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Abstract

The deterioration of water quality has become a primary environmental concern worldwide.

Understanding the status of water quality and identifying the influencing factors are impor-

tant for water resources management. However, reported analyses have mostly been con-

ducted in small and focused areas. It is still unclear if factors driving spatial variation in water

quality would be different in extended spatial scales. In this paper, we analyzed spatial pat-

tern of inland surface water quality in China using a dataset with four water quality parame-

ters (i.e., pH, DO, NH4
+-N and CODMn) and the water quality level. We tested the effects of

anthropogenic (i.e., land use and socio-economic) and natural (i.e., climatic and topo-

graphic) factors on spatial variation in water quality. The study concluded that the overall

inland surface water quality in China was at level III (fair). Water quality level was strongly

correlated with CODMn and NH4
+-N concentration. In contrast to reported studies that sug-

gested land use patterns were the determinants of inland surface water quality, this study

revealed that both anthropogenic and natural factors played important roles in explaining

spatial variation of inland surface water quality in China. Among the tested explanatory vari-

ables, mean elevation within watershed appeared as the best predictor for pH, while annual

precipitation and mean air temperature were the most important explanatory variables for

CODMn and DO, respectively. NH4
+-N concentration and water quality level were most

strongly correlated with the percent of forest cover in watershed. Compared to studies at

smaller spatial scales, this study found different influencing factors of surface water quality,

suggesting that factors may play different roles at different spatial scales of consideration.

Therefore management policies and measures in water quality control must be established

and implemented accordingly. Since currently adopted parameters for monitoring of inland

surface water quality in China are largely influenced by natural variables, additional
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physicochemical and biological indicators are needed for a robust assessment of human

impacts on water quality.

Introduction

Inland surface water areas include different forms of open water bodies such as rivers and

streams, lakes and reservoirs, permanent and seasonal wetlands. The deterioration of surface

water quality has become a primary environmental concern worldwide, following the increas-

ing demand of high-quality freshwater [1]. Inland surface water quality is considered to be

influenced by a wide range of anthropogenic and natural factors, such as land use, social-eco-

nomic status, topographic and climate variations [2, 3]. Understanding the status of surface

water quality and identifying the key influencing factors are important for establishing policies

for sustainable water resource management.

A number of studies have investigated relationships between water quality and landscape

patterns. Human-influenced land uses have been considered as important drivers of water

quality deterioration [4, 5]. Pollutant concentrations in water bodies have been reported to

be positively correlated with agriculture and urban land use, but negatively related to cover

types of natural vegetation [6–8]. The effects of land use types on water quality are varied in

different geographical regions [2, 9]. For example, agricultural land use is considered as the

primary factor for stream water nitrogen concentration [8], whereas other studies indicate that

urban land use had the greatest influence on nitrogen and phosphorus in surface water bodies

[10, 11].

Recent studies on ecology have analyzed the spatial structure of landscapes and the relation-

ship of their configuration with water quality [12]. Reported studies have indicated that land-

scape configurations have significant influence on water quality of adjacent aquatic systems.

For example, Lee et al. [13] indicated that water quality was likely to be degraded when there

was high interspersion of various land use types existed within a watershed. Liu et al. [14] sug-

gested that for a given total area, large and clustered agricultural or urban patches in the water-

shed would have greater impact on lake-water quality than small and scattered distributions.

Socio-economic factors, such as human population and gross domestic product (GDP), are

often used to measure the intensity of human disturbances, so as to water quality parameters.

Chen and Lu [15] considered that human population density and GDP explained 45% of spa-

tial variation in water quality of a river in East China. The study also claimed that human pop-

ulation density was a fundamental predictor of phosphorus concentration. Morrice et al. [6]

indicated that human population represented a major stress on coastal wetlands of Great

Lakes and had a strong predictive ability for total phosphorus and chloride concentrations.

The impacts of natural environment on water quality, e.g., climate and topography, have

been less studied in comparison with land use and socio-economic factors. Fukushima et al.

[16] found that chemical oxygen demand in water of Lake Kasumigaura, the second largest

lake in Japan, increased with rising air temperature. In addition, they observed that higher

precipitation led to high nitrogen concentration, probably induced by both the surface runoff

having high nitrogen concentration and the lowering of residence times of lake water. Topog-

raphy has also been considered an influencing factor of inland surface water quality [17, 18].

For example, Pratt et al. [3] found that streams with a lower mean elevation generally had

higher nitrate-nitrogen concentration, while mean slope exhibited a positive correlation with

total solids.

Geographical variation pattern of inland surface water quality in China
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However, fewer studies have tested the relative importance of above-mentioned multiple

factors to address variation pattern of surface water quality in China. As one of the most

water-rich countries in the world, China’s water resources are unevenly distributed geographi-

cally. Nationwide survey and evaluation of water quality started in the early 1980s. Monitoring

of surface water quality has been implemented as a routine practice. Monitoring data derived

from sampling sites have been published on weekly basis since 2006 by the government.

This study is aimed to identify the important factors influencing inland surface water quality

in China. It is also to test if the driving factors of water quality would be different between smaller

areas and extended spatial scales in China. Based on the results from reported studies, we hypoth-

esize that (H1) areas with higher percent of human-influenced land uses have worse water quality;

(H2) landscape diversity and fragmentation, and aggregation of human-influenced land uses have

negative effects on water quality; (H3) high density of human population and GDP are associated

with declining water quality; (H4) high precipitation increases nitrogen concentration in surface

water, while the increase of air temperature lead to the increase in chemical oxygen demand; (H5)

areas of high elevation and with gentle slopes have better water quality.

Materials and methods

Water quality dataset

Data contained four water parameters, i.e., pH, dissolved oxygen (DO), ammonium nitrogen

(NH4
+-N) and chemical oxygen demand in manganese (CODMn), were obtained from the

Ministry of Ecology and Environment of the People’s Republic of China (http://123.127.175.

45:8082/). These parameters are basic to life within aquatic ecosystems and relatively easy to

measure using standard protocols, and were thus chosen as the indicators for weekly inland

surface water quality monitoring across China. Water samples were collected by automatic

samplers at each monitoring site and analyzed immediately following the protocols recom-

mended in the Standard Methods for the Analysis of Water and Wastewater [19]. Water qual-

ity is classified into five levels, as summarized in Table 1, according to classification standards

of surface water quality of China [20]. Water quality level is determined according to the prin-

ciple of maximum membership grade, i.e., the category of the most impaired assessment factor

is used as the comprehensive water quality classification. If there are assessment factors that

cannot be assigned to any of the five water quality categories, the comprehensive water quality

is considered as worse than level V (very poor).

Monitoring sites are located in the major lakes and rivers, and unevenly distributed to rep-

resent the inland surface water quality of ten major watersheds over the country (Fig 1; S1

Table). More monitoring sites are allocated in eastern China (e.g., the Huai River watershed)

where human population density is high. The number of monitoring sites has increased from

82 in 2006 to 145 in 2016 (S1 Fig). In this study, water quality data from the 145 monitoring

sites collected between January 2014 and December 2016 were used to ensure that data from

different sites were temporally comparable. Weekly reported data were averaged to represent

Table 1. Criteria for the classification of inland surface water quality in China.

Water quality parameters Level I (Excellent) Level II

(Good)

Level III

(Fair)

Level IV

(Poor)

Level V

(Very poor)

pH � 6.00 & � 9.00 � 6.00 &� 9.00 � 6.00 &� 9.00 � 6.00 &� 9.00 � 6.00 &� 9.00

DO (mg/L) � 7.50 � 6.00 � 5.00 � 3.00 � 2.00

NH4
+-N (mg/L) � 0.15 � 0.50 � 1.00 � 1.50 � 2.00

CODMn (mg/L) � 2.00 � 4.00 � 6.00 � 10.00 � 15.00

https://doi.org/10.1371/journal.pone.0217840.t001
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Fig 1. Values of four water quality parameters (a–d) and water quality level (e) at 145 monitoring sites in China, averaged from the weekly published data

over the period between January 2014 and December 2016. (a–d) are in quantile classification. W. in (f) is the abbreviation for watershed. Maps are in Albers

projection. Insets in the bottom right of maps show the south boundary of China, including all islands in the South China Sea.

https://doi.org/10.1371/journal.pone.0217840.g001
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the overall water quality at each site in the study period. Water quality levels were recorded

with the numbers from one to five in statistical analyses. If water quality was worse than level

V, it was recorded with the number six. The overall water quality level at one site was deter-

mined by the mean value of weekly water quality levels (MWQL), i.e., MWQL < 1.50 as level

I, 1.50�MWQL < 2.50 as level II, 2.50�MWQL < 3.50 as level III, 3.50�MWQL < 4.50 as

level IV, 4.50�MWQL < 5.50 as level V, and MWQL� 5.50 as worse than level V. Some

monitoring sites had no data in dry seasons. The number of observations at each site varied

between 48 and 160, with an average of 144 per site.

Explanatory variables

The watershed boundary of each monitoring site was delineated from a 30 arc-second resolu-

tion digital elevation model (DEM, https://www.usgs.gov/centers/eros/science/usgs-eros-

archive-digital-elevation-global-30-arc-second-elevation-gtopo30?qt-science_center_objects=

0#qt-science_center_objects) using hydrology analysis tools in ArcGIS 10.2. Land use map was

obtained from the Data Center for Resources and Environmental Sciences, Chinese Academy

of Sciences (RESDC, http://www.resdc.cn/data.aspx?DATAID=184) at a spatial resolution of 1

km derived from the interpretation of Landsat 8 images acquired in 2015. The maximum like-

lihood (MLC) and support vector machine (SVM) classifiers were used for the initial land

cover classification. The MLC assumes that a hyper-ellipsoid decision volume can be used to

approximate the shape of the data clusters, while the SVM classifier is the most widely used

non-parametric statistical learning classifier with no assumptions made regarding the underly-

ing data distribution [21]. Land use types were divided into six categories of: (1) farmland,

including dry land and paddy field; (2) forest; (3) grassland; (4) water, including rivers, lakes,

reservoirs and ponds; (5) built-up land, including urban and industrial areas, rural settlements

and roads; (6) unused land, including desert, marshland and bare soil. Percentage composi-

tions of land use in the watershed of each monitoring site were extracted using zonal functions

in ArcGIS 10.2. The percentages of grassland, water and unused land were small with mean

values of 6%, 5% and 2%, respectively, and showed weak correlations with water quality

parameters (Pearson’s |r|� 0.12, p> 0.05). Therefore those land use categories were not con-

sidered in the subsequent statistical analyses.

Three landscape metrics, i.e., Shannon’s diversity index (SHDI), patch density and aggregation

index (AI), were considered effective in measuring impacts on water quality [12–14]. SHDI is a

measure of diversity in biological community, and indicates the patch diversity in landscape:

SHDI ¼
Xm

i¼1

ðpilnpiÞ

where pi is the proportion of the landscape occupied by land use type i, and m is the number of

land use types in the landscape. Patch density is the number of patches per 100 hectare, and indi-

cates landscape fragmentation. Aggregation index measures the tendency of a particular land use

type to be aggregated:

AI ¼
gii

max � gii

� 100%
� �

where gii is the number of like adjacencies (joins) between pixels of land use type i based on the

single-count method, and max-gii is the maximum number of like adjacencies (joins) between

pixels of land use type i based on the single-count method [22]. Those landscape metrics were cal-

culated using land use data with the function “ClassStat” in R package “SDMTools” (https://cran.

r-project.org/web/packages/SDMTools/index.html).
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Data of human population density and GDP for the year 2015 at 1 km spatial resolution

were obtained from RESDC (http://www.resdc.cn/data.aspx?DATAID=251, http://www.resdc.

cn/DOI/doi.aspx?DOIid=33). Climate variables including annual precipitation and mean air

temperature for the year 2015 were also obtained from RESDC at a spatial resolution of 30 arc-

seconds (http://www.resdc.cn/data.aspx?DATAID=229, http://www.resdc.cn/data.aspx?

DATAID=228). Mean elevation and slope within the watershed of each monitoring site were

calculated from the DEM model with the aid of surface tool in ArcGIS 10.2.

Statistic analyses

First, the normality of all variables was examined using normal probability plots and Kolmogo-

rov-Smirnov tests. NH4
+-N, CODMn, water quality level, percent of built-up land, human pop-

ulation density, GDP and slope were log-transformed to achieve normality because they had

highly skewed distributions. Pairwise relationships between explanatory variables and relation-

ships between water quality (pH, DO, NH4
+-N, CODMn and water quality level) and each

explanatory variable were examined using Pearson’s correlation analysis.

Ordinary least squares regressions (OLS) were then applied to explore the overall explanatory

power of the environmental variables on each water quality parameter and water quality level.

The Akaike information criterion (AIC) [23] and step-wise backward selection were used to iden-

tify the most parsimonious multi-predictor models. Moran’s I correlograms and global Moran’s I
values were used to evaluate the pattern and strength of spatial autocorrelation in model residuals

[24]. Significant spatial autocorrelation was found among the residuals of OLS models (S2 Fig).

Spatial autocorrelation might inflate type I error (false negative) rates and bias parameter esti-

mates. Therefore, spatial simultaneous autoregressive (SAR) models were employed to examine

the spatial autocorrelation in the data with the function “errorsarlm” in R package “spdep”

(https://cran.r-project.org/web/packages/spdep/index.html). SAR models of the error type were

chosen with a lag distance of 300 km and weighted neighborhood structure. The selection of lag

distance was based on the trade-off between AIC values and the number of monitoring sites hav-

ing no neighbors within the distance class [25]. Pseudo-R2 (hereafter R2) values for SAR models

were calculated as the squared Pearson correlation between predicted and observed values [26].

The relative importance of each predictor in the most parsimonious model, which assesses the

explanatory power of the predictor while controlling for the effects of other predictors, was inves-

tigated using the function “calc.relimp” with metric “pmvd” in the R package “relaimpo” [27].

The metric “pmvd” calculates a weighted average of sequential R2 values over all possible models

(i.e., all combinations of predictors in the model). The R2 value of each model was partitioned

into relative proportions explained by each predictor. The relative proportions were then multi-

plied by the R2 of the model to obtain the absolute fraction of R2 value explained by a particular

variable. To account for spatial autocorrelation, a standard SAR model was first performed. The

spatial component of the fitted values was then removed, and fitted values excluding the spatial

component were entered as a new response variable in the R2 partitioning procedure [28].

Results

Geographical patterns of water quality

Water quality parameters and level varied considerably over geographical space and water-

sheds (Fig 1; S1 Table). The pH values were between 6.67 and 8.96 (mean = 7.68), all in a nor-

mal range for inland surface water (Fig 1A). DO values varied from 2.79 mg/L to 11.26 mg/L,

with a mean of 8.26 mg/L (Fig 1B). About 93% of the sites had DO� 6.00 mg/L, which is one

of threshold values for level II water quality (Table 1). NH4
+-N concentrations ranged between

0.02 mg/L and 9.69 mg/L, with an average of 0.52 mg/L (Fig 1C). CODMn values varied from

Geographical variation pattern of inland surface water quality in China
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0.89 mg/L to 16.97 mg/L (mean = 4.14 mg/L), and varied considerably among watersheds (Fig

1D; S3 Fig; S1 Table). High CODMn values were mostly concentrated in eastern and northeast-

ern China, i.e., Songhua River and Huai River watersheds, both the major industrial and agri-

cultural regions of China.

About 4% of the monitoring sites (n = 6) were classified with level I water quality, 48% with

level II (n = 70), 24% with level III (n = 34), 15% with level IV (n = 21), and 8% with level V

(n = 12) (Fig 1E). About 1% of the monitoring sites (n = 2) had water quality worse than level

V. The overall water quality in China was rated as Level III (MWQL = 2.80). Water quality

level varied largely among watersheds (Fig 1E; S3 Fig; S1 Table). Poor water quality (levels IV,

V and worse than level V) appeared mostly in Huai River and Songhua River watersheds,

whereas good water quality (levels I and II) was more common in the watersheds of southern

China. All water quality parameters except pH were significantly correlated with each other

and water quality level (Table 2). CODMn and NH4
+-N had relatively high correlations with

water quality level (Pearson’s r = 0.87 and 0.65, respectively, p< 0.001), suggesting that water

quality level was largely determined by CODMn and NH4
+-N.

Relationships between water quality and explanatory variables

Pearson’s correlation analyses showed that among the tested explanatory variables, pH had the

strongest and positive correlation with elevation (r = 0.45, p< 0.001; Table 3). pH was also sig-

nificantly correlated with temperature and precipitation, but did not show significant correla-

tions with land use and social-economic variables. DO was most strongly correlated with

temperature (r = -0.33, p< 0.001), whereas its correlations with other explanatory variables

were relatively low. CODMn had the strongest correlation with precipitation (r = -0.46, p<
0.001), and had slightly lower correlations with temperature, SHDI and patch density (r rang-

ing between -0.42 and -0.44, p< 0.001).

In contrast, NH4
+-N had the strongest relationships with land use composition variables

(Table 3). The effect of forest on NH4
+-N was negative (r = -0.40, p< 0.001), while that of

farmland and built-up land was positive (r = 0.40 and 0.38, respectively, p< 0.001). NH4
+-N

also showed significant correlations with socio-economic and topographic variables. Water

quality level was significantly correlated with land use, climate and topographic variables.

The multivariate SAR models explained 19%– 45% of the spatial variation in water quality

parameters and water quality level (Table 4). The highest R2 appeared to the model for

CODMn, whereas the lowest R2 occurred in the model for DO. Elevation was the most impor-

tant variable in the model for pH, while temperature and precipitation were the strongest pre-

dictors in the models for DO and CODMn, respectively. Forest was the most important

variable in the models for NH4
+-N and water quality level.

Table 2. Pairwise Pearson’s correlation coefficients for four water quality parameters and water quality level.

pH DO NH4
+-N CODMn Water quality level

pH 1 - - - -

DO 0.25�� 1 - - -

NH4
+-N -0.03 -0.37��� 1 - -

CODMn 0.15 -0.18� 0.54��� 1 -

Water quality level 0.08 -0.38��� 0.65��� 0.87��� 1

�, p< 0.05

��, p< 0.01

���, p< 0.001.

https://doi.org/10.1371/journal.pone.0217840.t002
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Discussion

This study showed that variables of land use composition had significant relationships with

NH4
+-N, CODMn and water quality level, whereas their relationships with pH and DO were

relatively weak (Tables 3 and 4). Forest was negatively correlated with NH4
+-N, CODMn and

water quality level, while farmland and built-up land were positively correlated with them.

This observation is consistent with most of reported studies [7, 11] and thus supports H1. In

contrast with previous studies indicating either farmland [6] or built-up land [15] as the pri-

mary land use predictor for surface water quality, this study found that forest had stronger

explanatory power than farmland and built-up land, and was the most important predictor in

the multivariate models for NH4
+-N and water quality level (Table 4). This may be because

higher percent of forest means less human-influenced land cover and therefore less potential

sources of pollution. Moreover, forest helps maintain high water quality through minimizing

soil erosion, thus reducing sediment in water bodies, and through trapping or filtering other

water pollutants. In addition, densely growing plants in forest can absorb and concentrate pol-

lutants (e.g., nitrogen and phosphorus) from water, while highly diversified microbial commu-

nities in surface litter, debris and organically enriched soil can degrade the pollutants

efficiently.

SHDI and patch density were found to be negatively correlated with NH4
+-N, CODMn and

water quality level (Tables 3 and 4), which does not support the first part of H2 that landscape

diversity and fragmentation have negative effects on water quality. The result may be explained

by positive relationships between SHDI, patch density and forest (S2 Table), i.e., watersheds

with more land use types and fragmented landscapes generally had higher percent of forest

cover. Aggregation indices of farmland and built-up land were negatively correlated with

water quality although the relationships were weak (Table 3), which is in line with previous

findings that clustered agricultural or urban patches had larger influences on water quality

than scattered ones [14], and thus support the other part of H2 that human-influenced land

uses have negative effects on water quality.

Table 3. Pearson’s correlations between water quality parameters, water quality level and explanatory variables.

Explanatory variables pH DO NH4
+-N CODMn Water quality level

Farmland -0.06 -0.07 0.40��� 0.27�� 0.26��

Forest -0.16 0.04 -0.40��� -0.33��� -0.41���

Built-up land -0.11 -0.17� 0.38��� 0.14 0.21�

SHDI 0.03 0.16 -0.31��� -0.42��� -0.34���

Patch density -0.12 -0.15 -0.14 -0.44��� -0.32���

AI (farmland) -0.12 -0.12 0.03 0.25�� 0.19�

AI (built-up land) -0.07 -0.08 0.04 0.15 0.11

GDP -0.13 -0.28��� 0.33��� 0.01 0.14

Human population density -0.10 -0.25�� 0.32��� -0.05 0.15

Temperature -0.26�� -0.33��� -0.11 -0.44��� -0.25��

Precipitation -0.33��� -0.27�� -0.16 -0.46��� -0.26��

Elevation 0.45��� 0.20� -0.20� -0.02 -0.21�

Slope 0.12 0.10 -0.39��� -0.36��� -0.39���

SHDI, Shannon’s diversity index; AI (farmland), aggregation index for farmland; AI (built-up land), aggregation index for built-up land; GDP, gross domestic product.

�, p< 0.05

��, p< 0.01

���, p< 0.001.

https://doi.org/10.1371/journal.pone.0217840.t003
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Human population density and GDP showed positive correlations with NH4
+-N and water

quality level, and negative correlations with DO (Tables 3 and 4), thus supporting H3. In con-

trast, only weak correlations were found between social-economic variables and CODMn

(Table 3). CODMn is an indicative measure of oxidizable organic matter in surface water. In

addition to human-introduced pollutants (e.g., organic fertilizers and pesticides), organic mat-

ter produced by photosynthesis in biological organisms is an important type of pollutant in

surface water [29]. The rate and efficiency of photosynthesis are influenced by a wide range of

variables, including water transparency, temperature and concentration of carbon dioxide,

which may not be strongly correlated with human population density and GDP.

Annual precipitation appeared as the best predictor for and was negatively correlated with

CODMn (Tables 3 and 4), which is consistent with the findings in other studies [30, 31]. High

precipitation including rainfall and snow melting may cause a “dilution effect” that lowers the

Table 4. Multi-predictor spatial simultaneous autoregressive (SAR) models for four water quality parameters and water quality level.

Estimate SE z P-value R2 Partitioned R2

pH 0.32

Temperature 3.42e-02 8.87e-03 4.64 < 0.001 0.07

Precipitation -6.99e-04 1.30e-04 -5.17 < 0.001 0.09

Elevation 2.57e-04 4.59e-05 5.54 < 0.001 0.12

Spatial signals - - - - 0.04

DO 0.19

Built-up land -0.64 0.15 -3.54 < 0.05 0.03

SHDI 0.87 0.28 3.03 < 0.05 0.03

GDP -0.72 0.14 -4.11 < 0.01 0.05

Temperature -3.52e-02 7.26e-03 -4.67 < 0.001 0.07

Spatial signals - - - - 0.01

NH4
+-N 0.30

Forest -0.18 3.03e-02 -5.41 < 0.001 0.11

SHDI -0.42 0.15 -3.61 < 0.05 0.04

Human population density 0.36 0.52e-02 4.81 < 0.001 0.08

Temperature -4.71e-02 1.15e-03 -4.09 < 0.01 0.05

Spatial signals - - - - 0.02

CODMn 0.45

Forest -8.22e-02 1.69e-02 -4.97 < 0.001 0.08

SHDI -0.49 0.62e-02 -5.47 < 0.001 0.11

AI (farmland) 0.76 0.21 3.63 < 0.05 0.04

Precipitation -5.57e-04 2.38e-05 -5.74 < 0.001 0.14

Slope -5.77e-02 1.71e-02 -3.99 < 0.05 0.05

Spatial signals - - - - 0.03

Water quality level 0.43

Forest -0.57 4.83e-02 -5.58 < 0.001 0.12

SHDI -0.23 6.91e-02 -4.28 < 0.01 0.06

Human population density 7.66e-02 2.57e-02 2.92 < 0.05 0.03

Precipitation -3.93e-04 0.71e-05 -5.09 < 0.001 0.09

Elevation -1.13e-04 4.34e-05 -2.90 < 0.05 0.03

Slope -0.14 4.20e-05 -4.73 < 0.001 0.07

Spatial signals - - - - 0.03

SHDI, Shannon’s diversity index; GDP, gross domestic product; AI (farmland), aggregation index for farmland.

https://doi.org/10.1371/journal.pone.0217840.t004
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concentrations of organic matter and other pollutants (e.g., nutrients) in surface water [30].

For example, a negative correlation was observed between precipitation and NH4
+-N in our

study (Table 3). Low nutrient concentrations will in turn limit the growth of biological organ-

isms (e.g., phytoplankton) and consequently hamper the accumulation of organic matter in an

aquatic ecosystem [32].

A negative correlation was also observed between CODMn and temperature (Table 3). Tem-

perature and precipitation were highly correlated (S2 Table). After controlling for the effect of

precipitation by partial correlation analysis [33], the relationship between temperature and

CODMn became insignificant. This result is inconsistent with reported studies stating that tem-

perature was an important factor influencing organic contamination in surface water [32, 34].

The results therefore do not support H4 that high precipitation increases nitrogen concentra-

tion in surface water, while the increase of air temperature leads to the increase in CODMn.

This study found that elevation was the strongest explanatory variable for pH (Tables 3 and

4), i.e., surface water at high elevation generally had higher pH values (slightly alkaline). Moni-

toring sites at high elevation are usually located in mountainous areas where water flows down

through streams and picks up alkaline minerals from rocks in the streams [35, 36]. As pollut-

ants increase in downstream, microbial degradation of pollutants produces acidic compounds

that lower water pH values [37]. In addition, elevation and slope were negatively correlated

with NH4
+-N, CODMn and water quality level (Tables 3 and 4), indicating that watersheds of

high elevation and with steeper slopes usually had better water quality, which therefore only

partly supports H5. This result is different from previous findings that mean slope within a

watershed exhibited a negative relationship with water quality [3, 38]. It was explained that

gentle slope acted as a literal sink for particulates and other pollutants by slowing or entirely

stopping runoff. In this study, slope was strongly correlated with farmland and forest (S2

Table), i.e., watersheds with gentle slopes are usually plain areas with high percent of farmland,

while those with steep slopes are mountainous areas well covered with forest. The land use and

topographic patterns may explain the different relationship between slope and water quality in

China.

The R2 of multivariate SAR models varied from 0.19 to 0.45, and the lowest R2 appeared to

the model for DO (Table 4). Temperature was the strongest predictor for DO in the model

(Tables 3 and 4), which is consistent with the recognition that the solubility of oxygen

decreases as water temperature increases [39–41]. Other abiotic and biotic factors that may

affect DO, such as water salinity, atmospheric pressure and photosynthesis in algae and aquatic

plants [42–44], were not considered in the model. The relatively low R2 of multivariate models

suggest that other factors such as point sources of pollution may be more important for

explaining the spatial variation of inland surface water quality in China. However, it is difficult

to obtain such data at a national scale.

The results show that different hypotheses are not mutually exclusive but many factors can

act synergistically as drivers of spatial pattern variation of inland surface water quality in

China. In contrast with reported studies indicating that land use patterns were the main factors

influencing surface water quality [6, 7], especially those conducted in specific areas of China

[12, 15], our study found that natural environment (i.e., climate and topography) were impor-

tant in explaining spatial variation of the tested water quality parameters and water quality

level in China. This may be because most of the reported studies were conducted in relatively

small areas where climatic and topographic heterogeneity might not be the influencing factor,

while the effects of land use and social-economic factors were thus more prominent. Our

results suggest that human-related factors are important when developing policies for water

resources management at local scales, while natural environmental factors should be consid-

ered for policy development at larger spatial scales. In addition, the effect of an explanatory
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variable on surface water quality may not be the same in different areas, which may be influ-

enced by social, economic and cultural contexts, as well as climatic and topographic conditions

of the study area. Our results also suggest that climate change may have profound impact on

inland surface water quality. Assessment of the impacts of climate changes is important for

developing adaptive management options [39, 45, 46].

Conclusions

Analysis of field-based weekly published monitoring data showed that the overall inland sur-

face water quality in China was rated as level III (fair). More monitoring sites in watersheds of

southern China indicated level II (good), while multiple sites in Songhua River watershed in

northeastern China and Huai River watershed between Yellow and Yangtze Rivers in eastern

China showed the level IV (poor) and even worse level V (very poor). Water quality level was

mainly determined by CODMn and NH4
+-N, suggesting that organic matter and nitrogen were

the major types of pollutants in China’s inland surface water. The main explanatory variables

varied considerably for the tested water quality parameters and water quality level. Among the

tested explanatory variables, elevation was the most important explanatory variable for pH,

while air temperature and precipitation were the strongest predictors for DO and CODMn,

respectively. NH4
+-N concentration and water quality level were most strongly correlated with

the percent of forest cover in watersheds that was highly inversely proportional to the percent

of human-influenced land cover. In general, mountainous forested areas with high precipita-

tion showed better water quality than lowland areas with high percent of human-influenced

landscape. Compared to studies carried out at local spatial scales, this study found different

influencing factors of surface water quality, suggesting that factors may play different roles at

different spatial scales. Therefore management policies and measures in water quality control

must be established and implemented accordingly. Since currently adopted parameters for

monitoring of inland surface water quality in China are influenced by climatic and topo-

graphic variables, additional physicochemical and biological indicators are needed for a robust

assessment of human impacts on water quality. For example, total nitrogen and phosphorus,

and the content of pathogenic bacteria in surface water are considered to be mainly influenced

by agricultural and domestic pollution [7, 20], and can be included as additional indicators for

surface water quality.
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