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A Small Molecule BH3-mimetic 
Suppresses Cigarette Smoke-
Induced Mucous Expression in 
Airway Epithelial Cells
Shah S. Hussain   1, Shebin George1, Shashi Singh2, Rahul Jayant   1, Chien-An Hu3, 
Mohan Sopori2 & Hitendra S. Chand   1

Cigarette smoke (CS) exposure is one of the primary risk factors associated with the chronic mucous 
hypersecretion (CMH). The antiapoptotic protein, Bcl-2 sustains hyperplastic mucous cells, and the 
airway epithelium of ex-smokers with CMH as well as mice exposed to chronic CS showed increased 
Bcl-2 expression. Therefore, we investigated whether Bcl-2 plays a role in CS-induced mucous 
expression. Primary airway epithelial cells (AECs) of murine and human origin were treated with 
CS extract (CSE), and there was a concentration- and time-dependent increase in secretory mucin 
(MUC5AC), mucous regulator (SPDEF) and Bcl-2 expression. Using differentiated human AECs cultured 
on air-liquid interface, EGFR and ERK1/2 pathways were interrogated. Bcl-2 activity was blocked using 
a small molecule BH3 mimetic ABT-263 that disrupts the Bcl-2 interaction with pro-apoptotic proteins. 
The ABT-263 treatment resulted in the downregulation of CSE-induced mucus expression and disrupted 
the EGFR-signaling while inducing the apoptosis and the pro-apoptotic protein, Bik expression. This 
strategy significantly suppressed the mainstream CS-induced mucous phenotype in a 3-D human 
airway epithelium model. Therefore, the present study suggests that CS induces Bcl-2 expression to 
help promote mucous cell survival; and small molecule BH3 mimetics targeting Bcl-2 could be useful in 
suppressing the CS-induced mucous response.

Airway mucus secretion plays a key role in innate immune responses against inhaled toxicants and pathogens. 
However, in susceptible population there is abnormally high level of mucus production and accumulation in 
the airways, specifically in patients suffering from chronic mucus hypersecretion (CMH)1,2. The primary mech-
anisms associated with CMH are mucus overproduction and hypersecretion by the goblet or mucous cells and 
the decreased elimination of mucus. CMH prevalence varies from 3.5% to 12.7% in the general population but is 
much higher (~30%) in individuals with COPD1,3. In CMH patients, the airway epithelial responses are compro-
mised due to dysregulated mucus production, increased mucous cell numbers and ineffective airway clearance1,4. 
This mucous phenotype is highly exacerbated in patients affected with severe COPD and the poorly controlled 
CMH leads to airway plugging and reduced lung functions5–10. Therefore, understanding the molecular mecha-
nisms responsible for the increased differentiation and proliferation of hyperplastic mucous cells and resulting 
mucus overexpression and hypersecretion are crucial in developing CMH targeted therapeutics.

Cigarette smoke (CS) exposure is one of the primary risk factors associated with CMH and the debilitating 
mucus hyperproduction11,12. CS exposure alters the cell fate by affecting the cell proliferation and the cell death 
pathways13–17. One of the plausible mechanism could involve modulating the levels of Bcl-2, an anti-apoptotic 
protein that promotes cell survival13,18–20. In support of this, we have shown that airway inflammation induces 
Bcl-2 in airway epithelium and induced Bcl-2 sustains the survival of hyperplastic mucous cells14,15,20–22. 
Furthermore, our recent findings showed that Bcl-2 is one of the main drivers associated with the airway mucous 
responses14,15,20, therefore, the effect of CS exposure on Bcl-2 expression was investigated in this study. The 
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secretory mucin that is primarily produced by mucous cells in the airway epithelium is MUC5AC, which is 
induced upon CS exposure and other airway injuries8,23,24. In chronic airway diseases such as COPD and asthma, 
the debilitating mucus or phlegm production is highly associated with increased numbers of mucous cells with 
increased mucin synthesis and secretion8 and this pathology is primarily driven by MUC5AC, as shown by a 
recent study25.

In an animal model of chronic CS exposure, we had observed increased expression of Bcl-2 mRNA in mice 
exposed to CS for 16 weeks with 4-fold higher number of airway epithelial cells (AECs) showing Bcl-2 immu-
nopositivity in CS-exposed mice compared to air-exposed controls22. More importantly, bronchial biopsies from 
ex-smokers with CMH showed significantly increased Bcl-2 levels with 5-fold increased immunopositivity com-
pared to control subjects20. Therefore, we investigated the role of Bcl-2 in CS-induced mucous expression using 
cultured murine and human airway epithelial cells and tested whether targeting Bcl-2 using a small molecule BH3 
mimetic compound, ABT-263, could help in modulating CS-induced mucous expression.

Results
CS induces mucus and Bcl-2 levels in a concentration- and time-dependent manner in murine 
AECs.  CS induces mucus production and mucous cell hyperplasia in airway epithelium13,16,26,27, nonetheless, 
the molecular mechanisms involved in CS-induced mucous expression remain elusive. We analyzed the effect of 
CS extract (CSE) on primary murine AECs by treating them with 0, 1, 10 and 100 µg/ml of CSE for 24 h. Cells 
were analyzed for the expression of a secretory mucin, Muc5ac8,28; a master transcriptional regulator of mucous 
response, Spdef or SAM pointed domain containing ETS transcription factor29; and Bcl-2, a key anti-apoptotic 
protein that sustains mucous cells14,15,20,21. There was a dose-dependent increase in Muc5ac mRNA levels with 
significant change following 10 and 100 µg/ml CSE exposure (Fig. 1A). A similar change was observed in Spdef 
mRNA levels (Fig. 1B), however CSE treatment induced Bcl-2 mRNA levels at all tested concentrations (Fig. 1C). 
Next, we assessed the expression kinetics of these mRNAs over 0, 3, 24, 48 and 72 h following 10 µg/ml CSE treat-
ment. The Muc5ac mRNA levels were highest at 24 h post CSE treatment (Fig. 1D), and Spdef mRNA levels were 
increased within 3 h of CSE treatment (Fig. 1E). Bcl-2 mRNA levels peaked at 48 h post CSE exposure (Fig. 1F).

Because there was a modest (~2-fold) increase in the mRNA levels, we analyzed the protein expression in 
murine AECs at 48 h post 10 µg/ml CSE treatment. There was increased expression of Muc5ac, Spdef and Bcl-2 in 
a subset of murine AECs following 10 µg/ml CSE treatment (Fig. 1G and H). CSE treatment resulted in more than 
10-fold higher number of Muc5ac- and Spdef-immunopositive cells compared to non-treated controls, along with 
5-fold higher Bcl-2-immunopositive murine AECs (Fig. 1H). Therefore, these results suggest that CSE exposure 
results in a CSE concentration- and time-dependent increase in Muc5ac, Spdef and Bcl-2 levels in murine AECs.

Concomitant induction of MUC5AC and Bcl-2 by CSE in Human AECs.  To characterize the CSE 
response in human cells, monolayers of human AECs grown in submerged cultured conditions were treated 
with 0, 1, 10 and 100 µg/ml of CSE for 48 h. There was a dose-dependent increase in MUC5AC (Fig. 2A) and 
SPDEF (Fig. 2B) mRNA levels, however, CSE treatment induced Bcl-2 mRNA levels at 1 and 10 µg/ml CSE con-
centration (Fig. 2C). Bcl-2 protein levels examined by western bot analysis showed >4-fold increase following 
24 and 48 h of 10 µg/ml CSE treatment (Fig. 2D and E). Specifically, following in-situ immunostaining, all of the 
MUC5AC-positive cells showed higher Bcl-2 expression at 48 h post 10 µg/ml CSE treatment (Fig. 2F). There 
were 5-fold higher Bcl-2+ and 6-fold higher MUC5AC+ human AECs following CSE treatment (Fig. 2G). Thus, 
like murine AECs, CSE exposure resulted in a concomitant increase in both MUC5AC and Bcl-2 expression in 
human AECs.

CSE engages EGFR pathways to induce MUC5AC and Bcl-2 expression.  To mimic the in-vivo 
physiology of AECs, we next analyzed the effect of CSE on air-liquid interface differentiated human AECs. At 
48 h post 10 µg/ml CSE treatment, the MUC5AC (Fig. 3A), SPDEF (Fig. 3B) and Bcl-2 (Fig. 3C) mRNA levels 
were induced by CSE exposure. At protein levels too, there was increased MUC5AC expression (Fig. 3D) with 
a 4-fold higher number of MUC5AC+ cells at 48 h post 10 µg/ml CSE treatment compared to controls (Fig. 3E). 
We next investigated the pathways implicated in CS-induced mucus expression by analyzing EGFR (Epithelial 
Growth Factor Receptor) and ERK1/2 (Extracellular-signal Regulating Kinase 1/2) pathways23,30–32. The immu-
noblot analyses showed increased ERK1/2 phosphorylation at 24 and 48 h post CSE treatment whereas EGFR 
phosphorylation was observed only at 48 h post CSE treatment (Fig. 3F and G). EGFR mRNA levels were also 
an increased at 48 h post CSE treatment (Fig. 3H). These data thus suggest that CSE engages EGFR and ERK1/2 
pathways to induce mucus and Bcl-2 expression.

Small molecule BH3 mimetic, ABT-263, suppresses CSE-induced mucous expression by induc-
ing apoptosis.  Bcl-2 levels regulate epithelial cell survival in IL-13- and allergen-induced airway inflam-
mation14 and in the present study, CSE treatment induced both MUC5AC and Bcl-2 expression. Therefore, we 
reasoned that blocking Bcl-2 might be helpful in restricting the CS-induced mucous response. We had tested var-
ious chemical and molecular approaches to inhibit Bcl-2 and found that ABT-263, a small molecule BH3-domain 
mimetic compound efficiently blocks Bcl-2 activity with fewer off-target effects14. Therefore, we tested the effect 
of ABT-263 on air-liquid interface differentiated human AECs. Pretreatment with ABT-263 (1uM) significantly 
suppressed the CSE-induced MUC5AC (Fig. 4A), SPDEF (Fig. 4B) and EGFR (Fig. 4C) mRNA as observed in 
CSE + ABT treatment group with no discernible effect in ABT-only treated cells. ABT-263 pretreatment sup-
pressed the CSE-induced EGFR pathway by 2-fold in CSE + ABT condition compared to CSE only group and 
there were no changes in ERK1/2 pathway (Fig. 4D and E).

Because ABT-263 is a known apoptotic inducer, therefore, we examined the extent of apoptosis in our experi-
mental setting by flow cytometric analysis of the Annexin V and propidium iodide stained cells. There were 4-fold 
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Figure 1.  CS exposure induces mucous phenotype and Bcl-2 levels in murine airway epithelial cells (AECs). Primary 
murine AECs were treated with cigarette smoke extract (CSE) at 0, 1, 10, and 100 µg/ml for 24 h and the mRNA levels 
of Muc5ac (A) Spdef (B) and Bcl-2 (C) were analyzed by qRT-PCR. Murine AECs treated with 10 µg/ml CSE and cells 
were harvested at 0, 3, 24, 48 and 72 h and mRNA levels of Muc5ac (D) Spdef (E) and Bcl-2 (F) were quantified.  
(G) Representative micrographs showing Muc5ac (red) and Spdef (green) expression in murine AECs following CSE 
treatment in comparison with non-treated (NT) cells. Murine AECs were treated with CSE (10 µg/ml) for 48 h and 
immunostained for Muc5ac and Spdef, and the nuclei (blue) were stained with DAPI (Scale – 5 µ). (H) Representative 
micrographs showing Muc5ac (red) and Bcl-2 (green) expression in CSE-treated and treated (NT) murine AECs, 
nuclei were stained with DAPI (Scale – 5 µ). (I) Quantification of Muc5ac, Spdef and Bcl-2 immunopositive cells 
following CSE exposure. Approximately 300 cells from each treatment were analyzed to calculate the percentage of 
Muc5ac-positive (Muc5ac+), Spdef-positive (Spdef+) and Bcl-2-positive (Bcl-2+) cells. Data shown as mean ± SEM 
(n ≥ 3); *p < 0.05; **p < 0.01; ***p < 0.001.
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higher apoptotic cells in human AECs pretreated with ABT-263 after CSE exposure (CSE + ABT) compared to 
CSE- or ABT-alone treated controls (Fig. 4F). Our previous studies have shown that Bik is a key proapoptotic pro-
tein in AECs that induces cell death14,16 and therefore, we analyzed the effect of ABT-263 on Bik levels. Compared 
to CSE treated cells, the Bik mRNA levels were upregulated in CSE + ABT treated cells (Fig. 4G). Similarly, in 
differentiated murine AECs (Fig. 4H), ABT-263 significantly suppressed the CSE-induced expression of Muc5ac, 
Egfr and FoxA3, another mucous-regulating transcription factor33. In addition, there were higher Bik mRNA 
levels in CSE + ABT treated murine AECs (Fig. 4H).

ABT-263 completely blocks CS-induced mucous in 3-D human airway tissue.  In order to assess 
the efficacy of ABT-263 in blocking CS-induced mucous, we analyzed the 3-D EpiAirway tissue culture model 
(MatTek Corp, Ashland, MA). The 3-D human epithelial airway tissues were exposed to mainstream CS using a 
SCIREQ smoke machine (Montreal, QC, Canada) for three consecutive days and a group of tissues were treated 
with 1 µM ABT-263 treatment 2 h before exposures. Smoke exposures caused around 5-fold increase in both 
MUC5AC (Fig. 5A) and SPDEF (Fig. 5B) mRNA expression which was completely blocked by ABT-263 pre-
treatment. There was a significant increase in MUC5AC+ cell population (40% cells) following smoke exposure 
(Fig. 5C and D) that was suppressed in ABT-263 pretreated tissues (15% cells) with no discernible changes in 

Figure 2.  CS exposure induces MUC5AC, SPDEF, and Bcl-2 levels in human AEC monolayers. Primary human 
AECs grown in submerged cultured conditions were treated with 0, 1, 10, and 100 µg/ml of CSE for 24 h and the 
mRNA levels of MUC5AC (A) SPDEF (B) and Bcl-2 (C) were analyzed by qRT-PCR. (D) Immunoblot analyses 
of Bcl-2 expression following CSE exposure. Differentiated human AECs were treated with 10 µg/ml CSE and 
cell lysates were analyzed at 0, 24 and 48 h post CSE exposure by western blot analysis for Bcl-2 protein levels 
with β-actin levels detected as the loading controls. (E) Relative quantities of Bcl-2 protein as determined by 
densitometric analysis and normalized to β-actin levels. (F) Representative micrographs showing MUC5AC 
(green) and Bcl-2 (red) immunopositivity in HAECs treated with CSE or left non-treated (NT). Human AECs 
were treated with CSE (10 µg/ml) for 48 h and immunostained for Bcl-2 and MUC5AC, and nuclei were stained 
with DAPI (Scale – 5 µ). (G) Quantification of human AECs immunopositive for MUC5AC and Bcl-2 following 
CSE exposure. The percentage of human AECs immunopositive for Bcl-2 (Bcl-2+) and MUC5AC (MUC5AC+) 
were calculated. Data shown as mean ± SEM (n ≥ 3); *p < 0.05; **p < 0.01; ***p < 0.001.
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ciliated cell population (Fig. 5C and E). Thus, blocking Bcl-2 by a small molecule BH3 mimetic, ABT-263 sup-
presses the smoke-induced mucous phenotype without affecting the ciliated epithelial cells.

ABT-263 induces Bik expression and apoptosis in CSE-induced mucous cells.  To determine 
whether CSE-induced mucous cells were undergoing apoptosis, human AECs pretreated with ABT-263 and 
exposed to CSE for 48 h were analyzed by TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labe-
ling) assay and were co-stained for MUC5AC (Fig. 5F). There were >10-fold higher number of TUNEL-positive 
cells in CSE + ABT treated cells with majority of MUC5AC+ cells showing TUNEL positivity as represented by 
MUC5AC+TUNEL+ cell counts (Fig. 5G). Next, we analyzed whether Bik expression is associated with the apop-
totic AECs by co-staining the CSE + ABT and CSE-treated cells for Bik and activated or cleaved caspase 3 (CC3), 
a late-stage apoptosis indicator (Fig. 5H). There were higher number of cells expressing Bik (Bik+) in CSE + ABT 
treatment condition with most of Bik+ cells were undergoing apoptosis as detected by the CC3 immunostaining 
and are represented as Bik+CC3+ cell counts (Fig. 5I). These data suggest that ABT-263 treatment of CSE exposed 
cells suppresses mucous expression by upregulating Bik levels and augmenting apoptosis.

Discussion
In this study, we report that CS exposure induces MUC5AC mucin and SPDEF, the mucous master regulator 
with a concomitant induction in Bcl-2 levels in both human and murine airway epithelial cells. The treatment 
with a small molecule BH3 mimetic compound, ABT-263, attenuated the CS-induced mucus expression in both 
human and murine cells. Furthermore, we observed that ABT-263 treatment attenuated the CS-engaged EGFR 
signaling to help upregulate apoptosis and the proapoptotic Bik levels in order to suppress the CS-induced mucus 
expression.

CS exposure has been shown to drive chronic mucus production6,11,28,34–36 and alters the cell fate by affect-
ing the cell proliferation and the cell death pathways13,16,26,27. During the lung development, a network of tran-
scription factors including thyroid transcription factor-1 (TTF1), forkhead box protein A2 (FOXA2) and A3 
(FOXA3), and SPDEF, drive the fate of respiratory airway epithelial cells29,37,38. This cybernetic transcriptional 

Figure 3.  CSE engages EGFR and ERK1/2 pathways to induce mucous phenotype and Bcl-2 levels in 
differentiated human AECs. Primary human AECs differentiated for 3 weeks on air-liquid interface were 
treated with 10 µg/ml of CSE for 48 h and the mRNA levels of MUC5AC (A), SPDEF (B) and Bcl-2 (C) were 
analyzed by qRT-PCR. (D) A 3-D representation of a micrograph showing cilia (green) and MUC5AC 
(red) immunopositivity in differentiated human AECs treated with CSE. Differentiated human AECs were 
treated with 10 µg/ml CSE for 48 h and were immunostained for acetylated-tubulin (ACT, in green) for 
cilia and MUC5AC (red), and nuclei were stained with DAPI (Scale – 5 µ). (E) Quantification of MUC5AC 
immunopositive cells following CSE exposure. Approximately 300 cells from each treatment were analyzed 
to calculate the percentage of MUC5AC-positive (MUC5AC+) cells. (F) Immunoblot analyses of EGFR and 
ERK1/2 signaling pathway following CSE exposure. Differentiated human AECs were treated with 10 µg/ml CSE 
and cell lysates were analyzed at 0, 24 and 48 h post CSE exposure by western blot analysis for phosphorylated 
ERK1/2, total ERK1/2, phosphorylated EGFR and total EGFR with β-actin levels as the loading controls. (G) 
Relative quantities of pERK1/2, ERK1/2, pEGFR and EGFR as determined by densitometric analysis where 
protein quantities were normalized to β-actin levels. (H) Fold-change in EGFR mRNA levels in human AECs 
treated with 10 µg/ml of CSE for 48 h. Data shown as mean ± SEM (n = 3); *p < 0.05; **p < 0.01; ***p < 0.001.
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network regulates the proliferation, differentiation and function of airway epithelial cells including mucous, cili-
ary and basal cells. Among these transcription factors, SPDEF is the important regulator of the growth and differ-
entiation of mucous cells and mucus production29 and its levels are upregulated in airway mucous cells of patients 
with chronic airway diseases29 and in animal models of allergen exposure17. In our studies using CSE exposure 
model, both murine and human airway epithelial cells showed a dose-dependent response in SPDEF levels, one 
of the first reports showing the direct effect of CS on this mucous master regulator. It is notable that human airway 
epithelial cells were more sensitive to CSE exposure than murine counterparts because 1 µg/ml CSE, the lowest 
dose tested, significantly induced both MUC5AC and SPDEF levels in humans with no discernable changes in 
murine airway epithelial cells. Moreover, even at the higher CSE dose there was only modest increase in murine 
Muc5ac and Spdef expression compared to human AECs. This could be due to the inherent differences between 
human and murine airway epithelial physiology and the mucous regulatory network as discussed in detail else-
where8,39. In our previous studies, we observed that murine AECs inherently show moderate mucous response 
due to a mucous-limiting p53 genotype that negatively affects Bcl-2 mRNA half-life and SPDEF transcriptional 
activity15. Nonetheless, Bcl-2 seems to be important for mucous expression in both human and murine airway 
epithelial cells because ABT-263 treatment blocked the mucous expression in cells of both origin. With respect 

Figure 4.  Blocking Bcl-2 with ABT-263 suppresses the CSE-induced mucous phenotype by suppressing EGFR 
signaling and inducing apoptosis and Bik expression. ABT-263 treatment suppresses CSE-induced MUC5AC 
(A), SPDEF (B) and EGFR (C) mRNA levels. Differentiated human AECs were treated with 1 µM ABT-263 for 
2 h before treating with 10 µg/ml CSE and cells were harvested at 48 h post treatment. (D) Immunoblot analyses 
of pERK1/2, ERK1/2, pEGFR and EGFR following CSE exposure and ABT-263 treatment of differentiated 
human AECs. ALI-differentiated human AECs were treated with ABT-263 (1 µM) for 2 h before treating with 
10 µg/ml CSE and cells were harvested at 48 h post treatment. (E) Relative quantities of pERK1/2, ERK1/2, 
pEGFR and EGFR as determined by densitometric analysis with protein quantities normalized to β-actin levels. 
(F) ABT-263 treatment augments apoptosis in CSE-exposed human AECs. Differentiated human AECs treated 
with ABT-263, CSE and CSE + ABT were harvested at 48 h post treatment, and analyzed for Annexin V-FITC 
and propidium iodide staining by Flow cytometry. (G) ABT-263 treatment induces the proapoptotic Bik mRNA 
levels that are suppressed by CSE exposure. (H) ABT-263 treatment of differentiated murine AECs suppresses 
the CSE-induced mucous secretory phenotype by modulating cell survival/death pathways. Primary murine 
AECs differentiated for 3 weeks on ALI were treated with ABT-263 (1 µM) and/or CSE (10 µg/ml) and the 
mRNA levels of Muc5ac, FoxA3, Egfr and Bik were analyzed by qRT-PCR. Data shown as mean ± SEM (n ≥ 3); 
*p < 0.05; **p < 0.01; ***p < 0.001.
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to our studies, the absence of SPDEF in a mice model was shown to attenuate the allergen-induced mucous cell 
development and mucus production29,40. Similarly, knockdown of SPDEF with small interfering RNA (siRNA) 
in the human bronchial epithelial cell line was found to significantly reduce the expression of IL-13-induced 
MUC5AC expression41. Recently, in order to achieve a long-lasting mucus inhibition Song et al. have successfully 
used epigenetic silencing of SPDEF to downregulating mucous expression in human lung epithelial cells42. These 
observations together with our data suggest that SPDEF could be a potential therapeutic target for regulating 
CS-induced mucus hypersecretion and future studies will help determine the feasibility of this proposition.

Cigarette smoke components engage several signaling events that lead to increased differentiation and pro-
liferation of mucous cells leading to chronic mucus production43,44 and here, we observed that EGFR might be 
involved in CSE-induced mucin expression. In addition, CS induced inflammatory mediators secreted from 

Figure 5.  BH3 mimetic ABT-263 blocks the CS-induced mucous phenotype in 3-D human airway tissue 
model via inducing apoptosis and Bik expression. 3-D tissue cultures of human airways were exposed to CS 
using a SCIREQ smoke machine (Montreal, QC, Canada) for 3 consecutive days and one group was treated 
with 1 µM ABT-263 2 h before exposures. ABT-263 treatment inhibited the CS-induced MUC5AC (A) and 
SPDEF (B) mRNA expression. (C) Representative micrographs showing cilia (green) and MUC5AC (red) 
immunopositivity in 3-D airway tissue culture treated with CS and/or ABT-263 compared to non-treated (NT) 
ones. 3-D airway tissues were immunostained for acetylated-tubulin (ACT, in green) for cilia and MUC5AC 
(red), and nuclei were stained with DAPI (Scale – 5 µ). Quantification of MUC5AC + mucous cells (D) and 
ACT + ciliated cells (E) where more than 300 cells from each treatment were analyzed. (F) ABT-263 treatment 
results in increased TUNEL-positivity in CSE-exposed human AECs. Human AECs treated with ABT-263 
(1 µM) and/or CSE (10 µg/ml) were stained for TUNEL (green) and MUC5AC (red). (G) Quantification 
of human AECs immunopositive for MUC5AC (MUC5AC+) or TUNEL (TUNEL+) or both (MUC5AC+/
TUNEL+) following ABT-263 and CSE treatment. (H) ABT-263 increases Bik expression and caspase 3 
activation in CSE-exposed AECs. Human AECs were immunostained for Bik (red) and cleaved caspase 3 (CC3, 
shown in green). (I) Quantification of human AECs immunopositive for Bik (Bik+) or CC3 (CC3+) or both 
(Bik+/CC3+) following ABT-263 and CSE treatment. Data shown as mean ± SEM (n ≥ 3); *p < 0.05; **p < 0.01; 
***p < 0.001.
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airway epithelial cells might be providing a feed-forward to the EGFR-mediated mucin expression in an auto-
crine or paracrine manner because various EGFR ligands are present in AECs in an inactive form45. Furthermore, 
CS stimulates reactive oxygen species or ROS production that induce TGFα and activation of TNFα-converting 
enzyme (TACE)-mediated mucin expression30,46,47. Similarly, dual oxidase-1 (DUOX-1) is also expressed by 
airway epithelium that could activate TACE to engage EGFR-mediated mucin expression48. More importantly, 
EGFR pathways has been identified as key proinflammatory mediators that aide in epithelial and mucous cell 
hyperplasia23,49–53 and are associated with the survival of airway epithelial cells in response to a viral challenge49,54. 
We observed an increased phosphorylation of EGFR following CSE exposure that could be implicated in the 
subsequent induction of both Bcl-2 and MUC5AC. These findings are consistent with other studies, which 
report TGFα-induced activation of EGFR mediates Bcl-2 induction52,53. Moreover, the external stimuli including 
exposure to CS, LPS, ozone, or allergen that upregulate Bcl-2 expression, also activate EGFR in airway epithe-
lial cells47,54. Recently, we reported that when airway epithelial cells were pre-incubated with the specific EGFR 
and ERK1/2 inhibitors there was a significant suppression of the allergic inflammation induced expression of 
MUC5AC and Bcl-214. However, in the present study we failed to see any significant changes in ERK1/2 signaling 
following ABT treatment although CSE exposure caused increased ERK1/2 phosphorylation. There are other 
ERK-independent pathways engaged by CS and CS-induced ROS to help induce MUC5AC including JNK and 
AP-1 signal transducers31. Further studies are required to delineate the CSE-engaged EGFR signaling mediator(s) 
that result in mucus expression specifically the one blocked by BH-3 mimetic compound treatment.

Collectively, the present study suggests that Bcl-2 and MUC5AC may be regulated by identical or overlap-
ping pathways implicating EGFR as one of the upstream mediators. Besides epithelial cell proliferation and sur-
vival signaling, EGFR mediates MUC5AC synthesis following exposure to CS-, LPS-, or microbial infection30,55. 
Therefore, EGFR activation might be one the primary mechanism responsible for the induction of mucous 
cell differentiation52,53 following CS exposure to help sustain hyperplastic mucous cells. However, therapeutic 
approaches targeting EGFR receptors face considerable safety and efficacy challenges in clinical trials because 
COPD subjects poorly tolerated EGFR inhibitor, BIBW 2948, and more so, there was no discernible reduction in 
mucin production56. Therefore, downstream mediators of EGFR signaling may offer a more effective target for 
developing novel mucolytic therapeutics.

One such target could be Bcl-2, which is critical for airway inflammation induced mucous cell hyperpla-
sia14,20,21. Bcl-2 is a founding member of a family of proteins that maintain cellular homeostasis by regulating 
programmed cell death pathways like apoptosis and autophagy18,57. Bcl-2 protects cells against a wide range of 
cell death stimuli by stabilizing the mitochondrial and endoplasmic reticulum (ER) membrane, and preventing 
permeabilization and release of death mediators58,59. Bcl-2 is present in the outer mitochondrial and ER mem-
branes, and inactivates BH3-domain consisting pro-apoptotic members of the Bcl-2 family58,59. Here, using a 
BH3 mimetic compound, ABT-263, which blocks Bcl-2 activity by competing for the BH-3 binding domain with 
proapoptotic proteins resulting in increased apoptosis; we were able to suppress the CSE-induced mucus expres-
sion. Moreover, among the CSE-exposed differentiated airway epithelial cells, there was increased apoptosis in 
ABT-263-treated ones compared to non-treated controls accompanied by increased Bik levels and reduced EGFR 
phosphorylation. Bik is the known proapoptotic protein in airway epithelium because Bik-deficient mice fail to 
resolve allergen-induced mucous expression60. In airway epithelium of patients with chronic airway diseases, 
there is significant reduction in Bik mRNA compared to controls16. Therefore, ratio of Bik and Bcl-2 levels could 
be crucial in determining the epithelial and mucous cell fate because blocking Bcl-2 with ABT-263 results in 
Bik-mediated cell death.

The present study posits several limitations that merit further discussion. Firstly, the CS extract is primarily 
consisted of the solution phase extract and do not replicate the actual gaseous and particulate exposure con-
ditions. In addition, there are wide variations in the CS extraction methods. In our studies, we employed both 
organic and aqueous extraction method to prepare the CS extract and observed that 10 µg/ml concentration was 
optimal to observe mucous response without altering cell growth. This concentration when extrapolated was 
equivalent to a 100 µg/mm3 of actual CS exposure; the levels comparable to those active smokers get exposed to. 
Secondly, in this study, we have only observed the effect of ABT-263 in cell culture model and to establish any 
clinical relevance of our findings, the preclinical animal model testing is required. However, like humans where 
CS-mediated effects take decades, the mouse models also require longer duration of CS exposure to observe any 
phenotypic changes in airway responses. From our previous time-course in-vivo studies in a mouse model of CS 
exposure20, we had observed that only after 16 weeks of exposure there was an observable mucous response. These 
longer exposure conditions might need a continuous sustained release of ABT-263 to avoid daily treatment and 
added irritation to animals. We are currently developing a sustained-release regimen of ABT-263 to help conduct 
these studies. Nonetheless, our in-vitro data using 3-D human airway tissues and differentiated AECs do provide 
a strong support for the utility of ABT-263 in blocking CS-induced mucous conditions. With the current success 
of ABT-263 in the treatment of human cancer and other chronic diseases61,62, it will be safer to presume that these 
BH3 mimetics might find the utility in regulating mucous pathologies associated with chronic airway diseases.

Methods
Cell Culture.  Murine AECs were isolated from mouse trachea and cultured on plastic plate or Transwell 
membranes (Corning, New York, NY) as described previously63. All experimental procedures were carried out in 
accordance with FIU institutional guidelines and regulations. Briefly, tracheas from C57Bl/6 (Jackson Laboratory) 
mice were excised, connective tissue was cleared, and tracheas were cut open lengthwise. Cleaned tracheas were 
incubated in Pronase solution (DMEM, 1.4 mg/mL Pronase, and 0.1 mg/mL DNase) overnight at 4 °C to disso-
ciate AECs from BL. Enzymatic activity was stopped with 10% FBS (Invitrogen, Carlsbad, CA), and cells were 
collected by gently rocking trachea in DMEM/Ham H12 media (Invitrogen), followed by centrifugation at 400 g 
for 10 minutes at 4 °C. Cell clumps were dissociated by using 5 mL of declumping solution (DMEM and 2 mmol/L 
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EDTA) and plated at 100,000 cells/well on collagen-coated plates. Primary human AECs were kindly provided 
by Dr. Scott Randell at the Marsico Lung Institute/Cystic Fibrosis Research Center at the University of North 
Carolina, Chapel Hill, USA. Lung tissues were procured under protocol #03-1396 approved by the University of 
North Carolina at Chapel Hill Biomedical Institutional Review Board; informed consents were obtained from 
all subjects and AECs were procured as previously described64. The AECs were maintained in bronchial epithe-
lial growth medium (BEGM, Lonza, Walkersville, MD). For air-liquid interface culture, AECs were seeded on 
Transwell membranes and differentiated for 14 days. Following treatments, the membrane quarters were used for 
RNA and protein isolation and were fixed in 4% paraformaldehyde for immunostaining. All the methods were 
performed in accordance with the institutional guidelines and regulations approved by FIU.

Preparation of Cigarette Smoke Extract and Treatment.  The cigarette smoke particulate matter from 
research-reference filtered cigarettes (3R4F; University of Kentucky, KY, USA) collected on Cambridge glass fiber 
filters were kindly provided by Dr. P. Kuehl (Lovelace Biomedical, Albuquerque, NM). The CS extract amount 
obtained was determined by weight increase of the filter. CSE was prepared by dissolving the collected smoke 
particulates in BEGM media and dimethyl sulfoxide (DMSO) to yield a 200 µg/ml (w/v) solution and aliquots 
were stored at −80 °C.

Cigarette Smoke Exposure.  The 3-D EpiAirway tissue cultures (MatTeck Corp, Ashland, MA) were exposed 
to mainstream CS using a SCIREQ smoke machine (Montreal, QC, Canada). Four 3R4F research-reference fil-
tered cigarettes (University of Kentucky) were smoked with a puff volume of 35 ml per 2 sec for every minute and 
blown over tissue culture rate of 5 ml/min in basic conformity with ISO 3308 (International Organization for 
Standardization, 2012a). Total 32 puffs were recorded for a duration of approximately 35 minutes of exposure per 
day. Smoke exposures were performed for 3 consecutive days with1 µM ABT-263 treatment 2 h before exposures and 
tissues were analyzed at 48 h post last exposure.

Immunostaining and Fluorescent Imaging Analysis.  The murine and human AECs grown on 
Labtek-II slides (ThermoFisher Inc.) were fixed in 4% paraformaldehyde and washed in 0.05% v Brij-35 in PBS 
(pH 7.4) and immunostaining was performed as described previously14. Briefly, the cells were blocked using 
a solution containing 3% BSA, 1% Gelatin and 1% normal donkey serum with 0.1% Triton X-100 and 0.1% 
Saponin and were stained with antibodies to MUC5AC (Millipore Inc., Burlington, MA), Spdef (Santa Cruz 
Biotech, Dallas, TX), Bcl-2 (Santa Cruz Biotech, Dallas, TX), Bik (Abcam, Cambridge, MA) and cleaved caspase 
3 (Cell Signaling Tech., Danvers, MA) or isotype controls. The immunolabelled cells were detected using respec-
tive secondary antibodies conjugated fluorescent dyes (Jackson ImmunoResearch Lab Inc., West Grove, PA) 
and mounted with 4′,6-diamidino-2-phenylindole (DAPI) containing Fluormount-GTM (SouthernBiotech, 
Birmingham, AL) for nuclear staining. Immunofluorescent images were captured using BZX700 Microscopy 
system (Keyence Corp., Japan) and analyzed using NIH Image J software.

Flowcytometric Quantification of Apoptosis.  Apoptotic cells were quantified by fixing cells in 2% par-
aformaldehyde and staining with Annexin V-FITC conjugate (BD Biosciences Inc., San Jose, CA) and propidium 
iodide (Sigma-Aldrich Inc., St. Louis, MO) for 30 min at 4 °C. Stained cells were washed and resuspended in 
0.2% BSA/PBS and nearly 10,000 cells per sample were analyzed using BD FACS Canto® Flow Cytometer (BD 
Biosciences Inc., San Jose, CA) and the data was analyzed using FlowJo analysis software (Tree Star Inc., Ashland, 
OR).

Quantitative Real-Time RT-PCR.  Total RNA was isolated from the snap-frozen cells using RNAeasy kit 
(Qiagen, Germantown, MD) as per manufacturer’s instruction. RNA concentration was determined using the 
Synergy HTX Multi-Mode reader (BioTek, Winooski, VT) and cDNA were synthesized using iScript advanced 
cDNA kit (BioRad, Hercules, CA). The primer/probe sets for MUC5AC, SPDEF, FOXA3, and Bcl-2 were obtained 
either from BioRad (Hercules, CA) or Qiagen (Germantown, MD) and cDNA amplified by q-PCR using the iTaq 
SYBR-green Master Mix (BioRad, Hercules, CA) in the Agilent Stratagene Mx3000P Real-Time PCR System 
(Thermo Fisher Scientific, Waltham, MA). Relative quantities were calculated by normalizing averaged CT val-
ues to GAPDH or β-Actin to obtain ΔCT, and the fold-change (ΔΔCT) over the controls were determined as 
described previously15.

Western Blot Analysis.  Cell extracts were prepared using RIPA buffer (20 mM Tris, pH 7.4, 137 mM NaCl, 
1% NP-40, 0.25% Deoxycholate, 0.1% SDS, 1 mM EDTA and 1% protease inhibitor cocktail). Protein concen-
tration was determined by BCA kit (Pierce; Rockford, IL) and 50 µg protein was analyzed by western blotting as 
described previously15. Antibodies to Bcl-2, EGFR, p-EGFR, ERK1/2 and p-ERK1/2 were all from Cell signaling 
technologies (Danvers, MA) and β-actin antibody was from Sigma co. (St. Louis, MO). Proteins were detected 
using ECL and visualized by chemiluminescence (Perkin Elmer, Waltham, MA) using the BioRad Chemidoc 
Imaging system (Hercules, CA). The full-length immunoblots are available online as supplemental information.

In-Situ Apoptosis Detection by TUNEL.  Paraformaldehyde-fixed cells were washed in 0.05% v Brij-
35 in PBS (pH 7.4) and processed for TUNEL labelling as per manufacturer’s instruction using TACS•XL® 
In-Situ Apoptosis Detection Kit (Trevigen, Gaithersburg, MD). The TdT-labelled cells were detected using 
fluorescently-conjugated secondary antibodies (Jackson ImmunoResearch Lab Inc., West Grove, PA). The cells 
were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) containing Fluormount-G (SouthernBiotech, 
Birmingham, AL) to visualize nuclei. Images were captured with BZX700 Microscopy system (Keyence Corp., 
Japan) and analyzed by NIH Image J software.
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Statistical Analysis.  Grouped results were expressed as means ± SEM. Data were analyzed using GraphPad 
Prism Software (GraphPad Software, Inc., San Diego, CA). Grouped results were analyzed using two-way analysis 
of variance. When significant main effects were detected (P < 0.05), Fishers least significant difference test was 
used to determine differences between groups.
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