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Impact of a nutritional supplement during gestation and early childhood on
child salivary cortisol, hair cortisol, and telomere length at 4–6 years of age:
a follow-up of a randomized controlled trial

Brietta M. Oaksa , Seth Adu-Afarwuahb, Sika Kumordziec, Mark L. Laudenslagerd, Dana L. Smithe, Jue Line,
Rebecca R. Youngc, Charles D. Arnoldc , Helena Bentila, Harriet Okronipac , Maku Ocanseyc and
Kathryn G. Deweyc

aDepartment of Nutrition and Food Sciences, University of Rhode Island, Kingston, RI, USA; bDepartment of Nutrition and Food Science,
University of Ghana, Legon, Ghana; cDepartment of Nutrition, University of California, Davis, CA, USA; dDepartment of Psychiatry, University
of Colorado Anschutz Medical Campus, Aurora, CO, USA; eDepartment of Biochemistry and Biophysics, University of California, San Francisco,
CA, USA

ABSTRACT
Dysregulation of the stress response can occur early in life and may be affected by nutrition. Our
objective was to evaluate the long-term effect of nutritional supplementation during gestation and
early childhood on child cortisol and buccal telomere length (a marker of cellular aging) at 4–6 years
of age. We conducted a follow-up study of children born to women who participated in a nutritional
supplementation trial in Ghana. In one group, a lipid-based nutrient supplement (LNS) was provided to
women during gestation and the first 6 months postpartum and to their infants from age 6 to
18 months. The control groups received either iron and folic acid (IFA) during gestation or multiple
micronutrients during gestation and the first 6 months postpartum, with no infant supplementation. At
age 4–6 years, we measured hair cortisol, buccal telomere length, and salivary cortisol before and after
a stressor. Salivary cortisol was available for 364 children across all three trial arms and hair cortisol
and telomere length were available for a subset of children (n¼ 275 and 278, respectively) from the
LNS and IFA groups. Telomere length, salivary cortisol, and hair cortisol did not differ by supplementa-
tion group. Overall, these findings suggest that nutritional supplementation given during gestation and
early childhood does not have an effect on child stress response or chronic stress in children at
4–6 years.

Trial registration: ClinicalTrials.gov Identifier NCT00970866.

LAY SUMMARY

� This study addressed a research gap about whether improved nutrition during pregnancy and
early childhood impacts telomere length and cortisol in preschool children. There was no differ-
ence in child telomere length or cortisol between two trial arms of a nutritional supplementa-
tion trial that began during pregnancy. The research outcomes indicate lipid-based nutrient
supplements, a relatively new form of supplementation, do not have an effect on markers of
stress or cellular aging measured in later childhood.
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Introduction

Cortisol is a hormone released by the hypothalamic-pituitary-
adrenal (HPA) axis in response to mental and physical stres-
sors (Dickerson & Kemeny, 2004). Additionally, cortisol has a
diurnal pattern in which cortisol concentrations typically peak
30–40min after awakening and then decline throughout the
day, with lowest concentrations in the evening
(Hucklebridge, Hussain, Evans, & Clow, 2005). Previous studies
have demonstrated that the regulation of both the stress
response and diurnal pattern of cortisol can be impacted by
a wide range of factors (Cohen et al., 2006; Danese &

McEwen, 2012; Liu et al., 2017), including nutrition (Keenan
et al., 2016; Oaks et al., 2016). Recent research suggests that
permanent dysregulation of the HPA axis can occur during
gestation and early childhood (Alexander et al., 2012).
Whether nutrition during this critical time period can have a
long-term impact on the HPA axis of the offspring
is unknown.

Perceived stress and cortisol reactivity to stress are associ-
ated with shorter telomere length (Parks et al., 2009;
Puterman et al., 2010), a biomarker of cellular aging (Collado,
Blasco, & Serrano, 2007). Telomeres are structures at the end
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of chromosomes that become shorter with each cell division
until reaching a limit at which point cell apoptosis or loss of
cell function occurs. Shorter telomere length is associated
with cardiovascular disease (Fitzpatrick et al., 2006), cancer
(Ennour-Idrissi, Maunsell, & Diorio, 2017), and mortality
(Cawthon, Smith, O’Brien, Sivatchenko, & Kerber, 2003). A
meta-analysis of seven trials studying the impact of nutrition
on telomere length reported no significant relationship; how-
ever, all trials have been conducted in adult populations and
the meta-analysis noted strong heterogeneity among the
studies in terms of type and duration of dietary intervention
(P�erez et al., 2017).

We previously conducted a three-armed nutrition supple-
mentation trial in Ghana, located in West Africa, to determine
the effect of a LNS on maternal and child health outcomes
when given during gestation, the first 6 months postpartum,
and to the offspring from 6–18 months of age. In addition to
greater birth weight and child growth in the LNS trial arm
(Adu-Afarwuah et al., 2015), we found that among younger
women, those provided with LNS during gestation had lower
morning salivary cortisol in late gestation than those receiv-
ing iron and folic acid (IFA) capsules or multiple micronu-
trients (MMNs) capsules (Oaks et al., 2016). LNS and MMN
had identical amounts of 18 micronutrients, but LNS also had
four additional micronutrients and essential fatty acids,
including the omega-3 fatty acid, alpha-linolenic acid, a
necessary component for pathways that produce the anti-
inflammatory response. As cortisol can cross the placenta, we
now aim to determine if there was a lasting effect on
their children.

The present study is part of a follow-up study conducted
when the children were 4–6 years of age. We investigated
whether the nutritional supplementation provided during
gestation and early childhood had an impact on child stress
response, hair cortisol (a measurement of cumulative corti-
sol), and buccal telomere length. We hypothesized that chil-
dren in the LNS trial arm would have lower mean hair
cortisol concentrations and a longer mean telomere length
than children who received no supplementation and were
born to mothers receiving IFA. We also hypothesized that the
LNS children would have a better regulated stress response
compared with children who received no supplementation
and were born to mothers receiving IFA or MMN.

Methods

Participants, study design, and intervention

The International Lipid-Based Nutrients Supplement (iLiNS-
DYAD) trial was a three-arm randomized controlled trial con-
ducted in Ghana (Clinicaltrials.gov, NCT00970866). Details of
the study design, randomization, and participants have been
described previously (Adu-Afarwuah et al., 2015). Pregnant
women �20 weeks gestation and �18 years of age were
recruited from four prenatal clinics in the Yilo and Manya
Krobo districts of the Eastern Region from December 2009 to
December 2011. Exclusion criteria were: antenatal cards indi-
cated HIV infection, asthma, epilepsy, tuberculosis, or any
malignancy; known milk or peanut allergy; not residing in

the area; intention to move within the next 2 years; unwill-
ingness to receive fieldworkers in their home or take the
study supplement; or participation in another trial. A total of
1320 enrolled women were randomized to receive either (1)
LNS (during gestation and for 6 months postpartum), (2)
MMNs (during gestation and for 6 months postpartum), or
(3) IFA (gestation only). Children born in the LNS trial arm
received LNS from 6 to 18 months of age while children in
the MMN and IFA trial arms received no supplementation.
The nutrient content for each of the supplements is pre-
sented in Table 1. After accounting for fetal loss and child
deaths during the main trial, 1222 preschool children were
eligible for the follow-up study conducted from January to
December 2016. We attempted to contact all previous partici-
pants using contact information obtained during the main
trial. All study protocols for the main trial and the follow-up
study were approved by the institutional review board of
the University of California, Davis, the Ethics Committee
for the College of Basic and Applied Sciences at the
University of Ghana, and the Ghana Health Service Ethical
Review Committee.

Measurements

Cortisol stress response
To assess child cortisol stress response, we measured cortisol
before and after a finger prick was performed on the child.
We chose a finger prick as a stressor because the finger prick
was already a part of our study protocol to collect blood for
other study outcomes and had been supported as a stressor
in previous research (Kertes, Kamin, Liu, Bhatt, & Kelly, 2018).
We collected a total of four saliva samples: (1) during a home

Table 1. Nutrient supplementation per day.a

Nutrient IFA MMN LNS-P&L LNS-Child

Total energy (kcal) 0 0 118 118
Protein (g) 0 0 2.6 2.6
Fat (g) 0 0 10 9.6
Linoleic acid (g) 0 0 4.59 4.46
a-Linolenic acid (g) 0 0 0.59 0.58
Vitamin A (lg RE) 0 800 800 400
Vitamin C (mg) 0 100 100 30
Thiamin (mg) 0 2.8 2.8 0.3
Riboflavin (mg) 0 2.8 2.8 0.4
Niacin (mg) 0 36 36 4
Folic acid (lg) 400 400 400 80
Pantothenic acid (mg) 0 7 7 1.8
Vitamin B6 (mg) 0 3.8 3.8 0.3
Vitamin B12 (lg) 0 5.2 5.2 0.5
Vitamin D (mg) 0 10 10 5
Vitamin E (mg) 0 20 20 6
Vitamin K (lg) 0 45 45 30
Iron (mg) 60 20 20 6
Zinc (mg) 0 30 30 8
Copper (mg) 0 4 4 0.34
Calcium (mg) 0 0 280 280
Phosphorus (mg) 0 0 190 190
Potassium (mg) 0 0 200 200
Magnesium (mg) 0 0 65 40
Selenium (lg) 0 130 130 20
Iodine (lg) 0 250 250 90
Manganese (mg) 0 2.6 2.6 1.2
aIFA: maternal iron and folic acid; MMN: maternal multiple micronutrients;
LNS-P&L: lipid-based nutrient supplements pregnancy and lactation formula-
tion; LNS-Child: lipid-based nutrient supplements child formulation.
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visit by a trained fieldworker, (2) upon arrival to the study
testing center clinic, (3) 15min after the finger prick, and (4)
30min after the finger prick. We used polymer swabs specif-
ically made for children less than 6 years of age (Salimetrics,
LLC, State College, PA) to collect the saliva samples. The
swab was inserted under the child’s tongue for 2min and
then placed in a storage tube. The swab collected during the
home visit was stored in a cooler until the fieldworker
returned to the study center. All swabs were stored in the
refrigerator at the study center for up to 24 h. Swabs were
then centrifuged and obtained saliva samples were stored at
�20 �C until being shipped to the U.S. (Salimetrics, Carlsbad,
CA) for lab analysis by high-sensitivity enzyme immunoassay,
which can detect cortisol concentrations ranging from 0.193
to 82.8 nmol/L. The intra- and inter-assay coefficients of vari-
ability (CV) are 4.4% and 7.8%, respectively.

Hair cortisol
A small amount of hair (roughly the diameter of a pencil
eraser and estimated to be at least 25mg) was cut by the
study nurse from the posterior vertex region close to the
scalp. Typically, hair is estimated to grow 1 cm/month
(Stalder et al., 2017); however, slower hair growth rate has
been observed for persons of African descent (at an average
rate of 0.80 cm/month) (Loussouarn, 2001). We therefore
attempted to collect at least 1.6 cm of hair to estimate corti-
sol accumulation over the previous two months. Hair samples
were wrapped in foil and stored at room temperature until
shipped to the University of Colorado Anschutz Medical
Center for analysis. Hair was ground, cortisol was extracted,
and then measured by immunoassay (Salimetrics, LLC, State
College, PA) according to previously published methods with
average intra and inter-assay CVs 2.7% and 13.3%, respect-
ively (Hoffman, Mazzoni, Wagner, Laudenslager, & Ross, 2016;
Lehrer, Dubois, Maslowsky, Laudenslager, & Steinhardt, 2016).

Buccal telomere length
Buccal samples were collected by the study nurse using
OraCollect-DNA swabs (DNA Genotek Inc, Ottawa, Canada).
The swab was brushed up and down 10 times on the inside
of each cheek, placed in a vial and immediately rotated by
hand several times. To ensure sample homogeneity, the vial
was heated in a wet bath incubator for 1 h at 50 �C before
the sample was aliquoted into a cryovial. Buccal swabs were
stored in the refrigerator for up to 24 h and stored at �20 �C
until being shipped to University of California, San Francisco,
CA, USA for lab analysis. DNA purification, using the Qiagen
QiaAmp DNA mini kit, was carried out on saliva collected
with DNA Genotek ORAcollect tubes. The telomere length
measurement assay was adapted from the published original
method by Cawthon (Cawthon, 2002; Lin et al., 2010) and
represented a ratio of two qPCR reactions: Telomere over sin-
gle copy gene (T/S). The samples measured for this study
had an average T/S cv of 2.2 ± 1.6%. The telomere thermal
cycling profile consisted of: cycling for T (telomic) PCR: dena-
tured at 96 �C for 1min, one cycle; denatured at 96 �C for
one second, annealed/extended at 54 �C for 60 seconds, with

fluorescence data collection, 30 cycles. Cycling for S (single
copy gene) PCR: denatured at 96 �C for 1min, one cycle;
denatured at 95 �C for 15 seconds, annealed at 58 �C for
one second, extended at 72 �C for 20 seconds, eight cycles;
followed by denatured at 96 �C for one second, annealed at
58 �C for one second, extended at 72 �C for 20 seconds, held
at 83 �C for five seconds with data collection, 35 cycles.
The primers for the telomere PCR were tel1b (50-
CGGTTT(GTTTGG)5GTT-30), used at a final concentration of
100 nM, and tel2b (50-GGCTTG(CCTTAC)5CCT-30), used at a
final concentration of 900 nM. The primers for the single-
copy gene (human beta-globin) PCR were hbg1 (50-
GCTTCTGACACAACTGTGTTCACTAGC-30), used at a final con-
centration of 300 nM, and hbg2 (50-CACCAACTTCATCCACGTT
CACC-30), used at a final concentration of 700 nM.

The final reaction mix contained 20mM Tris–HCl, pH 8.4;
50mM KCl; 200mM each dNTP; 1% DMSO; 0.4x Syber Green
I; 22 ng E. coli DNA; 0.4 Units of Platinum Taq DNA polymer-
ase (Invitrogen Inc., Carlsbad, CA); approximately 10 ng of
genomic DNA per 11 ll reaction. Tubes containing 26, 8.75,
2.9, 0.97, 0.324, and 0.108 ng of a reference DNA (pooled
genomic DNA) were included in each PCR run so that the
quantity of targeted templates in each research sample could
be determined relative to the reference DNA sample by the
standard curve method. The same reference DNA was used
for all PCR runs. The samples for this study were handled in
two plates (batches). The T/S ratio for each sample was meas-
ured twice. When the duplicate T/S value and the initial value
varied by more than 7% for any sample, it was run a third
time and the two closest values were reported. The repeat
plate was a mixture from both study plates and was used to
make batch adjustments. The CV for telomere length meas-
urement in this study was 3.6%. All assays for the entire
study were performed using the same lots of reagents. Lab
personnel who performed the assays were provided with de-
identified samples and were blind to all demographic and
clinical data.

Covariates
Several variables were examined as potential covariates to
reduce the within-group variance and to increase the preci-
sion of the estimate of the treatment effect in data analysis
(Streiner, 2015). Potential covariates measured during the
main trial included gestational age at enrollment, season at
enrollment, parity, markers of inflammation at enrollment (C-
reactive protein (CRP) and alpha (1)-acid glycoprotein (AGP)),
pre-pregnancy body mass index (BMI), child sex, maternal
age, maternal education, and maternal morning salivary corti-
sol at enrollment. Details of methods for these variables have
been provided elsewhere (Oaks et al., 2016). Potential covari-
ates measured during the follow-up study included child’s
current age, season at time of sample collection, time
between waking and time of saliva collection for saliva sam-
ple at clinic arrival, time between last food or drink and time
of saliva collection for saliva sample at clinic arrival, and
mood of child before saliva collection. Mood of the child was
recorded by either the fieldworker or the study nurse as one
of the following: happy (smiling), neutral (not upset, not
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happy), little upset (unhappy face, hesitant, shy), medium
upset (some crying), or very upset (uncontrollable cry-
ing, screaming).

Sample size calculation

The original trial enrolled 1320 pregnant women (�440 per
arm) to be able to detect an effect size (difference in means
divided by the standard deviation) of �0.3 between groups
in continuous outcomes with two-sided testing, an alpha of
0.05, power of 0.80, and assuming a 25% attrition rate while
accounting for a known supplement mislabeling which
resulted in mixed exposure. This follow-up study aimed to
enroll all participants from the original sample who were still
eligible to participate. A subsample of these follow-up partici-
pants was then selected for the current analyses.

For salivary cortisol, we conducted a three-group compari-
son and estimated a target subsample size of 480 children
(160 per arm) to detect an effect size of �0.3 based on one-
sided tests with an alpha of 0.05, power of 0.80, and account-
ing for 10–15% attrition. Buccal and hair sample collection
was attempted for all children; however, due to limited fund-
ing for lab analysis we conducted a two-group comparison
(LNS vs. IFA) which required a sample size of 278 (139 per
arm) children to detect an effect size of �0.3 based on one-
sided tests with an alpha of 0.05 and power of 0.80. Buccal
samples for those two groups were selected for lab analysis
using a randomized list created by our statistician. All avail-
able hair samples from the LNS and IFA groups were ana-
lyzed. These subsample sample size calculations were based
on one-sided tests; however, two-sided tests were conducted
in analysis. Consequently, our analyses are underpowered for
detecting an effect size of 0.3; the detectable effect sizes are
0.35 for the salivary cortisol three-group comparison and 0.34
for the buccal and hair sample two-group comparisons.

Statistical analysis

Prior to beginning any analyses, we made our statistical ana-
lysis plan publicly available by posting it on the iLiNS Project
website (www.ilins.org). All models were checked to ensure
that the residuals were normally distributed and the hetero-
scedasticity assumption was met through the residual vs. fit
plot. Hair and salivary cortisol concentrations were conse-
quently log transformed for analysis; no transformation was
needed for telomere length. Outliers were identified by visu-
ally inspecting histograms and/or scatterplots of variables. In
cases where extreme outliers were biologically plausible, sen-
sitivity analysis was performed to determine whether the
extreme outliers had undue influence on the results. High
hair or salivary cortisol concentration was defined as a value
above the median of the study population and short telo-
mere length was defined as a value below the median of the
study population. We calculated the area under the curve
(AUC) for salivary cortisol concentration using the clinic
arrival saliva sample and the 15 and 30min post-finger prick
saliva samples. AUC analyses were also run using the home
saliva sample in place of the clinic arrival sample as a

secondary analysis because of a concern that clinic arrival
might itself be a stressor.

Primary analyses were two-sided and conducted as com-
plete-case intention-to-treat. Secondarily, per protocol analy-
ses were conducted limited to (a) women with �70%
adherence to supplement during pregnancy and (b) women
with �70% adherence during pregnancy and up to 6 months
postpartum. Salivary cortisol concentration was compared
across three groups (IFA, MMN, LNS) and hair cortisol concen-
tration and telomere length were compared between two
groups (IFA vs. LNS). Both unadjusted and adjusted analyses
were completed, because guidelines for best statistical practi-
ces support the use of covariates in analyses of randomized
controlled trials (Streiner, 2015). Outcomes were first assessed
in unadjusted models controlling only for study design cova-
riates and then in models adjusting for covariates associated
(p< .10) with the outcome. For continuous outcome varia-
bles, the difference in means between groups was tested
with ANCOVA using a statistical significance of p< .05. For
dichotomous outcome variables, odds ratios between groups
were examined using logistic regression with statistical sig-
nificance at p< .05. Post hoc pairwise comparisons of the
three intervention groups were performed only if the global
ANCOVA F-test was significant in relation to either continu-
ous or dichotomous salivary cortisol concentrations.

All models controlled for the child’s age since not all chil-
dren were assessed at the same age during the follow-up.
Additionally, time between waking and time of saliva collec-
tion for the baseline saliva sample, and time between last
food or drink and time of saliva collection for the baseline
saliva sample were also included in all salivary cortisol mod-
els, as these are established factors that affect salivary cortisol
concentrations. Variables examined as potential adjustment
covariates included child sex, maternal age, maternal educa-
tion, gestational age at enrollment, parity, maternal AGP at
enrollment, maternal CRP at enrollment, pre-pregnancy BMI,
season at enrollment, maternal morning salivary cortisol at
enrollment (salivary cortisol analyses only), child mood (saliv-
ary cortisol analyses only), and season at time of child saliva
collection (salivary cortisol analyses only). We examined
potential interaction of supplementation group with pre-
specified variables, which included child sex, maternal cortisol
at enrollment, maternal AGP at enrollment, maternal CRP at
enrollment, maternal age, maternal parity (nulliparous vs.
parous), and season at time of sample collection. These varia-
bles were selected based on previous research suggesting
that these factors may act as effect modifiers (Adu-Afarwuah
et al., 2015; Bosquet Enlow et al., 2019; Oaks et al., 2016; Toe,
Bouckaert, & De Beuf, 2015). Maternal BMI was examined as
an effect modifier in exploratory analyses based on other
recent analyses completed by our research group (Kumordzie
et al., 2019). We performed sub-group analyses for significant
interactions (p< .1). To address the issue of multiple hypoth-
esis testing, any interactions identified as significant in the
main analysis were also examined after performing a
Bonferroni correction (Cabin & Mitchell, 2000). All analyses
were completed using SAS 9.4 (SAS Institute, Cary, NC).

4 B. M. OAKS ET AL.
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Results

Salivary cortisol

From the 1222 preschool children that were eligible, a total of
1014 children (83%) were enrolled in the iLiNS-DYAD follow-
up study in Ghana. From the 480 children randomized for sal-
iva collection, we collected saliva from 338 (70%) children at
the home visit and from 332 (69%) children at the clinic visit.
Of the 148 children who did not provide a saliva sample at
the clinic visit, five attended the clinic visit but were unable to

provide a sample and the remaining were lost to follow up
(i.e. did not attend the clinic visit) (Figure 1). Compared with
children without a saliva sample obtained at the clinic visit,
children with a saliva sample were similar in age; had similar
hair cortisol concentration; and had mothers that were similar
in education level, salivary cortisol, and BMI at trial enrollment
but were on average slightly older (mean age: 27.2 vs.
26.6 years, p¼.08). Baseline characteristics were similar across
intervention groups and characteristics of study participants
by intervention group are presented in Table 2.

56 lost to follow-up
3 unable to obtain 

sample

IFA –441  women 

1,320 enrolled women
iLiNS-DYAD-G1

MMN – 439 women SQ-LNS – 440  women

320 enrolled children
iLiNS-DYAD-G2

88 exclusions
33 Fetal/child deaths

4 misdiagnosed pregnancy
8 declined to par�cipate

43 loss to follow-up

121 exclusions
34 fetal/child deaths

1 misdiagnosed pregnancy
19 declined to par�cipate
67 lost to follow-up

97 exclusions
31 fetal/child deaths
17 declined to par�cipate
49 lost to follow-up

342 enrolled children
iLiNS-DYAD-G2

352 enrolled children
iLiNS-DYAD-G2

109 children with 
salivary cor�sol 
from home visit

101 children with 
salivary cor�sol 
from clinic visit

160 randomized for 
saliva collec�on

112 children with 
salivary cor�sol 
from home visit

115 children with 
salivary cor�sol 
from clinic visit

160 randomized for 
saliva collec�on

117 children with 
salivary cor�sol 
from home visit

116 children with 
salivary cor�sol 
from clinic visit

160 randomized for 
saliva collec�on

128 children 
with hair 
cor�sol

147 children 
with hair 
cor�sol

45 lost to follow-up
42 lost to follow-up

2 unable to obtain 
sample

50 lost to follow-up
1 unable to obtain 

sample

83 lost to 
follow-up 
109 unable to 
obtain sample

47 lost to follow-up
1 unable to obtain 

sample

79 lost to 
follow-up
126 unable to 
obtain sample

41 lost to follow-up
2 unable to obtain 

sample

Figure 1. Study participant flow diagram for iLiNS-DYAD-G2 child cortisol analysis.

Table 2. Characteristics of study participants by intervention groupa.

Characteristic
IFA MMN LNS

n¼ 210b n¼ 121b n¼ 223b

Birth weight, kg 2.94 ± 0.44 2.96 ± 0.46 3.04 ± 0.40
Male, % 97 (46%) 50 (42%) 107 (48%)
Preterm, % 14 (7%) 11 (9%) 17 (8%)
Length-for-age z-score (LAZ) at birth �0.72 ± 1.02 �0.59 ± 1.05 �0.54 ± 0.93
Gestational age at enrollment, weeks 16.2 ± 3.3 15.7 ± 3.1 16.0 ± 3.5
Maternal age at enrollment, years 26.8 ± 5.5 27.4 ± 5.6 27.2 ± 5.5
Primiparous, % 67 (32%) 32 (26%) 74 (33%)
Maternal cortisol at enrollment, nmol/L 5.23 ± 2.86 4.75 ± 2.68 4.58 ± 2.44
Maternal cortisol at 36 weeks gestation, nmol/L 8.02 ± 3.30 7.49 ± 3.36 7.80 ± 3.13

IFA: maternal iron and folic acid; MMN: maternal multiple micronutrients; LNS: maternal and child lipid-based nutri-
ent supplements.

aValues are mean ± SD or n (%), as indicated.
bMissing data: birth weight, LAZ, and preterm (IFA: n¼ 8, MMN: n¼ 4, LNS: n¼ 5); cortisol at enrollment (IFA:
n¼ 57, MMN: n¼ 32, LNS: n¼ 75); cortisol at 36 weeks gestation (IFA: n¼ 89, MMN: n¼ 50, LNS: n¼ 96).
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Geometric mean (95% CI) salivary cortisol concentration at
home was 4.00 (3.68, 4.35) nmol/L and did not differ by
group (p¼.75). The majority of home visits were conducted
early in the morning before the child went to school, with
fieldworkers typically collecting saliva from the child before
6:30 am. Clinic visits were conducted between the hours of
8 am and 12 pm and geometric mean salivary cortisol con-
centration at clinic arrival was 1.92 (1.80, 2.04) nmol/L.
Compared with the clinic arrival salivary cortisol concentra-
tion, 55% of the children had either a decrease or no change
in cortisol 15min post-finger prick. Geometric mean salivary
cortisol concentrations measured 15 and 30min post-finger
prick were 1.87 (1.74, 2.00) and 1.73 (1.62, 1.85), respectively.
Due to relatively little difference in mean cortisol concentra-
tions across the three saliva samples collected at the clinic
visit, AUC analyses are not presented. Salivary cortisol con-
centrations did not differ significantly among the three nutri-
tion supplementation groups (Figure 2). Per protocol analysis
results were similar to the intention-to-treat results and are
not presented. There were no significant interactions with
supplementation for any of the examined effect modifiers
when analyzed in separate models.

Hair cortisol

Hair sample collection was attempted on all children and lab
analysis was limited to the IFA and LNS groups. Of the 672
children in either the IFA or LNS groups, hair samples were
successfully collected from only 275 children (41%). Hair sam-
ples were not collected from the other children because of
either loss-to-follow-up (n¼ 162) or inability to obtain a hair
sample from the child at the clinic visit (n¼ 235), primarily
due to hair being too short (Figure 1). Compared with chil-
dren without a hair sample, children with a hair sample were

similar in age; had mothers that were similar in age, educa-
tion level, salivary cortisol, and BMI at trial enrollment; had a
higher mean salivary cortisol concentration at clinic arrival
(2.34 vs. 2.01, p¼.01) but similar salivary cortisol at other
time points; and were slightly more likely to be female (55%
vs. 50%, p¼.11).

Before hair samples were collected at the clinic visit,
mothers were asked about the frequency of hair washing for
the child. All mothers reported washing their child’s hair
within the past 48 h and 93% of mothers reported that the
child’s hair was typically washed twice per day, with no sig-
nificant variation in hair washing frequency between the IFA
and LNS groups. Hair cortisol concentration did not signifi-
cantly differ between the IFA and LNS groups (Table 3). Per
protocol analysis results were similar to the intention-to-treat
results and are not presented. There were no significant
interactions with supplementation for any of the examined
effect modifiers when analyzed in separate models.

Buccal telomere length

Buccal sample collection was attempted on all children and
buccal swabs were collected from 819 children (81%). Lab
analysis was limited to children from the IFA and LNS groups.
For the subsample selection for buccal swab analyses, all

0

0.5

1

1.5

2

2.5

Pre-finger prick +15 min +30 min

C
or

tis
ol

 (
nm

ol
/L

)

IFA

MMN

LNS

Figure 2. Change in salivary cortisol among children 4–6 years of age before and after a finger prick, by supplement group. Data represent geometric mean cortisol
(error bars 95% CI) controlling for child age, time since awakening, and time since eating. IFA: maternal iron and folic acid group; MMN: maternal multiple micronu-
trients group; LNS: maternal and child lipid-based nutrient supplements group.

Table 3. Hair cortisol and telomere length by intervention groupa.

IFAb LNSb p

Hair cortisol, n 128 139
Hair cortisol, pg/mg 5.37 (4.61, 6.28) 4.95 (4.40, 5.57) .29
Telomere length, n 147 139
Telomere length, T/S ratio 1.75 (1.67, 1.83) 1.71 (1.63, 1.79) .69
aValues are means ad 95% CI, adjusted for child age.
bIFA: maternal iron and folic acid; LNS: maternal and child lipid-based nutrient
supplements.
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children who provided a hair sample were included; however,
several children from the hair cortisol subsample were miss-
ing a buccal swab and additional children were randomized
to obtain our target sample size of 278 children (LNS:
n¼ 139, IFA: n¼ 139). Mean buccal telomere length among
children from the LNS group did not differ significantly from
the IFA group (Table 3). Results were similar and the differ-
ence between groups remained non-significant in adjusted
analyses and per protocol analyses. Of the eight examined
potential effect modifiers, there was an interaction with
maternal age (p-for-interaction¼.06). Among children born to
older mothers, telomere length was longer for children from
the LNS group compared with the IFA group. Among chil-
dren born to younger mothers, telomere length was shorter
for children from the LNS group compared with the IFA
group. However, the interaction did not remain significant
after performing a Bonferroni correction, nor did the inter-
vention groups differ significantly when compared within
each of two maternal age categories (above and below the
median age at enrollment, 26 years). No other interactions
with supplementation were significant when analyzed in sep-
arate models.

Discussion

Our previous research from the main trial in Ghana showed
that among younger women, late pregnancy morning saliv-
ary cortisol concentration was lower among those receiving
LNS compared with those receiving IFA or MMN (Oaks et al.,
2016). In this follow-up study, we examined the hypothesis
that provision of LNS during gestation and early childhood
would alter offspring salivary and hair cortisol concentrations
and buccal telomere length at 4–6 years of age. Buccal telo-
mere length, hair cortisol concentrations, and salivary cortisol
concentrations before and after a finger prick were similar
across supplementation groups, thus our results do not sup-
port our primary hypothesis. We did find evidence of an
interaction between the nutrition supplement and maternal
age: among children born to older mothers, those in the LNS
group had longer telomere length than those in the IFA
group, with the opposite seen among children born to
younger mothers. However, it is possible that this finding
was due to chance, as the interaction did not remain signifi-
cant after correcting for multiple hypothesis testing.

To our knowledge, this is the first study to examine the
long-term effect of a nutrition supplement given during both
gestation and early childhood on either child telomere length
or cortisol concentration. Previous studies have shown that
nutrition supplementation during gestation modulates the
offspring salivary cortisol response to a stressor in both ani-
mals (Grissom, George, & Reyes, 2017) and humans (Keenan
et al., 2016). In the present study, salivary cortisol concentra-
tion generally did not exhibit a stress response to the finger
prick. Previous studies have reported that 4–6 year olds are
one of the more challenging groups in which to elicit the
stress response (Gunnar, Talge, & Herrera, 2009). Future stud-
ies would benefit from exploring other stressors.

In terms of child telomere length, our results are consist-
ent with a prenatal omega-3 supplementation trial that
showed no effect on child telomere length at 12 years of age
(See et al., 2016) and a study of the Dutch famine birth
cohort in which undernutrition during gestation was not
associated with offspring telomere length at 68 years of age
(de Rooij et al., 2015). However, two other cohort studies
have reported that higher serum folate and vitamin D con-
centrations during pregnancy are associated with longer telo-
mere length in newborns (Entringer et al., 2015; Kim et al.,
2018). In our study, all three groups received folate so it is
possible that folate has an impact on telomere length that
we could not examine in this study. However, only the LNS
and MMN groups received vitamin D as part of the assigned
supplement and we did not find a difference in telomere
length between the IFA and LNS groups, so our study does
not support a focus on maternal vitamin D supplementation
for impacting offspring telomere length in this study setting.
It is possible that the nutritional status of the mother during
gestation has an effect on newborn telomere length that
then is not evident at older ages, although research is still
limited in this area and further investigation is needed.

There are several biological mechanisms that could under-
lie effects of a maternal or early childhood nutritional supple-
ment on child cortisol and telomere length. Omega-3 fatty
acids can facilitate the anti-inflammatory response. As inflam-
mation is associated with both higher cortisol (Silverman &
Sternberg, 2012) and shorter telomere length (Wong, Vivo,
Lin, Fang, & Christiani, 2014), it is possible that omega-3 sup-
plementation may lead to lower cortisol concentrations and
longer telomeres. This is particularly relevant during preg-
nancy, which is a state of chronic inflammation. Folate acts
as a methyl donor and is necessary for fetal DNA synthesis
and cell proliferation. Folate deficiency can lead to a compro-
mised DNA structure that may affect the telomere sequence
(Entringer et al., 2015). Vitamin D can upregulate telomerase
activity, an essential enzyme for telomere maintenance.
Additionally, Vitamin D promotes the expression of Klotho, a
protein associated with cellular aging. An in vitro study using
human umbilical cells demonstrated that Klotho deficiency
induces telomere shortening (Buend�ıa et al., 2015).

Our study has several strengths and limitations worth not-
ing. We had relatively low loss-to-follow-up, enrolling approxi-
mately 80% of children from the main trial in the follow-up
study. While any loss-to-follow-up can contribute to attrition
bias, the likelihood of attrition bias for this study is low. We
found baseline characteristics to be similar between those
with and without a saliva sample at 4–6 years of age aside
from a slight difference in maternal age. We measured cortisol
by two different indicators, hair and saliva, and included meas-
urement of variables that often affect these variables, such as
hair washing and time of awakening. Limitations include diffi-
culty in collecting hair, which may affect the generalizability of
our results, as children with shorter hair may differ from chil-
dren with longer hair (e.g. hair length could possibly be asso-
ciated with sex of the child, economic status, maternal care,
etc.). However, we compared baseline characteristics of chil-
dren who did and did not have a hair sample and found little
difference between these two groups. Our sample size
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calculations were based on our primary hypothesis and one-
sided tests, so it is possible that the study, including analysis
of interactions, was underpowered. We have previously
reported that at 18 months of age, 43% of the children in this
trial were anemic (Adu-Afarwuah et al., 2019) and at 4–6 years
of age, there were relatively low rates of stunting (6.3%),
underweight (5.9%), and overweight (2.9%) (Kumordzie et al.,
2019). Our results may not be generalizable to populations
that differ in these and other indicators of health status. Due
to the study setting we were not able to collect cortisol at set
time points, which increases variance in the cortisol measure-
ment because cortisol has a diurnal rhythm. To address this
issue, we recorded the time of collection for each participant
and included it as a covariate in our analyses. We also were
not able to assess the cortisol awakening response or evening
cortisol, which limits comparability to other studies. Our stress
test was conducted in the morning and may have been influ-
enced by the diurnal rhythm of cortisol, as cortisol decreases
during morning hours after a sharp increase after awakening.
However, children had typically been awake for several hours
and the mean cortisol at clinic arrival was notably lower than
the morning cortisol collected at home.

Conclusions

Research on the long-term effects of improving nutrition dur-
ing both gestation and childhood is needed to determine the
full impact of nutrition interventions when focused on the first
1000 days (gestation and the first 2 years), providing critical
information to maternal and child nutrition programs. This
study has contributed toward addressing this research gap by
examining child cortisol and telomere length at 4–6 years of
age among children from a prenatal and early childhood nutri-
tion supplementation trial. Our results suggest that nutrition
supplementation had little to no effect on these markers of
stress and cellular aging at this time point in the child’s life.
Further research exploring other indicators of health and at
other time points for the offspring are needed to fully under-
stand the impact of prenatal and early childhood nutrition.
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