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MESOSCOPIC DYNAMICS OF SOLID-LIQUID INTERFACES.
A GENERAL MATHEMATICAL MODEL

A. MEIRMANOV, N. OMAROV, V. TCHEVERDA, A. ZHUMALY

Abstract. A number of chemical and physical processes occur at
interfaces where solids meet liquids. Among them is heap and in-situ
leaching, an important technological process to extract uranium, precious
metals, nickel, copper and other compound. To understand the main
peculiarities of these processes a general mathematical approach is deve-
loped and applied. Its key point is new conditions at the free (unknown)
boundary between liquid and solid phases (pore space-solid skeleton).
The developed model can be used to analyze the dependence of the
dynamics of the free fluid-skeleton interface on the external parameters
of the process, like temperature, pressure, reagent concentration and
others. Therefore, the overall behavior of the process can be controlled
either by the rate of chemical reaction on the free interface via reagent
concentration or by the velocity at which dissolved substances are trans-
ported to or from the free surface.

The special attention is paid to a plausible justification of upscaling
from mesoscopic to macroscopic scales and its comparison with approa-
ches usually used at the moment. Several examples illustrate the feasibi-
lity of the models.

Keywords: solid-liquid interface, leaching, fluid flow.

1. Introduction

Ability to control chemical and physical processes at interfaces is important to
control a variety of technological processes, in particular heap and in-situ leaching.
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For this purpose it should be possible to perform numerical simulation and analysis
of the processes under consideration. So far these processes are described at the
macroscopic scale by the variety of mathematical models (see [1], [2], [3], [4], and
references there in). As a rule, people deal with so called phenomenological two
phase models when at each point of a continuous medium there are both the solid
skeleton and the liquid. All these models are based on the same principles:

• Fluid dynamics is described by Darcy’s system of filtration or some its
modification;

• The migration of active compound and products of chemical reactions are
described by somehow postulated convection-diffusion equations for the
appropriate concentrations.

The main thing in these postulates is the form and coefficients of differential
equations. There is a variety of approaches how to choose in dependence of the
tastes and preferences of the authors. It is quite explainable because the basic
mechanism of the physical process on the macroscale is formed on microscale of the
unknown (free) boundary between the pore space and the solid skeleton. But exactly
this basic mechanism is not used in the models! Really, dissolution of rocks takes
place exactly there, the concentration of the injected reagent and the geometry of
the pores are changed on this interface as well. Moreover, the flow of the products of
chemical reactions inward the pore space is generated on this scale also. But at the
same time, all of the aforementioned standard macroscopic mathematical models
operate with other, much larger, scales and hence just do not "see" neither free
boundary nor peculiarities of the interaction of the reagent and skeleton on this
boundary. This explains such a variety of macroscopic mathematical models.

R. Burridge and J. B. Keller [5] and E. Sanchez-Palencia [6] were the first who
explicitly stated that mathematical models to describe multiscale processes must
be rigorously derived from micro- to macroscale by the following successive steps:

(a) to develop a mathematical model describing the physical process at the
microscopic level with maximal accuracy (exact model);

(b) to distinguish a set of small parameters characterizing difference in scales of
the model;

(c) to derive the macroscopic model as the asymptotic limit of the exact model.
Various particular implementations of this approach are analysed in [7], [8].

The most systematic implementation of this scheme have been studied by A. Meir-
manov [8] – [12] on the base of dimensionless forms of the mathematical models. In
this way it becomes possible to simplify microscopic mathematical models and to
find exact asymptotic approximations, adequately describing physical processes at
the macroscopic level.

In what follows we implement the stages (a)-(c) on the theoretical level. To do
that we use the above mentioned Meirmanov’s approaches and models [8] together
with methods, developed for the free boundary problems [13].

The paper deals with a dissolution of a solid porous skeleton by an active
admixture (acid) dissolved in an inviscid incompressible pore liquid. As a result
of a dissolution of the solid skeleton appear products of chemical reactions. The
process is considered in a bounded domain Ω ⊂ R3 with boundary S. Next, let us
consider S+ ⊂ S as a set of injection wells, S− ⊂ S is considered as production
wells, while S0 ⊂ S represents impermeable insoluble piece of the boundary.
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Fig. 1. The pore space.

In order to introduce the microscale level of the process, the domain Ω is treated
as consisting of the pore space Ωf (t), and the solid skeleton Ωs(t). The dissolution
process takes place at the interface Γ(t) between the pore space and solid skeleton
(see Fig. 1). It is worth mentioning that Γ(t) is a free (unknown) surface, because
during the leaching the skeleton is dissolved and changes its shape. These mathe-
matical problems are called free boundary problems.

The mathematical model of leaching at the microscale is based on classical
equations of continuum mechanics and some trustworthy relations characterizing
well-known chemical reactions [14]. To complete the model we need to derive
a new boundary conditions, describing dissolution of the solid skeleton at the
free boundary and dynamics of the boundary itself. The next step is the proper
description of the process at the macroscale, known as upscaling or homogenization.
To perform this step correctly we need very new developments in mathematics
dealing with "two-scale convergence"([8],[9]).

Let us begin with some general remarks to describe the steps doing to derive
the mathematical model of the leaching at the microscale. For the first of all, fluid
flow in pores at the microscopic level is very slow (a few meters per year) therefore
the convection terms in Navier-Stokes equations can be neglected, hence Stokes
equations for incompressible viscous liquids are good approximation. The correct
mathematical model of propagation of active admixtures in pore space (microscopic
level) should take into account the both convection and diffusion. Really, without
diffusion the reverse flow of the reaction products from the free surface Γ(t) inward
the pore space blocks the flow of the reagent and finally cancels chemical reaction.
Thus, the diffusion – convection equation must be used to describe propagation of
the active reagent (acid).
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For the concentrations of the products of chemical reactions we use the transport
equations without diffusion terms. This equation is of the first order in space and
needs boundary condition only on the parts of the boundary ∂Ωf (t) where the
liquid starts the motion inward the pore space, that is at the free boundary Γ(t)
and injection wells S+

i .
Looking ahead let us note, that a diffusion process in the liquid is also very

slow, therefore to balance the process some oscillations should happen, at least
at the initial stage. Really, the rate of outflow of fluid from the free boundary is
proportional to the concentration of the acid and grows when this concentration
increases. The domination of outflow of fluid from the free boundary makes less
the diffusion of the reagent and leads to decreasing of its concentration at the free
boundary. In turn, it implies the decreasing of the outflow of fluid from the free
boundary and the domination of the diffusion of the acid to the free boundary. The
growth of the diffusion of the reagent to the free boundary leads to the growth of
its concentration at the free boundary and so on.

2. Mathematical model of the leaching for microscopic model

2.1. Statement of the initial-boundary value problem for the microscopic
level. Let us introduce characteristic length L and time T . In dimensionless variables

x → x

L
, t → t

T
, v → T

L
v, p → p∗ p,

the dynamics of liquid in pore space Ωf (t) is described by Stokes equation

(1) αµ △v −∇ p = 0,

for the pressure p and velocity v.
The continuity equation is used in its generalized form [15], that is as a continuity

equation for a generalized motion of continuum media including solid skeleton,
where v ≡ 01:

(2)
∂ϱ

∂t
+∇ · (ϱv) = 0.

Equation (2) is treated in the sense of distributions, that is as an integral identity∫
ΩT

ϱ

(
∂φ

∂t
+ v · ∇φ

)
dxdt = 0

for the density
ϱ(x, t) = χ(x, t)ϱf +

(
1− χ(x, t)

)
ϱs,

which holds for any smooth probe function φ(x, t), vanishing at S+, S−, t = 0 and
t = T .

In particular it follows the boundary condition [15]:

(vn − Vn)ϱf = −Vnϱs, x ∈ Γ(t), t > 0,

or

(3) vn = −Vn
(ϱs − ϱf )

ϱf
⇐⇒ Vn − vn =

ϱs
ϱf

Vn, x ∈ Γ(t), t > 0,

1The skeleton is immobile!
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where Vn is the velocity of the free boundary S and vn is the normal velocity of
the fluid at this boundary. Finally, the continuity equation in its differential form
in the pore space Ωf (t) for t > 0 is written as

(4) ∇ · v = 0.

The concentration c of the reagent satisfies to the diffusion-convection equation

Fig. 2. Diffusion and convection near the free boundary

(5)
∂c

∂t
+ v · ∇c = αc△c,

and concentrations c1, c2,..., cn of products of chemical reactions in Ωf (t) — to the
transport equations

(6)
∂ci
∂t

+ v · ∇ci = 0, i = 1, ..., n.

In (1) – (6)

αµ =
µ

T Lg ρ 0
, αc =

DT

L2
, p∗ = ρf

L2

T 2
,

where µ is dynamical viscosity of the fluid within the pore space, χ(x, t) is the
indicator function of the pore space (χ = 1 in Ωf (t) and χ = 0 in Ωs(t)), ϱs and ϱf
are dimensionless densities of the solid skeleton and pore liquids correspondingly,
correlated with the mean density of water ρ 0, L is a characteristic size of the
domain in consideration, T is a characteristic time of the process, g is the gravity
acceleration, ρc is a density of the active component and D is a diffusivity coefficient
(see Fig. 2).

Now let us derive the basic boundary conditions for the concentrations c, c1,
c2,..., cn at the free boundary. First of all we obtain these conditions for one
dimensional case, that is with single spatial variable. In this statement the pore
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space is considered as Ωf (t) = {x : 0 < x < X(t)} and Γ(t) = {x : x = X(t)} be a
free boundary (see Fig. 3). Then

(7)

∂v

∂x
= 0, 0 < x < X(t),

∂c

∂t
+ v

∂c

∂x
= αc

∂2c

∂x2
, 0 < x < X(t),

αc
∂c

∂x
− v(t) c = 0 at x = 0,

∂ci
∂t

+ v
∂ci
∂x

= 0, 0 < x < X(t), ci = 0 at x = 0, i = 1, ..., n.

The total masses of the reagent and products of the reactions in Ωf (t) are given by
the integrals

(8) M(t) =

∫ X(t)

0

c(x, t)dx, Mi(t) =

∫ X(t)

0

ci(x, t)dx, i = 1, ..., n.

The rate of change of these variables in time is computed as:

dM

dt
=

dX

dt
c
(
X(t), t

)
+

∫ X(t)

0

=
∂c

∂t
(x, t)dx

=
dX

dt
c
(
X(t), t

)
+

∫ X(t)

0

∂

∂x

(
αc

∂c

∂x
(x, t)− v(t) c(x, t)

)
dx

=

(
dX

dt
(t)− v(t)

)
c(X(t), t) + αc

∂c

∂x
(X(t), t),

dMi

dt
=

dX

dt
ci
(
X(t), t

)
+

∫ X(t)

0

∂ci
∂t

(x, t)dx

=
dX

dt
ci
(
X(t), t

)
−

∫ X(t)

0

v(t)
∂ci
∂x

(x, t)dx

=

(
dX

dt
(t)− v(t)

)
ci(X(t), t) =

ϱs
ϱf

dX

dt
ci(X(t), t), i = 1, ..., n.

Straightforward calculations of these integrals with the use of (3) and (7) at x = 0,
gives:

(9)

dM

dt
= (

dX

dt
− v)c+ αc

∂c

∂x
,

dMi

dt
=

ϱs
ϱf

dX

dt
ci, i = 1, ..., n, at x = X(t).

Last relations mean that the change of concentrations of products of chemical

reactions occurs only at Γ(t). The values
dM

dt
,
dMi

dt
, i = 1, . . . , n, are called rates
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of chemical reactions and are defined from the complimentary laws of chemical
kinetics:

(10)
dM

dt
= −β φ(c),

dMi

dt
= β φ̄i(c), i = 1, ..., n,

where φ(c), φ̄i(c), i = 1, ..., n are given positive functions.
On the other hand, the mass conservation implies

(11) ϱs
dX

dt
− ϱf

dM

dt
=

n∑
i=1

ϱi
dMi

dt
,

where ϱc, ϱ1, ..., ϱn are dimensionless densities of reagent and products of chemical
reactions.

Relations (9)–(11) result

(12)
dX

dt
(t) = β φ0 (c (X(t), t)) , ci(X(t), t) = φi

(
c
(
X(t), t

))
, i = 1, ..., n,

and

(13)
(dX
dt

(t)− v(t)
)
c(X(t), t) + αc

∂c

∂x
(X(t), t) = −β φ

(
c
(
X(t), t

))
,

where

ϱsφ0 + ϱcφ =
n∑

i=1

ϱiφ̄i, φi =
ϱs
ϱf

φ̄i

φ0
, i = 1, . . . , n.

Coming back to (4) – (6) we conclude that in a general case mass conservation laws
for concentrations at the free boundary have a form

(14) (Vn − vn) c+ β φ(c) + αc
∂c

∂n
= 0, x ∈ Γ(t),

(15) ci = φi(c), i = 1, . . . , n, x ∈ Γ(t),

(16) Vn = β φ0(c), x ∈ Γ(t),

where Vn is a normal velocity of Γ(t) in the direction of the outward to Ωf (t) normal

n, vn = v ·n is a normal liquid velocity, and
∂c

∂n
= ∇c ·n is a normal derivative of

c at Γ(t).
It remains to supplement differential equations by missing boundary and initial

conditions.
At the free boundary Γ(t) the tangent velocity of the pore liquid vanishes:

(17) v − v · n = 0.

At the boundaries S+ and S−, which give injection and production wells, we put
the normal tension in the liquid

(18)
(
αµ D(v)− p I

)
· n = −p±(x, t)n,

where I is the unit matrix and

D(v) =
1

2
(∇v +∇v∗).

At the injection wells S+ we put concentrations of the reagent and products of
chemical reactions

(19) ci = 0, i = 1, . . . , n, c = c+(x, t).
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At the production wells

(20) ∇c · n = 0.

On the impermeable boundary S0

(21) v = 0, ∇c · n = 0.

The problem is ended with initial conditions

(22) Γ(0) = Γ0, c(x, 0) = c0(x), ci(x, 0) = 0, i = 1, ..., n, x ∈ Ω0.

The system of differential equations (1), (4), (5), (6), completed with boundary
and initial conditions (3), (14) – (22) forms desired mathematical model describing
leaching at the microscopic level.

Note that the problem (1), (3)-(5), (14), (16)–(18), (20)-(22) for the liquid
velocity and pressure, concentration of the active admixture, and the free boundary
is independent of the problem (6), (15), (19), (22) for concentrations of products of
chemical reactions.

2.2. One dimensional microscopic model: numerical implementations. He-
re we consider the simplest 1D geometry, when there are fluxes along x-axis only
and the free boundary is just a moving point x = X(t) as it is presented in Figure3.

Fig. 3. One dimensional structure

For one spatial variable the differential equations (1) – (3), (22) in the domain
0 < x < X(t) for t > 0 are rewritten as follows:

(23)
∂p

∂x
= 0,

(24)
∂v

∂x
= 0,
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(25)
∂c

∂t
+ v

∂c

∂x
= αc

∂2c

∂x2
,

(26)
∂ci
∂t

+ v
∂ci
∂x

= 0, i = 1, ..., n.

Boundary and initial conditions (14) – (22) are transformed to

(27) p(0, t) = p+(t), c (0, t) = c+(t), t > 0,

(28)
dX

dt
= β φ0(c), x = X(t), t > 0,

(29)
(dX
dt

− v
)
c+ β φ(c) + αc

∂c

∂x
= 0, x = X(t), t > 0,

(30) ci(X(t), t) = φi(c), i = 1, ..., n, x = X(t), t > 0,

(31) v (t) = −dX

dt
(t)

(ρs − ρf )

ρf
, t > 0,

(32) X(0) = X0, c(x, 0) = c0(x), 0 < x < X0.

Let us consider some particular behavior of chemical reaction:

(33) φ(c) = c ν , φ̄i(c) = βi c
ν 0

where ν1 = ν − ν0 > 0. It follows

(34) φ0(c) = δ0c
ν0(1− δ1 c

ν 1), φi(c) =
γi

(1− δ1 c ν 1)
,

where

δ0 =
n∑

i=1

ϱi
ϱs

βi, δ1 =
ϱc

ϱs δ0
< 1.

Let us fix now the characteristic length L = 40 µm, time T = 1 sec, δ0 = 1,
δ1 = 0, 5, γ1 = 0, 01, ν1 = 0, 2 and suppose that the product of the chemical
reaction is the single substance, that is n = 1. Now let us analyze how does the
concentration of the product of chemical reaction at free boundary changes for
different β, ν0 and c+.

(1) Let us start with parameter β in equation (28). This parameter governs the
rate of the chemical reaction which is proportional to the velocity of the
free boundary x = X(t). The result is presented in Fig.4. As one can see the
concentration decreases when the β increases. Really, when β increases the
free interface moves faster, the volume of the target area id increased, hence
concentration of the active reagent is decreased. This follows decreasing of
the rate of chemical processes and finally diminishing of the concentration
of the product of a chemical reaction. Let us pay attention to the decrease
of the concentration of the product with time increase. It has the same
nature as its decrease with β increase — the moving of the free surface is
so fast, that diffusion of the reagent does not compensate its consumption
in the reaction. Hence, the concentration of the reagent is decreased and,
hence, the amount of the product is decreased too.
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Fig. 4. Concentration of product of chemical reaction at the free
boundary for different β

(2) The curve plotted in Fig.5 represents the impact of the concentration of
the injected reagent to the concentration of the product. The answer is
the absolutely expectable: there is direct proportion — the higher is the
concentration of the injected reagent the higher is is the concentration of
the product.

(3) Finally let us consider the concentration of the product of a chemical
reaction in dependence of parameter ν0 ≥ 1 (see 33). This parameter
governs the rate of the chemical reaction in the part of the quantity of
the products of interactions of the reagent and the skeleton: the higher is
ν0 the faster is increased amount of the product of the reaction. Therefore
the amount of the product is increased at the free boundary as well.

3. The macroscopic model

The system derived in the previous section describes exactly the leaching at
the pore scale. But its application to analyze the processes for realistic scales is
impossible and needs to be upscaled in the special manner. Really, the classical
upscaling is not applicable just because of the extremely fast oscillations of cha-
racteristic function. Usually homogenization is based on the periodicity of function
χ:

χ = χ(
x

ε0
),

where ε0 is a dimensionless pore size and χ(y) is known 1 – periodic function. Now,
one chooses

χ = χε = χ(
x

ε
), 0 < ε < ε0,
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Fig. 5. Concentration of product of chemical reaction at the free
boundary for different c+

Fig. 6. Concentration of product of chemical reaction at the free
boundary for different ν0
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and let ε goes to zero. The homogenization consists of finding the limit of corres-
ponding to χε solutions vε, pε, cε, cεi and the homogenized system for these limits.
For sufficiently small ε0 the solution to this homogenized system is closed to the
solution for χ = χε0 .

For our case the characteristic function of the pore space χ is variable in time
and space and is given at t = 0 only. To solve the problem we suppose that

χ = χε = χ(x, t,
x

ε
) + o(ε), 0 < ε < ε0,

where χ(x, t,y) is 1-periodic in y function, and construct the upscaled system
of equations as ε → 0. Mathematically implementation of this approach is too
complicated due to nonlinearity of the problem and necessity to search for unknown
characteristic function χε. Therefore at the moment we choose to be restricted with
formal, but still physically justified, easier version of upscaling (homogenization)
which is based on the representations:

β = λ ε, αµ = µ1ε
2, αc = D0,

vε(x, t) = V (x, t,
x

ε
) + o(ε),

pε(x, t) = p(x, t) + o(ε),

cε(x, t) = c(x, t) + o(ε), ∇ cε(x, t) = ∇ c(x, t) +∇yC(x, t,
x

ε
) + o(ε),

cεi (x, t) = ci(x, t) + o(ε), i = 1, . . . , n

with 1-periodic in y functions V (x, t,y) and C(x, t,y).
Using these representations and well – known mathematical formula

lim
ε→0

∫
Q

U(x, t,
x

ε
)dx =

∫
Q

(∫
Y

U(x, t,y)dy
)
dx

for 1-periodic in y ∈ Y function U(x, t,y), we find homogenized system for functions

v(x, t) =

∫
Y

V (x, t,y)dy, p(x, t), and c(x, t) with unknown coefficients.

More precisely, this system consists of dynamic equations

(35) v = − 1

µ1
A · ∇p,

(36) ∇ · v =
(ϱs − ϱf )

ϱf

∂ m

∂t

for the velocity v and pressure p of pore liquid, and the diffusion – convection
equation

(37) m
∂ Φ(c)

∂t
+ v · ∇ c−D0 ∇ ·

(
C · ∇c) = −

( ϱs
ϱf

c+
φ(c)

φ0(c)

) ∂ m

∂t

for concentration c of the reagent. Here Φ(c) = c +
φ(c)

φ0(c)
and unknown functions

m (porosity of a medium) is given as:

m(x, t) =

∫
Y

χ(x, t,y)dy.
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Matrices A and C are defined by a given microstructure. In particular:

C(x, t) =
(
m(x, t) I+

∫
Y

χ(x, t,y)
( 3∑
i=1

∇yQ
(i)(x, t,y)⊗ ei

)
dy

)
,

with unit matrix I and the standard cartesian basis (e1, e2, e3). The product B =
a⊗ b is defined as B · c = a(b · c). The 1 – periodic in y functions Q(i)(x, t,y), i =
1, 2, 3 in each point x ∈ Ω for t > 0 are solutions to the following periodic boundary
problem

(38) △yQ
(i) = 0, y ∈ Yf (x, t),

(39) (ei +∇yQ
(i)) · ν = 0, y ∈ γ(x, t) = ∂ Yf (x, t)

in the unknown subdomain Yf (x, t) ⊂ Y of the unit cube Y . In (39) ν is the unit
normal vector to the boundary γ(x, t).

By analogy with the microscopic model, the behavior of the free boundary γ(x, t)
is governed by differential equation

(40)
∂

∂t
χ(x,y, t) = λφ0

(
c(x, t)

)
|∇y χ(x,y, t)|

for the characteristic function χ(x,y, t) of the unknown domain Yf (x, t).
Finally, concentrations ci, i = 1, ..., n of the products of chemical reactions are

solutions to the non-homogeneous transport equations

(41) m
∂ ci
∂t

+ v · ∇ ci =
ρs
ρf

(
φi(c)− ci

) ∂ m

∂t
.

The problem is ended with following boundary and initial conditions:

(42) p = p±(x, t), x ∈ S±, t > 0,

(43) ci = 0, i = 1, ..., n, c = c+(x, t), x ∈ S+,

(44) ∇c · n = 0, x ∈ S−, t > 0,

(45) ∇c · n = 0, v · n = 0, x ∈ S0, t > 0,

(46) c(x, 0) = c0(x), ci(x, 0) = 0, i = 1, ..., n, γ(x, 0) = γ0(x) x ∈ Ω.

One may see that the structure of the homogenized system and all its coefficients
are well defined from the clear physical postulates and microstructure.

4. Two dimensional macroscopic model:
numerical implementations

Numerical experiments presented below are performed to analyze how different
parameters of the macroscopic model influence the specific features of the leaching
process.

Let us start with description of geometrical and physical parameters of the
statement.
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(1) The target domain is unit square in dimensionless coordinates:

Ω = {−1 < x1 < 1, −1 < x2 < 1}
with injection-producing boundaries

S± = {x1 = ∓1}
and fixed interfaces

S0 = {x2 = −1} ∪ {x2 = 1}
(2) Our assumptions (34) about φ0 and φ1 (let us remind that at the moment

we deal with chemical reaction producing the single component!) gives

Φ = c+
c ν 1

δ0(1− δ1 c ν 1)
;

(3) Other parameters are taken as δ0 = 1, δ1 = 0, 5, ν = 2, ν1 = 1, p∗ ·p+ = 10,
T = 3 · 107, L = 40m., D = 10−9 m2

sec , p
− = 0, c0 = 0.5.

For this choice of parameters we performed the simulation of the concentration
of a product of the chemical reaction at the production well for different values of:

• Concentration of the reagent at the injection well c+ (see Fig.7);
• Parameter β = λ ε which governs the intensity of a chemical reaction at

the free surface (see Fig.8).

Fig. 7. The macroscopic model: concentration of product of
chemical reaction at the production well for different concentration
of the injected reagent c+
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Fig. 8. The macroscopic model: concentration of product of
chemical reaction at the production well for different λ

5. Conclusions

The new mathematical model, which describe the leaching process by interaction
of an acid in pore liquid with the rock matrix. This approach is based on the
detailed consideration of fundamental laws of mechanics and chemistry at the
pore scale. It is clear that the obtained mathematical model cannot be used in
practical applications, but its simple and mathematically correct form allows the
further approximation in the system of homogenized equations. Some numerical
implementations show the distinctive features of the model. For example, at the
microscopic level to increasing values of the constant β in the rates of chemical
reactions correspond decreasing values of concentrations of the reagent and products
of chemical reactions at the free boundary (see Fig. 4-6). This is quite strange for
chemists. But in the macroscopic model one has the usual situation: to increasing
values of the constant β = λ ε in the rates of chemical reactions correspond increasing
values of the concentrations of products of chemical reactions at the productive
wells (see Fig. 8). On the other hand, to to increasing values of input concentration
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c+ always correspond increasing values of the concentrations of products of chemical
reactions at the free boundary in the microscopic model (see Fig. 4-6), and increasing
values of the concentrations of products of chemical reactions at the productive wells
(see Fig. 7).

Note also, that in the introduction we discussed the possibility of oscillations
for the microscopic model. Unfortunately we cannot find these oscillations in our
numerical implementations for the microscopic model maybe because they are too
small and to see them one needs to perform computations with much more precision.
But at the macroscale these oscillations are evident and in the nearest future we
plan to perform a special series of numerical experiments to understand the process
in the greater details.
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