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Abstract 

An experimental and numerical evaluation on the dynamic compressive response of mortars containing 

up to 20% waste iron powder as sand replacement is presented in this paper.  The dynamic response is 

evaluated using split Hopkinson pressure bar (SHPB) apparatus under high strain rates (up to 250/s). The 

elongated iron particulates present in the iron powder-incorporated mortars warrant significantly 

improved compressive strength and energy absorption capacity at high strain rates. Multiscale numerical 

simulations are performed with a view to develop a tool that facilitates microstructure-guided design of 

these particulate-reinforced mortars for efficient dynamic performance. The dynamic compressive 

response of particulate-reinforced mortars is simulated adopting a numerical approach that incorporates 

strain rate-dependent damage in a continuum micromechanics framework. The simulated dynamic 

compressive strengths and energy absorption capacities for mortars with various iron powder content 

exhibit good correlation with the experimental observations thereby validating the efficacy of the 

simulation approach.  

Keywords: Iron powder; dynamic compressive response; split Hopkinson pressure bar; high strain rate; 

multiscale numerical simulation  
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1. INTRODUCTION 

Portland cement concrete is the single most extensively used material in the construction sector.  

However, it belongs to the family of quasi-brittle materials that exhibit poor fracture resistance under 

static and dynamic loading conditions [1,2]. Concrete structures such as buildings, bridges and dams are 

often subjected to dynamic loads [3,4]. In addition, human-made high strain rate events such as terrorist 

attacks in recent years pose severe threat to the security of the common life all over the world. The 

motivation of the current study emanates from addressing the aforementioned concern of poor 

performance of portland cement concrete under dynamic loading conditions towards utilization of waste 

materials in concrete to develop a material that provides improved performance under high strain rates.   

Previous researches have shown that addition of fibers enhances performance of concrete under impact 

loads [3,5–7]. Yang et al. [8] evaluated the dynamic compressive behavior of concrete containing recycled 

tire rubber. The influence of steel fiber on the dynamic response of concrete has been shown to enhance 

the dynamic compressive behavior of concrete [9–12]. Enhanced dynamic compressive response of 

polypropylene fiber-reinforced concrete has been also reported [13]. Giner et al. [14] reported the 

dynamic response of carbon fiber-reinforced concrete. Su et al. [3] evaluated the dynamic behavior of 

ceramic fiber-reinforced concrete using split Hopkinson pressure bar (SHPB) tests [15–21] and the results 

suggest significant gain in dynamic strength and elastic modulus of concrete [3]. While the previous 

articles evaluated the influence of fibers on the dynamic behavior of cementitious materials, this paper 

reports on the dynamic compressive behavior of mortars containing up to 20% metallic waste iron 

powder. This iron powder is generated as waste material in the electric arc furnace (EAF) during 

manufacturing of steel [22–24]. Several million tons of such waste metallic iron powder is being landfilled 

globally [22,24] since recycling iron from such waste dust is not viable form the economic standpoint.  

Thus, incorporation of such waste iron powder in cementitious materials is expected to be a cost-effective 

approach and it will potentially be beneficial from solid waste minimization point of view. The iron 

particles in this dust have been shown to significantly increase crack growth resistance in mortars [24,25]  

as well as alkali-activated slag-based geopolymer binders [26] under quasi-static flexural loading 

conditions due to elongated shape of iron particulates in the powder [23]. This paper performs SHPB tests 

to obtain dynamic strain rate-dependent compressive responses of waste iron powder-incorporated 

mortars to elucidate the influence of iron particulates on the high-strain rate compressive behavior of the 

mortars. The iron particulates with an elongated configuration in the iron powder are expected to 

enhance the dynamic compressive strength well as energy absorption capacity of mortars which are 
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explored in detail in this paper.  In addition to the experimental evaluations, this paper also aims to 

establish a numerical tool towards multiscale simulation-based design of particulate-reinforced 

cementitious composites for efficient performance under high strain rates. The numerical approach 

implements numerical homogenization to obtain effective strain rate-dependent compressive 

constitutive responses employing a strain rate-dependent damage model [27,28] under continuum 

micromechanics framework. The model incorporates damage at the inclusion-matrix interfaces at the pre-

peak regime as well as matrix damage in the post-peak regime to simulate the composite strain rate-

dependent compressive constitutive response. The simulated dynamic compressive responses for iron 

particulate-reinforced mortars are compared with the experimental observations from the SHPB test for 

validation. Overall, the current study intends to perform an experimental and numerical investigation to 

evaluate the effect of iron powder-incorporation on the dynamic compressive response of mortars under 

high strain rates.        

2. EXPERIMENTAL PROGRAM 

2.1 Materials and mixture proportions 

Commercially available Type I/II ordinary portland cement (OPC) is used as the main binder in this study. 

It conforms to ASTM C150. The chemical composition of OPC are shown in Table 1. 

Table 1. Oxide content (%) of elements in OPC 

Component Ca Fe Al Si Mg S K Na Rest 

Oxide content (%) 63 3.47 3.61 21 3.26 3.04 0.36 0.16 2.13 

 

 

Figure 1: Waste iron powder used as a sand replacement 
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Waste iron powder (Figure 1) is used as particulate-reinforcement in this study.  The median particle size 

of iron powder is 19 µm [22,25]. Silica sand with average particle size of 600 µm was used to prepare the 

mortar mixtures. 

In this study, three different mortar mixtures were proportioned with a constant 50% paste volume and 

water-to-cement ratio of 0.5 (mass-based).  In the three mortar mixtures, sand was replaced with 0, 10 

and 20% waste iron powder by volume. The iron powder content beyond 20% has not been considered 

here since dosage of iron powder higher than 20% as sand-replacement does not exhibit satisfactory 

rheological behavior.  The flowability of the mixtures with various dosage of iron powder is evaluated as 

per ASTM C1810 [29] and a target slump of at least 50 mm was adopted while selecting the mixtures. The 

replacement of sand by waste iron powder reduces the flowability of the mixture due to the elongated 

nature of the iron particulates as contrasted with the rounded sand particles. This increases the specific 

surface area and points of contact resulting in a higher yield stress for mixtures containing higher amounts 

of iron particulates. Beyond 20% sand replacement by volume, the target slump is not met which is the 

reason for limiting the dynamic performance evaluation to mixtures containing up to 20% waste iron 

powder as sand-replacement. 50 mm cubes were cast for compressive strength evaluation while 

cylindrical discs of 1.5-inch diameter and 0.6-inch length (L/D ratio of 0.4 [30,31]) were used for dynamic 

testing. Four replicate specimens were prepared for each test. The curing of samples was done as per 

ASTM C109 [32]. The samples were demolded after one day and kept in moist environment (RH>98% ) at 

a temperature of 23 ±2 °C for 28 days before testing.  For microstructural evaluation, companion paste 

samples were prepared and kept in sealed condition.       

2.2 Scanning electron microscopy (SEM) for microstructural evaluation 

For microstructural evaluation, 10x10 mm cube samples were cut using a diamond saw. After cutting, 

ultrasonic cleaning ensured removal of debris. The samples were then epoxy-encapsulated and vacuum-

saturated. Afterwards, several grinding and polishing steps were followed to achieve smoothness of the 

surface. The final polishing was done using 0.04 µm colloidal silica suspension. Field emission 

environmental scanning electron microscope (FESEM) was used to image the samples for microstructural 

evaluation. 

2.3 Quasi-static Compressive Strength Test 

Quasi-static compressive strength test was performed according to ASTM C 109 standard test procedure 

[32]. The test is performed on 2-inch cube mortar specimens. Four replicate specimens were used for each 

mixture to obtain the quasi-static compressive strengths.  
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2.4 Split Hopkinson Pressure Bar Test 

Dynamic characterization of particulate-reinforced mortars was performed using Split Hopkinson Pressure 

Bar (SHPB) setup as show in Figure 2. The SHPB setup consists of striker bar, incident bar and transmitter 

bar. Diameter for both bar incident and transmitter bars was 0.05 m (2”). The specimen (1.5” diameter 

and 0.6” thickness) was sandwiched between the incident and transmitter bars as shown in Figure 2. The 

striker bar is first launched towards the incident bar at a predefined velocity and it generates a 

compressive stress pulse in the incident bar which propagates towards the specimen. When the stress 

wave reaches the incident bar-specimen interface, it is partly reflected back to the incident bar and partly 

transmitted to the specimen. While the amplitude of the transmitted pulse is related to the stress in the 

specimen, the amplitude of the reflected pulse is related to the strain rate [33]. The specimen can be 

subjected to various strain rates by changing the length of striker bars. In the paper the specimens were 

subjected to strain rates 100s-1 and 250s-1. The stress-strain response for varying applied strain rates can 

be obtained from the incident and transmitter bar strain signals using one-dimensional wave analysis. The 

analysis procedure is adequately detailed in the literature [33,34].  

 

Figure 2. SHPB Test Setup 

3. RESULTS AND DISCUSSIONS 

3.1 Microstructural evaluations 

Microstructural analysis was carried out after 28 days of hydration to evaluate the distribution of iron 

particulates in the matrix. Figure 3 shows the SEM image of the microstructure under backscattered 

electron (BSE) mode. Distribution of bright (high density) elongated iron particulates in the matrix (gray) 

can be clearly observed. The presence of elongated stiff iron particulates, shown to improve quasi-static 

Incident Bar Transmitter Bar

Specimen
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crack growth resistance [24,25,35,36], are likely to improve the mechanical behavior of mortars under 

high strain rates which is explored in detail in this paper.   

 

Figure 3: BSE images of iron powder (20% by volume) dispersed in hardened cement paste matrix  

3.2 Quasi-static compressive strength of particulate-reinforced mortars 

Figure 4 shows the quasi-static 28-day compressive strengths of mortars. The mortars show significant 

increase in compressive strength with increase in iron powder content. This can likely be attributed to the 

presence of elongated iron particulates (as partial replacement of sand) that act as micro-reinforcement 

in the system thereby improving the mechanical behavior. While this section reports the quasi-static 

compressive strengths of the mortars, the forthcoming section elucidates the effect of iron particulates 

on the dynamic compressive behavior of the same.   

 

Figure 4: Quasi-static compressive strength of mortars  
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3.3 Dynamic compressive response 

In this section, the dynamic compressive behavior of metallic particulate-reinforced mortars is evaluated 

using SHPB test results. The SHPB tests were performed for all the materials under two different strain 

rates (100/s and 250/s). Figures 5(a) and (b) show the compressive stress-strain responses of the mortars 

under strain rates of 100/s and 250/s respectively. For both the strain rates, the peak compressive stress 

increases with increase in iron powder content, which is in line with the findings from quasi-static 

compressive strengths (Figure 4). The strength-enhancement with increasing iron powder content can be 

attributed to the presence of elongated iron particulates in the matrix acting as micro-reinforcements as 

explained earlier. The figures 5(a) and (b) show slight increase in the peak stress when the strain rate is 

increased from 100/s to 250/s although the enhancement is not as pronounced as observed when the 

strain rate was increased from the quasi-static condition to a strain rate of 100/s. Similar strain rate-

dependent behavior for cementitious materials are reported in [27]. The figures also indicate that the 

area under the stress-strain curve, a measure of energy absorption capacity, increases with the rise in iron 

powder content implying toughness-enhancement.      

 

Figure 5: Representative stress-strain response of iron particulate-reinforced mortars corresponding to 

strain rates (a) 100/s and (b) 250/s 

Figure 6(a) shows the strain rate-dependent compressive strengths of mortars. The dynamic increase 

factors (DIF), the ratio of dynamic compressive strength to the quasi-static strength, are also reported in 

Figure 6(b). While quasi-static evaluations show 9% and 24% increase in compressive strength with 

incorporation of 10% and 20% iron powder in mortar respectively, more than 10-17% and 32-40% 

strength-enhancement is observed for the mortar mixtures with 10% and 20% iron powder respectively 

Strain Rate:  100/s (a) Strain Rate: 250/s (b) 
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under higher strain rates. This can be attributed to the micro-reinforcement feature of elongated iron 

particulates that is likely to offer increased resistance to crack growth through various mechanisms such 

as crack deflection and crack bridging [24,25,35,36]. Further detailed microstructural investigations on 

the fractured surfaces are needed to be performed to confirm this. Furthermore, macro-scale failure 

modes in such particulate-reinforced systems are needed to be explored in future involving digital image 

correlation (DIC) to evaluate the crack propagation mechanisms under high strain rates. The strength-

enhancement trends are also reflected in the dynamic increase factors (DIF), reported in Figure 6(b) which 

shows significant increase in the DIF with increasing iron powder content. The static and dynamic 

compressive strengths as well as DIFs are also sown in Table 2 for clarity.  Figure 6(c) reports the dynamic 

energy absorption capacities of mortars with varying iron powder content. While an increase of about 

15% in energy absorption capacity was observed from quasi-static responses for the mortars 

incorporating 20% iron powder as cement-replacement [24], the dynamic compressive responses exhibit 

about 35% enhancement (for a strain rate of 250/s) in energy absorption capacity for 20% iron powder 

case.  These results suggest significantly improved performance of iron powder-modified mortars as 

compared to traditional control mortars under high strain rates.   

   

Figure 6: (a) Quasi-static and dynamic compressive strength, (b) dynamic increase factor and (c) energy 

absorption capacity of mortars  

 

 

 

 

(b) (c)(a)
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Table 2: Static and dynamic compressive strengths and dynamic increase factors 

Iron Powder 
Dosage 

Static Dynamic 

10^-3/s Strain Rate 100/s Strain Rate 250/s Strain Rate 

Strength (MPa) Strength (MPa) DIF Strength (MPa) DIF 

0 36.8 ± 1.93 52.9 ± 2.28 1.41 59 ± 2.24 1.60 

10 40.2 ± 1.49 61.8 ± 2.23 1.53 65 ± 2.6 1.61 

20 45.6 ± 1.69 73.7 ± 3.14 1.61 77.8 ± 2.89 1.70 

 

3.4 Multiscale numerical simulations for dynamic response of particulate-reinforced mortars 

While the previous section evaluated experimental dynamic compressive behavior of mortars, this section 

focusses on development of a multi-scale simulation-based predictive tool for dynamic compressive 

constitutive response of such composites in a continuum micromechanics framework. To capture the 

complex heterogeneity of cementitious systems, the numerical homogenization is carried out at multiple 

length scales to obtain strain rate-dependent homogenized dynamic compressive response for 

particulate-reinforced mortars that can be validated with the experimental observations, reported in the 

previous section. The geometrical configurations of various phases are represented at every length scale 

using representative unit cells. The following sub-sections elaborate the simulation framework and its 

application towards prediction of dynamic compressive constitutive response of iron powder modified 

mortars. The tools for the multiscale numerical simulation include python scripts for microstructure 

generation, material property assignment and analysis by ABAQUS™ solver followed by volume averaging 

post-processor in MATLAB script.  

3.4.1 Numerical Simulation Framework to predict effective dynamic constitutive response 

The influence of particulate reinforcements on the dynamic compressive behavior of mortars is elucidated 

using the framework detailed in this section. The representative unit cells are first generated based on 

microstructural features of the material. Thereafter, boundary conditions are applied and the unit cells 

are meshed. Finally, uniaxial strain is applied at a certain rate to obtain stress-response. Thus, the effective 

constitutive response of such systems are acquired. The strain rate-dependent damage in the post-peak 

regime is efficiently integrated into the simulation approach. A schematic representation of the numerical 
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homogenization approach is shown in Figure 7. The various components of the approach are elaborated 

in the forthcoming sub-sections for a comprehensive understanding.  

  

Figure 7: A schematic diagram representing the numerical homogenization methodology 

3.4.1.1 Unit cell generation 

The Lubachhevsky-Stillinger algorithm [39,40] is used to generate the unit cells. A hard particle contact 

model is implemented and particle overlaps are restricted in this algorithm.  The algorithm  has been 

rigorously implemented in [25,41–44] towards unit cell generation and adequately detailed in [39,40].  

3.4.1.2 Boundary conditions 

Periodic boundary conditions (PBC) [41,43,45] are applied on the meshed unit cells. A python script 

handles the meshing. The boundaries of the neighboring unit cells maintain a displacement and traction 

continuity owing to PBC implementation. Such BCs have been applied successfully to random 

heterogeneous systems subjected to FE analyses [42–44,46]. Periodic boundary conditions facilitate faster 

convergence even with smaller size of unit cells owing to higher computational efficiency [41]. PBCs are 

elaborated in [41,42,47].   

3.4.1.3 Homogenization of constitutive response 

The meshed RVE is subjected to uniaxial compressive strain at different strain-rates to simulate a 

displacement-controlled test scenario. The pre-peak homogenized response of the composite is 

characterized by the dynamic modulus of the matrix. The dynamic modulus as a function of strain rate is 

expressed as shown in Equation 1 [27]. 
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𝐸 = [𝐶1 + 𝐶2 (
𝜀̇𝑑

𝜀̇𝑠
)
𝐶3
]                                                             [1] 

Where 𝐶1, 𝐶2 and 𝐶3 are material parameters; 𝜀𝑑̇ and 𝜀𝑠̇ are dynamic and quasi-static strain rates (𝜀𝑠̇ =

3x10−6). While the rate dependent dynamic modulus governs the elastic constitutive response, the 

inelastic response is governed by the rate-dependent damage as discussed in the forthcoming sub-

section.  

3.4.1.4 Rate-dependent damage 

A strain rate-dependent damage model [27,28] is adopted in the current study. A damage variable 𝐷(𝜀, 𝜀̇) 

that lies between 0 and 1 characterizes the stiffness-loss for the damaged material as shown in Equation 

2. The damage variable 𝐷 is a function of strain 𝜀 and its temporal derivative 𝜀̇ [27,28].  

𝜎𝑑(𝜀, 𝜀̇) = (1 − 𝐷)[𝜎(𝜀, 𝜀̇)]                                                   [2] 

Where 𝜎𝑑(𝜀, 𝜀̇) and 𝜎(𝜀, 𝜀̇) are the stresses for damaged and un-damaged materials respectively. A non-

linear strain rate-dependent damage evolution model for dynamic compressive response of cementitious 

materials, given in Equation 3 [27,28], is adopted in this study.  

𝐷̇ = 𝑐5𝜀̇ + 𝑐4𝜀̇
𝜆                                                           [3] 

Where 𝑐4, 𝑐5 and 𝜆 are material constants. Considering a constant strain rate, the time integral of 

Equation 3 gives the damage parameter 𝐷 as shown in Equation 4. 

𝐷 = (𝑐5 + 𝑐4𝜀̇
𝜉)𝜀 + 𝑐6                                             [4] 

Where 𝜉 = 𝜆 − 1 and 𝑐2 is an integration constant. Subjecting Equation 4 to an initial boundary 

condition 𝐷|𝜀=0 = 0 yields 𝑐6 = 0 resulting in Equation 5. 

   𝐷 = (𝑐5 + 𝑐4𝜀̇
𝜉)𝜀;  𝜀 >  𝜀𝐷0                                   [5] 

The values of 𝑐5, 𝑐4 and 𝜉 are material constants. The current framework implements the damage 

characterized by Equation 5 at a strain beyond the damage initiation threshold 𝜀𝐷0 . The strain rate-

dependent damage model is implemented here using an user defined subroutine in ABAQUS™. 

3.4.1.5 Post-processing  

The unit cell is subjected to uniaxial strain at various strain rates and the analysis is implemented through 

a python script in ABAQUS™ solver to obtain the strain rate-dependent compressive response of the 
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composite. A post-processing module coded in MATLAB® computes the volume-averaged responses of 

unit cells to obtain composite constitutive response that includes both elastic (pre-peak) and inelastic 

regimes (post-peak). The forthcoming section applies the above-mentioned numerical simulation 

approach to obtain strain rate-dependent constitutive response of iron powder modified mortars.   

3.4.2 Numerical Simulation at multiple scale lengths for dynamic compressive response  

The analysis is carried out at two different scales as shown in Figure 8 (The mixture corresponds to a 

representative sample with 10% waste iron powder). The median particle size of sand and iron powder, 

adopted in this numerical simulation, are 600 µm and 19 µm respectively (refer to section 2.1).  Average 

length to diameter ratio of 12, obtained from image analysis of several backscattered micrographs (Figure 

3), is adopted towards unit cell generation. In the numerical simulation framework, the iron particulates 

are first homogenized into the HCP matrix (Figure 8(a)) to obtain effective strain rate-dependent 

compressive constitutive response of iron powder-modified HCP. The homogenized responses for iron 

powder-modified HCP, thus obtained, are used as matrix properties in the mortar scale where the sand 

inclusions are homogenized into the iron powder-modified HCP matrix to obtain effective strain rate-

dependent compressive constitutive response of iron powder-incorporated mortars (Figure 8(b)). While 

the interfaces between the iron particulates and HCP matrix are not considered in this study due to lack 

of data [48], the presence of interfacial transitions zones (ITZ) at the sand-matrix interfaces and the 

influence of interface damage at the ITZ are efficiently incorporated in this study. The thickness of ITZ is 

considered to be 20 𝜇𝑚 [49,50]. In both the length scales, linear elastic behavior of inclusions (sand and 

iron particles) is considered. Similar approach is successfully incorporated in [41,48,51,52]. The sizes of 

the unit cells (see Figure 8) are determined from a sensitivity study. 2D unit cells are implemented as a 

trade-off between computational demand and efficiency in the current study. Such 2D representative 

areas  have been adopted in [43,53] towards damage prediction in quasi-brittle systems.  The constitutive 

responses, obtained from numerical homogenization, enable identification of peak strengths, DIF and 

absorbed energy of composite mortars which are validated with SHPB experimental observations.  
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Figure 8: Generated unit cells corresponding to: (a) micro-scale: HCP matrix and 10% iron particulates; 

(b) meso scale: modified HCP matrix and sand inclusions 

The following sub-sections elucidate numerical homogenization at the paste and mortar scales to obtain 

the effective strain rate-dependent compressive constitutive responses of the particulate-reinforced 

mortars.     

3.4.2.1 Effective constitutive response  

The numerical homogenization results obtained from multi-scale analysis are presented in this section. 

The periodically bounded meshed unit cell (see Figure 8(a) for micro-scale) is subjected to an uniaxial 

compressive strain along X direction with a specific strain rate. The material parameters for control HCP, 

reported in Table 3, are adopted for the matrices of all the mixtures at this scale with various contents of 

iron powder. While the quasi-static Young’s modulus is considered as 200 GPa [25,41] for iron particulates, 

the strain rate-dependent elastic response of iron particulates is characterized by gains in moduli of 60% 

and 80% for strain rates of 100/s and 250/s respectively as reported in [54]. A Poisson’s ratio equaling 0.3 

is adopted for iron particles whereas a Poisson’s ratio equaling 0.2 is considered for all other phases in 

this study. Insignificant changes in results have been reported for the range of Poisson’s ratio considered 

in this study [46,55].   

Table 3: Material parameters for HCP [27,56] 

𝐶1 𝐶2 𝐶3 𝜉 𝑐5 𝑐4 𝜀𝐷0 

5064.1 4.71 1.70 0.487 0.657 0.019 0.001 

The simulation is performed using ABAQUSTM and progressive matrix damage is obtained, as shown in 

Figure 9 for a strain rate of 100/s. 
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Figure 9: Progressive damage with increasing strain for a strain rate of 100/s for the mortar mixture with 
10% iron powder content under strain of: (a) 0, (b) 0.0035 and (c) 0.006. 

The Figures 9(a), (b) and (c) show the progressive damage states corresponding to uniaxial strains of zero, 

0.0035 and 0.006 respectively. The progressive damage in the matrix can be observed clearly in Figures 

9(b) and (c). The homogenized response for iron powder-incorporated HCP, thus obtained, for various 

dosage of iron powder are used to extract all the material parameters for iron powder incorporated HCP 

mixtures and the extracted parameters are reported in Table 4.  

Table 4: Extracted material parameters for homogenized iron powder-incorporated HCP 

Iron powder (%) 𝐶1 𝐶2 𝐶3 𝜉 𝑐5 𝑐4 𝜀𝐷0 

10%  6735 4.73 1.696 0.498 0.701 0.0131 0.0013 

20%  13450 4.75 1.694 0.512 0.753 0.0148 0.0015 

 

The material parameters for iron powder-incorporated HCP mixtures are implemented to define the 

material model for the matrix in the mortar scale (Figure 8(b). The dynamic modulus for sand-HCP 

interface elements is considered 40% of the dynamic modulus of the matrix [49,57].  To identify the 

cracking strain for damage initiation at the sand-HCP interface (ITZ) elements, an inverse analysis 

procedure is followed. The inverse analysis approach involves generation of a representative volume 

element (RVE) containing 50% volume of sand embedded in the HCP matrix along with 20 µm thick ITZ 

around the sand inclusions. The RVE is subjected to a quasi-static uniaxial strain of 0.25𝜀𝐷0
𝑀  (where 𝜀𝐷0

𝑀  is 

the cracking strain for the matrix considered 0.001 for HCP [56,58]). The interfacial debonding at the ITZ 

has been reported [56] to be initiated at an externally applied uniaxial strain of 0.25𝜀𝐷0
𝑀  in the mortars. 

Hence, the maximum strain at the interface elements under an externally applied strain of 0.25𝜀𝐷0
𝑀  can be 

considered as the cracking strain at the ITZ (𝜀𝐷0
𝐼𝑇𝑍). This procedure yields the limiting strain as 0.0006 for 

the ITZ that serves as the damage initiation criteria for such elements. The damage propagates in the ITZ 

(a) (b) (c)
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as per the strain rate-dependent damage theory, explained earlier. All the other material parameters 

except, the dynamic modulus and 𝜀𝐷0
𝐼𝑇𝑍 are considered to be same as that of HCP due to lack of data. The 

strain rate-dependent elastic response of sand inclusions is characterized in terms of the secant modulus 

which follows a linear relation with the logarithmic strain rate [59]. Here, gains of 40% and 60% in modulus 

is considered as compared to quasi-static conditions for strain rates of 100/s and 250/s respectively [59]. 

Thus, the quasi-static modulus for sand is taken as 70 GPa [25,41,43] and the rate dependent moduli are 

obtained from the respective gains. 

Figure 10 presents the progressive damage in the interface and the matrix at the mortar scale for the 

mortar mixture with 10% iron powder content for strain rate of 100/s. While Figures 10(a-1), (a-2), (a-3) 

and (a-4) correspond to the interface damage, the Figures 10(b-1), (b-2), (b-3) and (b-4) depict the matrix 

damage.  Figures 10(a-1) and 9(b-1) correspond to undeformed configuration whereas Figures 10(a-2) and 

9(b-2) correspond to a strain of 0.0015.  The matrix and interface damage configurations at a strain of 

0.0055 are shown in Figures 10(a-3) and (b-3) respectively. Figures 10(a-4) and (b-4) exhibit the damage 

at the interfaces and matrix damage respectively corresponding to a compressive strain of 0.0075. The 

interface damage, as depicted in the progressive damage for the meso-scale mortars, commences at a 

lower strain than the peak global strain. It propagates with increasing global strain until the matrix stresses 

exceed the compressive strength. Thereafter, matrix damage initiates thereby yielding the global post-

peak response. 

  

(a-1) (a-2) (a-3) (a-4)

(b-1) (b-2) (b-3) (b-4)

Initial state Elastic regime Inelastic regime
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Figure 10: Progressive damage with strain for a strain rate of 100/s at (a) interface and (b) matrix in iron 
powder (10% by sand replacement) incorporated mortar corresponding to applied strains of (a-1)&(b-1)  

0 (undeformed), (a-2)&(b-2)   0.0015, (a-3)&(b-3)  0.0055 and (a-4)&(b-4)   0.0075. 

Figures 11(a) and (b) show the simulated strain rate-dependent compressive constitutive response for 

mortars corresponding to strain rate of 100/s and 250/s respectively. With increasing strain rate, the 

dynamic modulus increases (see Equation 1) and an enhancement in the simulated compressive strength 

is observed for both the control and iron powder incorporated mortars. The compressive response is also 

enhanced with increasing dosage of iron powder for both the strain rates which is in line with the 

experimental observations. With a view to evaluate the predictive capability of the multiscale numerical 

simulation approach presented herein, the forthcoming section depicts correlations between the 

simulated responses and experimental observations. 

 

 

Figure 11: Simulated dynamic constitutive response for iron-particulate (varying dosage) reinforced 
mortars for strain rates of (a)100/s and (b)250/s 

3.4.2.2 Comparison between the simulated and experimental responses 

This section presents a comparative evaluation between the simulated and experimental strain-rate 

dependent compressive responses. While Figure 12(a) reports the correlation between simulated and 

experimental compressive strengths, Figure 12(b) exhibits the absorbed energies for all the mortar 

mixtures considered here. A close correlation between simulated and experimental strengths (Figure 

12(a)) suggests the applicability of such a numerical framework to inclusion modified heterogenous 

systems towards effective dynamic strength prediction whereas a good agreement between the 

experimental and simulated absorbed energies (Figure 12(b)) confirms the efficacy of the current 
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numerical simulation procedure towards prediction of strain rate-dependent post-peak compressive 

responses in the particulate-reinforced mortars.   

  

Figure 12: A comparison between experimentally obtained and simulated: (a) compressive strengths and 

(b) energy absorption capacities for mortars with varying dosage of iron powder  

4. CONCLUSIONS 

This paper explores the influence of waste metallic iron particulates on the dynamic compressive response 

of mortars under high strain rates. The strain rate-dependent dynamic compressive responses of waste 

iron powder-incorporated mortars were evaluated using SHPB tests. The SHPB results indicate significant 

enhancement in compressive strength and energy absorption capacity at high strain rates with increasing 

iron powder content attributable to presence of elongated iron particulates that act as micro-

reinforcement in the mortars. The elongated iron particulates enhance the mechanical response through 

various probable toughening mechanisms such as crack bridging and crack deflections which needs 

further investigations for confirmation involving evaluation of strain/displacement fields in the specimen 

using DIC and microstructural observations on fractured surfaces.  Besides performance-enhancement, 

use of waste iron powder (which is otherwise landfilled) is environmentally beneficial from solid waste 

disposal point of view. In this study, the dosage of iron powder higher than 20% sand-replacement by 

volume has not been considered since such mortar mixtures with higher dosage of iron powder do not 

exhibit satisfactory rheological behavior. The use of superplasticizers on such mortar mixtures with high-

volume iron powder content is likely to influence the early-age rheological behavior and later age 

mechanical behavior which needs further investigations in future for more insights. While the 

experimental observations using SHPB tests showed significant enhancements in dynamic compressive 

responses with incorporation of iron powder as sand-replacement, the multiscale numerical simulation 
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methodology embodies an efficient predictive tool that helps microstructure-guided design of these 

particulate-reinforced mortars for efficient dynamic performance. The numerical simulation approach 

performs numerical homogenization at two different length scales so as to obtain the macro-scale 

dynamic compressive response of the mortars.  The numerical homogenization at every length scale 

involves generation of representative unit cell from known microstructural features of the materials, 

application of appropriate boundary conditions and implementation of a strain-rate dependent damage 

model in a continuum micromechanics framework to obtain effective strain rate-dependent dynamic 

constitutive response of the composites. The simulated dynamic compressive strength and energy 

absorption capacity, thus obtained for iron particulate-reinforced mortars for various iron powder 

contents, correlate well with the experimental observations thereby depicting the efficacy of the 

multiscale approach. Thus, the methodology successfully integrates different length scales and yields a 

micro-macro link for the particulate-reinforced mortars under high strain rates facilitating microstructure-

guided material design of such composites for efficient dynamic compressive performance under high 

strain rates.     
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