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ABSTRACT

In 2017, a major global study (EY FinTech Adoption Index 2017) was undertaken that included
20 markets and over 22,000 online interviews. The primary goal was to provide a global
perspective on financial usage (FinTech). The basic finding was that on average 1 in 3 digitally
active consumers use 2 or more FinTech services. That is significant enough to suggest that
FinTech has reached early mass adoption. A common assumption is that FinTech firms struggle
to translate innovation and great customer experience into meaningful numbers. The initial
findings reflect considerable consumer appetite for new and innovative financial service
products that take advantage of new consumer technologies, such as mobile and cloud. This
trend is especially true in the historically underserved emerging markets, with China and India
leading FinTech adoption across the study. The purpose of this extension is to perform an
analytical study, via R-language, a detailed study answering the following questions:

Question 1: Choose three useful metrics that you would use to assess Financial Technology
Usage. Why did you choose them?

1. Used a mobile phone or the internet to check account balance in the past year (mobile balance).

2. Used a mobile phone or the internet to access an account in the past year. (mobile account)

3. Used the internet to buy something online in the past year (B2C).

Question 2. Are there some interesting correlations between Financial Technology Usage metrics and
other factors? What do they mean for policy and practice?

During our attempt to identify the three financial technology usage metrics, we identified
several potential candidates and other metrics we expected to indicate economic strength and
conversely the need for economic development. It was by comparing all of these correlations
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that we settled upon the three above metrics. These correlations are based on data from all
three years included in the dataset. The metric indicating having borrowed for a business or
farm was weakly correlated with other positive non-technology usage metrics. Therefore, we
decided to look at correlations for each year separately. This resulted in no usable data for
2011 and approximately half the amount of correlations produced for 2014 compared to our
aggregate correlation results. 2017 yielded data very similar to the aggregate. Interestingly
enough, 2014 showed that having borrowed for entrepreneurial reasons was negatively
correlated with some of the other positive metrics and positively correlated with the strongest
negative metric, having borrowed for medical expenses. However, 2017 data shows the exact
opposite correlation pattern of being strongly correlated with the other positive metrics and
strongly negatively correlated with other negative metrics. Additionally, the positive metrics of
mobile/internet access to an account, credit card usage and ability produce emergency funds all
exhibit a weaker correlation with the barrier metrics when compared to the other positive
metrics indicating a lesser sensitivity to these barriers. Lastly, the strongest indicator of the
need for economic improvement is percentage having borrowed for medical expenses which
exhibits the strongest negative correlation to the positive metrics and a positive but less strong
correlation to the other negative metrics.

Question 3. Are there differences in Financial Technology Usage across countries or regions?

We decided to divide countries into 4 income levels (i.e., high, upper middle, lower middle, and
low) and selected representative countries for each level. In general, as the number of accounts
established, the 3 metrics (i.e., mobile balance, mobile account, B2C) also increased. The higher
the countries’ wealth, so does account established. There were a few exceptions, such as Kenya
and Zimbabwe. For example, Kenya’s world-leading mobile-money system (M-PESA which was
established in 2007) it is now used by over 17m Kenyans. This is equivalent to more than 67% of
the adult population and about 25% of the GDP flows through it.

High Income

e Estonia

e |[srael

e United States
Upper middle income

® Argentina

e Croatia

e Gabon
Lower middle income
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e Kenya
e Honduras
e Moldova

Low income
e Rwanda
e Zimbabwe
e Haiti

Question 4: What are some of the factors that you think may drive Financial Technology Usage around
the globe? How would you assess them? Explain your choice of technique and be explain 5
interesting results from your Practical Analytical use?

Adoption of Mobile Phones:

e High adoption of mobile phones in country gives rise to the scenario of an
individual to make use of online/mobile services provided financial
institutions or mobile money providers

e We can assess mobile phone adoption by looking at the internet usage in
the country or phone call/SMS activity.

Presence of Non-Traditional Financial Institutions:

¢ In countries where accessibility to local financial institutions is not great or
cost for opening an account in a traditional financial institution is too costly,
presence of other options such as mobile money providers increase the use
of financial activity through individuals mobile phone

e We can assess this looking at the population of mobile money accounts
owned by a country.

Employment Rate:

e Higher employment rate leads to individuals having a source of income that
allow them to participate in activities such as savings, purchasing, etc. which
all require the use of a account from a financial institution or mobile money
provider.

e Low employment rates in countries tend to lead to individuals not having an
account, which is especially true for developing countries.
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e We can assess employment rate by using surveys conducted by Census
Bureau that collect nationwide information.

Account Accessibility/Convenience:

e Individuals with an account but don’t use it often do because services
associated with their account are expensive or not convenient enough for
them to user in their daily lives.

e If financial institutions improve the capabilities of the services they provide
with their accounts, which would convince individuals to use their accounts
more to perform various financial activities.

e We can assess this by conducting surveys and collecting feedback from
account owners about how they use the account and for what activities
they would like to use the account for.

Desire to Access Global Marketplace:

e Items not available locally

e Cheaper prices from online sellers

e Asses via percentage reporting making a purchase over the internet in the
last year

Question 5. Suggest and Present 5 Recommendations.

1. Ensure access to health insurance in all countries to reduce the percentage reporting having
borrowed for medical expenses.

2. Implement cost controls to ensure fair and consistent pricing for medical services/drugs
regardless of health insurance coverage to reduce the percentage reporting having borrowed
for medical expenses.

3. Require all governments to issue required identification documentation so that citizens may
open an account.

4. Incentivize financial institutions to offer micro loans in low income countries for very specific
short term needs which help in dealing with the most significant barrier to owning an account.
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Model Interpretations & Assumptions

- Oy 2017 data were selecied win regloral
Sggregations remaed.

- Dependent varible were muRlplied by 100 (ranges
from 0-100).

- Independent \ariabkes were noMalzed and Imputed.
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Model Development

Steps to develop model predicting Fin Tech Usage Metric:

Test modsels candidate dependant vansbles.

Compare adjusted R-sguared values of candidate models to determine the maxinmuem
wariability explained for a3 specific dependant warisble by the s=lect=d indzpendant
warisbles.

Select most important independent warisbles and create s new model using only those
selected variables and obssarve the decrease in vansbility.

If this decrease is acceptable, create 3 new model using thess s=lect=d ind=pendant
warisbles, exploring the demographic granularties.

Metrics and Data Analytics

Four Types of Analytics

Diagnostic Prescvptive
Analytics Analytics
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Modeling Results: check_bal ~.
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Modeling Results: access~.
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Malysis of variance Table
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Modeling Results: check_bal ~ own + access + bill_pay

Call:

analysts of varismce Table
Ini{formula = check_bal ~ ogen & access & bill_pay, data = gf20d7) "
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Modeling Comparison

- Check bal~. Adjusted R-squared = 0.9578 /,~—| 5
A

- Access~ Adjusted R-squared = 0.5550 ?
- Check_bal ~ own + access + bil_psy  Adjusted R-sguared = 09453 4

|-V
- Elimination of 18 vanables results in less than 1% decreasse in adjested f f‘lﬁ"’ \/

R-squared. FINTECH
Financian Tecrsowocy

- Eliminate 15 varisbles 3= before, except use all demographic subssets
for sccownt ownsrship instesd of the sggregate warisble.
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Modeling Results: check_bal ~ own(all subsets) + access + bill_pay

call; analyiis of variasce Table
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Madeling Comparison

- Check_bal ~ 20 varisbles
Adijusted R-squared = 0.9578

- Check_bsl ~ own + acoess + bill_pay Adjust=d R-
squared = 0.9453

- Check_bsl ~ own{all subssts) + sccess + bil_pay Adjusted R-sguared = 0.9475

- Intreduction of all demographic subsets of sccount ownership results in a 0.0018
reduction to adjusted Rl-sguarsd

- However, p-values for slmost sll of the coefficients for the demographic subsets of
acoount cenership imphy the cosfficient should be zero. Because we are taking ons
significant varnsble and decomposing itinto 10 varnables, this outcoms is plausible. |F
the numbsr of samples ware incresssd, it is likehy that 3 portion of thess variables would
b=come significant.
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Percentage reporting using mobilefintemst to check an
account balance is manginslhy maore sensitive to male account

ownership. Could be result of fewer female account holders in
global dats

Similar results for in and out of labor force and richest 80
poorest 40

Percentage reporting wsing mobilefinternat to check an
scoount balance is significanthy more sensitive to sccount
ownership of adults 25+, Could be the result of barmiers facing
young adult fin. tech. acoess

The sensitivity to edecation level is slmost exacthy the sams
bwrt affect balance checking in opposite directions

Rural account owners resultin 3 lesser percentage reporting
using mobilefinternset to check an sccount balance

Positive relationships include access (HS), Internat
purchases(HS), bill pay (HS),debit purchases (S), homs
kans (HS)

Negsative relationships include saving for retirement (HS).

-—

Model Interpretations: check_bal ~ own(all subsets)+access + bill_pay

Coefficients:

Estimate
(Intercept) 24,6746
acc_male =0, 8008
ace_in_labor -2, 3556
acc_out_labor =1.0830
acc_fem -8.5474
acc_young_adult 3.4710
acc_older_adult 18,2119
acc_ed_below_hs 0.5553

acc_ed_hs_or_above -0,5%808
acc_inc_poorest_a0  5.2585
acc_inc_richest_60  4,9514

acc_rural -4. 3566
ACCESS 2.1219
bi 1l _pay 16.7333

Model Interpretations - check balances
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Model Interpretations - check balances

Business/Policy Recommendations via Check Balances

Fositive relationships include own (HS), check balances
(HS), bill pay {HS), account utilities (HS), debit purchases
(HS), NSF (HS).

Negative relationships include debt purchases (HS), too
expensive (MS).

Emphasis on routine/short-term purchases and NSF
protection.

Less emphasis on long-term planning and retirement
an initiative, much re-educsation to do).
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Trends inFin Tech

Reflected in current dataset:

- Massive Investments in Digital Transformation.,

- Blockchain and artificial inteligence (Al) will continue to disrupt the financisl services industry.
Shifting to digital channsls, digital-only players will pose more and more challenges.

Online lending technology and streamlined lending processes — made room for slternative lenders.
Gain meaning from larger and larger volumes of regulstory data and analytics.

Fintech companies are becoming players in the “customer's journey.”

Big Data is getting bigger.
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