

(5.3)

i,j=1
{e 1, e2, e3} is a standard Cartesian basis, and the fourth-rank tensor A 0  B is the 
tensor (direct) product of the second-rank tensors A and B:

(A 0  B) : C =  A(B : C)

for any second-rank tensor C.
After the limit in (5.3) as e ^  0 we arrive at the integral identity

, d2w2
(0) (^ 0) “dt2  • P +  (A00)D(x, w) — pi) : D(x, p)) dx dt

J ПХ,

+  У V-  (p0p ) dxdt ^ y  ( ( /  — ------+ ps(1 — m ) ^ S ) • Pj dx dt

+  /  a J N (0) : ( (1 — m )D (x, w s) +  (D (y, W s))y ) )  : D (x, p ) dxdt
. / Пт  V '

(5.4)

(m pfi) : D(x, p) dx dt,

where
w (/) =  ( W (f) )У/, (F )a =  J  F(y)dy, A C Y

To pass to the limit as e ^  0 in the continuity equation (2.8) we rewrite it as an 
integral identity and use the representation (5.1):

/  ф ( (1-2 p)P +  p X(—)Ц- +  p(1 — X(—)- s ) )  dxdt 
Jqt v < 0  e f  e -2 y

— /  V ф • ((1 — p)w +  ? x ( — )W f  +  p(1 — x (— ))w s) dxdt =  o(e).
•/Qt e e

(5.5)

IQt e e
In the limit as e ^  0 results in the integral equality

.(1 — p) cm  , c
ф\ "

'Qt - s,0 - f

. r Vw „• . , W (f)
/Qt

/  Ф( (^ 2 p)P +  ^ P f  +  P2 ( Ps)ys)) dxdt
./Qt - s,0 - f cs

/  V  ф • ((1 — p)w +  p w (f) +  p(1 — m)w s) dx dt =  0, 
Jq.t

(5.6)
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which holds for any smooth function ф vanishing at S.
Finally, we rewrite the continuity equation in the pore space Hf as the corre

sponding integral identity

ф (—  pe +  x E V  • w e) dx dt
JnT cf

=  f  ф (X2pe +  V^ w e — (1 — x e) V^ w e) dxdt 
JQt Cf

=  f  (ф X2pe — (Vф) • w e — ф(1 — x e)V  • w e) dx dt,
J Qt Cf

and apply the two-scale expansion (5.1):
' ф ,x .

/  ( C2 x (X)p f  — (Vф) • (x (X )W £;  + (1 — x (X))w s )
Jqt vcf  е е е

( X ) (  )
— Ф( 1 — x (е )) (V • w s + V y • W a)J dxdt = o(e) .

In the limit as е ^  0 results in the desired integral equality

(ф e jp f  — V ф • w (f) — ф (V y • W a)ys) dxdt =  0. 
JQt Cf

The localization of (5.4), (5.6), and (5.8) gives as the Lame system 
, d2w

gS0) dt2
=  V  • pS0), p S0) =  л00) D(x, w) — pI,

p +  c2,0V • w 0

in the domain П(0) for t > 0, the macroscopic dynamic equation

V -P ,d2w (f) , „  ,d 2w s
gf m2 +  ga(1 — m )-dt2 ' J dt2

P =  Л0 N (0) : ((1 — m)D(x, wa) +  (D(y, W a)}ys) — mpfI 
for the solid component and the macroscopic continuity equation

m pf +  V • w (f) =  (Vy • W a )ys

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

for the liquid component in the domain H for t > 0.
The same localization of (5.4) and (5.6) also provides the boundary condition

pS0) • ез =  p0 • ез (5.14)
on the outer boundary S with the unit normal e3, and the continuity conditions

lim P(0)(x,t) • e3 =  lim P(x,t) • e3, (5.15)

(5.16)

x——x
xeo(0)

x— x
xGQ

lim w (x ,t) • e3 =  lim (w (f)(x,t) +  (1 — m )wa(x ,t)) • e3x— x0
x£Q(0)

x— x
xGQ

on the common boundary S (0) э  x 0 with the unit normal e3. 
More detailed mathematical analysis shows that

lim w (x ,t) =  lim (1 — m)wa(x,t) (5.17)
x— x
xefi(0)

x— x
xGQ

f
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for x 0 € S (0). Unfortunately we have no possibility to prove the statement due 
technical reasons.

Differential equations and boundary conditions are supplemented with initial 
conditions

w(x, 0)
dw
n t (x 0 )

w (f ̂ (x, 0)

w s(x, 0)
d w s 
dt

(x, 0)

d w (f) 
dt

(x, 0) =  0.
(5.18)

However, the obtained system (5.9)- (5.18) is still incomplete. We need two more 
differential equations for W s and W (f). More precisely, we have to express the 
terms (D(y, W s)}Ys and (V y • W s)Ys by means of functions D(x, w s) and pf and 
rewrite (5.12) and (5.13) as

P =  A0N s : D(x, w s) - pf Cs, (5.19)

m2 Pf +  V  • w (f) =  C0 : D(x, ^ ) +  Cl p f . (5.20)Cf A0

To find the missing equation for the function W s let us consider the integral identity
(5.3). As in previous section, we choose test functions in the form y>e(x, t) =
eh (x ,t)  y>0( x ), where h is an arbitrary smooth function with a compact support 
in Q vanishing on S, and ^0(y) is an arbitrary 1-periodic smooth function with a 
compact support in Ys.

The limit in (5.3) as e ^  0 with chosen test functions results in 

[  h (  (  ( A  (1 -  x (y )) (N (0) : (D(x, w s)
■JQ,T yJY y

+  D(y, W s)) -  x (y ) m pf^  : D(y,ip0)dy^ dxdt =  0

After a localization we obtain the differential equation

Vy • ^ 0(1 -  x (y ))N (0) : (D(x, ws) +  D(y, W s)) -  mpf y (y ^  = 0  (5.21)

in the domain Y, which is understood in the sense of distributions. That is, as a 
usual differential equation

Vy • (N (0) : (D(x, ws) +  D(y, W ,) ^  =  0 (5.22)

in the domain Ys. In the same way using test functions with a compact support 
localizes at 7 we derive the boundary condition

(A0N (0) : (D(x, ws) +  D (y, W s )))  • n =  -m p f n (5.23)

on the boundary 7 . Here n is a unit normal to 7 .
The problem (5.18), (5.19) is completed with the periodicity conditions on the 

remaining part 0Ys\y of the boundary dYs.
Let U2ij)(y) and U20)(y) be solutions of periodic problems

Vy • ((1 -  x ) ( n (0) : (J(ij) +  D(y, U2ij)) ) ) )  = 0 , (5.24)

Vy • ((1 -  x )(N (0) : D(y, U20)) + 1)) =  0 (5.25)
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in Y . Then

W s(x,t, y) E  U 2ij)(y )D i j (x ,t) +  — p f (x,t) U 20)(y ),
L =1 A0

where

D i
1 /  du
2 V dx

+  dxL^, =  (u1, U2, U3), D(x, w s ) =  E  D^ J(
L i i L = 1

i j )

Thus

<D(y, W s))ys
3

=  E  <D(y, u2iL)))Ys Dij +  - P f  <D(y, u 20)))ys
A0i L = 1 

3
=  (  E  <D(y, u 2iL)))Ys ® J(iL))  : D(x, ^ s) +  - pf <D(y, 0 3 )  y  , 

i ,L = 1

A0 N (0) : ((1 -  m)D(x, ^ s) +  <D(y, W s))yJ  -  mpfI 
=  A0 N s : D(x, ^ s) -  pf Cs,

< V  • w s)ys =  E  < V  • u 2iL))Ys DiL +  m p f <V y • u 2° E
A0i,L=1

3
0 3  <Vy • u2iL))YsJiL) : D(x, £ s) +  ( - <Vy • u20))Ys)Pf,

A0i,L=1
where

N s =  N (0) : ( (1 -  m) E  J L ® +  E  <D(y, u2iL)))Ys <8> J(iL)) ,
i,L = 1 i,L=1
Cs =  - I - < D(y, u20)))Ys ,

C0 =  E  <Vy • u 2iL))YsJiL, c0 =  <Vy • u 20))ys . 
i,L = 1

(5.26)

(5.27)

(5.28)

The derivation of the equation for W (f) repeats in its main features the arguments 
of the previous section. We choose the test functions >̂e in (5.3) as

x
Ae(x,t) =  h(x,t) y>0( - ) ,

where h is a smooth function with a compact support in H and >̂0(y) is a smooth 
1-periodic solenoidal function with a compact support in Y f. After the limit as 
e ^  0 and localisation we arrive at the differential equation

d2W (f) 
e f ^ ^ ~

M1V • в (у ,
d W (f)

dt
) -  V yn (f) -  Vpf (5.29)

in the domain Yf for t > 0. Here, as in previous section, we also must define a 1- 
periodic in y  function n (f) (x, t, y), which appears due to the choice of test functions.
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The missing equation is derived from the continuity equation in its integral form 
(5.5) in the same way as in the previous section and coincides with (4.19).

According to [8] and [9] the system (5.29), (4.19) supplies with the boundary 
condition

W (f }(x,t, y) =  w s(x,t) (5.30)
on the boundary 7 , and the homogeneous initial conditions

- W (f)W (f }(x, 0, y) =  dt (x, 0, y) =  0. (5.31)

Problem (4.19), (5.29)- (5.31) has been solved in [9]:

W (f ) =  - S (x ,t) +  ^  f  w ( f  ] (y ,t -  t ) ( d f  ( x , t )  +  Qf  - - Wr  (x , r ) ) dr 
i=m '0 *

d2Ws

3 „ t
=  (x,t) +  ^ J o (W((f )(y ,t -  t ) 0  e *) • (VPf (x,T) +  Qf -g-Wr  (x ,T )) dT

n ( f ) ( x , t y ) =  ^ J o n (f)(y , t - t ) (—x f(x,T) +  Q f (x, T) ) dT' dx* 
(f) (f)

дт 2

where —s =  (wSj1, wSj2, wSj3) and { W f ), n f )}  , i =  1, 2, 3, are solutions to the 
following periodic initial boundary value problem

d2W (f ) д W (f ) rr\
Qf — t f . h  =  ^  D y , - ^ ) - V y n (f), (y ,t) e Yf x (0,T ), (5.32)

V y • W ( f )(y ,t) =  0, (y ,t) e Yf  x (0, T ), (5.33)

( f ) - W (f )
W ( f )(y, 0 )= 0 ,  Qf  - t* (y, 0) =  - e *, y  e Yf , (5.34)

W ( f )(y ,t) =  0, (y ,t) e 7 x (0 ,T ). (5.35)

Thus,

w (f )(x, t) W (f )(x,t, y)dy

- s (x ,t) + /  B3f )(t -  т ) • (V p (x ,т ) +  Qf -- Ws (x,T))dT

f

m
(5.36)

where

»3f ) (t) =  W (f )(y,t)dy 0  e,
*=1  ̂Yf

(5.37)

Differential equations (5.9)- (5.11), (5.20), and (5.36), boundary conditions (5.14)- 
(5.17), initial conditions (5.18) and state equations (5.19) and (5.26)- (5.28) consti
tute the mathematical model (III) of seismics in composite media.

6. O n e  d i m e n s i o n a l  m o d e l  f o r  t h e  c a s e  (I): n u m e r i c a l  i m p l e m e n t a t i o n s

D irect problem . For the sake of simplicity we consider the space, which consists 
of the following subdomains: D1 =  { x e R :0  < x <  H 1} , D2 =  { x e R : H 1 < x <
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H2}, and Q3 = 
(3.13) result in

where

{ x e R : x > H2}. Differential equations (3.8), (3.9), (3.12), and

1 d2p
c2(x) dt2 =  div ( 1 V (P +  rn j0 ̂ ))

"p(x) f  d t '

1 m (1 — m)
~32 =  + 2̂c cf  cs

and /3 =  mpf +  (1 — m)ps are respectively average wave propagation velocity and 
average density of the medium.

Applying now the Fourier transformation we arrive at

d2P  pu2 3
+  PdX 2 (1 — mo г̂ )ё2

cf

0 (6.1)

where P(x, u)-the pressure obtained after Fourier transform.

H

H?

Hi,

Щ
- ' SHALE А-.;Г

OIL CONTAINING AREA

LIMESTONE

L_______  - ..У. __ 1

V:”0

V>0

v ” 0

maratainur.jpg

F i g u r e  3. Scheme of arrangement of layers

Depending on the exact physical properties, the sedimentary rock zone is divided 
into three subdomains. The value of the geometry of pores, viscosity of fluid, density 
of rock, and velocity of seismic wave considered in each layers to be different. In the 
experiment in order to get numerical solution, it’s assumed that the first medium 
is a shale, the second medium is oil saturated sandstone, and the third medium is 
a limestone (see Fig.3).

Let us suppose that there is a plane wave which propagates from t o . Then the 
general solution of equation (6.1) for —to < X  < H 1 in the case v0 =  0 is written 
down as:

' i^VPT 1 f —i^\fplP1 =  exp \ x j +  A 2 exp j ----; — xj . (6.2)

The general solution of equation (6.1) for H1 < x < H2 in the case v0 > 0 is 
represented as:

iw%/p2 ■, f —i^ /p 2P32 =  B 1 exp
З2 1 —

= x }  +  B2 exp
in tЗ2 1 — in . (6.3)

cf cf

Finally the general solution for x > H2 in the case V0 =  0 will be the following:

3 V p 3P3 =  D 1 exp in —— x . (6.4)
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Continuity condition in contact media will be:
г A • mv0 А C . mv0 A,
[P1 iw 2̂ P1]Hi- q 1/2 iw 2̂ P2]Hi+q

d . mv0 d
1 [P1 -  iW P?1]hi- q =  C2 [P2 -

. mv0
' dx c dx

*w-
c P2]H1+q

ГЙ • mv0 ,5 5 • mv0 Й1[P'2 -  *W 2 PJ2jH2-Q =  [P'3 -  *W 2 PJ3jH2-

„2 d rn • mv0 Й 2 d rn • mv0 Й !
C2 dX [/ ?2 -  iW P2\H2-q =  c3 [P3 -  *W~ P'3]h 2+q

f f

(6.5)

(6.6)

(6.7)

(6.8)

These relations are nothing else but the system of linear algebraic equations for 
the coefficients A2, B 1, B2, D 1 which can be easily resolved by any direct method. 
These coefficients are used in order to construct the solution in time frequency 
domain and after inverse Fourier transform in time the solution in the time domain 
can be easily recovered (see Fig.4).

F i g u r e  4. Propagation of seismic waves in different layers

Inverse problem . In inverse problem [15] except P(x, w) the values H1, H2, c2, 
v0, m are unknown as well. To determine these values one needs some additional 
information about solution of the direct problem - data of inverse problem. Usually 
they are given as function P(w) at X  =  0. The most widespread way is to search 
for these values by minimization of the data misfit functional being L2 norm of 
the difference of given functions and computed for some current values of unknown 
parameters:

F i(H  ,H2)
Wn

|Pi(w,Hi,H2) -  P (w ,H 1,H 2)|2dw ^  0
Ш1

(6.9)

Fi(H i ,'2 ) 

Fi(H2 ,c<)

Wn ____

|Pi(w, H i, c2) -  P(w, H 1, C2)|2dw ^  0
Wi
Wn ____

|Pi(w,H2,c2) -  P (w ,H 2,C2)|2dw ^  0
W1

(6.10)

(6.11)

Here P( w, . . . . . . . )  is the given wave fields at X  =  0, while P ( w, . . . . . . . )  are wave
fields computed for some current values of the desired parameters.

In our numerical experiments the minimum is searched by the Nelder-Mead 
technique ( [17], Fig.5).
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F igure 5. Simple scheme of Nelder-Mead for two variables regular simplex

Recovery of H1 and H2. Behavior of the data misfit functional for this statement 
is represented in Figures 6 and 7. As one can see this functional is convex and has 
the unique minimum point. Therefore this inverse problem is well resolved.

:]?
В
вк£
CJ
Eti

surfWsveteng.jpg 

F igure 6 . Minimization of the functional F (H 1,H 2).

contour200eng.jpg 

F igure 7. Level line of the functional F (H1, H2).

t U

3317 3333 3367
deptt4t*>rier>sonless

Recovery of H1 and c2. Now we come to the non convex functional and therefore 
inverse problem may have few solutions (see Figures 8 and 9).

Recovery of H2 and c2. This statement also generates non convex functional, but 
now it has excellent resolution with respect to H2 (see Figures 10 and 11).
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F igure 8 . Minimization of the functional F (H 1,c 2).

F igure 9. Level line functional F (H 1,c2).

F igure 10. Minimization of the functional F (H 2,c2).

Conclusions. In this publication we have shown how to derive mathematical mod
els for composite media using its microstructure. As a rule, there is some set of 
models depending on given criteria p,0, A0, . . .  of the physical process in considera
tion. For a fixed set of criteria the corresponding model describes some of the main 
features of the process.

In the paper the simplest inverse problem was dealt with - recovery of elastic 
parameters of the layer by Nelder-Mead algorithm. In the future we are planning 
to establish connection upscaling procedure and scattered waves and apply on this
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F i g u r e  11. Level line functional F(H 2,c2).

base recent developments of true-amplitude imaging on the base of Gaussian beams 
for both reflected and scattered waves [18, 19].
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A d d e n d u m  p o s t e d  o n  N o v e m b e r  28, 2016

The editor from Zentralblatt informed us that a big portion of this article coin
cides with the article

“Seismic in composite media: elastic and poroelastic components” by Anvarbek 
Meirmanov; Saltanbek Talapedenovich Mukhambetzhanov and Marat Nurtas (Sib. 
Elekron. Mat. Izv. 13, 75-88) (2016) (Zbl 06607056).

The Electron. J. Differential Equations requested an explanation from the au
thors. They replied that two co-authors submitted the manuscript to two different 
journals, and each eventually published it without consulting the other. They write, 

It's my fault that I did not control the process. There is not any 
other explanation. Now I do not know what I should do. Maybe the 
best way here is to remove the paper from the site, if it is possible.
I apologize once again, 
yours sincerely,
Anvarbek Meirmanov.

Since the article is already published, the EJDE editor posted this explanation. 
We recommend that co-authors inform each other about their submissions. End of 
addendum.
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