
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-28-1994

A CASE tool supporting the MOSES development methodology A CASE tool supporting the MOSES development methodology

Florida International University

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Florida International University, "A CASE tool supporting the MOSES development methodology" (1994).
FIU Electronic Theses and Dissertations. 4001.
https://digitalcommons.fiu.edu/etd/4001

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4001&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F4001&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4001?utm_source=digitalcommons.fiu.edu%2Fetd%2F4001&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A CASE Tool Supporting the MOSES Development Methodology

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

by

Kevin K. Glupe

1994

To: Arthur Herriott
College of Arts and Sciences

This thesis, written by Kevin K. Glupe, and entitled A CASE Tool Supporting the MOSES
Development Methodology, having been approved in respect to style and intellectual
content, is referred to you for judgement.

We have read this thesis and recommend that it be approved.

Raimund Ege

Farah Arefi

John Comfort

Date of Defense: November 28, 1994

The thesis of Kevin K. Glupe is approved.

Dean Arthur W. Herriott
College of Arts and Sciences

Dr. Richard L. Campbell
Dean of Graduate Studies

Florida International University, 1994

ii

ABSTRACT OF THE THESIS

A CASE TOOL SUPPORTING THE MOSES DEVELOPMENT METHODOLOGY

by

Kevin K. Glupe

Florida International University, 1994

Miami, Florida

Professor Raimund K. Ege, Major Professor

A new breed of CASE tools is taking advantage of object-oriented development. The

CASE tool in this thesis will serve as a top-level guidance platform. The user will be able

to follow an agenda in which his progress is recorded for each step of the development

process. At the same time, the user will still be able to develop documents, diagrams and

source code by using provided editors. The specific object-oriented methodology followed

in this thesis is MOSES (Methodology for Object-Oriented Software Engineering of

Systems). This advocates an iterative approach to development while providing both textual

and graphical deliverables to assess the state of the product during it's lifecycle. The tool in

this thesis is developed by following the steps and activities outlined by MOSES. To

implement this CASE tool, Smalltalk is utilized since it provides full object-oriented

support.

iii

ABSTRACT OF THE THESIS

A CASE TOOL SUPPORTING THE MOSES DEVELOPMENT METHODOLOGY

by

Kevin K. Glupe

Florida International University, 1994

Miami, Florida

Professor Raimund K. Ege, Major Professor

A new breed of CASE tools is taking advantage of object-oriented development. The CASE tool in

this thesis will serve as a top-level guidance platform. The user will be able to follow an agenda in

which his progress is recorded for each step of the development process. At the same time, the

user will still be able to develop documents, diagrams and source code by using provided editors.

The specific object-oriented methodology followed in this thesis is MOSES (Methodology for

Object-Oriented Software Engineering of Systems). This advocates an iterative approach to

development while providing both textual and graphical deliverables to assess the state of the

product during it's lifecycle. The tool in this thesis is developed by following the steps and

activities outlined by MOSES. To implement this CASE tool, Smalltalk is utilized since it provides

full object-oriented support.

iv

V

Acknowledgements

I would like to thank all those who have been instrumental in the preparation of this thesis:

my major professor and committee members who have been supportive and have

contributed a great deal of time and energy, my family and friends for their understanding,

Brian whose assistance in assembling the final product did not go unnoticed and Keith and

Tina for their hospitality and warmth.

Kevin K. Glupe

iv

Table of Contents

1 Introduction 1

2 Related Work 3

2.1 A rcadia 4

2 .2 S tone . 5

2.3 Synopsis 6

3 MOSES 6

3.1 O bjectives .. 8

3.2 Product Lifecycle ... 9

3.3 Process Lifecycle .. 11

3.3.1 Planning 13

3.3.2 Investigation 13

3.3.3 Specification 14

3.3.4 Implementation 15

3.3.5 R eview ... 15

v

3.4 A pplication .. 15

3.5 N otation 18

4 Fountain Lifecycle Model 20

5 CASE Tool 23

5.1 O verview .. 24

5.2 Actors .. 27

5.2.1 Planner ... 27

5.2.2 Requirement Gatherer 27

5.2.3 A nalyzer .. 28

5.2.4 D esigner .. 28

5.2.5 Program m er .. 29

5.2.6 Quality Assurance 29

5.2.7 Project M anager 29

5.2.8 Project Secretary 30

5.3 Scenarios 30

5.3.1 Operations Performed on Deliverables 30

5.3.2 Scenarios Involving the Planner 30

vi

5.3.3 Scenarios involving the Requirement Gatherer 31

5.3.4 Scenarios involving the Analyzer 31

5.3.5 Scenarios involving the Designer 31

5.3.6 Scenarios involving the Programmer 32

5.3.7 Scenarios involving the Quality Assurance Person 32

5.3.8 Scenarios involving the Project Secretary and Project

M anager .. 32

5.3.9 Scenarios involving all Users 32

5.4 Functionality ... 33

5.4.1 Security Feature 33

5.4.2 Development Groups 33

5.4.3 U ser A ccounts 36

5.4.4 Software Products 38

5.4.5 Subsystem s .. 39

5.4.6 D eliverables .. 41

5.4.7 Source Code .. 48

5.4.8 A genda Editor 49

vii

5.5 Im plem entation .. 51

5.5.1 VisualW orks Smalltalk 51

5.5.2 W indow s .. 52

5.5.3 User M anagem ent 5

5.5.4 Product M anagement 54

5.5.5 Subsystem M anagement 57

5.5.6 Deliverable M anagement 58

5.5.7 Annotation M anagement 69

5.5.8 Window and Model Class Interaction 71

6 Conclusion 72

6.1 Sum m ary ... 72

6.2 Future W ork and Enhancements 73

List of References 75

Appendix 1 Scenarios 76

Appendix 2 Analysis Diagrams 93

Appendix 3 Design Diagrams 102

viii

List of Figures

1 The Overall Framework of MOSES 9

2 M OSES Deliverables ... 12

3 Activities of M OSES ... 16

4 O /C N otation .. 19

5 Relationship Notation .. 19

6 The Iterative Fountain Lifecycle Model used by MOSES 21

7 The window to set permissions for development groups 35

8 The window to add a user 37

9 The window to view product information 40

10 The deliverable window 42

11 The annotation window 47

12 The agenda editor ... 50

13 Adding a product to the system 56

14 Testing the existence of a subsystem 58

15 Deliverable class hierarchy 60

ix

16 Starting a new deliverable 63

17 Retrieving all deliverable numbers for a specific type 64

18a The Version class hierarchy 66

18b The MultipleDeliverableVersion class hierarchy 67

19 Setting the annotation .. 70

x

1 Introduction

CASE tools are essential to the development of industrial strength software. Not only do

they support the integration of all software components to create the final product, but they

act as a permanent storage facility for integral data structures and functions. Essentially,

they provide the developer with a graphically-oriented platform to design, code and test

individual program modules. This aids in breaking the edit, compile and debug cycle so

prevalent in software development.

Each CASE tool supports a specific development paradigm. Historically, most

development has followed the methodologies of structured design and functional

decomposition. Naturally, most commercial CASE tools were constructed to support this

paradigm. In recent years, though, object-oriented development has gained quite a bit of

popularity, not only in educational and research institutions, but in commercial

environments as well. As a result, the need has arisen for CASE tools supporting the

object-oriented paradigm.

Most CASE tools that support object-oriented development concentrate on aiding the

product designers and implementers. They typically provide graphically-oriented tools to

document objects and their relationships. In addition, there is usually an option to enter the

classes into persistent storage for the creation of a reusable library. To support these

notions, low-level compiler and translation constructs are created. This description

exemplifies the work done in projects such as Arcadia and Stone. However, tools such as

1

these do not support the developer throughout the entire product lifecycle from planning to

maintenance, nor do they follow one specific object-oriented methodology.

The CASE tool developed as part of this thesis will serve as more than the typical design

and code platform. It will be a top-level guidance tool that will allow the developers to

document all phases and activities of the software product lifecycle. Specifically, the

MOSES (Methodology for Object-Oriented Software Engineering of Systems)

methodology [Hen93] and the fountain lifecycle model [HE93], both developed by

Henderson-Sellers, will be followed. As a result, this tool will support the output of

various textual and graphical deliverables described in this methodology.

The advantage to following a prescribed methodology and not just incorporating general

object-oriented concepts is that a framework is provided that will result in the robust,

correct and timely production of each software product. This methodology in particular

was chosen due to both it's flexibility and rigidity. The developer is allowed to specify the

process lifecycle details, yet is required to output certain deliverables to document the

software engineering process. To prove that this methodology is indeed viable and useful,

this CASE tool will actually be developed by following MOSES. Combining this feature

with the fact that support will be provided for the entire development process from planning

to maintenance will surely differentiate this tool from other CASE tools and prove it to be

useful in commercial and educational environments.

2

2 Related Work

Since the mid-1980's, CASE tools have been widely used by software developers

[You94]. This coincided with the time period in which PC's and workstations had evolved

to the point where they could support such sophisticated environments. At first, these tools

were based on the popular technology of the time, structured analysis and design.

However, since object-oriented development has gained in popularity, CASE tool

developers have grudgingly embraced the new technology.

Two types of CASE tools exist in today's computing environment. The first type is the

commercial CASE tool. These environments are produced by private companies and cover

a wide range of functionality depending on the price. In general, these tools allow the

developer to conduct analysis and design activities such as drawing diagrams and

identifying classes. The user is also able to implement classes and depending on the tool,

access a class library or object-oriented database. The higher-end tools will actually

generate source code. Some of the environments follow a specific methodology, such as

Booch's, while some only apply general object-oriented concepts. A few examples of

these tools are Paradigm Plus, System Architect and TurboCASE [You94].

Since these are produced by private companies, they cannot be discussed or compared to

in this thesis unless they are purchased. Instead, the other type of CASE tool can be

investigated, the ones developed in a research environment. These tools are typically

developed at universities and placed in the public domain. However, most of these tools

3

are not as comprehensive as some of the privately developed environments. Two of these

tools that are fairly thorough in attempting to provide CASE tool-like support are Arcadia

and Stone. Arcadia is a higher-end tool providing more overall support while Stone is a

lower-end tool focusing on their object-oriented database, OBST.

2.1 Arcadia

Arcadia is a project aimed at producing a development environment that guides a user

through the design and implementation of a software product [Kad93]. This project

attempts to provide object management, user interface development and management,

measurement and evaluation, language processing and analysis and testing. Aside from

furnishing these capabilities, the project attempts to prove that such an environment can be

extensible, flexible, fast and incrementally improvable. These objectives are certainly

conflicting and are hard to satisfy at the same time.

The people behind Arcadia believed that of all their goals, flexibility during the

development process is of utmost importance [Kad93]. For this reason, Arcadia supports

the development of custom user interfaces via UIDS, the User Interface Development

System. In addition, multiple language support is provided via tailorable language

processing capabilities.

Since design and coding are at the heart of any project, object management facilities such

as persistence, type integrity and constraint maintenance are provided. To assure that these

objects are combined to form high quality software, measurement, evaluation, analysis and

4

testing facilities are furnished. Since there is still no agreement on how to measure the

quality of software, Arcadia's system was designed to be flexible and extensible.

2.2 Stone

Another environment that attempts to guide the developer through the creation of a software

product is Stone. This is a complete design and code environment that provides the user

with a variety of tools. The focus of this environment is OBST, the object management

system [CRS92]. Essentially, this is an object-oriented database system that provides

persistent storage for objects. OBST presents a strongly typed data model and provides

services that can be utilized from the language of interest [CRS92].

To utilize the capabilities of OBST, four categories of tools are available. First, there is a

standard library of reusable classes. Second, there are programs to inspect and manipulate

class structures and the contents of the database. Third, there are facilities to integrate

UNIX applications into the OBST environment. Last, there are utilities for system

administration and reorganization of the database.

Since the end storage of objects in Stone are UNIX files, OBST provides the universal

structurer and flattener generation. The former of these tools is simply a filter that

translates a plain file in to a structured set of objects for direct use by OBST. The latter tool

is a filter that translates an object structure into an ASCII representation for a UNIX file.

In addition to these tools, OBST can be inspected and manipulated interactively via the

oshell and gsh. The oshell serves as an interactive debugging and inspection facility for

5

OBST while gsh graphically traverses the structure of the objects stored in OBST.

2.3 Synopsis

CASE tools will undoubtedly assist the developer in creating correct software in a more

efficient manner. The area in which the user will benefit the most is in the design and

coding of a product. Even the research environments, Arcadia and Stone will help to create

a more manageable and controlled environment. By using the tools Arcadia provides, such

as UIDS or the object-oriented database Stone provides, the developer will find it easier to

progress through each phase of software creation. However, there is still a lack of focus

on the overall management aspect of product development as well as a specific

methodology. To truly obtain a cohesive environment that results in robust and timely

software, a specific object-oriented methodology should be followed such as MOSES.

3 MOSES

The previously discussed environments provide the user with suitable tools to facilitate the

development process. The common thread between these environments is that they

concentrate on supporting to a small extent the design process and to a large extent the

actual implementation. While developers will certainly find this useful for coding a large

program, what they really need is support for all development phases. Since the goal of

6

object-oriented development is to use the same model for analysis, design and

implementation, a corresponding CASE tool must also support these three key phases. In

addition, the developer needs to follow a set of guidelines for producing diagrams,

documents and source code. A useful CASE tool will provide this agenda that the

developer may abide by. MOSES is a perfect candidate methodology for warranting such

CASE tool support.

MOSES (Methodology for Object-Oriented Software Engineering of Systems) is a

lifecycle methodology that presents a seamless transition from the planning stage to product

maintenance [Hen93]. It provides a set of activities, phases and deliverables to deliver a

robust and timely system developed under the object-oriented paradigm. As of this date,

commercial and educational institutions have successfully utilized this methodology to build

sound software systems. MOSES is supported by textual and graphical notations

throughout the product development lifecycle to provide for deliverables that are created

when reaching established milestones.

This seamless transition advertised by MOSES is a direct result of using the

object-oriented paradigm. The ability to use one object model throughout the entire

development process results in a smooth transition from analysis to design to

implementation. This is in contrast to a structured model where the developer must use one

model followed by another one in design ending in yet a different model for

implementation. If an object-oriented methodology is used, the same language can be

utilized for analysis, design and implementation. In fact, if the design is represented by

7

using an OOPL (object-oriented programming language), then the need for a distinct

implementation phase disappears. Although MOSES stresses the benefits of using an

OOPL, it is truly a flexible environment in that the implementation language can be

procedural if necessary.

3.1 Objectives

In keeping with the need to maintain a flexible development environment, MOSES

maintains six objectives [Hen93].

1. Provision of software engineering support for both large and small

object-oriented systems development.

2. Provision of a development process that supports a smooth transition from initial

modelling through to implementation.

3. Provision of a development approach for flexible and extensible systems.

4. Provision of guidelines for project and product management.

5. Support for development of highly reusable classes, systems and designs.

6. Underpinning of the software development with a quality objective.

To accomplish these goals, two lifecycles are identified, the product lifecycle and the

process lifecycle. This is shown in figure 1. In this context, each product lifecycle may

contain multiple process lifecycles.

8

3.2 Product Lifecycle

The product lifecycle ranges from the inception to the retirement of the product. Each

enhancement is successively incorporated into this framework. There are two major

periods in the product lifecycle; theGrowth Period and the Maturity Period. Whereas the

Growth Period encompasses the major thrust of development work, the Maturity Period

spans the majority of the product lifecycle. By using object-oriented development, the

Maturity
Periods

Growth Enhancement 1

a Build Delivery Planning Build Delivery Stages

Product

Lifecycle

Planning Investigation Specification mplementatio Review

Process Phases

Lifecycle
Figure 1: The overall framework of MOSES

9

Maturity Period is defined as being more than the strict maintenance of a product. Instead,

it is classified as successively applying the process lifecycle to each further enhancement.

Therefore, for each release of a product, all lifecycle phases are followed rather than strictly

modifying the existing program code with no prior planning.

The Growth period, as well as each Enhancement Period, can be divided into three

stages; the Business Planning Stage, the Build Stage and the Delivery Stage. The Business

Planning Stage consists of feasibility studies, risk assessment and cost benefit analysis.

These activities are incorporated into the deliverable for this stage, the business planning

report. At this point, the developer will assess the feasibilility of constructing the product

or undertaking the proposed enhancement. Should the decision be made to continue, the

next stage of the product lifecycle is entered.

In the Build Stage, the process lifecycle is applied. MOSES does not impose any

specific lifecycle model, but it is highly suggested that an iterative model be used such as

Henderson-Sellers' fountain model. This is due to the iterative nature of object-oriented

development. When constructing a product, developers typically need to progress through

the phases more than one time. Each iteration builds upon the last until a finished product

is achieved. As will be described later, the fountain model allows the developer to move

effortlessly from one stage to the next and back again.

Upon completion of the Build Stage, the Delivery Stage is invoked in which the product

is installed, tested and reviewed. At this time, the Growth Period is completed and any

further changes will be treated as a product enhancement. However, each enhancement

10

period follows the exact same sequence of events that take place in the Growth period.

This is because, the process lifecycle is applied repeatedly until the product is retired.

3.3 Process Lifecycle

As seen by the lack of distinction between the Growth period and a Maturity period, the

process lifecycle is viewed as only a part of the life of a product, not as the whole life.

MOSES allows for any chosen process lifecycle model to be utilized during the Build

Stage. The iterative development method and the waterfall method are the two most

popular means. The waterfall model consists of one sequential pass through each step of

the process lifecycle. Conversely, an iterative development model allows for multiple

iterations over the steps of the model, thereby invoking more of a fountain-like shape. This

flexibility proves to be useful for corporate environments who are slowly migrating away

from the structured development process. Those who choose an iterative process,

however, gain the advantage of not having to specify a complete design before some

implementation can be started or some prototypes built. Thus early design flaws can be

rectified as user and developer feedback is received. In addition, parallel development of

separate subsystems can occur. As one group is designing one subsystem, another group

can be designing or implementing a separate subsystem.

11

Textual Deliverables Graphical Deliverables

Business Planning Report Analysis Diagram

Iteration Plan Design Diagram

Actor Glossary Inheritance Diagram

Scenario List Contract Diagram

User Requirements Specification Class Interface Diagram

Subsystem Requirements

Specification

Source Code

Review Report

Test Report

Figure 2: MOSES Deliverables

No matter which process lifecycle model is chosen, five major structural units known as

phases can be identified, Planning, Investigation, Specification, Implementation and

12

Review. The outcome of each phase is marked by certain textual and/or graphical

deliverables displayed in figure 2. If the iteration of the phase is to be the final iteration,

then the deliverable produced will be a final document, otherwise it will be an interim

management deliverable to be amended or added to.

3.3.1 Planning

The first phase of the lifecycle consists of setting goals for each iteration of the

development process. This encompasses estimating resources needed, assigning work

schedules and allocating personnel. A Business Planning Report is generated to provide

the overall framework of goals to be met while undergoing product development. Since an

iterative development process is advocated, an Iteration Plan for each iteration is produced

in which specific objectives are outlined such as how much time will be devoted to each

individual phase.

3.3.2 Investigation

The next phase involves gaining an understanding of the problem. By interviewing

potential users and managers and retrieving relevant information, a URS (User

Requirements Specification) written in the language of the user can be created. This will

serve as the binding contract between the client and the developer specifying exactly what

services the software product will provide. The developer also identifies the types of

people, or actors, who will be using the system. Each actor is defined and entered into the

Actor Glossary. To further identify the system functionalities, the scenarios that each actor

13

participates in are documented in the Scenario List.

3.3.3 Specification

The Specification Phase consists of transforming the system requirements into the object

model. In traditional models, this is known as OOA (object-oriented analysis) and OOD

(object-oriented design). But MOSES, by supporting a seamless transition, combines

these two phases into one instead of OOA followed by OOD [Hen93]. Therefore, if so

desired, the developer may engage in some design before completing analysis.

One of the analysis activities is to identify subsystems. This serves the purpose of

breaking down the problem into manageable-sized pieces. For each subsystem, the

appropriate requirements are extracted from the formal URS and included in a Subsystem

Requirements Specification. By doing this, development groups can be formed to

simultaneously develop each of the subsystems.

Once the problem has been organized in a hierarchical fashion, classes can be identified

and placed in Analysis Diagrams. At this point, the boundary between analysis and design

becomes blurred as Analysis Diagrams are transformed into Design Diagrams. Essentially,

classes are first identified and then iteratively refined until a distinct specification for each

class can stated. This specification is documented in a Class Interface Diagram. To further

clarify the hierarchy of classes, the inheritance hierarchy is defined in Inheritance

Diagrams. Since, classes must interact with one another to produce a working system, the

contracts between classes are specified in Contract Diagrams.

14

3.3.4 Implementation

The Implementation Phase consists of creating source code from the design developed in

the Specification Phase. If the programming language is object-oriented then this is a trivial

endeavor. Essentially, only a translation from the Class Interface Diagram to the syntax of

the language is necessary. In addition, the messages passed between objects have already

been specified in the Contract Diagrams. If the target language is not object-oriented then

the seamlessness is lost and more effort will be involved. No matter what language is used,

the source code must be thoroughly tested to verify that the user's requirements have been

satisfied. The results of these tests are stored in the Test Reports.

3.3.5 Review

The last phase, the Review Phase, is where the quality of the software developed is

assessed. This includes the quality of the development process, the quality of the

deliverables and the testing of the subsystems. Each assessment is recorded in a Review

Report. For personal use, the developer might also verify that the goals set forth in the

Iteration Plans have been met.

3.4 Application

These five phases can be applied to either the system as a whole or to an individual

subsystem. Since most subsystems are physically and semantically separate from each

15

Activity Plan Inv Spec Impl Rvw

Contract Specification X X

Documentation Review X X X X X

Event Model Construction X

Generalization For Reuse X X

Genericity Specification X

Inheritance Identification X X

Inheritance Specification X X

Iteration Plan Development X

Library Class Incorporation X X

ObjectChart Construction X X

O/C Identification X X

Optimization X X

Quality Evaluation X X X

Scenario Development X

Service Identification X X

Subsystem Co-ordination X

Subsystem Identification X X X

Testing X X X

Translation to OOPL X

Figure 3: Activities of MOSES

16

other, each subsystem can go through it's lifecycle phases in parallel. Thus each

subsystem can be in any phase at any given point in time. The system, as a compilation of

it's subsystems, can therefore not be characterized as in any one phase while the Build

Stage is in progress. Eventually, though, all subsystems will enter the Review Stage,

bringing the system into sync.

As each phase progresses, MOSES requires that certain tasks be accomplished to

produce the deliverables. These tasks are known as activities. Each activity has a specific

purpose and a description of how to accomplish that purpose. Also, activities can occur in

one or more phases of the lifecycle. This is shown in figure 3. Their presence in each

phase may vary in perspective and extent. However, each activity's conclusion does not

produce a deliverable. A deliverable may require the completion of several activities and

specifies partial completion of a phase. For example, to produce an Inheritance Diagram,

two activities are necessary, inheritance identification and inheritance specification.

However, the production of an Inheritance Diagram does not signify the completion of the

Specification Phase.

Depending on which lifecycle model is chosen, certain chronological breakpoints where

documentation can be delivered need to be identified. These breakpoints are at the end of

each phase. Should the waterfall model approach be taken, then each phase must be

completed and "signed off" in succession before the next phase is invoked. Each

subsystem can still be developed in parallel, but during the development process each

subsystem will be in the same stage. This approach, though feasible, is not recommended.

17

A more preferable approach is an iterative one such as the fountain lifecycle model. This

implies that the growth period will consist of numerous iterations of the process lifecycle.

Since documents will be undergoing multiple iterations, the developers must decide how to

handle multiple versions of each document. The document should not be "signed off" until

the last iteration has been completed.

3.5 Notation

Since MOSES provides for five types of graphical deliverables, a standard notation must be

developed [EH93]. The object, the core component of analysis, design and

implementation, needs to be represented in each of it's many stages. Since analysis

objects, design objects and classes can be portrayed similarly, but at different stages of the

lifecycle, they will be referred to in the diagrams as O/C's [Hen92]. The notation that is

defined must not directly correspond to any language since MOSES is free of any language

restrictions.

Although analysis and design are intricately intertwined in MOSES, analysis can be

denoted as the identification of objects, their attributes and their operations. Therefore, an

icon such as the one in figure 4a will be used. However, the focus for design activities

centers on uniform reference and information hiding. Thus an icon such as the one in

figure 4b is appropriate. This specifies the interface the O/C provides to other O/C's.

Aside from representing the O/C's themselves, their interactions also need a suitable

representation. The relationships identified at the analysis level will need to be altered

18

O/C Name /C Name

List of
Attributes

List of List of

Operations Public Services

Optional List of

Constraint Private

Information Services

a) b)

Figure 4: O/C notation

a)

b)

c)

Figure 5: Relationship notation

19

somewhat at the design stage since most object-oriented programming languages do not

provide a way to represent both association and aggregation other than a client-server

relationship. To represent the client-server relationship, an arrow such as the one shown in

figure 5a can be used. To show an inheritance relationship, a thicker arrow such as the one

in figure 5b is most appropriate. The other relationship, aggregation, is represented by the

symbol in figure 5c.

4 Fountain Lifecycle Model

To take full advantage of MOSES' qualities, Henderson-Sellers developed the fountain

lifecycle model [HE93]. As shown in figure 6, this model sharply contrasts with the

standard waterfall model. The major difference is the sequencing of steps. In the waterfall

model, each step is sequentially followed by the next step, implying no overlap. However,

in the fountain model, there is considerable overlapping and merging of steps. This means

that it is possible for analysis and design to occur simultaneously. In addition, the

possibility exists for iterative cycles across one or more lifecycle steps. Thus this model is

classified as an iterative development process.

According to MOSES, the process lifecycle model has five phases, Planning,

Investigation, Specification, Implementation and Review. The fountain model appears to

have more than five phases, but they can be appropriately mapped to conform to MOSES.

The Investigation Phase would correspond to the fountain model's requirements and

feasibility study. The Specification Phase would map to the steps of analysis, system

20

Firen6aTeiraie Futin
Lifecyclev Moe usdbtOE

2 ne:g

Ana ysis

Requirements and

Feasibility Study

Real World System

Figure 6: The iterative Fountain

Lifecycle Model used by MOSES

21

design and component design. Last, the Implementation Phase corresponds to coding, unit

testing and system testing. Any further development or maintenance as specified in the

fountain model would be considered an enhancement in MOSES.

To complete each phase of the lifecycle, MOSES requires that certain activities be

accomplished. Although these were outlined in figure 3, there are seven core activities

[HE93] specified by the fountain model that need to be explained in more detail. Since this

will be in the context of an iterative development process, no distinction will be made

between an object and a class. As in the diagram notation, analysis objects, design objects

and classes will be referred to as O/C's.

The first core activity is to prepare the systems requirements document. This is prepared

in the language of the user but discussed and analyzed in terms of O/C's and their services.

The second step is to analyze this document and extract real-world O/C's and their services.

These O/C's are labeled with a name, attributes and operations. As these O/C's become

evident, the next activity can commence, namely identifying the interactions among O/C's.

These interactions can be recognized in terms of association, aggregation and generalization

relationships. In addition, a useful exercise at this point is to identify the contracts between

client and server O/C's.

Even though there can be considerable overlap between analysis and design, the fourth

activity is the unofficial start of the design process. Here, top-level design diagrams are

drawn at first, followed by increasingly lower-level diagrams to illustrate the O/C services

and relationships. To add to these diagrams, the fifth activity integrates library O/C's. In

22

addition, the class interfaces are specified in detail. Once these details have been specified,

coding can begin.

At this point, design merges into implementation with the specification of inheritance

hierarchies and the coding of classes as specified an activity six. As coding and testing

progress and are finalized, activity seven indicates the need to generalize for later reuse. To

create the reusable class library, candidate classes need to be generalized to become non-

project specific. This exercise indicates that the product is ready for delivery.

Although MOSES advocates the performance of more activities than these seven, these

activities are essential to the successful completion of any software project and should not

be overlooked. Since this model is an iterative one, these activities may be performed more

than once depending on the number of iterations. In addition, these same activities will be

needed for each product enhancement. Thus the textual and graphical output of these

activities will need to be documented according to which iteration is being applied, the

version of the document and whether the document corresponds to the development or

enhancement of the product. This feature is just one of many that needs to be addressed in

the construction of this CASE tool.

5 CASE Tool

To demonstrate how MOSES can be used to successfully develop a software product, the

CASE tool in this thesis was constructed by following the phases and activities outlined by

23

MOSES. As a result, the deliverables previously described had to be created. Some of the

deliverables were not necessary and therefore not developed. For example, the Business

Planning Report is not aplicable since it outlines the projections and the feasibility of a

product in the context of a software development company. The sections of the thesis to

follow outline the relevant deliverables that were created.

5.1 Overview

The CASE tool in this thesis supports software development by allowing the user to follow

the activities and phases of MOSES. The objective of the environment is to provide the

user with top-level guidance and support through all phases of software dvelopment. By

enabling the user to obtain a clear picture of how much development has been done and

how much more there is to do, it will be easier to produce timely and robust software.

Since MOSES advocates the usage of the fountain lifecycle model, this tool breaks the

development process into four major phases, planning, analysis, design and

implementation. In each phase, certain deliverables must be produced. The planning phase

encompasses the Business Planning Report and Iteration Plans. The analysis phase

produces the User Requirements Specification, the Actor Glossary, the Scenario List,

Subsystem Requirements Specifications and Analysis Diagrams. The design phase results

in Design Diagrams, Inheritance Diagrams, Class Interface Diagrams, Contract Diagrams

and ObjectCharts. The last phase, implementation, produces source code and Test

Reports. All phases allow Review Reports to be generated.

24

Each of these deliverables is categorized as being one of three types, single, multiple or

hierarchical. The single deliverables can only be produced once for each product.

Examples of these are the User Requirements Specification, the Actor Glossary, the

Scenario List and the Business Planning Report. The multiple deliverables may have many

occurences throughout product development. The Iteration Plan, Subsystem Requirements

Specification, Test Report, Review Report, Inheritance Diagram, Contract Diagram, Class

Interface Diagram and ObjectChart are all examples of multiple deliverables. The

hierarchical diagrams are special cases of multiple deliverables in that each diagram may be

assigned to a class in another diagram of the same type. The only deliverables of this type

are the Analysis Diagrams and Design Diagrams.

For the user to produce these deliverables he may take full advantage of the five major

features offered by this CASE tool. The first feature is the agenda editor. This enables the

user to visualize the amount of development accomplished thus far. Specifically, the

developer is presented with the number of modifications made to the deliverables for each

phase of development. The user is then able to selectively view a phase to see how many

modifications have been made to each deliverable. Once this information has been

reviewed, the user may mark a phase as being completed or as needing additional work.

Essentially, the agenda editor allows the user to gain an overall view of the state of a

system as development is in progress.

Another feature of this tool is it's ability to keep an account of modifications made to

every deliverable. When a deliverable is created, it is denoted as being the first version.

25

Each time the user edits the deliverable, the version number is increased and the new

modification is saved for later inspection by the developer. As a result, the user is able to

recall any version of a deliverable and modify it or view it.

An additional feature is the ability to link deliverables to one another. As the user steps

through the development process, he will find it useful to follow an idea from analysis to

design to implementation. Therefore, this tool allows the user to select a deliverable such

as an Analysis Diagram and link it to any other existing deliverable such as a Design

Diagram. By following the link, the user will be placed in an environment in which he may

operate on the deliverable. If this deliverable is itself linked to others then the user may

follow additional links until no more are present.

One other feature of this environment is the provided graphical and textual editors in

which the user is able to prepare all deliverables. The text editor provides the user with

functionalities that most standard editors provide. Some of these features include the ability

to cut, copy and paste text amongst one or more documents. In addition, the user may

undo or repeat the last performed operation. When the user has completed preparing the

document he is able to save it or discard his text. The other provided editor enables the

user to select predefined components such as a box, line, arrow or aggregation symbol and

paste them on to a drawing canvas. These components can then be arranged in any format

the user desires. This diagram is then able to be saved or discarded.

The last feature of this tool is the ability to provide a secure development environment.

If the security feature is enabled, the user must have an account on the system to perform

26

any of the operations. Since this tool divides development into four phases, the users are

placed into groups which correspond to the phases. Each of the development groups is

given certain permissions to operate on the deliverables. When a user logs in, he enters his

user name and password followed by a group that he is a member of. He may then

perform operations on deliverables according to the permissins granted to the group he is

logged in as.

5.2 Actors

Upon successfully logging in to the system, each user assumes the role of one or more

actors.

5.2.1 Planner

A planner conducts feasibility studies, risk analysis and cost benefit analysis for a proposed

product or a proposed product enhancement. The results are incorporated into the Business

Planning Report. For each iteration of the product development, he assigns and schedules

workers, estimates resources needed and sets goals to be met in the iteration. This

information is incorporated in to the Iteration Plan.

5.2.2 Requirement Gatherer

The requirement gatherer elicits requirements for a software product from the customer via

27

interviews and discussions. He is responsible for meeting with the customer to establish

an agreed upon list of requirements that will be put in a binding legal contract known as the

formal User Requirements Specification. He is also responsible for determining which of

the user requirements are pertinent to a particular subsystem. These are placed in the

Subsystem Requirements Specification.

5.2.3 Analyzer

The analyzer identifies O/C's and subsystems from the formal User Requirements

Specification. This information is placed in analysis diagrams. For each O/C, he then

identifies attributes, operations and relationships with other O/C's. These are stored in

analysis diagrams as well. While preparing this overall analysis, the Analyzer also

identifies actors and the scenarios that they participate in. This information is recorded in

the Actor Glossary and the Scenario List.

5.2.4 Designer

The designer translates the analysis diagrams into corresponding design diagrams. These

diagrams show the O/C's, their services and the client-server relationships that they

participate in. For every O/C in a design diagram, he specifies the class features and

interface in a class interface diagram. He also identifies generalization hierarchies amongst

O/C's and records them in inheritance diagrams. The services that each of these O/C's has

to offer are identified by the designer and entered into contract diagrams. He also is

28

responsible for producing objectcharts and event models.

5.2.5 Programmer

The programmer translates the class interface diagram for each class into actual source

code. If specified by the designer, he is responsible for retrieving library classes and

incorporating them into the code he is developing. As he implements each class, he also

compiles and debugs his source code.

5.2.6 Quality Assurance

The tester reviews all documents, diagrams and source code modules. He develops test

cases for classes and performs the tests. He also performs integration and subsystem

testing. The result of each test case is incorporated into a Test Report. For all diagrams

and documents, the results of his reviews are recorded in Review Reports.

5.2.7 Project Manager

The project manager is in charge of either the entire project or if there is a managerial

hierarchy, a portion of the project. His responsibilities include reviewing plans, assuring

that a project is on schedule and within budget and maintaining a good working relationship

with the customer. Since he is in charge of the project he is also responsible for managing

all employees involved in the production of this software project.

29

5.2.8 Project Secretary

The project secretary is responsible for scheduling customer contact and recording the

results. He also provides users accounts and assigns permissions accordingly to ensure

that the correct people have access to the portions of the project that they need to access.

5.3 Scenarios

Each of the actors previously defined interacts with the system in one or more scenarios. A

scenario corresponds to the user performing a sequence of system functions. Since each

user can assume the role of more than one actor, he can potentially participate in a large

number of scenarios. For a thorough and detailed explanation of all possible scenarios, see

Appendix 1.

5.3.1 Operations Performed on Deliverables

For all scenarios that an actor may participate in, certain common operations need to be

defined that may occur when operating on a deliverable. Each time the user elects to

operate on a deliverable, the a number of different scenarios may develop. By default, the

latest version of the deliverable will be used. Some of the more common scenarios have

the user creating, editing, deleting, annotating or viewing a deliverable. A full explanation

of these is provided in Appendix 1, section 1.

5.3.2 Scenarios Involving the Planner

30

The planner typically engages in scenarios in which he is performing operations on one of

the planning deliverables such as the Business Planning Report or an Iteration Plan. A

more detailed explanation is found in Appendix 1, section 2.

5.3.3 Scenarios involving the Requirement Gatherer

The requirement gatherer's main responsibility is to identify and record system

requirements. He is typically involved with scenarios in which he operates on either the

User Requirements Specification or a Subsystem Requirements Specification. For a full

explanation, see Appendix 1, section 3.

5.3.4 Scenarios involving the Analyzer

The analyzer concerns himself with scenarios involving either subsystem management,

including identifying and removing subsystems or operations performed on the Actor

Glossary, Scenario List and Analysis Diagrams. A more detailed explanation of the

analyzer's scenarios is listed in Appendix 1, section 4.

5.3.5 Scenarios involving the Designer

The scenarios in which the designer is involved with pertain to operating on the design

deliverables. These deliverables include Design Diagrams, Inheritance Diagrams, Class

Interface Diagrams, Contract Diagrams and ObjectCharts. These scenarios are outlined in

Appendix 1, section 5.

31

5.3.6 Scenarios involving the Programmer

The Programmer participates in scenarios involving product implementation. He typically

concerns himself with all source code development. These scenarios are explained in

Appendix 1, section 6.

5.3.7 Scenarios involving the Quality Assurance Person

The Quality Assurance Person is responsible for reviewing and testing certain portions of a

product. He engages in scenarios involving Review Reports and Test Reports. For a

thorough explanation, see Appendix 1, section 7.

5.3.8 Scenarios involving the Project Secretary and Project

Manager

The Project Manager and Project Secretary handle all background management functions

for the CASE tool. This typically involves product management, user management and

assigning permissions to development groups for each of the deliverables. A detailed

outline of the relevant scenarios is in Appendix 1, section 8.

5.3.9 Scenarios involving all Users

All users may either view user account information, view product information or invoke the

agenda editor. These scenarios are outlined in Appendix 1, section 9.

32

5.4 Functionality

5.4.1 Security Feature

This CASE tool has a security feature which can be enabled or disabled by a member of the

management group. When the security feature is enabled, the user must enter a user name

and password to log into the system. Upon successfully logging in, the user is presented

with a list of groups that he is a member of. Depending on which group he selects, the

user will be able to perform certain operation on the deliverables. If the security feature is

disabled then the user will have the main menu displayed without any user verification. He

is then able to alter any existing deliverable or create new ones.

5.4.2 Development Groups

There are five groups that users may be a part of. They are planning, analysis, design,

implementation and management. Each group gets assigned either read and write, read

only or no permission to access each of the deliverables. If the user has read only

permissions for a deliverable then he may not alter it's contents or create a new one of that

specific type. In addition, he may not enter an annotation for the deliverable, link it to any

other deliverable, remove a link the deliverable has to another deliverable or sign off the

deliverable. Should the user have read and write access to the deliverable, he may perform

any operation on the deliverable including altering it's contents and creating new ones of

that type. When the user has no permission for the deliverable, he may not perform any

33

operations on it.

Development groups exist so that users may access only the portions of the product that

are absolutely necessary. Each time a user logs in, he is required to select a group.

Essentially, this creates multiple sessions that the user can engage in. For example,

logging in as a member of the analysis group allows the user to perform different

operations than when he is logged in as a member of the design group. This concept is

likened to Unix where a user who has the root password can log in under his own account

or the root account. Each account can perform very different functions.

When the user logs in as a particular group member, the pernissions that he inherits are

valid for every product in the system. Therefore, if a developer is a member of the design

group which typically has access to Design Diagrams then the user may access Design

Diagrams for each and every product. If a management group member should change the

permissions so that the designer may no longer access the Design Diagrams then he is

denied access to every Design Diagram in the system. This is so even if he had created

Design Diagrams in the past when he did have permission.

To give each group the correct permissions for accessing the deliverables, the

management member interacts with the window in figure 7. For the user to arrive at this

window, he must follow the sequence of steps outlined in scenario four for the project

manager or secretary. This may be found in Appendix 1, section 8. Depending on the

group, certain deliverables must be accessible for creation and alteration. For example, a

developer in the design group would typically need read and write permission to the

34

products related to the design phase such as the Design Diagrams, the Inheritance

Diagrams, the Class Interface Diagrams, the Contract Diagrams and the Objectcharts. In

addition, he would most likely require read only access to analysis products such as the

Analysis Diagrams, the User Requirements Specification, the Subsystem Requirements

Specifications, the Actor Glossary and the Scenario list. Since his purpose is not to

implement, he would not need any access to implementation deliverables such as the source

code and Test Reports.

5.4.3 User Accounts

All user accounts are configured by a member of the management group. Figure 8 displays

the window in which the manager enters the necessary information. This window is

arrived at by following the sequence of steps outlined in scenario 3a for the project

secretary or manager. This is located in Appendix 1, section 8. Each user must be

assigned a user name and a password. In addition, the user may be assigned to zero or

more development groups. If the user is assigned to no groups then he will not be able to

log in. The management member may also specify whether the user account should be

enabled or disabled. A disabled account denies the user access to logging in to the system

although information concerning the user is retained. The only restriction to adding a user

is that a duplicate user name must not be entered.

Once in the system, the user may have his account information altered or deleted by a

management group member. When altering the account, the manager may enable or disable

36

User Name: kevin

Password:

Member of Groups:

iPlanning

yAnalysis

j Design

J Implementation

SManagement

Add as:

Disabled

OK I Cancel

Figure 8: The window to add a user

the account, change the groups the user is in, change the password or change the user's

37

name. To delete a user, the manager only needs to verify the removal. When a user is

deleted, all information concerning the account is removed from the system and the user is

removed from all of the groups that he belonged to. As a result, the user may no longer log

in to the system.

Any user of the system, whether he is a management group member or not, may view

the user account information. The user may select any account and examine what groups

the user belongs to and whether the account is enabled or disabled.

5.4.4 Software Products

To perform operations on deliverables, a product must first be started. To begin a product,

a management member enters a product name, a beginning release number, a starting date

and a project manager's name. The account for the project manager must already exist in

the system. If it does not, the user will be able to add an account for him. The only

restriction for starting a product is that the product name must not already exist in the

system.

Since starting a product actually starts the first release of the product, the manager may

start additional releases as well. Each release that he begins must have a larger number than

the previous releases' number. The manager must also enter a starting date and the project

manager's name. As specified in starting a product, the project manager's name must

already exist in the system list of users. If it does not, the user will be able to add it.

The manager will also be able to change any information pertaining to the last release of a

38

product. Should he choose to alter the release number, the new number must not be less

than the previous existing release number. The manager may also alter the starting date and

the project manager name. As before, the project manager's name must already exist in the

system. One additional piece of information the manager may supply is the ending date for

the release.

Another function a manager may perform is to delete the last release. Upon choosing

this option, he will be asked to confirm his decision. By deleting a release, all

corresponding deliverables and subsystems will be removed from the system. The

manager, however, will not be able to remove any release other than the latest one.

One function that all users may perform is viewing the product information. The user

must first select a product and one of it's releases. He then is presented with the start date,

the product manager's name and if one exists, the ending date. The sequence of steps is

outlined in scenario two for all users from Appendix 1, section 9 and results in the window

in figure 9.

5.4.5 Subsystems

One of the MOSES analysis activities is to identify subsystems. Any member of the

analysis group is able to perform basic subsystem management activities such as adding

and deleting subsystems and changing the subsystem's names. When entering a new

subsystem name, the user is not allowed to enter a name that already exists since each

subsystem is a separate component of the overall product and therefore must be unique.

39

Product Name: Release Number:

_I I
-J

Start Date: 10/26/94

End Date: 2/6/95

Manager: rosa

OK

Figure 9: The window to view product information

Since the purpose of identifying subsystems is to divide the development work, each

subsystem may have one or more deliverables assigned to it. Should this be the case, the

40

user will be notified as to which deliverables are assigned to the subsystem. He may then

choose to continue with the deletion or cancel it. If he deletes the subsystem then any

deliverables that are assigned to it will be assigned to no subsystem after the deletion. If

there are no deliverables assigned to the subsystem then the user will only receive a prompt

to verify the subsystem deletion.

5.4.6 Deliverables

Depending upon which group a user belongs to, he may operate on one or more types of

deliverables. The user will only be allowed to access those deliverables for which he has

read only or read and write permission. If the user does not belong to a particular group

then he may not access any of the deliverables for which that group has responsibility. A

warning message will be displayed if he attempts to access those deliverables. For

example, if the user does not belong to the design group then he will not be able to access

any of the Design Diagrams.

To actually operate on the deliverables, the user must first select a product and one of

it's releases. Upon supplying this information, the user will be presented with the screen

in figure 10. The user may then become involved in one of the deliverable scenarios from

Appendix 1, section one. Initially, the user will not be able to perform any operations. He

must first select a deliverable from the menu button labeled Deliverable. The menu

presented to the user will consist only of deliverables corresponding to the function he

selected from the main menu. For example, if he elected to perform planning operations

41

then he will only be able to operate on the Business Planning Report and Iteration Plans.

Once the user selects a deliverable, additional information is presented. This includes the

subsystem the deliverable is assigned to, if any, and the latest version number. If the

deliverable is a textual document then the contents will be displayed in the read only text

display at the bottom of the window. For signed off deliverables, the associated box is

marked with a check. By pressing the Version button, the user is able to select any

version that he has created thus far. Should he choose a previous version, the version

number in the window is updated. If the deliverable is textual then the text is displayed in

the read only text area. For which ever version is selected, the user may also elect to

display relevant information such as the author and the start date by pressing the Version

Info button .

For the special case of a multiple deliverable, the Name&Number button is enabled.

By pressing this button, the user is able to select one of the existing numbered multiple

deliverables. Before pressing this button, the user may elect to create another diagram or

document by pushing the Operation button and selecting the create option. When the user

does select one of the multiple deliverables, he is presented with the same information as

for a single deliverable. However, the deliverable name and number that he has chosen are

displayed in the window. If the deliverable is a hierarchical diagram and is assigned to a

class in another diagram then the class name that it is assigned to and the diagram number

that the class is in are also displayed.

Depending on whether the deliverable is signed off or not, the state and type of the

43

deliverable selected, the permissions of the group the user is logged in as and whether the

phase is completed or not, the user is presented with a list of operations that he may

perform on the deliverable. If the user has read only permission for the deliverable he has

chosen then he is restricted to viewing, printing and performing annotation operations. In

particular, he may not sign off the deliverable or alter it's contents.

Should the developer have read and write permission to the deliverable then he is able to

perform additional operations. First, he is able to create the deliverable. If the deliverable

is a single deliverable then he is only able to do this once. If it is a multiple deliverable,

then he is able to create as many as he needs. Once a deliverable exists, the user may also

edit it's contents or delete it. The user may also "sign off' the deliverable. This is done by

using the Sign Off button in the lower left corner of the window. If the deliverable is

already signed off then this button serves to sign the deliverable on again so that it may be

modified.

For multiple deliverables, users with read and write permission may perform two

additional sets of operations. The first one is assigning the deliverable to a subsystem.

When choosing this option, the user selects an existing subsystem from a list. The

subsystem name is then displayed in the window. Alternatively, the user may unassign a

deliverable to a subsystem. This is reflected in the window by clearing the subsystem

field. If the deliverable is a Design Diagram or Analysis Diagram then the user may opt to

assign it to a class in another diagram of the same type. For example if the current

deliverable is an Analysis Diagram then he may only assign it to a class in another Analysis

44

Diagram. If no other Analysis Diagrams exist then the user will not be given this option.

Once he selects the diagram, the user is prompted to enter the name of the class in the other

diagram. This information is then displayed in the appropriate fields in the window.

One of the operations that the user may select is to create a deliverable. For textual

deliverables, the user is able to enter text in a text editor which contains the standard

options to cut, copy and paste text as well as repeat and undo the last text operation

performed. Upon saving this text, the user is returned to the deliverable window with the

newly created text placed in the read only text box. For graphical deliverables, the user is

presented with a drawing editor. He may then select graphical objects such as lines, boxes

and arrows and place them on a drawing canvas. This diagram is then saved under a name

input by the user.

Four of the documents are created by using more than the standard text editor. The first

is the Actor Glossary. The user is able to enter a name and definition for each actor. This

list is sequentially numbered and then saved. The second document is the Scenario List.

The user is presented with a standard text editor but with the additional option to obtain a

definition for an actor as he is preparing each of the scenarios. The third document is the

numerical User Requirements Specification. The user is able to enter a requirement and

have it associated with the next available sequential number beginning at one. In addition,

he will be able to prefix and postfix the requirements with some text that can be entered into

a text editor. The numerical Subsystem Requirements Specifications are able to be

prepared in the same fashion. The additional feature is provided that the user may select a

45

requirement from the numerical User Requirements Specification and have it copied into the

numerical Subsystem Requirements Specification. The user, of course, may elect to create

a non-numeric User Requirements Specification and non-numeric Subsystem Requirements

Specification. The last special document is the Test Report. For this deliverable, the user

may enter a test case and at the same time view the user requirements from the numerical

User Requirements Specification. He may also denote that the test case corresponds to a

particular user requirement.

Another operation is editing a deliverable. To alter the document's contents, the user is

presented with the document in the text editor. Once altered and saved, the new text is

displayed in the read only text field in the deliverable window. If the document the user

selects is one of the special documents listed above, the user is presented with the same

window used to create the text. If the deliverable is graphical then the user is presented

with a graphical editor in which he can alter the placement of the graphical components.

Each time the user edits a deliverable, a new version is created and assigned the next

sequential version number. In this way, the user may obtain any past version of a

deliverable in the system.

One other important operation is deleting a deliverable. Should the deliverable have links

from other deliverables in the system, they will be presented to the user in a list. By

performing the actual deletion, the deliverable will have all of it's links removed. If the

deliverable being deleted is a hierarchical diagram then the user will be displayed a list of

diagrams that are assigned to one of the classes in the deliverable. If the deliverable is

46

Remove Unk Make Unk Follow Unk

This is the annotation for the first Subsystem Requirements Specification.

Save Text Clear Text Cancel

Figure 11: The annotation window

removed then the diagrams will no longer be assigned to the class in the deliverable. If the

deliverable to be deleted has no dependencies then the user will only be prompted to verify

it's removal.

The last essential operation is annotation. When selecting this option, the window in

figure 11 is displayed. If the user has read only permission for the deliverable then he is

only able to view the annotation. Should the user have read and write permission then he

may perform additional operations. One of these operations is creating the annotation. To

47

accomplish this, the user must enter some text in the text editor and press the Save Text

button. To edit the annotation, the user needs to follow these same sequence of steps. If at

any time the user must clear the contents of the text editor, he may press the Clear Text

button. By pressing the Save Text button, the empty document that was just created is

saved.

One portion of the annotation window are the options to make, remove and follow links.

Every user with read only or read and write permission is able to follow a link that a

deliverable has. However, only users with read and write permission are able to make and

remove links. When the user invokes one of these operations, he is presented with a list of

deliverables. If he is removing a link, the selected deliverable is deleted from the list. If he

is adding a link then the selected deliverable is added to the list of links that may be

followed.

5.4.7 Source Code

The user may implement the analysis and design by creating classes. The user must first

select a product and release which then becomes the category for which the user may add

and remove classes. When choosing to add a class, the user is provided with an editor in

which he may enter the code. He then may compile the code thus retaining it as a class in

the system. In addition, the user may add and remove methods for each class he has

entered. Should the user decide to remove a class, he will be asked to confirm his

deletion. At any point during the implementation, the user may browse through the class

48

hierarchy and view the source code. When compiling the source code, if an error occurs,

the user is presented with a debugger in which he may step through each message passed

between objects. As each object receives a message, he may inspect the values of the

parameters as well as the instance variables.

5.4.8 Agenda Editor

Any user will be able to view the progress of a product's development or the results of

developing a past product by using the agenda editor. This editor is displayed in figure 12

and presents an overall outline of the steps of MOSES. To arrive at the editor, the user

must follow scenario 3 from Appendix 1, section 9. For each phase, namely planning,

analysis, design and implementation, the total number of modifications made to the

deliverables is displayed. To obtain a more detailed view of each phase, the user may press

the View Deliverable Statistics button. For each deliverable, the number of

modifications (versions) made as well as whether the deliverable is "signed off' or not is

then presented. If each of the deliverables in a phase has been created and "signed off'

then the user will be able to specify that the phase is complete. When a phase has been

completed, no additional modifications to the deliverables are allowed. To modify a

deliverable, the user will first have to denote the phase as being incomplete and then "sign

on" the deliverable. When the developer has completed each of the phases, the product is

considered to be complete and the manager should assign it an ending date.

49

5.5 Implementation

The implementation of this CASE tool was done on a Sun Sparc-10 workstation running

the SunOS 4.1.3 version of Unix. The language used is Smalltalk-80 which is part of the

VisualWorks development environment.

5.5.1 VisualWorks Smalltalk

Smalltalk is an object-oriented language in which the user is able to create classes and have

them interact via message passing [GR83]. Each class may have methods on both the class

side and the instance side. When the user accepts a method the code is compiled and is

made available to all classes in the system. Classes also may have both class variables and

instance variables. The difference is that class variables may be accessed by any instance

of the class whereas instance variables may only be accessed by the individual object.

The version of Smalltalk that is packaged with VisualWorks already has approximately

three hundred classes predefined for the user to access. Examples of these classes include

graphical support classes, data structures and data types. All of these classes are located in

what is known as a Smalltalk image. This image records the state of the classes and

changes that are made to them. Each time the user saves the environment, the image is

updated to reflect all of the classes that were added, deleted or altered since the last update.

Therefore, when the user re-enters the environment, the state that he left it in is returned.

VisualWorks is a complete development environment based on Smalltalk. This allows

the user to easily integrate graphical user interface development with the model supporting

51

it. Provided to the user are tools such as the canvas editor, a menu editor, a color tool and

a position tool. The canvas editor allows the user to select graphical components such as

push buttons and labels and place them on a drawing canvas. This canvas is then installed

on a class so that it can be opened by the user. When the canvas is still opened for editing,

the user may utilize the color tool to alter the colors of the background and the foreground.

In addition, the components of the window can be aligned with one another as well as

relatively placed in the window by using the position tool. The other tool, the menu editor

provides a simple way to construct a menu which may then be attached to a menu button.

To browse through both the user classes and system classes there is a class browser.

This tool allows the user to select a class and browse through it's methods and variables.

Since the methods in a class are divided into categories, the user must first select a category

before viewing a method. The browser may be opened on all classes in the system or on a

particular class and it's hierarchy. While in the browser, the user may add classes as well

as methods and variables.

5.5.2 Windows

The windows the users interact with in this CASE tool were developed by using the canvas

editor from the VisualWorks environment. This graphically-oriented component allows the

user to drag window components such as input fields, text boxes, radio buttons and labels

from a palette to a drawing canvas. Here the user may arrange the components and define

their properties. Each of the components have either aspects or actions associated with

52

them. An aspect is a value holder for an attribute of the object. An action is a method that

is invoked when the component is activated. For example, when a button is pressed a

corresponding action is invoked. When a component with an aspect is modified, such as a

radio button changing state, the corresponding value of the attribute is changed.

When the user has completed building the window, he installs the canvas on an

application class that he names. He may also select the class to be the parent of the new

class. Typically, the ApplicationModel class is selected since it has many of the actions that

windows need such as the method closeRequest which closes the specified window.

The user may also select the method name that holds the geographical layout. Typically,

this is called windowSpec. The window is then opened by sending the open method to

the class. If the class is entitled DeliverableWindow then the message DeliverableWindow

open will open the window on the screen.

5.5.3 User Management

All user account information is located in the User class. This class has instance variables,

name, password, access and groupList to record the user name, his password, the

status of the account and a list of development groups that the user belongs to. In addition

there is a class variable UserList to record all instances of the User class. The instances

of User class are passive, meaning their sole purpose is to provide information to the other

objects in the system. An example of this is when a user logs into the system. First, the

user is presented with two input fields in which he may enter his user name and password.

53

After the developer types in his user name, the message nameExists: is sent to the User

class. If the user name is in the system, the User class responds with true, otherwise it

responds with false. If the user is in the system, the user is allowed to enter the password.

This time the message, getPassword: is sent from the LoginWindow to the User class

requesting the password for the provided user name. At no time does the User class need

to request information from any other object in the system.

The User class contains class methods to add a user to the UserList, to remove a user

from the UserList and to search for a user in the UserList. In addition, instance

methods exist to set and retrieve the values of the instance variables for each class instance.

When the list is searched, a private method is used, find: which attempts to locate the

object with the desired user name in the UserList. Once the object is located, an instance

method is used to retrieve the value of the desired instance variable. By convention, this

method is given the same name as the instance variable.

5.5.4 Product Management

There are two classes involved in managing products and their releases. The first class,

Product, has instance variables productName and startDate. The Release class has

instance variables startDate, endDate, manager, productName and

releaseNumber. Both of these classes have a class variable that holds all instances of the

class. The user is able to add class instances to this list.

When the user starts a new product, he inputs the starting date, product name, starting

54

release number and project manager name into the input fields displayed by the class

StartProduct. This class, upon receipt of the information, sends the message

addProduct:for:with:startingOn to Product with the information from the input fields.

The code for this method is shown in Figure 13. The first few sections of this code

perform error checking. If an error is found then false is returned. If the parameter values

are acceptable then an instance of Product is created and instance methods are invoked to

set the instance variable's values. This object is then added to the OrderedCollection,

ProductList. In addition, the message addRelease:for:with:StartingOn is sent to

the class Release in order to start a new release. The Release class then follows the same

sequence of steps that Product does. It creates an instance of itself, sets the values of the

instance variables and adds the object to the class list, ReleaseList.

When the user wishes to delete a product, the DeleteProduct class displays a list of

products in the system by sending the Product class the message getNames. This method

merely iterates over the ProductList and for each object, adds the value of the instance

variable productName to a new OrderedCollection which is then returned. The name

selected by the user is then sent to Product by sending the message removeFromList:.

This message searches the ProductList for the given name. When the object is located, it

is removed from the OrderedCollection, thus removing it from the system.

The user may also start a release for a created product. The user enters the information

into the input fields displayed by the class StartRelease. This information is then sent to the

Release class via the message addRelease:for:with:StartingOn. The Release class

55

addProduct: aProductName for: aReleaseNumber with: aProjectManager
startingOn: aDate

" Add a product to the system. When a product is added, a new release must be
started as well"

"Check for mistakes in the input information"
(Product nameExists: aProductName)

ifTrue: [DialogView warn: 'The product ', aProductName, 'already
exists'.
^false].

(aProductName size = 0)
ifTrue: [DialogView warn: 'You must enter a product name'.

^false].
(aReleaseNumber size = 0)

ifTrue: [DialogView warn: 'You must enter a release number'.
^false].

(aProjectManager size = 0)
ifTrue: [DialogView warm: 'You must enter a name of a manager'.

^false].
(User nameExists: aProjectManager)

if False: [DialogView warn: 'You need to add ', aProjectManager, 'to the
user list'.
AddUser openWith: aProjectManager.
^false].

" The input information is valid so add the new product to the class list"
ProductList add: ((self new)

setProductName: aProductName;
setStartDate: aDate).

"Start a new release for this product"
Release addRelease: aReleaseNumber for: aProductName

with: aProjectManager startingOn: aDate.
^true

Figure 13: Adding a product to the system

responds by checking to make sure that the release number sent in the parameter is greater

than the last existing release number for the product. If it is not then a message is sent to

56

the Dialog class to display a warning message. If it is then an instance of Release is created

with the instance variables set to the parameters that were supplied. This object is then

added to the class list, ReleaseList.

5.5.5 Subsystem Management

All subsystem information is stored in the Subsystem class. The only attributes that need

to be recorded are the name and the product and release that the subsystem is for.

Correspondingly, there are six instance methods setName, setProduct, setRelease,

name, product and release that set and return the values of these instance variables.Like

previously discussed classes, there is a class variable that records the instances of

Subsystem. This variable is named SubsystemList.

This class has class methods addSubsystem:forProduct:withRelease: and

removeSubsystem:forProduct:withRelease: which add and remove objects from the

Subsystem List. To determine whether a subsystem exists already, the method

subsystemExists:forProduct:withRelease: is used. The code for this method is

displayed in figure 14. This method finds all occurrences of Subsystem objects for a

provided product name and places them in an OrderedCollection. The list is then refined by

searching for objects having the provided release number. This list is then searched for an

object with the given name. The list is then tested to determine if it's size is greater than

zero. If it is then true is returned, signifying the subsystem does exist. Otherwise, false is

returned.

57

subsystemExists: aName forProduct: aProductName
withRelease: aReleaseNumber

" Examine the list of subsystems and see whether a specified subsystem exists
or not"

I productList releaseList nameList I
productList SubsystemList select: [:each I each product = aProductName].
releaseList := productList select: [:each I each release = aReleaseNumber].
nameList := releaseList select: [:each name = aName].

"nameList should contain the subsystem we are looking for. If it was not found,
the list will be empty"

nameList size > 0
ifTrue: [^true]
if False: [Afalse]

Figure 14: Testing the existence of a subsystem

A subsystem name can be altered once an object exists in SubsystemList by using the

method setSubsystemName:to:forProduct:withRelease:. This method adds a new

Subsystem class instance to the class list. If the

addSubsystem:forProduct:withRelease: method returns true, meaning a duplicate

name was not added, then the Subsystem object with the old name is removed from the list.

If the user attempts to change a subsystem name to the same name, then the

addSubsystem:forProduct:withRelease: method would return false and the user

would receive an instance of the Dialog class warning him of his error.

5.5.6 Deliverable Management

There are two inheritance hierarchies that handle all activities concerning the MOSES

58

deliverables and their versions. The first hierarchy is displayed in figure 15. The

Deliverable class is at the top of the hierarchy and has two subclasses, SingleDeliverable

and MultipleDeliverable. In addition, MultipleDeliverable has a subclass

HierarchicalDiagram. The SingleDeliverable class is used for deliverables that can only

have one instance for each product, such as the User Requirements Specification. In

contrast, the MultipleDeliverable class is used for deliverables such as the Iteration Plan for

which there can be many per product. The HierachicalDiagram class is for Analysis

Diagrams and Design Diagrams only, since they can be assigned to a class in another

diagram of the same type.

The Deliverable class contains the instance variables, deliverableType,

productName, releaseNumber and signedStatus. The signedStatus variable

corresponds to whether a deliverable has been signed off or not. There also is a class

variable DeliverableList which serves the same purpose as the class lists previously

discussed.

The Deliverable class contains a category of methods entitled testing. These methods

determine the type of deliverable received as a parameter. For example, isDiagram:

returns true if the deliverable is a diagram, otherwise it returns false. These tests need to be

performed so that messages can be directed to the appropriate subclass of Version. For

example, if a deliverable is a diagram then messages should be directed towards the

DiagramVersion class. Version and it's subclasses will be discussed after the Deliverable

hierarchy. There are also messages to test whether a deliverable is a single deliverable, a

59

Deliverable

productName
releaseNumber
deliverableType
signedStatus
DeliverableList

SingleDeliverable MultipleDeliverable

deliverableName
deliverableNumber
assignedToSubsystem

HierarchicalDiagra

assignedToClass
ClasslnDiagramNumbe

Figure 15: The Deliverable class hierarchy

document, a multiple deliverable, a hierarchical diagram or a numeric requirements

specification.

There also exists a method deliverableExists:forProduct: withRelease: which

60

uses the private method findDeliverable:forProduct:withRelease:. If the deliverable

is found then the method returns true meaning that the deliverable does indeed exist.

Otherwise, it returns false. The private method findDeliverable:

forProduct:withRelease: searches the class list for objects with the provided

productName and places the results in a new instance of OrderedCollection. This list is

then searched for objects with the provided releaseNumber. These objects are then

placed in a list which is searched for an object with the appropriate deliverableType. If

one is found, an OrderedCollection of one element is returned. The one element is the

object corresponding to the search parameters. If the object is not found, a new instance of

OrderedCollection is returned.

The MultipleDeliverable class has three additional instance variables,

deliverableName, deliverableNumber and assignToSubsystem which are added

to the variables that are inherited from the Deliverable class. Since multiple deliverables, by

definition, are uniquely identified by a number as well as as the type, the methods used to

search the class list need to search according to one additional parameter.

This class provides class methods to locate an object in the class list and access it's

instance variables. Examples are getSignedStatusFor:forProduct:withRelease:

withNumber and getSubsystemFor:forProduct:withRelease:withNumber.

These methods simply search the class list for the appropriate object and return the value of

the sought after instance variable. There also are class methods to set the values of the

instance variables, assignToSubsystem:forDeliverable:forProduct:withRelease:

61

withNumber and setSignedStatusTo:forDeliverable:forProduct:withRelease:

withNumber.

The methods to start a multiple deliverable follow the same basic idea as previously

discussed classes. The code for startDeliverable:forProduct:withRelease:

withName:withNumber:withText is displayed in figure 16. This method starts a

textual document. First, an instance of Multiple Deliverable is created. This object then

has it's instance variables set and is added to the class list. However, unlike previous start

methods, one additional step is necessary. The deliverable type is tested to determine

which subclass of Version to send the start message to. Since the actual text of a document

is stored in a version, the text does not get stored in the MultipleDeliverable class. The text

is sent to the appropriate subclass of Version. For diagrams, the information is stored in

the window specification for a class. This window specification is sent to the

DiagramVersion class.

The Multiple Deliverable class also has methods to remove deliverables. The method

removeDeliverable:forProduct:withRelease:withNumber: is similar to the

message to start a deliverable except the method removeVersionsFor:forProduct:

withRelease:withNumber: is sent to the appropriate subclass of Version. First,

however, a check is made to make sure the deliverable does exist. Also, the message

removeFromListFor:forProduct:withRelease:withNumber: is sent to itself to

remove the MultipleDeliverable object from the class list. This method simply searches the

class list to locate the appropriate object. It is then removed from the list by using the

62

startDeliverable: aDeliverableType forProduct: aProductName withRelease:
aReleaseNumber withName: aName withNumber: aNumber withText: aText

"Add a new deliverable to the system. Create an instance of the class, set the
attributes' values and add the object to the class list"
DeliverableList add: ((self new)

setDeliverableType: aDeliverableType;
setProductName: aProductName;
setReleaseNumber: aReleaseNumber;
setDeliverableName: aName;
setDeliverableNumber: aNumber;
setSignedStatus: false).

"Determine which subclass of Version to send the version creation message
to"

(aDeliverableType = 'Numeric Subsystem Requirements Specification')
ifTrue: [SubsystemRS startVersionFor: 'Numeric Subsystem

Requirements Specification' forProduct: aProductName
withRelease: aReleaseNumber withNumber: aNumber
withName: aName.

^self].
(aDeliverableType = 'Test Report')

ifTrue: [TestReportVersion startVersionFor: 'Test Report'
forProduct: aProductName
withRelease: aReleaseNumber withNumber: aNumber
withName: aName.

^self].
(self isDocument: aDeliverableType)

ifTrue: [DocumentVersion startVersionFor: aDeliverableType
forProduct: aProductName withRelease: aReleaseNumber
withNumber: aNumber withName: aName withText: aText.

^self].
Figure 16: Starting a new deliverable

message removelfAbsent:.

There are also a few private methods for the MultipleDeliverable class. The first method

is getNumbersFor:forProduct:withRelease:. The code for this method is shown in

63

figure 17. This method searches the DeliverableList to find all objects of a particular

deliverable type for a given product and release. These objects are placed in an

OrderedCollection which is then iterated over. Each number is extracted and placed in a

new OrderedCollection which is then returned. The other method is

getNameFor:forProduct:withRelease:withNumber:. This method simply locates

the appropriate object in the DeliverableList and returns the value of

deliverableName. If the deliverable does not exist then false is returned.

getNumbersFor: aDeliverableType forProduct: aProductName
withRelease: aReleaseNumber

"Retrieve all of the deliverable numbers of a single type of deliverable.
For example, retrieve all analysis diagram number is the system"

I productList releaseList numberList I
numberList := OrderedCollection new.
(productList := DeliverableList select: [:each I each productName =
aProductName]) size > 0

ifFalse: [AOrderedCollection new]
ifTrue: [(releaseList := productList select: [:each I each releaseNumber

= aReleaseNumber]) size > 0
if False: [AOrderedCollection new]
ifTrue: [(deliverableList := releaseList select: [:each I each

deliverableType = aDeliverableType]) size > 0
ifFalse: [AOrderedCollection new]
ifTrue: [(deliverableList do: [:each I numberList add: (each

deliverableNumber)]) size > 0
if False: [AOrderedCollection new]
ifTrue: [^numberList]]]]

Figure 17: Retrieving all deliverable numbers for a specific type

64

The HierarchicalDiagram class inherits the majority of it's methods from

MultipleDeliverable. It provides the additional instance variables assignedToClass and

classInDiagramNumber. These record the class name and diagram number that the

diagram is assigned to. To access and set these variables, there are three methods. The

first, assignToClass: inDiagram:forDeliverable:forProduct:withRelease:

withNumber:, finds the object in the class list and uses the instance methods setClass:

and setDiagram: to set the instance variables. The second method,

getClassDiagramInFor:forProduct:withRelease:withNumber: finds the object in

the list and retrieves the value of the instance variable classInDiagramNumber. The last

method getClassSignedToFor:forProduct:withRelease: withNumber: does the

same thing except that it returns the value of the variable assignedToClass.

The last subclass of Deliverable is SingleDeliverable. This class has no additional

variables. The methods implemented in this class provide a functionality similar to the

Deliverable class. There are methods to start deliverables and remove deliverables. In

addition, there are methods to obtain the values of the inherited instance variables.

Every deliverable' s text or window specification is actually stored in a subclass of

Version. The instance variables for Version are author, date, releaseNumber,

productName, deliverableType and versionNumber. As for previously discussed

classes there is a class list variable, VersionList, that stores all the instances of the class.

There are instance methods to set and retrieve the values of these instance variables as well.

There are also class methods to start a version, remove all versions, test if a version exists,

65

Version

author
date
releaseNumber
productName
versionNumber
deliverableType
VersionList

SingleDeliverable
Version

(actorName
actor Definition theText

NumericRS

rsDumer

SubSystemRS

documentName
documentNumber

Figure 18a: The Version class hierarchy

66

MultipleDeliverableVersion

deliverableName
deliverableNumber

DiagramVersion DocumentVersion TestReportVersion

windowSpec theText testNumber

Figure 1 8b: The MultipleDeliverableVersion class hierarchy

67

get the last version number and to find a particular version. These methods are very similar

to the methods of previously discussed classes that perform these functions. However,

there is no method to remove a single version. There is the method

removeVersionsFor:forProduct:withRelease: though, which removes all versions

for a particular deliverable.

There are many subclasses of Version. The inheritance hierarchy is shown in both

figures 18a and 18b. MultipleDeliverableVersion class contains the instance variables

deliverableName and deliverableNumber. This class has no instances but serves as

a template for it's subclasses and provides a variety of methods. The DiagramVersion class

is one of it's subclasses. This class holds information pertaining to all diagram

deliverables. The instance variable windowSpec contains the actual diagram created with

the drawing editor. The other subclass is DocumentVersion. This corresponds to any

deliverable that is a MultipleDeliverable and is textual such as Iteration Plans, Subsystem

Requirements Specifications and Review Reports. The last subclass is TestReportVersion

which contains information concerning Test Reports. It has instance variables

testNumber and testCase. All of these classes provide methods to add instances to the

class list and to remove all versions.

Another subclass that inherits from Version is SingleDeliverableVersion. This class

corresponds to documents that are single deliverables. The instance variable, theText is

provided to hold the actual text of the document. Another subclass is Actor. This class

corresponds to the Actor Glossary. Two additional instance variables are defined,

68

actorName and actorDefinition which hold the actor's name and definition. Additional

methods are provided to set and retrieve the values of these variables.

The last subclass to inherit from Version is NumericRS. This class corresponds to the

numeric User Requirements Specification. There is one subclass which inherits from this

class, SubsystemRS. This class corresponds to the numeric Subsystem Requirements

Specification. It defines two instance variables deliverableName and

deliverableNumber. This is due to the fact that there can be many occurrences of this

deliverable per product. Were Smalltalk to have multiple inheritance capabilities, this class

would not need to define these variables. Instead it would inherit from both NumericRS

and MultipleDeliverableVersion.

5.5.7 Annotation Management

The class Annotation contains information regarding the annotation and the links that are

associated with each deliverable. There are instance variables annotation, which contains

the actual annotation text, deliverable, product, release, number and

deliverableLinks, which is an OrderedCollection of links to other deliverables. There

are also instance methods to set and retrieve the values of these variables. In addition, there

is a class variable AnnotationList holding all instances of the Annotation class.

Similar to the other classes, there are class methods to start and remove an annotation for

a deliverable. The method to start an annotation is setAnnotationTo:

forDeliverable:forProduct:withRelease:. The code for this method is shown in

69

figure 19. Since the user may elect to save an annotation even if there is no text in the text

editor, starting an annotation is treated like setting an annotation's text to a particular value.

First, a check is made to see if an annotation already exists for the deliverable by invoking

the private method annotationExistsFor:forDeliverable:forProduct:

withRelease:. If this returns true then the annotation already exists in the

AnnotationList. In this case, the AnnotationList must be searched for the correct

object by using the method findAnnotationFor:forDeliverable:

forProduct:withRelease:. This object then has the instance method setAnnotation:

invoked to set the annotation to the new value. If the annotation does not exist then the

setAnnotationTo: anAnnotation forDeliverable: aDeliverableType
forProduct: aProductName withRelease: aReleaseNumber

"Create an annotation if one doesn't exist, otherwise set the old
annotation to the new annotation"

(Annotation annotationExistsFor: aDeliverableType forProduct:
aProductName withRelease: aReleaseNumber)

ifTrue: [(Annotation findAnnotationFor: aDeliverableType
forProduct: aProductName withRelease: aReleaseNumber)

setAnnotation: anAnnotation]
ifFalse: [AnnotationList add: ((self new)

setDeliverable: aDeliverableType;
setProduct: aProductName;
setRelease: aReleaseNumber;
setDeliverableLinks: OrderedCollection new;
setAnnotation: anAnnotation)]

Figure 19: Setting the annotation

AnnotationList has the new annotation appended. First, though, deliverableLinks is

70

set to a new instance of OrderedCollection.

Another set of methods relate to creating links for a deliverable. The method for this is

AddLink:forDeliverable:forProduct:withRelease:. If the annotation already exists

then an instance of the class DeliverableLink is added to the instance variable

deliverableLinks. This class only contains two instance variables,

deliverableNumber and deliverableType. It also has instance methods to set and

retrieve the values of these variables. If the annotation does not exist then an instance of

the OrderedCollection class is created. The new annotation is then added to the

AnnotationList. When a link needs to be removed, the method

removeLink:forDeliverable:forProduct:withRelease is invoked. This method

first finds the appropriate annotation in the AnnotationList. If the annotation is found

then deliverableLinks is searched for the object corresponding to the provided

deliverableNumber. Once found, the object is removed from deliverableLinks.

5.5.8 Window and Model Class Interaction

The classes implemented for this tool are of two types, the model classes and the window

classes. The window classes receive input from the user and pass that information to the

model classes. They also receive messages from the model classes and display the output

in the window components. A simple example is the IdentifySubsystemWindow. It

displays an input field in which the user may input the name of the subsystem. The aspect

that this is stored in is subsystemName. When the user presses the apply action button,

71

the method applyPushed is invoked. This method sends the message

addSubsystem:forProduct:withRelease: to the Subsystem class with the value of the

aspect. If the cancel action button is pressed instead, the message closeRequest is sent to

self which in this case is the IdentifySubsystemWindow class. This is an inherited method

from the ApplicationModel class whose effect is to close the specified window.

6 Conclusion

6.1 Summary

This CASE tool provides the user with top-level guidance throughout the entire software

development process. By following the phases and activities outlined by MOSES, the

developer is able to gauge both the amount of work completed and the amount of work still

needed. To develop the necessary deliverables, editors both graphical and textual, are

provided to the user.

The methodology utilized by this tool is both flexible yet demanding. The user is able to

step through the development process in any sequence that he sees fit. However, he is

encouraged to first plan then analyze, design and implement. This flexibility is a direct

effect of using the fountain lifecycle model. Instead of requiring the user to follow a rigid

set of steps like the waterfall model does, the developer may perform a little of each step

and then return to previous phases. This allows for more robust software products since

the developer may first design and implement a piece of the product or a prototype. The

72

software user may then comment and produce feedback, thus allowing the developer to

take into account any changes or mistakes.

At the same time, MOSES demands that specific deliverables need to be produced in

order to complete a product. For every phase of development, the user must perform

certain activities whose end product results in a deliverable. The deliverables are both

textual and graphical in nature. Since each phase requires the user to produce specified

deliverables, he can easily judge which phases need additional work. When all phases are

complete and all deliverables produced, the developer can be assured that the product is in a

final state.

The CASE tool in this thesis allows the user to take advantage of these benefits of

MOSES. Editors as well as supporting features such as deliverable versioning and security

are provided. As a means of viewing the effort put into product development, the

developer may use the agenda editor. In order to follow an idea from inception to

implementation, the user may link deliverables to one another as well as annotate them.

These are only a few of the features that allow the user to proceed through the entire

product lifecycle while maintaining a clear notion of where he stands in the development

process.

6.2 Future Work and Enhancements

To extend the capabilities of this CASE tool, a shared object-oriented database needs to be

added. This would allow multiple developers to simultaneously operate on different

73

portions of a project thus realizing MOSES' objective of having multiple development

teams. In it's current state, this environment will allow only one user at a time to operate

on a product. However, since the security feature and development groups already exist,

this CASE tool could easily be extended for distributed use.

The other feature that would make this environment more useful is the addition of a

drawing editor with expanded functionality. Such an editor has been developed by

Henderson-Sellers himself. He provides the capability to construct diagrams specifically

using the notation that MOSES advocates.

Combining these two features with the current capabilities would make this tool more

suitable for commercial environments.

74

References

[CRS92] Casais, Eduardo, Michael Ranft, Bernhard Schiefer, Dietmar Theobald and

Walter Zimmer. STONE. FZI Technical Report FZI.039.1, 1992.

[EH93] Edwards, J.M. and Brian Henderson-Sellers. A graphical notation for analysis

and design. In Journal of Object-Oriented Programming, 5(9): 53-74, 1993.

[EHe93] Edwards, J.M. and Brian Henderson-Sellers. Application of an Object-Oriented

Analysis and Design Methodology to Engineering Cost Management. In Journal

of Systems Software, 23: 123-128, 1993.

[GR83] Goldberg, Adele and David Robinson. Smalltalk-80. The Language and it's

Implementation. Addison-Wesley, Reading, MA, 1983.

[HE93] Henderson-Sellers, B. and J.M. Edwards. The 0-0-0 methodology for the

object-oriented lifecycle. In Software Engineering Notes, 4: 54-63, 1993.

[Hen92] Henderson-Sellers, B. A Book of Object-Oriented Knowledge. Prentice-Hall,

Sydney, 1992.

[Hen93] Henderson-Sellers, B. MOSES (Methodology for Object-Oriented Software

Engineering of Systems). In TOOLS USA' 93, pages 561-571, 1993.

[Kad93] Kadia, R. Issues encountered in building a flexible software development

environment. University of Colorado Technical Report, 1993.

[You94] Yourdon, Edward. Object-Oriented Systems Design - an Integrated Approach.

Yourdon Press, 1994.

75

Appendix 1

1 Scenarios for operating on deliverables

Scenario 1

The user creates a deliverable. The date, author and version number one are recorded. The

user then enters the text for a textual deliverable or constructs a diagram for a graphical

deliverable.

Scenario 2

The user views the deliverable. By viewing a deliverable, the user is not able to alter the

contents. The deliverable is displayed in a window.

Scenario 3

The user edits the deliverable. The selected deliverable is placed in the appropriate editor

and presented to the user. The user may then perform one of the editor operations.

Scenario 4

The user deletes the deliverable. For safety precautions, the user is asked to verify the

removal of the deliverable. If the user responds affirmatively, all existing versions of the

deliverable will be removed from the system. Should the user respond negatively, no

removal will take place.

Scenario 5

The user prints the document.

76

Scenario 6

The user annotates the deliverable. The user can create, edit, save or delete an annotation.

Each deliverable may only have one annotation associated with it. By editing the

annotation, the user alters the contents and either saves or discards the changes. The user

can also choose to delete the annotation. By doing this no annotation will be associated

with the document.

Scenario 7

The user links the deliverable to another existing deliverable in the system. The user selects

the deliverable to which he will be linking. The link is then constructed.

Scenario 8

The user removes a link associated with the deliverable. The user selects one of the linked

deliverables. This link is then removed.

Scenario 9

The user follows a link to a deliverable. He selects a link that has already been created. He

is then placed in an environment in which he is able to perform operations on the

deliverable that he selected.

Scenario 10

The user "signs off" a deliverable. This indicates that the deliverable has been completed

and is ready for review. By default, the latest version is used as the "signed off"

deliverable.

77

Scenario 11

The user "signs on" a deliverable. This indicates that additional operations may be

performed on this deliverable.

Scenario 12

The user selects a previous version. All subsequent deliverable operations will be

performed on this version.

Scenario 13

The user assigns the multiple deliverable to a subsystem. He then selects the subsystem to

assign it to.

Scenario 14

The user assigns the multiple deliverable to no subsystem. The multiple deliverable is then

denoted as being assigned to no subsystem.

Scenario 15

The user assigns the hierarchical diagram to a class in another hierarchical diagram of the

same type. The user selects the diagram.

Scenario 16

The user assigns the hierarchical diagram to no class. The hierarchical diagram is then

denoted as being assigned to no class.

2 Scenarios involving the Planner

78

The Planner enters his user name, password and group that he wishes to log in as. If he

has authorization to continue, the Planner chooses a product and one of it's releases. Next,

the Planner elects to operate on either the Business Planning Report or the Iteration Plan.

The Planner then selects one of the deliverable operations. After the Planner chooses an

operation, he either selects another document or diagram or exits the CASE tool.

3 Scenarios invloving the Requirement Gatherer

The Requirement Gatherer enters his user name, password and group that he wishes to log

in as. If he has authorization to continue, the Requirement Gatherer chooses a product and

one of it's releases. Next, the Requirement Gatherer selects a document or diagram.

Scenario 1

The Requirement Gatherer chooses to operate on the formal User Requirements

Specification. He then chooses to generate a numerical list of requirements.

Scenario la

The Requirement Gatherer chooses to prefix the numerical list with some text. He then

enters the text in the text editor and saves it. The formal User Requirements Specification

now consists of the text followed by the numeric list.

Scenario 1b

The Requirement Gatherer chooses to postfix the numerical list with some text. He then

enters the text in the text editor and saves it. The formal User Requirements Specification

now consists of the numeric list followed by the text.

79

Scenario lc

The Requirement Gatherer chooses to enter a numbered requirement. He then enters text

which will be associated with the next available sequential number in the list.

Scenario 1d

The Requirement Gatherer chooses to edit or delete a numbered requirement. The

Requirement Gatherer then selects a requirement number. The text associated with the

chosen number is displayed and the Requirement Gatherer may either alter or delete it. If

the requirement is deleted, the list will be re-numbered to retain a sequential ordering.

Scenario le

The Requirement Gatherer chooses any deliverable operation for the entire formal User

Requirements Specification.

Scenario 2

The Requirement Gatherer chooses to operate on the formal User Requirements

Specification. The Requirement Gatherer then selects a non-numerical list of

requirements. The Requirement Gatherer chooses any deliverable operation.

Scenario 3

The Requirement Gatherer chooses to operate on the Subsystem Requirements

Specification. He then chooses to generate a numerical list of requirements.

Scenario 3a

The Requirement Gatherer chooses to prefix the numerical list with some text. He then

enters the text in the text editor and saves it. The Subsystem Requirements Specification

80

now consists of the document followed by the text.

Scenario 3b

The Requirement Gatherer chooses to postfix the numerical list with some text. He then

enters the text in the text editor and saves it. The Subsystem Requirements Specification

now consists of the numeric list followed by the text.

Scenario 3c

The Requirement Gatherer chooses to enter a numbered requirement. He then enters text

which will be associated with the next available sequential number in the list.

Scenario 3d

The Requirement Gatherer chooses to edit or delete a numbered requirement. The

Requirement Gatherer then selects a number. The text associated with the chosen number

is displayed and the Requirement Gatherer may either alter or delete it. If the requirement is

deleted, the list will be re-numbered to retain a sequential ordering.

Scenario 3e

The Requirement Gatherer chooses to retrieve a numbered requirement from the User

Requirements Specification. He selects the number to retrieve and it is appended to the

numerical list with the next available sequential number.

Scenario 3f

The Requirement Gatherer chooses any deliverable operation for the entire Subsystem

Requirements Specification.

Scenario 4

81

The Requirement Gatherer chooses to operate on the Subsystem Requirements

Specification. The Requirement Gatherer then selects a non-numerical list of

requirements. He chooses any deliverable operation.

After the Requirement Gatherer chooses one of these scenarios, he either chooses another

document or diagram or exits the CASE tool.

4 Senarios involving the Analyzer

The Analyzer enters his user name, password and group that he wishes to log in as. If he

has authorization to continue, the Analyzer chooses a product and one of it's releases.

Scenario 1

The Analyzer chooses to perform subsystem management operations.

Scenario la

The Analyzer chooses to add a subsystem. The Analyzer enters the subsystem name.

Scenario 1b

The Analyzer chooses to delete a subsystem. He then selects the name of the subsystem.

When asked to verify the deletion, the Analyzer responds affirmatively and the subsystem

is removed. All documents, diagrams and source code modules associated with the

subsystem will be associated with no subsystem.

Scenario lc

The Analyzer chooses to change a subsystem name. The Analyzer selects a name to change

and then enters the new name. All documents, diagrams and source code modules

82

associated with the previous name will now be associated with the new name.

Scenario 2

The Analyzer chooses to perform operations on analysis diagrams. He then selects an

analysis diagram number.

Scenario 2a

The Analyzer chooses to create the analysis diagram. He then enters the class names,

attributes, operations, relationships (aggregation, association and generalization) and

cardinalities. The Analyzer then enters the diagram's name. A unique number is assigned

to the diagram.

Scenario 2b

The Analyzer chooses to edit the analysis diagram. The Analyzer enters, deletes or alters

the class names, attributes, operations, relationships (aggregation, association and

generalization) and cardinalities.

Scenario 2c

The Analyzer chooses any deliverable operation other than edit or create.

Scenario 3

The Analyzer chooses to perform operations on the actor glossary. He then selects a

deliverable operation.

Scenario 3a

The Analyzer chooses to create an Actor Glossary. He then enters the actor names and

definitions.

83

Scenario 4

The Analyzer chooses to perform operations on the scenario list. He then selects a

deliverable. He may elect to view the definition of each actor as he edits or creates the

scenario list.

After the Analyzer chooses one of these scenarios, he either chooses another document or

diagram or exits the CASE tool.

5 Scenarios involving the Designer

The Designer enters his user name, password and group that he wishes to log in as. If he

has authorization to continue, the Designer chooses a product and one of it's releases.

Next, the Designer selects a document or a diagram.

Scenario 1

The Designer chooses to perform operations on design diagrams. He then selects a design

diagram number.

Scenario la

The Designer chooses to create the design diagram. He then enters the class names,

relationships (client-server), cardinalities and services (public and private). The Designer

then enters the diagram name. A unique number is assigned to the diagram.

Scenario lb

The Designer chooses to edit the design diagram. The Designer enters, deletes or alters the

class names, relationships (client-server), cardinalities and services (public and private).

84

Scenario 1c

The Designer chooses any deliverable operation other than edit or create.

Scenario 2

The Designer chooses to perform operations on inheritance diagrams. He then selects an

inheritance diagram number.

Scenario 2a

The Designer chooses to create the inheritance diagram. He then specifies where to place

classes in the inheritance diagram. The Designer then enters the diagram name. A unique

number is assigned to the diagram.

Scenario 2b

The Designer chooses to edit the inheritance diagram. He then alters the positioning of

classes in the inheritance diagram or deletes classes in the diagram.

Scenario 2c

The Designer chooses any deliverable operation other than edit or create.

Scenario 3

The Designer chooses to perform operations on contract diagrams. He then selects a

contract diagram number.

Scenario 3a

The Designer chooses to create the contract diagram. He then enters the contract

requirements, preconditions, post-conditions and the results of the contract. The Designer

then enters the diagram name. A unique number is assigned to the diagram.

85

Scenario 3b

The Designer chooses to edit the contract diagram. He then enters, edits or deletes the

contract requirements, preconditions, post-conditions and the results of the contract.

Scenario 3c

The Designer chooses any deliverable operation other than edit or create.

Scenario 4

The Designer chooses to perform operations on class interface diagrams. He then selects a

class interface diagram number.

Scenario 4a

The Designer chooses to create the class interface diagram. He then enters the class names

that the specified class interacts with, operations, local variables, the interface and class

features. The Designer then enter the diagram name. A unique number is assigned to the

diagram.

Scenario 4b

The Designer chooses to edit the class interface diagram. He then chooses to enter, delete

or alter the class names that the specified class interacts with, operations, local variables,

the interface and class features.

Scenario 4c

The Designer chooses any deliverable operation other than edit or create.

After the Designer chooses one of these scenarios, he either chooses another document or

diagram or exits the CASE tool.

86

6 Scenarios involving the Programmer

The Programmer enters his user name, password and group that he wishes to log in as. If

he has authorization to continue, the Programmer chooses a product and one of it's

releases. Next, the Programmer chooses to operate on source code.

Scenario 1

The Programmer chooses to edit the source code. The Programmer then selects the class

and alters the contents.

Scenario 2

The Programmer chooses to compile the source code. He then selects the class and

compiles.

Scenario 3

The Programmer chooses to debug the source code. The Programmer selects the class and

invokes the debugger.

Scenario 4

The Programmer selects a class to browse. The class and it's features are displayed on the

screen. The Programmer then chooses to browse through a superclass or a subclass of the

current class. He enters the name of this class and the features are displayed on the screen.

After the Programmer chooses one of these scenarios, he either chooses another class or

exits the CASE tool.

87

7 Scenarios involving the Quality Assurance Person

The Q&A person enters his user name, password and group that he wishes to log in as. If

he has authorization to continue, the Q&A person chooses a product and one of it's

releases. Next, the Q&A person selects a document or diagram.

Scenario 1

The Q&A person chooses to edit or create a Review Report. The Q&A person then selects

the document or diagram that he is going to review. He enters his assessment of the quality

of this document or diagram.

Scenario 2

The Q&A person chooses to edit or create a Test Report. The Q&A person then selects the

class that he is going to test. He lists the test cases in the Test Report and records whether

the class passed or failed the test.

Scenario 3

The Q&A person chooses a deliverable operation other than edit or create.

After the Q&A person chooses one of these scenarios, he either chooses another document

or diagram or exits the CASE tool.

8 Scenarios involving the Project Secretary or Project Manager

The Project Secretary enters his user name, password and group that he wishes to log in

as. If he has authorization to continue, the Project Secretary chooses a product and one of

88

it's releases.

Scenario 1

The Project Secretary chooses whether to set or unset the security feature. When the

security feature is enabled, each user is prompted for his name and password upon entering

the system.

Scenario 2

The Project Secretary chooses to perform operations on products and releases.

Scenario 2a

The Project Secretary chooses to start a product. He then enters the product name, start

date, project manager's name and beginning release number.

Scenario 2b

The Project Secretary chooses to delete a product. He then enters the product name. Upon

verification, all documents, diagrams and source code modules associated with the product

are removed.

Scenario 2c

The Project Secretary chooses to start a new release for the product. He then enters the

new release number, start date and project manager's name. The release number must be

greater than the previous release number.

Scenario 2d

The Project Secretary chooses to delete the last release of a product. Upon verification, all

associated documents, diagrams and source code modules are removed from the system.

89

Scenario 2e

The Project Secretary chooses to change the number of the latest release. He then enters

the new number. This number cannot be less than or equal to the previous release number.

All documents, diagrams and source code associated with the old release number will now

be associated with the new number.

Scenario 2f

The Project Secretary chooses to alter the starting date for a product release. He then enters

the new date.

Scenario 2g

The Project Secretary chooses to alter the project manager's name for a product release. He

then enters the new name.

Scenario 2h

The Project Secretary chooses to enter an ending date for a product release. He then enters

the ending date.

Scenario 3

The Project Secretary chooses to alter the user information for the security feature.

Scenario 3a

The Project Secretary chooses to start a user account. He then enters the user name,

password, the groups the user is a part of and whether the account is enabled or disabled.

The user name must not already exist in the system.

Scenario 3b

90

The Project Secretary chooses to remove a user from the system. He then enters the user

name. Upon verification, the user is removed from the system and any groups that he may

have belonged to.

Scenario 3c

The Project Secretary chooses to change a user's password. He then selects a user's name.

Next, he enters the password for that user.

Scenario 3d

The Project Secretary chooses to assign a user to one or more groups. He first selects

theuser name. Next, he selects the groups and assigns the user to them.

Scenario 3e

The Project Secretary chooses to enable or disable a user account. He first selects an

account and then enables or disables it.

Scenario 3f

The Project Secretary chooses to change a user's name. He first selects the user and then

enters the new name. All account information is now associated with the new user name.

Scenario 4

The Project Secretary chooses to set the permissions a group has for each of the

deliverables. He first selects a group. Next, he selects a deliverable and assigns either read

only, read and write or no permissions for this group.

After the Project Secretary chooses one of these scenarios, he either chooses another

document or diagram or exits the CASE tool.

91

9 Scenarios involving All Users

Scenario 1

All users may view user account information. The user first selects a user account. He

then is able to examine the groups the user is in and whether the account is enabled or

disabled.

Scenario 2

All users may view product information. The user first selects a product. He may then

display the start date, end date and project manager's name for each of the releases.

Scenario 3

All users may view the MOSES agenda. The user first selects a product and release. He

may then display the number of modifications made to each deliverable, whether each

deliverable is signed off and whether each phase is completed.

92

Appendix 2

Analysis Diagrams

The analysis diagrams identify real-world O/C's and the relationships between them. In

addition, each O/C has a list of perations and attributes listed. The notation used is taken

directly form MOSES.

93

System Login
1

-:.:: ..

User
3

login
password

verify user

verifies

name
password
inGroups

add user
remove user

alter user

obtain
state

(m: 1)

(m :n)

Group
4

Security Feature
2

has

type (m: 1)

setState
getState

Permission
5

Deliverable
10

type
forGroup

for Deliverable

setPermission
getPermission

Agenda
6

Product
7

phase
completedS tatus

setCompl etedS tatus
getCompetedStatus

for

startProduct
deleteProduct
alter Product

get
signed off

status

(1: m)

number
startDate
endDate
manaQer

(1: m) startRelease
deleteRelease
alterRelease

Deliverable
10

Release
8

assigned to project

assigned to release

signed status Subsystem

assigned to

(m : 1) name
create

edit identify
delete remove

annotate change name
sign off
sign on

select version

has a Annotation
16

has aut

create
has a (m :n) delete

edit

Version

15 Ln
number Lin

author
1

date rtoDeliverable

makeLink

startVersion
rmv~n

removeVersion

96

Deliverable
10

Document MultipleDeliverable
11 1

theText
assignedToSubsystem

|print
entertext assignToSubsystem

assignToNoSubsystem

ierarchicalDiagram / Diagram
14 13

(theDiagram
assignedToClass

ClassInDiagram
view

enterDiagram

assignToClass

assignToNoClass

97

Deliverable

10

for class

enter class

19

98

Deliverable
10

Actr Gosary

actor list

Actor

21

(actor name
actor definition

enter name

change name
enter definition

change
definition

delete actor

99

Deliverable
10

Numerical URS
22

Requirement Numbered
Text Requirement
24 25

type numbei
theText theText

create
create delete
delete edit

edit

100

Deliverable
10

Numerical SRS
26

Requirement
Text

24

101

Appendix 3

Design Diagrams

The design diagrams further refine the real-world OC's specified in the analysis diagrams.

In addition, the library classes and the user interface O/C's are incorporated. The

relationships between the O/C's are either client-server or inheritance.

102

1 obtains staMainSeutFeue

opens

login~terestartt

Login~roupnindo

openWith:
starts

initializeWith:
okPushed

User

12

addToList:withPassword: withGroupList: withAccess

changeName:to:
getAccess:
getGroups:
getNames

getPassword:
nameExists:

removeFromList:
setAccess:
setGroups:

setPassword:
theUser inGroup:

find:

verifyName:

103

opensopenWith:

initializeWithGroup:
okPushed

setPermissions
For

Group
5

setPermissions:forDeliverable: withPermissions:
getPermissions:forDeliverable:

groupExists:withDeliverable:
find:

104

MainMenu F SetSecurity
3 6

opens

initialize

okPushed

setSecu ity

rSecurityFeature
setState:

getState

L--j

105

0

°'

AddUser
8

open With:

initialize
initializeWithName:

addUser

opens

opens

Delete User
9

initialize
okPushed

changedSelection

add
user

MainMenu
3

open

Change User
10

open With:
open

initialize
initialize Wi thN ame:

changeUser
changedSelection

user

ViewUser
11

initialize
changedSelection

open

addProduct: for: with: startingO n:
removeFromList:

getNames

nameExists:

find:

operate on a
release

Release
14

addRelease:for:with:startingOn:
changeRelease:for: with:startingOn:endingOn:

getEndDate:for:
getEndedReleases:

getManager:for:
getMultipleReleases

getStartDate:for:
getReleases:

removeFromList:
removeFromList:for:Release:

getLastRelease:
getReleases:

getProductRelease:for:
find:

releaseExists:

107

opens

StartRelease
15

0 open 00

initialize
startRelease

changedSelection

starts

MainMenu
3

DeleteRelease
16

initialize
deleteRelease

open

changedSelection

deletes

ChangeRelease
17

open

initialize
changeRelease

changedSelection

S tartProduct
18

0
\0

initialize
startProduct

starts

MainMenu
3

DeleteProduct
19

initialize
deleteProduct

open

changedSelection

removes

View Product
20

open

initialize
changedProductList
changedReleaseList

0

MainMenu
3

getCurrentU ser

Agenda Window
23

theCompletedS tatus

opens

opens

Agenda
28

SelectProductWindow
21

open With:

changedProductList
changedReleaseList

initialize With:
okPushed

SelectProdForAgenda
22

okPushed

getCompletedStatusFor:
setCompletedStatusTo:forPhase:

Agenda Window
23

initializeAnalysis:
ini tializeAnal ysisCompletion:

initializeDesign:
initializeDesignCompletion:

initializelmplementation:
initializelmplementationCompletion:

initialize Planning:
initializePlanningCompletion:

initializeWith:withRelease:
anal ysisPushed
designPushed

planning Pushed
implementationPushed

okPushed

open With:

PlanningAgenda Window
24

open With:withRelease:

initializelterationPlan:
initializeReview:

initializeWith:withRelease:

AnalysisAgenda Window
25

ImplementationAgenda Window
27

open With:withRelease:

initializeTestReport:
initialize With:withRelease:

DesignAgenda Window
26

open With:withRelease:

initializeDesignDiagram:
initializeCIDiagram:

ini tializelnheri tanceDiagram:
ini tializeContractDiagram:

initializeObjectChart:
ini tializeReview:

initialize With:withRelease:

open With:withRelease:

ini tializeAnal ysisDiagram:
initializeReview:

initializeSRSpecification:
initialize With: withRelease:

MainMenu
3

opens

SelectProductWindow

21 SelectProdForIDSubWindow

28

okPushed

identify

IdentifySubsystem

29

openWith: withRelease:

applyPushed

add

Subsystem
30

addSubsystem:forProduct:withRelease:
getNamesFor:withRelease:

removeSubsystem:forProduct:withRelease:
setSubsystemName: to:forProduct: withRelease:

find:forProduct:withRelease:

subsystem Exists: forProduct:withRelease:

112

MainMenu
3

oes

SelectProductWindow SelectProdForRmSubWindow
21 31

okPushed

verify

VerifyDeleteS ubsystem
32

openWith: andWindow: andSubsystem:

initializeWith:andWindow:withSubsystem:
okPushed

opens

DeleteSubsystem
133

openWith: with Release:

initialize

changedS election
deleteSubsystem

delete

Subsystem

30

113

MainMenu
3

opens

SelectProductWindow SelectProdForChangeSubWindow
21 34

okPushed

verify

VerifyChangeSubsystem
35

openWith:andWindow:andSubsystem:
andNewSubsystem:

initializeWith:andWindow:withSubsystem:

withNewSubsystem:

okPushed

opens

C36

openWith:with Release:

initialize
delete changedS election

okPushed

Subsystem

30

114

'JI

Deliverable Window
41 opens

View Annotation Window
38

Annotation Window
37

view

openWith:forProduct:withRelease:withNumber:withWindow:
openWith:forProduct:withRelease:withWindow:

find:withNumber:inList:
setNewDeliverable:forProduct:withRelease:withNumber:

clear Pushed
followLink
makeLink

remove Link
savePushed

initializeWith:forProduct:withRelease:withNumber:withWindow:
initialize With:forProduct: withRelease :with Window

Annotation
39

AddLink:forDeli verable :forProduct:withRelease:
AddLink:forDeliverable:forProduct:withRelease:withNumber:

getAnnotationFor:forProduct:withRelease:
getAnnotationFor:forProduct:withRelease:withNumber:

getLinksFor:for Product:withRelease:
getLinksFor:forProduct:withRelease:withNumber:

removeAnnotationFor:forProduct:withRelease:
removeAnnotationFor:forProduct:withRelease:withNumber:

removeLink:For:wi thN umber:for Deli verable:forProduct:withRelease:
removeLink:For:withNumber:forDeliverable:forProduct:withRelease:withNumber:

setAnnota:ionTo:forDeliverable:forProduct:withRelease:
setAnnotationTo:forDeliverable:forProduct:withRelease:withNumber:

annotationExistsFor:forProduct:withRelease:
annotationExistsFor:forProduct:withRelease:withNumber:
findAnnotationFor:forProduct:withRelease:withNumber:
findAnnotationFor:forProduct: withRelease :withNumber:

theLink

DeliverableLink
40

setDeliverableNumber
setDeliverableType

Deliverable Window
41

openOn:and.Release:withSelection:

annotate Deliverable
assignToClass

assignToSubsystem
delete Deliverable

editDiagram
view Annotation

view Diagram
buildVersionMenu With:

changed Deliverable Value
deliverableSelect:
makeCreateMenu

initializeWithProduct:withRelease:
setForDeliverableNotExists:

setForlnitialEntry
setForMultipleExists:

setForMultipleExistsWith:andNumber:
setForNonMultipleExists:

nameNumberPushed
okPushed

operationPushed
versioninfoPushed

versionPushed

Enter Deliverable Window
42

openWith:forProduct:withRelease:withWindow:

okPushed
initializeWith:forProduct:
withRelease:with Window:

EditDeliverable Window
43

deliverable

start

open With:forProduct:withRelease:withNumber:
with Window:with Version:
open With:forProduct:withRelease:with Window:
with Version:

okPushed
actor Pushed

initialize With:forProduct:withRelease:
with Window:with Version
initialize With:forProduct:wi thRelease:
withN umber:with Window:with Version

Deliverable
49

Version
53

-....J

Deliverable Window
41

opens

DiagramB uilder
44

Palette2
46

paintDownArrow
paintLeftArrow

paintRightArrow
paintUpArrow

paintSideAggregate
paintUpAggregate

open With:forProduct:withRelease:withNumber:
with Window:
openWith:forProduct:withRelease:withWindow:

installinSystem
start Version
start Version:

initializeWith:forProduct:withRelease:
withNumber:withWindow:
initializeWith:forProduct:withRelease:
with Window:

start
deliverable

version

uses

Deliverable
49

Version
53

Arrow
45

upArrow
downArrow
leftArrow

rightArrow
sideAggregate
up Aggregate

00

Deliverable Window
41

opens

VersionlnfoWindow
47

opens

open With:and:

okPushed
initialize With :and:

Version
53

Verify DeleteClass
48

open With:andWindow:andDiagram:

initializeWith:andWindow:andDiagram:
okPushed

Verify DeleteSubsystem
32

MuigelieDeliverable

510 49lremoveeeliverableforro<
iestwearler thDe ivrab:f
isstarteliverablef orltiple

ssiggoubyse:foreliverab<

get~ame~o~for~roget~igned~ltatus wforurrodr

sed ge~atsofreliverable~xssbfindDeliverable:e forProduct:withRelease:

geremoveeromoistofororoductwwith~elease:Multiple~eliverable510emoveiferab:forProduct:withRelease: withNuwber:
strt eliverabre: wforProd ct:withRelease e:withNumwber:w

setS tar t oDeliverable: forProduct:wit e ih eae: withNueber:assignaosubsystembforteliverablevforaroductowithdeleaseiwithlumber

gfdealeae or wforProduct:withRelease: wthN um

ee t~urs: forroduct wi:withReeae:

511
geoetieaus: forProduct: withRelease: withNumber:

s gatelvre:ubsys teo:fotReoduct: with~elase: withNumber:wihet

seindtatuofrDeliverable: forProduct:wiheas:witheae: withNumber:

fi n o usyelifo~eiverable:fo odcowt Release withelas:withNumber:

removeaom~ist~orrProduct:withRelease:humber:

assignube~o o ~ lassc:iit elara:fo~lvrbefrrdc~ihees:

gettlassiagramr:orfforroducttwthweleasewitheu

getSgetnlasstigned ooorrforcroducthwithaeeeasetwithbum:

findDeliverable:orrodcthea: with~ueleas :

rieovermlis:forProduct: withRelease:

119

gaerVersion~freieal~o~outwt~lae3 tartVersionFor:forProduct:witRelease:
etoVersionsFor:forProduct: withRelease:

ge too rinforDeliverable:forProduct: w es:withRelease:

getatForV ersion:forDeliverable:forProduct: withRelease:

getLatestVersionFor:forProduct:withRelease:

getVersionNumbersFor: forProduct:withRelease:

addToList:forDeliverable:forProduct:withRelease:

findVersion:forDeliverable:or: forProduct:withRelease:

removeFromListFor:forProduct: withRelease:

verionExistsFor: for eleae:forProduct:withRelease:

MultipleDeliverableVersion

54

startVersionFor:forProduct:withRelease:withNumber:

removeVersionsForlforProduct: withRelease:withNumber:

getAuthorForVersion:forDeliverable: forProduct:withRelease:withNumber:

getDateForVersion:forDeliverable:forProduct:withRelease:withNumber:
getLatestVersionFor:forProduct:withRelease:withNumber:

getVersionNumbersFor:forProduct:withRelease:withNumber:

addToList:forDeliverable: forProduct: withRelease:withNumber:

findVersion:forDeliverable: forProduct:withRelease: withNumber:

removeFromListFor: forProduct:withRelease:withNumber:

DiagramVersion DocumentVersion

55 56

startVersionFor: forProduct: withRelease:

withNumber: withName: start VersionFor: forProduct: withRelease:

wi thNumber: withName: withText:

getTextForV ersion: forDeliverable: forProduct:

withRelease: withNumber:

addToList: forDeliverable: forProduct: with

TestReportVersionl \ Release:withNunber:withNane:withText:

57

120

SingleDeliverableVersion
58

startVersionFor:forProduct: withRelease: withNumber:withText:
getTextForVersion:forDeliverable: forProduct:withRelease:

addToList:forDeliverable:forProduct: withRelease:withText:
verionExistsFor: forProduct:withRelease:

NumericRS
59

S ubsystemRS
60

121

Deliverable Window
41 opens

ActorWindow
63

open With:Product:withRelease:
open WithProduct:withRelease:with Version:

initializeWithProduct:withRelease:
with Version:

N
N

ActorGlossary
61

startVersionForProduct:withRelease:withActor:
getActorLis tFor: forProduct:wi thRelease:

getActorNamesFor:forProduct:withRelease:
setActorTo:forVersion:forProduct:withRelease:

getDefinitionFor:forVersion:forProduct:withRelease:

addToList:forProduct:withRelease:withActor:
actorExists: forVersi on: forProduct:withRelease:

removeActor:forVersion:forProduct:withRelease:
the Actor

changedSelection

Actor
62

setDefinition:
setName:

Deliverable Window
41

TestReportWindow
64

apply Pushed
removePushed

Test Case
66

setDefinition:
setNumber:

theTest Case

Actor Window
63

operates on

TestReport Version
65

startVersionForProduct:withRelease:withNumber:withTestCase:
getTestCasesFor:forProduct:withRelease:withNumber:

getCaseN umbersFor:forProduct:wi thRelease:withN umbers:
setTestCaseTo:forVersion:forProduct:withRelease:withNumber:

getTestCaseTextFor:forVersion:forProduct:withRelease:withNumber:

addToList:forProduct:withRelease:withTestCase:
testCaseExists:forVersion:forProduct: withRelease:

removeTestCase:forVersion:forProduct:withRelease:

NumericRS
59

getPostfixFor:forProduct:withRelease:
getPrefixFor:forProduct:withRelease:

getRequirementFor:forVersion:forProduct:withRelease:
getRequirementNumbersFor:forProduct:withRelease:

getRequirementsFor:forProduct:withRelease:
setPrefixTo:forVersion:forProduct:withRelease:
setPostfixTo:forVersion:forProduct:withRelease:

setRequirementTo:forVersion:forProduct:withRelease:

addToList:forProduct:withRelease:withRequirement:
requirementExists:forVersion:forProduct:withRelease:

removeRequirement:forVersion:forProduct:withRelease:

the
requirement

the
requirement

text

Deliverable Window
41

Requirement Window
67

open With:Product:withRelease:
open WithProduct:withRelease:with Version:

Requirement
68

RequirementText
69

initialize WithProduct:withRelease:with Version:
changedSelection

setNumber:
setText:

setType:
setText:

postfixPushed
prefixPushed

removePushed
apply Pushed

SubsystemRS
60

getPostfixFor:forProduct:withRelease:withNumber:
getPrefixFor:forProduct:withRelease:withNumber:

getRequirementFor:forVersion:forProduct:withRelease:withNumber:
getRequirementNumbersFor:forProduct:withRelease:withNumber:

getRequirementsFor:forProduct:withRelease:withNumber:
setPrefixTo:forVersion:forProduct:withRelease:withNumber:
setPostfixTo:forVersion:forProduct:withRelease:withNumber:

setRequirementTo:forVersion:forProduct:withRelease:withNumber:
start VersionFor:forProduct:withRelease:withNumber:

remove VersionsFor:forProduct:withRelease:withNumber:
getAuthorForVersion:forDeliverable:forProduct:withRelease:withNumber:

getDateForVersion:forDeliverable:forProduct:withRelease:withNumber:
getLatestVersion:forProduct:withRelease:withNumber:

getVersionNumbersFor:forProduct:withRelease:withNumber:

addToList:forProduct:withRelease:withNumber:withRequirement:
require mentExi sts :for Version: for Product:wi thRelease :withN umber:

rernoveRequirernent:forVersion:forProduct:withRelease:withNumber:
findVersion:forDeliverable :forProduct:withRelease:withNumber:

rernoveFrornListFor:forProduct:withRelease:withNurnber:
operates

on

the
requirement

the
requirement

text

Deliverable Window
41

opens

SubsystemRequirementWindow
70

postfixPushed
prefixPushed

removePushed
apply Pushed

Requirement
68

RequirementText
69 Requirement Window

67

MainMenu
3

opens

CreateClass
71

openWithCategory:

126

	A CASE tool supporting the MOSES development methodology
	Recommended Citation

	tmp.1580419793.pdf.6W6BQ

