
ABSTRACT

Title of dissertation: QUANTUM ALGORITHMS FOR
DIFFERENTIAL EQUATIONS

Aaron Jacob Ostrander, Doctor of Philosophy,
2019

Dissertation directed by: Professor Andrew Childs
University of Maryland Institute for Advanced
Computer Studies

This thesis describes quantum algorithms for Hamiltonian simulation, ordinary differ-

ential equations (ODEs), and partial differential equations (PDEs).

Product formulas are used to simulate Hamiltonians which can be expressed as a sum

of terms which can each be simulated individually. By simulating each of these terms in

sequence, the net effect approximately simulates the total Hamiltonian. We find that the

error of product formulas can be improved by randomizing over the order in which the

Hamiltonian terms are simulated. We prove that this approach is asymptotically better than

ordinary product formulas and present numerical comparisons for small numbers of qubits.

The ODE algorithm applies to the initial value problem for time-independent first order

linear ODEs. We approximate the propagator of the ODE by a truncated Taylor series,

and we encode the initial value problem in a large linear system. We solve this linear

system with a quantum linear system algorithm (QLSA) whose output we perform a post-

selective measurement on. The resulting state encodes the solution to the initial value

problem. We prove that our algorithm is asymptotically optimal with respect to several

system parameters.

The PDE algorithms apply the finite difference method (FDM) to Poisson’s equation,

the wave equation, and the Klein-Gordon equation. We use high order FDM approxima-

tions of the Laplacian operator to develop linear systems for Poisson’s equation in cubic

volumes under periodic, Neumann, and Dirichlet boundary conditions. Using QLSAs, we

output states encoding solutions to Poisson’s equation. We prove that our algorithm is ex-

ponentially faster with respect to the spatial dimension than analogous classical algorithms.

We also consider how high order Laplacian approximations can be used for simulating the

wave and Klein-Gordon equations. We consider under what conditions it suffices to use

Hamiltonian simulation for time evolution, and we propose an algorithm for these cases

that uses QLSAs for state preparation and post-processing.

QUANTUM ALGORITHMS FOR DIFFERENTIAL EQUATIONS

by

Aaron Jacob Ostrander

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Andrew Childs, Chair/Advisor
Professor Chris Monroe, Co-Advisor
Professor Alexey Gorshkov
Professor Mohammad Hafezi
Professor Xiaodi Wu

c© Copyright by
Aaron Jacob Ostrander

2019

Dedication

If I have seen farther than others, it is because of my collaborators.

ii

Acknowledgments

I owe a great deal to my advisor, Andrew Childs, who has given me an immense amount

of intellectual freedom to work on a very large array of problems and collaborate with other

scientists at QuICS and JQI. Throught his advising and his courses I have gained a broad

view of theoretical quantum computing, the scope of which cannot be reflected in just this

thesis. He has also consistently supported me throughout my time at QuICS even when life

was exceedingly difficult.

About a month after I started at QuICS, I began working with Guoming Wang, who

taught me a great deal about the basics of quantum algorithms and complexity theory.

Over two years, he helped provide me with a strong foundation in the field.

I thank Chris Monroe for being my departmental advisor and giving me the opportunity

to pull my head out of the theoretical clouds and see how a theorist can work in a lab.

I thank Dominic Berry, Stephen Jordan, and Carl Miller for the opportunity to work

with them. I also thank Brad Lackey for many stimulating conversations over the years.

I thank the members of the committee, Alexey Gorshkov, Mohammad Hafezi, and

Xiaodi Wu, for agreeing to read and critique my thesis. A writer needs an audience.

I thank Bill Fefferman, Shelby Kimmel, Cedric Lin, and Julien Ross, who were post-

docs when I joined QuICS and who were very supportive of the new graduate students.

I thank my other collaborators, Pedro Costa, Amir Kalev, Yuan Su, Jin-Peng Liu, Car-

oline Figgatt, Kevin Landsman, and Norbert Linke.

I thank Linda Macri, Heather Blain Vorhies, and the many fellows of UMD’s Gradu-

ate Writing Center for helping me grow as a writing consultant and writer. I thank Dave

Buehrle for being a great boss during the time I worked as a teaching assistant.

iii

Table of Contents

Dedication ii

Acknowledgements iii

1 Introduction 1
1.1 Hamiltonian Simulation . 2
1.2 QLSAs . 4
1.3 Outline . 9
1.4 Additional Research . 10

2 Hamiltonian Simulation by Randomization 11
2.1 Product Formulas . 11
2.2 Randomized Algorithms . 12
2.3 The First Order Case . 13
2.4 Randomized Operators . 15
2.5 Error . 17
2.6 Main Result . 18
2.7 Comparison of Algorithms . 20

3 Ordinary Differential Equations 24
3.1 Previous Quantum Algorithms . 25
3.2 Linear Systems for ODEs . 26
3.3 Condition Number . 30
3.4 Approximation Error . 34
3.5 Success Probability . 36
3.6 State Preparation . 37
3.7 Main Result . 38

iv

4 FDM for Poisson’s Equation 42
4.1 Finite Difference Formulas . 42
4.2 Previous Quantum Algorithms . 44
4.3 FDM Linear Systems . 45
4.4 Condition Number . 47
4.5 Error Analysis . 50
4.6 FDM Algorithms for Poisson’s Equation 51
4.7 Boundary Conditions via the Method of Images 53
4.8 First Order PDEs . 56

5 FDM for the Wave and Klein-Gordon Equations 59
5.1 Second Order Equations with First Order Algorithms 59
5.2 Factoring Graph Laplacians . 62
5.3 Boundary Conditions and Mass Terms . 63
5.4 Higher Order Laplacians . 66
5.5 Multiple Dimensions and Non-Convex Domains 70
5.6 Initial Conditions . 71
5.7 Post-Processing . 72
5.8 Complexity Analysis . 73
5.9 Comparison to ODE approaches . 74

6 Conclusion 76
6.1 Summary of Results . 76
6.2 Progress on Randomization for Hamiltonian Simulation 77
6.3 Progress on ODEs . 78
6.4 Nonlinear Differential Equations . 78
6.5 Other Open Questions . 80

A BPP-hardness of Laplacian Linear Systems 83

B Riccati Equation Algorithm 86
B.1 Linearizing the Riccati Equation . 86
B.2 Qubitization and Matrix Inversion . 87
B.3 The Full Algorithm . 88
B.4 Radon’s Lemma . 89

Bibliography 91

v

List of Figures

1 Numerical comparison and lines of fit for deterministic and random prod-
uct formulas of the same order. Error bars (when included) account for
error from sampling over a limited number of instances of Heisenberg spin
models. Figure from Ref. [28] credit to Yuan Su. 23

2 Elementary exponential counts for 4th/6th order deterministic/random prod-
uct formulas. Solid markers indicate analytically proven bounds, and open
markers indicate numerical estimates. The sixth order empirical data al-
most completely overlap. Figure from Ref. [28] credit to Yuan Su. 23

3 Wave propagation in non-convex domain. Subfigure a) shows the initial
condition, and b), c), and d) show the field at later points in time. Figure
from Ref. [33] credit to Pedro Costa. 71

vi

Chapter 1: Introduction

It is a truth universally acknowledged, that anything written about quantum simulation

must begin with the quote

“... nature isn’t classical, dammit, and if you want to make a simulation of

nature, you’d better make it quantum mechanical...” - Richard Feynman [42]

from the keynote where Feynman first proposed using quantum computers to simulate

quantum mechanics. This thesis presents algorithms to simulate Hamiltonians and to sim-

ulate systems described by differential equations other than Schrödinger’s equation. In par-

ticular we will consider algorihtms for linear ordinary differential equations (ODEs) and

linear partial differential equations (PDEs). Most of these algorithms appear in previous

publications, namely Refs. [16, 28, 33], and a forthcoming article on PDEs with Andrew

Childs and Jinpeng Liu.

Hamiltonian simulation has received a great deal of attention, from Lloyd’s original al-

gorithm for local Hamiltonians [67] to the more recent quantum signal processing approach

of Low and Chuang [68]. Hamiltonian simulation is an algorithmic primitive that is used

for a variety of other algorithms, including quantum linear systems algorithms (QLSAs)

which appear throughout this dissertation. We use QLSAs as primitives for the ODE and

PDE algorithms; in fact the ODE algorithm amounts to solving a cleverly designed linear

system and then post-selecting. QLSAs will also be used in the pre- and post-processing

steps of certain cases of the wave equation algorithm. QLSAs provide a crucial perspective

1

for studying finite difference operators in other partial differential equation algorithms.

1.1 Hamiltonian Simulation

We state the problem of Hamiltonian simulation as follows.

HAMILTONIAN SIMULATION (GENERAL STATEMENT): Given the ability to produce an

initial state |ψ0〉, a Hamiltonian H, an evolution time T , and an error parameter ε , output a

state that is ε close to exp(−iHT)|ψ0〉.

There are several details left out of this statement: How is the initial state prepared?

How do you compute the Hamiltonian? What norm is used to measure the distance between

states? Initial states of interest must be efficiently preparable, and for our purposes it is

sufficient to assume that we can implement a state preparation oracle, ie, an efficiently

implementable unitary Uprep such that Uprep|0〉⊗n = |ψ0〉. Note that the problem is how to

implement a unitary, not a quantum channel, which requires the simulation of a Lindblad

master equation.

There are many norms that can be used to measure the distance between states. Since

pure states exist in a Hilbert space, it is natural to use the `2-norm. For mixed states, the

distance between density matrices can be measured using fidelity or trace distance [74]. In

Chapter 2 we will use the diamond norm, which is actually a distance measure for quantum

channels which implies an error bound on the states output by the channel. This is because

the algorithm we present outputs a distribution of states generated by an algorithm using

classical randomness.

The first breakthrough algorithm in Hamiltonian simulation appears in Ref. [67], which

proposes using product formulas [89] to simulate local Hamiltonians, ie, Hamiltonians

which can be expressed as a sum of other Hamiltonians each of which acts on a limited

number of qubits. Moving beyond the local model of Hamiltonians, Ref. [4] proposed

2

the first algorithm for sparse Hamiltonians, ie, Hamiltonians with a constant number, d, of

efficiently computable non-zero entries in each row/column.

The sparse model of Hamiltonians makes use of two oracles for computing the locations

and values of non-zero entries [15]. Formally, the entry location oracle acts as OA1| j, l〉=

| j,ν(j, l)〉 where ν(j, l) is the column index of the lth non-zero entry in the jth row. The

entry value oracle acts as OA2| j,k,z〉 = | j,k,z+A j,k〉. In general we might only refer to a

single query oracle OA ≡ |0〉〈0|⊗OA1 + |1〉〈1|⊗OA2 which can implement OA1 and OA2

with only a single control qubit. The number of times an algorithm usesOA1 andOA2 is the

query complexity of the algorithm and constitutes an efficiency measure of the algorithm.

The time complexity of an algorithm can be taken to be (without loss of generality) the total

number of 1 and 2-qubit gates (eg H,T, and CNOT) used in the circuit implementing it.

Since the pioneering Hamiltonian simulation algorithms of Refs. [4, 67], several im-

provements have been made in the asymptotic query and time complexity of these algo-

rithms, specifically how they scale with the evolution time, the sparsity, and the error. Ref.

[24] achieved linear scaling in t but polynomial scaling in 1/ε , which was improved on by

Refs. [13–15] which achieved O(log(1/ε)) scaling. Ref.[13] uses the linear combination

of unitaries (LCU) technique of Ref. [62] to approximate the Taylor series of exp(iHt).

Ref. [15] also uses a LCU where the unitaries are quantum walk operators. Ref. [12]

was the first algorithm to achieve linear scaling in the sparsity, O(d), and also considered

the complexity of simulating non-sparse Hamiltonians and implementing general unitaries

(possibly non-sparse) given oracle access to their entries.

Although the previously mentioned algorithms scale optimally with respect to either

t or ε individually, they mutually scaled multiplicatively (eg Õ(t log(1/ε))) when addi-

titve scaling (Õ(t + log(1ε))) is not ruled out by a no-go theorem. This additive scaling

was achieved in Ref. [9], which builds on the quantum walk algorithm of Ref. [15], and

in Refs. [68, 69], which provide algorithms in the block encoding model (qubitization or

3

quantum signal processing (QSP)). In the block encoding model, one considers implement-

ing Hamiltonians, H, which are subblocks of a unitary operator, eg, U =

[
H A
B C

]
where

A,B, and C are only restricted by the fact that U is unitary. This is modeled using an ora-

cle OG, which acts as OG|0〉m = |G〉, and a (n+m)× (n+m) unitary U . Then the n× n

Hamiltonian which is simulated can be expressed as 〈G|U |G〉 where the inner product is

understood to be an isometric projection of U .

While the asymptotic complexity of an algorithm is important for designing efficient al-

gorithms, the exact number of gates needed to implement the algorithm is what matters in

practice. Ref. [27] empirically estimates the efficiency of various Hamiltonian simulation

algorithms when applied to n-qubit Heisenberg spin chains (H = ∑
n
i=1 Xi⊗Xi+1 mod n +

Yi⊗Yi+1 mod n +Zi⊗Zi+1 mod n + riZi with ri randomly sampled from [−1,1]) for n rang-

ing from ∼ 10 to 100’s of qubits for a fixed error of 10−3. For this benchmark problem,

although the QSP and Taylor series approaches have better asymptotic scaling than product

formula algorithms, product formulas are more efficient in terms of the number of qubits,

T -gates, and CNOT -gates. This kind of comparison is closest to how we numerically

compare deterministic and randomized product formulas in Chapter 2. For a Hamiltonian

H = ∑ j H j, we measure the efficiency by counting the total number of times a unitary of

the form exp(iH jt) is implemented.

1.2 QLSAs

We state the quantum linear system problem as follows.

QUANTUM LINEAR SYSTEM PROBLEM (QLSP) (GENERAL STATEMENT): Given an

oracle to produce a state |b〉 which is proportional to a vector~b, oracle access to the matrix

A, and an error parameter ε , output a state ε-close to |A−1~b〉, the state proportional to A−1~b.

More generally if A is singular, we can consider outputing a state proportional to A+~b

4

where A+ is the Moore-Penrose pseudoinverse of A. In the following quantum algorithms

this applies if~b does not have any support on the null space of A.

The existing QLSAs all use Hamiltonian simulation as a subroutine. If the matrix A is

Hermitian, then A is the Hamiltonian which is simulated. Otherwise, we can transform the

linear system

A~x =~b 7→
[

0 A
A† 0

][
~x
~0

]
=

[
~0
~b

]
(1.1)

so that we can assume without loss of generality that A is Hermitian (with the only overhead

being a single qubit in the formalization of the problem).

Ref. [52] proposed the first QLSA which is now commonly refered to as HHL. It works

by preparing |b〉, applying phase estimation (PE) [60] to A, then performing a controlled

rotation on an ancilla qubit (controlled by the eigenvalue estimated by PE), and then post-

selecting on that qubit being either |0〉 or |1〉 (with only one of these corresponding to

success).

Ref. [52] also proved that estimating observables of solutions of well-conditioned linear

systems is BQP-complete. They construct a linear system whose solution is of the form

∑t αt |t〉|ψt〉 where t indexes the gates of a circuit (possibly identity gates) and |ψt〉 is the

state after the tth gate has been applied. By measuring the t register and post-selecting on a

successful measurement, they produce the state output from a quantum circuit, which can

then be measured. This implies BQP-hardness. The completeness follows from the facts

that the linear system is efficienctly solvable and that the post-selective measurement has

high success probability.

The algorithm proposed in Ref. [52] had query complexity O(κ2) where κ is the con-

dition number of A. This was improved to O(κ) scaling using variable time amplitude

amplification in Ref. [5]. This linear scaling is optimal as was proven in Ref. [52], unless

BQP= PSPACE, since a sublinear QLSA could simulate quantum mechanics in sublinear

5

time, violating the no-fast-forwarding principle [11]. Using the BQP-complete linear sys-

tem problem, they also argue that any quantum algorithm for estimating an entry of |A−1~b〉

can at best have poly(1/ε) scaling unless BQP= PP. This argument however does not rule

out poly(log(1/ε)) algorithms that only produce the state |A−1~b〉. Developing algorithms

with this scaling is beneficial since they can be used as subroutines in algorithms for esti-

mating functions of |A−1~b〉; this reduction in the complexity of subroutines helps reduce

the complexity of the entire algorithm.

This poly(log(1/ε)) scaling for producing |A−1~b〉 is achieved in Refs. [25, 86], which

also propose O(κ) algorithms. Both algorithms of Ref. [25] use the LCU technique [62].

One approximates A−1 as a linear combination of exp(iAt j) terms for various evolution

times t j (essentially as a truncated Fourier series for 1/x). The other algorithm uses a

linear combination of quantum walk operators, which naturally allow for a Chebyshev

polynomial approximation of A−1. The algorithm of Ref. [86] is inspired by adiabatic

computation and only requires a single ancilla qubit (in addition to any ancilla used for

Hamiltonian simulation subroutines).

Some of the previously mentioned QLSAs can also be applied to non-sparse matri-

ces. For example, the Fourier algorithm Ref. [25] only requires the ability to simulate the

Hamiltonian A with high accuracy but with no restrictions on the Hamiltonian model, so a

non-sparse Hamiltonian simulation technique could simply be used as a subroutine. Like-

wise, the Chebyshev approach only requires the ability to perform a certain quantum walk

which is not required to have sparse structure.

Ref. [96] considers inverting non-sparse matrices assuming access to oracles that output

states proportional to the rows of A and a state whose amplitudes are proportional to the

`2 norms of the rows. Their algorithm scales linearly with the Frobenius norm ||A||F=

∑i, j|Ai, j|2, which in the worst case is O(
√

n) for an n× n matrix, so their algorithm in

general only provides a quadratic speed-up. Ref. [96] comments on using the non-sparse

6

Hamiltonian simulation algorithm of Ref. [12] as a subroutine in the HHL algorithm.

There is a very important caveat to make about QLSAs that also applies to the algo-

rithms presented in this thesis: These algorithms ‘solve’ linear systems and ODEs in the

sense that they output a quantum state proportional to the solution; they do not output the

value of every entry of the solution. These states do not encode information about the size

of the solution, but in the case of HHL the `2-norm is proportional to the success probability

of the post-selection step.

This means that if we want to extract any useful information about the solution, we

must make measurements on the state. Because of the additional costs incurred by post-

processing, it is important to specify what kind of output is needed for applications of

algorithms.

One of the first papers to consider the end-to-end application of a QLSA was Ref. [31]

which considered estimating the radar scattering cross section of an object, specifically by

estimating the fraction of energy scattered in a direction input to the algorithm. Although

they don’t give a complete analysis of the complexity of their algorithm, they illustrate

the importance of considering how to estimate a function of interest and not just output

quantum states.

Because this paper did not fully analyze the complexity of their algorithm, it was not

clear what kind of quantum speed-up could be hoped for. Ref. [73] addressed this by

considering the complexity of outputting functionals of the solutions of PDEs up to error ε .

They phrase their results in terms of this error since the error of the output is what matters

in practice (as opposed to, eg, the number of mesh points in a lattice, which are indirectly

related to the error). They argue that for PDEs with a fixed number of dimensions, at most

a polynomical speed-up is achievable. They also present a no-go argument that forbids

estimating an observable of a PDE solution with poly(log(1/ε)) copies of the solution

state, since doing so could distinguish between states that are distance δ apart using only

7

poly(log(1/δ)) copies. As we already mentioned, we can at best hope for poly(1/ε) scaling

for the most general post-processing problem unless BQP= PP [52].

Another linear system based algorithm with a specific output appears in Ref. [94],

which developed an algorithm for estimating effective resistance, but the computational

hardness of doing so remained an open question. Although well-conditioned matrix in-

version is BQP-complete [52], estimating effective resistance specifically requires solving

a linear system where the matrix is a graph Laplacian and the input vector only has sup-

port on 2 entries. Subsequently, Ref. [36] presented a probabilistic log-space algorithm

for Laplacian linear systems that may be time efficient depending on parameters such as

the error tolerance; complementing this, Refs. [37, 38] studied BPL-completeness of ap-

proximating Laplacian eigenvalues. Motivated by these results, Appendix A argues for the

BPP-hardness of inverting exponentially large Laplacian linear systems and corresponds

to estimating a multiterminal effective resistance.

Ref. [55] developed a recommendation system algorithm. It takes as input a customer

and a preference matrix indicating which customers prefer which goods, and it outputs a

good which the input customer is likely to prefer. This algorithms is based on the singular

value decomposition of the preference matrix, which is assumed to be low rank. At the time

of its proposal, this algorithm performed faster than existing classical algorithms. Drawing

inspiration from this quantum algorithm, Ref. [90] presented a classical algorithm for the

same problem assuming access to the same data structure. One the one hand this is a perfect

demonstration of the importance classical lower bounds for the purpose of proving quantum

speed-ups; on the other hand, it is a success story about quantum approaches motivating

classical methods. Ref. [48] applied similar techniques for sampling from the inverse of a

low rank matrix.

8

1.3 Outline

The previous section reviewing Hamiltonian simulation is by no means comprehensive

(eg it doesn’t mention algorithms for quantum chemistry or quantum field theories) but is

intended to give an idea of the figures of merit relevant to assessing our algorithms (time

and query complexity, elementary exponentials). The previous section on QLSAs gives

an overview of their development over the last decade. See Ref. [35] for a pedagogical

introduction. In each subsequent chapter we review the literature relevant to the class of

DEs addressed in that chapter.

Chapter 2 presents results for simulating Hamiltonians using randomized Lie-Suzuki-

Trotter product formulas based on Ref. [28]. Deterministic product formulas produce

coherent errors. By randomizing over product formulas we generate a distribution of states

averaged over certain coeherent errors, which reduces the total error of the output state.

Chapter 3 presents an algorithm for simulating (solving the initial value problem) linear

time-independent ODEs of the form d~x
dt = A~x+~b based on Ref. [16]. This involves con-

structing a large linear system whose solution encodes ~x(t) for several values of t. After

producing this state, a post-selective measurement is used to produce a state proportional

to~x(t) at the final time. The time evolution operator exp(At) is approximated using a trun-

cated Taylor series, which has the advantage that the accuracy can scale exponentially in

the truncation order. Analyzing this algorithm requires bounding the approximation er-

rors, condition number of the linear system, and success probability of the post-selective

measurement.

Chapter 4 presents algorithms for linear PDEs which are a component of a paper in

preparation with Andrew Childs and Jin-Peng Liu. We use the finite difference method

(FDM) to approximate Poisson’s equation for u(~x) at X , a finite set of points in the domain.

This implies a linear system which we solve with QLSAs to output a state whose amplitudes

9

encode u(~x) at X . Analyzing this algorithm requires bounding FDM errors and bounding

the condition number of the linear system.

Chapter 5 presents algorithms for the wave equation and Klein-Gordon equation based

on Ref. [33]. We again apply the FDM and show how to transform a second order PDE

into a first order ODE, which can then be solved using existing algorithms. We pay special

attention to the case where the time evolution is simply Hamiltonian simulation, and we

also discuss the role of QLSAs in state preparation and post-processing.

Chapter 6 concludes by discussing recent algorithmic progress, nonlinear differential

equations (NLDEs), and open problems. The Appendices include ancillary material on

linear systems and NLDEs.

1.4 Additional Research

This thesis covers the research I’ve done on differential equation algorithms; however,

in my time at QuICS I’ve worked on other research projects, most of which falls in the

intersection of graph theory and quantum information.

Carl Miller, Amir Kalev, and I studied extensions of the magic square and magic penta-

gram games to more general two-party binary constraint games on graphs [6]. We proved

that the magic square and magic pentagram games are unique in that they are the only

games in this class which certify that Alice and Bob share 2 Bell pairs (for the magic

square) or 3 Bell pairs (for the magic pentagram).

On the experimental side, I did control theory for Chris Monroe’s ‘Gates Lab’ (pri-

marily working with Caroline Figgatt, Kevin Landsman, and Norbert Linke) which uses a

blade trap to form an ion crystal with qubits encoded in electron levels and gates realized

via Raman beams and electron-phonon coupling. We realized the first instance of parallel

entangling gates between two pairs of ions as described in Ref. [43].

10

Chapter 2: Hamiltonian Simulation by Randomization

We first briefly review product formulas. We then present the randomization lemma

and illustrate how it can be used in a simple case. We prove technical lemmas pertaining to

how randomizing symmetrically reduces approximation error, and then we prove our main

result. We present numerics projecting how our algorithm compares to normal product

formulas for Heisenberg spin chains with hundreds of qubits, the benchmark system used

in Ref. [27].

We restate the theorems of Ref. [28] verbatim, but for some results we give an intuitive

sketch in lieu of a proof and refer to Ref. [28] or other papers for the technical details.

2.1 Product Formulas

Lie-Suzuki-Trotter product formulas were first applied to quantum algorithms in Ref.

[67] which proposed simulating

exp(−itH) = exp(−it
L

∑
j=1

H j) (2.1)

where each H j can be individually simulated, by applying the unitary (∏L
j=1 exp(−itH j/r))r

for a large integer r. This approximation becomes exact in the limit r→ ∞. This is a first

order formula in the sense that it is accurate to first order in t, ie, the error is O(t2).

Refs. [87–89] provided a recursive method formula for product formulas of arbitrarily

11

high accuracy. We denote the kth order accurate formula by Sk, and they are defined by

S1(λ) :=
L

∏
j=1

exp(λH j) (2.2)

S2(λ) :=
L

∏
j=1

exp(λH j/2)
1

∏
j=L

exp(λH j) (2.3)

S2k(λ) := S2k−2(pkλ)2S2k−2((1−4pk)λ)S2k−2(pkλ)2 (2.4)

where pk := 1/(4− 41/(2k−1)). In general we assume that the target Hamiltonian is H =

∑
L
j=1 H j and use λ in place of−it since these formulas apply generally for λ ∈C. We define

the target operator V (λ) := exp(λH). As in the first order case, V (λ) is well approximated

by applying S2k(λ/r)r. The error from these formulas was bounded in Ref. [27], which

also provides bounds that take advantage of when some of the H j commute pairwise.

2.2 Randomized Algorithms

During the writing of Ref. [28], we became aware of Ref. [99] which presents a ran-

domized Hamiltonian simulation algorithm which is equivalent to the algorithm we present

here for randomizing over first order product formulas to generate a second order accurate

channel. Ref. [76] also proposes a random product formula algorithm for Hamiltonian

simulation. This algorithm is different from ours in that it evolves Hamiltonians in a fixed

order for random amounts of time whereas our algorithm evolves Hamiltonians in a random

order for fixed amounts of time.

Ref. [20] proposes a randomized algorithm for approximate unitary synthesis where,

instead of implementing a unitary using a fixed sequence of 1- and 2-qubit gates, ran-

domized sequences are applied. Ref. [20] uses the following lemma, which is crucial for

12

proving our results.

Lemma 1 ([20, 53]). Let V be a target unitary, with associated channel V(ρ) =V ρV †. Let

a,b > 0 and {U1,U2, . . . ,Un} be a set of unitaries such that

1. for all j ∈ {1, . . . ,n} we have ||U j−V ||≤ a;

2. there exist positive numbers {p j} such that ∑
n
j=1 p j = 1 and ||(∑ j p jU j)−V ||≤ b.

It follows that E = ∑ j p jU j satisfies

||E −V||♦≤ a2 +2b. (2.5)

The feature that makes this Lemma useful is that the channel E has error linear in

the error of the average unitary but quadratic in the error of each U j. Thus, even if the

individual U j are only O(
√

ε) close to V , as long as their average ∑ j p jU j is O(ε) close to

V , the channel will be O(ε) close to V .

2.3 The First Order Case

To see why randomization is useful, we will consider the simple case of a Hamiltonian

with two terms, H =H1+H2. The first order (deterministic) product formula for simulating

H is

S1(λ) = exp(λH1)exp(λH2) (2.6)

= 1+λ (H1 +H2)+λ
2(

H2
1

2
+

H2
2

2
+H1H2)+O(λ 3) (2.7)

which has O((Λ|λ |)2) error where Λ = max{‖H1‖,‖H2‖}. We define its reverse

Srev
1 (λ) = exp(λH2)exp(λH1). (2.8)

13

which also has O((Λ|λ |)2) error, so the error term corresponding to a in Lemma 1 is

O((Λ|λ |)2). If we randomly apply either S1(λ) or Srev
1 (λ), then the error term correspond-

ing to b in Lemma 1 is

‖V (λ)− 1
2
(S1(λ)+Srev

1 (λ))‖= O((Λ|λ |)3). (2.9)

This suggests that the channel corresponding to randomly applying S1(λ) and Srev
1 (λ)

should have O((Λ|λ |)3) error in the diamond norm, improving on the O((Λ|λ |)2) of just

applying S1(λ) or Srev
1 (λ).

The approach above only uses a single bit of randomness, but more generally we can

subdivide the evolution time t into r segments of time t/r, and for each of these segments

we apply S1(−it/r) and Srev
1 (−it/r) randomly, requiring r bits of randomness. The error of

this approach for Hamiltonians with more terms is characterized by the following theorem.

Theorem 1 (Randomized first-order error bound). Let {H j}L
j=1 be Hermitian matrices. Let

V (−it) := exp
(
−it

L

∑
j=1

H j

)
(2.10)

be the evolution induced by the Hamiltonian H = ∑
L
j=1 H j for time t ∈ R. Define

S1(λ) :=
L

∏
j=1

exp(λH j) and Srev
1 (λ) :=

1

∏
j=L

exp(λH j). (2.11)

Let r ∈ N be a positive integer and Λ := max||H j||. Then

||V(−it)− 1
2r (S1(−it/r)+S rev

1 (−it/r))r||�≤
(Λ|t|L)4

r3 exp
(

2
Λ|t|L

r

)
+

2(Λ|t|L)3

3r2 exp
(

Λ|t|L
r

)
(2.12)

where, for λ = −it, we associate channels V(λ), S1(λ), and S rev
1 (λ) with the unitaries

V (λ), S1(λ), and Srev
1 (λ), respectively.

14

The proof of this makes use of Lemma F.2 from Ref. [27].

Lemma 2 ([27]). For any x ∈ C and κ ∈ N, we have

∣∣∣∣ ∞

∑
s=κ

xs

s!

∣∣∣∣≤ |x|κκ!
exp(|x|). (2.13)

This lemma is used to bound the total error in Taylor expansions such as those appearing

in Eqns. 2.6, 2.8, and 2.9 for λ = −it/r. Next the subadditivity of the diamond norm is

applied for r applications of V(−it/r).

2.4 Randomized Operators

In our algorithm, the quantum channel simply consists of applying product formula

unitaries for H = ∑ j H j with the order of the H j terms rearranged. Generically such an

operator takes the form

exp(q1λHπ1(1))exp(q1λHπ1(2)) · · ·exp(q1λHπ1(L))

exp(q2λHπ2(1))exp(q2λHπ2(2)) · · ·exp(q2λHπ2(L))

...

exp(qκλHπκ (1))exp(qκλHπκ (2)) · · ·exp(qκλHπκ (L))

(2.14)

where the q j are real numbers, and the π j are permutations in Sym(L), the symmetric group

on L items, over which the channel randomly samples permutations. We state a technical

15

lemma for the average of this kind of operator over Sym(L), namely the average

1
L! ∑

σ∈Sym(L)
exp(q1λHσ(π1(1)))exp(q1λHσ(π1(2))) · · ·exp(q1λHσ(π1(L)))

exp(q2λHσ(π2(1)))exp(q2λHσ(π2(2))) · · ·exp(q2λHσ(π2(L)))

...

exp(qκλHσ(πκ (1)))exp(qκλHσ(πκ (2))) · · ·exp(qκλHσ(πκ (L))).

(2.15)

The order λ s term in this operator’s Taylor expansion contains products of s H j’s. We define

it as a sum of a degenerate term and a nondegenerate term. The part of the order λ s term

where these H j are pairwise distinct is known as the nondegenerate term; the remaining

part (where at least one H j appears twice in each contribution) is the degenerate term.

Lemma 3 (Randomization lemma). Define an average evolution operator as in Eqn. 2.15

and let s≤ L be a positive integer. The sth-order nondegenerate term of this operator is

[(q1 + · · ·+qκ)λ]
s

s! ∑
m1,...,ms

pairwise different

Hm1 · · ·Hms. (2.16)

We refer the reader to Ref. [28] for the a line-by-line proof which amounts to counting

all nondegenerate contributions to the order λ s terms in Eqn. 2.15 and simplifying using

the symmetrization over permutations.

When we apply this to analyze our algorithm, the symmetrization over permutations

guarantees that there is no nondegenerate error term of order L or less. For the purposes of

our algorithm, this lemma will be instantiated for a 2kth order product formula.

16

2.5 Error

The following lemma bounds the contribution of low order degenerate terms to the

operator V (λ). This will in turn be used to bound how much these terms can contribute to

the error of approximating V (λ) by Eqn. 2.15.

Lemma 4. Let {H j}L
j=1 be Hermitian operators with Λ := max j||H j||; let q1, . . . ,qκ ∈ R

with maxk|qk|≤ 1; and let s ≤ L be a positive integer. Then the norm of the sth-order

degenerate term of the ideal evolution operator V (λ) as in Eqn. 2.1 is at most

(Λ|λ |)s

s!
[Ls−L(L−1) · · ·(L− s+1)] (2.17)

and the norm of the sth-order degenerate term of the average evolution operator as in Eqn.

2.15 is at most
(κΛ|λ |)s

s!
[Ls−L(L−1) · · ·(L− s+1)]. (2.18)

The basic idea of the proof is that there are Ls possible products of H j’s that appear in

the order λ s term of V (λ). Of these, L!/(L− s)! are nondegenerate and so can be ignored

since this is a lemma bounding degenerate terms. Counting only the degenerate terms and

applying the triangle inequality implies the stated bounds. We use this lemma to prove the

following.

Lemma 5. Let {H j}L
j=1 be Hermitian operators; let λ ∈ C and k,s ∈ N. Define the target

evolution V (λ) as in Eqn. 2.1, and define the permuted (2k)th-order formula Sσ
2k(λ) as in

Eqn. 2.23. Then the sth-order error of the approximation

V (λ)− 1
L! ∑

σ∈Sym(L)
Sσ

2k(λ) (2.19)

17

is at most
0 0≤ s≤ 2k,

(2·5k−1Λ|λ |)s

(s−2)! Ls−1 s > 2k,
(2.20)

where Λ := max||H j||.

Proof. It is sufficient to prove the stronger bound

0 0≤ s≤ 2k,

2 (2·5k−1Λ|λ |)s

s! [Ls−L(L−1) · · ·(L− s+1)] 2k < s≤ L,

2 (2·5k−1Λ|λ |)s

s! Ls s > L.

(2.21)

The case where 0≤ s≤ 2k follows from the fact that the 2kth order product formula is

accurate at the sth order.

The case 2k < s ≤ L follows from applying Lemma 4 to bound the norms of the de-

generate terms in the exact evolution operator and the average operator (with κ = 2 ·5k−1

accounting for the periods of time evolution in the product formula operators being aver-

aged over).

The proof for s > L is similar to the proofs of Propositions F.3 and F.4 of Ref. [27].

2.6 Main Result

We will make use of Lemma F.2 from Ref. [27].

Theorem 2 (Randomized higher-order error bound). Let {H j}L
j=1 be Hermitian matrices.

Let

V (−it) := exp
(
−it

L

∑
j=1

H j

)
(2.22)

be the evolution induced by the Hamiltonian H = ∑
L
j=1 H j for time t. For any permutation

18

σ ∈ Sym(L), define the permuted (2k)th-order formula recursively by

Sσ
2 (λ) :=

L

∏
j=1

exp
(

λ

2
Hσ(j)

) 1

∏
j=L

exp
(

λ

2
Hσ(j)

)
Sσ

2k(λ) := [Sσ
2k−2(pkλ)]2Sσ

2k−2((1−4pk)λ)[Sσ
2k−2(pkλ)]2,

(2.23)

with pk := 1/(4−41/(2k−1)) for k > 1. Let r ∈ N and Λ := max‖H j‖. Then

∥∥∥∥∥V(−it)−
(

1
L! ∑

σ∈Sym(L)
Sσ

2k(−it/r)
)r
∥∥∥∥∥
�

≤ 4
(2 ·5k−1Λ|t|L)4k+2

((2k+1)!)2r4k+1
exp
(

4 ·5k−1 Λ|t|L
r

)
+2

(2 ·5k−1Λ|t|)2k+1L2k

(2k−1)!r2k exp
(

2 ·5k−1 Λ|t|L
r

)
(2.24)

where, for λ = −it, we associate quantum channels V(λ) and Sσ
2k(λ) with the unitaries

V (λ) and Sσ
2k(λ), respectively.

Proof. We prove the finally inequality with −it replaced by a general λ ∈C. It arises from

Lemma 1, so we must bound the errors associated with the average unitary and each unitary

that is randomly applied.

The 2kth order product formula matches all terms up to O(λ 2k), and more particularly

the sth order term of V (λ)−Sσ
2k(λ) is

0 0≤ s≤ 2k,

2(2·5k−1Λ|λ |)s

s! Ls s > 2k
(2.25)

By Lemma F.2 of Ref. [27] (restated here as Lemma 2) and analysis similar to Proposition

F.3 of Ref. [27], we bound the error in each unitary as

||V (λ)−Sσ
2k(λ)||≤ 2

(2 ·5k−1Λ|λ |L)2k+1

(2k+1)!
exp(2 ·5k−1

Λ|λ |L). (2.26)

19

This implies the first term on the right hand side of the main inequality.

To bound the error of the average unitary we apply, note that Lemma 5 implies the

sth-order term of V (λ)− 1
L! ∑σ∈Sym(L) Sσ

2k(λ) is bounded by

0 0≤ s≤ 2k,

(2·5k−1Λ|λ |)s

(s−2)! Ls−1 s > 2k,
(2.27)

so applying Lemma F.2 of Ref. [27] again we have

∥∥∥∥∥V (λ)− 1
L! ∑

σ∈Sym(L)
Sσ

2k(λ)

∥∥∥∥∥≤ (2 ·5k−1Λ|λ |)2k+1L2k

(2k−1)!
exp(2 ·5k−1

Λ|λ |L). (2.28)

The theorem then follows from applying Lemma 1, setting λ = −it/r, and using the dia-

mond norm’s subadditivity

∥∥∥∥∥V(−it)−
(

1
L! ∑

σ∈Sym(L)
Sσ

2k(− it/r)
)r
∥∥∥∥∥
�

≤ r

∥∥∥∥∥V(−it/r)− 1
L! ∑

σ∈Sym(L)
Sσ

2k(− it/r)

∥∥∥∥∥
�

.

(2.29)

2.7 Comparison of Algorithms

We compare deterministic and random product formulas by counting the number of

elementary exponentials, ie, unitaries of the form exp(iH jt) for any t ∈R. This is a different

measure of efficiency from Ref. [27] which compares the efficiency of product formulas,

Taylor series algorithms, and quantum signal processing in terms of the total number of

elementary gates.

We use the same benchmark system as Ref. [27], a 1-D periodic Heisenberg spin chain

20

H =
n

∑
j=1

σ
x
j σ

x
j+1 +σ

y
j σ

y
j+1 +σ

z
j σ

z
j+1 +h jσ

z
j (2.30)

where the qubit index is mod n and h j is chosen uniformly at random from [−1,1] for

different problem instances.

For the purpose of decomposing the Hamiltonian into smaller Hamiltonians corre-

sponding to the elementary exponentials exp(iH jt), we assume we can efficiently imple-

ment σ x
j σ x

j+1,σ
y
j σ

y
j+1,σ

z
j σ

z
j+1, and σ

z
j for all j. We fix the evolution time to be t = n and

the simulation precision to be ε = 10−3. With these parameters fixed the only remaining

one is n, the number of qubits, so we can compare algorithms based on how the number of

elementary exponentials scales with n.

We compare these algorithms using both analytically provable and numerical estimates

of the required number of elementary exponentials.

The analytical bounds of Ref. [27] for the deterministic (labelled det) product formulas

take advantage of the fact that some of the terms in the Hamiltonian commute. Those for

the random (labelled rand) product formulas are based on our main result (ee Ref. [28] for

more details on the calculation). The number of elementary exponentials needed by the

2kth order formulas are rdet/rand
2k and scale with n as below.

rdet
1 = O(n3) rdet

4 = O(n2.4) rdet
6 = O(n2.28) (2.31)

rrand
1 = O(n3) rrand

4 = O(n2.25) rrand
6 = O(n2.17) (2.32)

Similar to Ref. [27] we empirically estimate the efficiency by extrapolating from sim-

ulations for around 5 instances of Heisenberg spin chains (sampling h j again for each in-

stance) on 6-10 qubits. We assume that the number of elementary gates scales as a power-

21

law of the number of qubits and find the relevant constant and exponent to fit the data for

6-10 qubits. We use this to project for up to 100 qubits.

Ref. [27] gives empirical bounds for deterministic (labelled demp) product formulas.

We make use of Lemma 7 of Ref. [15] which introduces a factor 2 to convert the bounds

of Ref. [27] to the diamond norm. The random (labelled remp) product formulas show a

significant improvement for the first order case but only marginal improvement at higher

orders. The numbers of elementary exponentials scale as below.

rdemp
1 = 4143n2.066 rdemp

4 = 5.821n1.471 rdemp
6 = 2.719n1.160 (2.33)

rremp
1 = 300.0n1.806 rremp

4 = 5.458n1.439 rremp
6 = 2.804n1.152 (2.34)

We plot the data for the empirical estimates on 6-10 qubits and display the power law

line of fit. We also plot a comparison of analytical and empirical bounds projected for

10-100 qubits. From this second plot, it is apparent that the 6th order formulas (both

deterministic and random) are more efficient than the other orders. This also shows that

there is practically no advantage to be had by using randomized product formulas.

22

6 7 8 9 10103

104

105

106

n

r

First order
Deterministic
Randomized

6 7 8 9 10101

102

103

n

r

Fourth order
Deterministic
Randomized

6 7 8 9 10101

102

n

r

Sixth order
Deterministic
Randomized

Figure 1: Numerical comparison and lines of fit for deterministic and random product formulas of
the same order. Error bars (when included) account for error from sampling over a limited number
of instances of Heisenberg spin models. Figure from Ref. [28] credit to Yuan Su.

10 20 30 40 50 60 70 80 90 100
105

106

107

108

109

1010

1011

1012

1013

n

nu
m

be
ro

fe
xp

on
en

tia
ls

Deterministic PF4 (min)
Deterministic PF4 (com)
Randomized PF4 (min)
Deterministic PF4 (emp)
Randomized PF4 (emp)
Deterministic PF6 (min)
Randomized PF6 (min)
Deterministic PF6 (emp)
Randomized PF6 (emp)

Figure 2: Elementary exponential counts for 4th/6th order deterministic/random product formulas.
Solid markers indicate analytically proven bounds, and open markers indicate numerical estimates.
The sixth order empirical data almost completely overlap. Figure from Ref. [28] credit to Yuan Su.

23

Chapter 3: Ordinary Differential Equations

The most general form of the time-independent Schrödinger’s equation is

d
dt
|ψ〉=−iH|ψ〉 (3.1)

where the only restriction on H is that it is Hermitian. This is a special case of the most

general time-independent first-order linear ODE

d
dt
~x = A~x+~b (3.2)

where ~b can be any vector and A can be any invertible square matrix (this assumption

implies the existence of a solution and is used in proving the efficiency of our algorithm).

Given an initial condition,~x(0), and an evolution time, t, the solution of this ODE is simply

~x(t) = exp(At)~x(0)+(exp(At)− I)A−1~b. (3.3)

When we defined the problem of Hamiltonian simulation, we were interested in out-

putting a quantum state that had undergone evolution, not outputting all the amplitudes of

the quantum state. Likewise, QLSAs output quantum states proportional to solutions of

linear systems. We define the problem of simulating an ODE in a similar manner.

QUANTUM ODE SIMULATION PROBLEM: Given a precision parameter ε , an evolution

24

time T , and oracles, OA,Ob, and Ox, to compute the entries of A and to produce states

proportional to~b and~x(0), produce a state ε-close to the state proportional to~x(T).

The remainder of this chapter is based on Ref. [16]. First we briefly discuss the previous

quantum algorithm for ODEs and how its assumptions compare to ours. We then outline

the linear system which we solve with a QLSA and discuss the the post-selection of the

state produced by the QLSA. Then we present a number of technical lemmas and theorems

pertaining to the condition number of this linear system, the error due to the propagator

approximation, the success probability associated with the post-selective measurement, and

the complexity of the state preparation routine for the QLSA. We conclude with a statement

of our main result.

Here we reproduce the main lemmas and theorems of Ref. [16] verbatim. Some of the

proofs are rather technical, so in some cases we give an intuitive sketch of the proof and

refer the reader to Ref. [16] for the complete analysis.

3.1 Previous Quantum Algorithms

The first quantum algorithm for solving linear ODEs was proposed by Berry in Ref.

[10]. This algorithm uses linear multi-step methods (LMMs) (such as the Euler and Runge-

Kutta methods) to approximate the time evolution. It encodes the multi-step method in a

linear system M~y =~c and uses a QLSA to produce a state proportional to ~y. The linear

system is constructed so that~y encodes~x(t) at several different values of t ∈ [0,T] (what is

known as a history state), so the QLSA is followed by a post-selection step which produces

a state proportional to ~x(T). The algorithm of Ref. [10] has time and query complexities

that are O(poly(1/ε)).

This ODE algorithm was followed by improved algorithms for Hamiltonian simulation

25

[13, 14] which acheived O(poly log((1/ε))) scaling, naturally raising the question if the

same scaling could be achieved for general ODEs. This question was answered in the

positive by Ref. [16], which uses techniques similar in spirit to both the LMM algorithm

for ODEs [10] and the truncated Taylor series algorithm for Hamiltonian simulation [13].

Similar to Ref. [10], we state our main result in terms of the sparse oracle model for

A. However, both algorithm are amenable to non-sparse A provided that the Hamiltonian[
0 A

A† 0

]
can be simulated using a non-sparse oracle model. Additionally, Ref. [10] as-

sumed that~b is sparse; however, we do not assume~b is sparse and instead assume access

to an oracle that prepares states proporitonal to~b. This is not a significant difference since

the oracle for this paper could be realized with the sparse state preparation routine used in

Ref. [10]. The algorithm of Ref. [10] would also work using an oracle to produce states

proportional to~b, and stating that algorithm’s complexity in terms of queries to Ob could

only polynomially reduce the complexity’s dependence on~b’s sparsity.

3.2 Linear Systems for ODEs

As in Ref. [10], we construct a large linear system whose solution is a history state;

unlike Ref. [10], the time evolution under the propagator exp(At) is not realized with

a LMM but instead by multiplying by a Taylor series approximation of exp(At) (as in

Ref. [13]). The Taylor series approximation is better than the LMM approximation since

the coefficients of the Taylor series of exp(z) decay as 1
n! , so even a relatively low order

truncation gives an accurate approximation. Specifically, we define the kth order truncated

Taylor series of ez as Tk(z) := ∑
k
j=0

z j

j! ≈ exp(z). Approximating the propagator in this way

also eliminates the need for additional hypotheses about A that are necessary for LMM

algorithms to guarantee the stability of the particular linear multi-step formula being used.

This Taylor series approximation is realized by inverting the following matrix.

26

Definition 3.1. Let A be an N×N matrix, and let m,k, p ∈ Z+. Define

Cm,k,p(A) :=
d

∑
j=0
| j〉〈 j|⊗I−

m−1

∑
i=0

k

∑
j=1
|i(k+1)+ j〉〈i(k+1)+ j−1|⊗A/ j

−
m−1

∑
i=0

k

∑
j=0
|(i+1)(k+1)〉〈i(k+1)+ j|⊗I−

d

∑
j=d−p+1

| j〉〈 j−1|⊗I, (3.4)

where d := m(k+1)+ p, and I is the N×N identity matrix.

The full linear system we solve is

Cm,k,p(Ah)|x〉= |0〉|xin〉+h
m−1

∑
i=0
|i(k+1)+1〉|b〉. (3.5)

For example, the linear system C2,3,1(Ah)|x〉= |0〉|xin〉+h∑
1
i=0|4i+1〉|b〉 is

I
−Ah I

−Ah/2 I
−Ah/3 I

−I −I −I −I I
−Ah I

−Ah/2 I
−Ah/3 I

−I −I −I −I I
−I I

|x〉=

|xin〉
h|b〉

0
0
0

h|b〉
0
0
0
0

(3.6)

27

which has the solution

|x〉=

|xin〉
h|b〉+Ah|xin〉

(Ah2/2)|b〉+(A2h2/2)|xin〉
(A2h3/3!)|b〉+(A3h3/3!)|xin〉

A−1(T3(Ah)− I)|b〉+T3(Ah)|xin〉= |x1,0〉 ≈ |x(h)〉
h|b〉+Ah|x1,0〉

(Ah2/2)|b〉+(A2h2/2)|x1,0〉
(A2h3/3!)|b〉+(A3h3/3!)|x1,0〉

A−1(T3(Ah)− I)|b〉+T3(Ah)|x1,0〉= |x2,0〉 ≈ |x(2h)〉
|x2,0〉

. (3.7)

More generally, the solution to the linear system in Eqn. 3.5 is

|x〉=Cm,k,p(Ah)−1

[
|0〉|xin〉+h

m−1

∑
i=0
|i(k+1)+1〉|b〉

]
, (3.8)

which can be written as

|x〉=
m−1

∑
i=0

k

∑
j=0
|i(k+1)+ j〉|xi, j〉+

p

∑
j=0
|m(k+1)+ j〉|xm, j〉 (3.9)

where the |xi, j〉 are

|x0,0〉= |xin〉, (3.10)

|xi,0〉=
k

∑
j=0
|xi−1, j〉, 1≤ i≤ m, (3.11)

|xi,1〉= Ah|xi,0〉+h|b〉, 0≤ i < m, (3.12)

|xi, j〉= (Ah/ j)|xi, j−1〉, 0≤ i < m, 2≤ j ≤ k, (3.13)

|xm, j〉= |xm, j−1〉, 1≤ j ≤ p. (3.14)

28

From these equations, we obtain

|x0,0〉= |xin〉, (3.15)

|x0, j〉= ((Ah) j/ j!)|x0,0〉+((Ah) j−1/ j!)h|b〉, 1≤ j ≤ k, (3.16)

|x1,0〉= Tk(Ah)|x0,0〉+Sk(Ah)h|b〉

≈ expAh|xin〉+(expAh− I)A−1|b〉, (3.17)

|x1, j〉= ((Ah) j/ j!)|x1,0〉+((Ah) j−1/ j!)h|b〉, 1≤ j ≤ k, (3.18)

|x2,0〉= Tk(Ah)|x1,0〉+Sk(Ah)h|b〉

≈ exp2Ah|xin〉+(exp2Ah− I)A−1|b〉, (3.19)

...

|xm−1,0〉= Tk(Ah)|xm−2,0〉+Sk(Ah)h|b〉

≈ expAh(m−1)|xin〉+(expAh(m−1)− I)A−1|b〉, (3.20)

|xm−1, j〉= ((Ah) j/ j!)|xm−1,0〉+((Ah) j−1/ j!)h|b〉, 1≤ j ≤ k, (3.21)

|xm,0〉= Tk(Ah)|xm−1,0〉+Sk(Ah)h|b〉

≈ expAhm|xin〉+(expAhm− I)A−1|b〉, (3.22)

|xm, j〉= |xm,0〉

≈ expAhm|xin〉+(expAhm− I)A−1|b〉, 1≤ j ≤ p. (3.23)

As in Ref. [10], the solution of this linear system is a history state which encodes

~x(t) at several intermediate times. Only the |xi, j〉 with i = m,1 ≤ j ≤ p correspond to

approximations of ~x(T)/||~x(T)||, so once we produce the state in Eqn. 3.9 we post-select

on the first register being m(k+ 1) or more. We use amplitude amplification to raise the

success probability of this measurement to Θ(1).

29

3.3 Condition Number

In this section we present a number of lemmas used to bound the condition number of

Cm,k,p(A) under the assumptions A is diagonalizable and has eigenvalues with non-positive

real part.

Lemma 6. Let λ ∈ C such that |λ |≤ 1 and Re(λ) ≤ 0. Let m,k, p ∈ Z+ such that k ≥ 5

and (k+1)!≥ 2m, and let d = m(k+1)+ p. Then for any n, l ∈ {0,1, . . . ,d},

‖Cm,k,p(λ)
−1|l〉‖≤

√
1.04eI0(2)(m+ p) (3.24)

with I0(2)< 2.28 a modified Bessel function of the first kind, and

|〈n|Cm,k,p(λ)
−1|l〉|≤

√
1.04e. (3.25)

Proof. The proof of this lemma is rather extensive. For concision’s sake, we give an in-

tuitive explanation of the first inequality, which is the one we use in the next lemma. We

refer the reader to Ref. [16] for the full proof.

In the same way Eqn. 3.9 can be constructed as the solution of Eqn. 3.5, we can

construct the solution of Cm,k,p(λ)|x〉= |l〉.

When l > m(k+1) the solution has its first l−1 amplitudes equal to 0 and the rest are

all 1, and this solution has norm ≤√p.

When 0≤ l ≤ m(k+1) then the solution takes a form similar to (although not exactly)

a history state such as Eqn. 3.9. This solution is close to the history state for the dynamical

system obeying x(t) = 0 for t ∈ [0,bl/(k+ 1)ch] and
dx
dt

= λx for later times with a O(1)

initial condition. Since λ has non-positive real part, the solution x(t) won’t grow in time,

in which case the history state has at most m amplitudes encoding x(t) at times between

30

bl/(k+1)ch and T , the final time. Additionally there will be at most p amplitudes encoding

copies of x(T). This implies the O(
√

m+ p) scaling in the first inequality.

Lemma 7. Let A =V DV−1 be a diagonalizable matrix, where D = diag(λ0,λ1, . . . ,λN−1)

satisfies |λi|≤ 1 and Re(λi) ≤ 0 for i ∈ {0,1, . . . ,N−1}. Let m,k, p ∈ Z+ such that k ≥ 5

and (k+1)!≥ 2m. Then

‖Cm,k,p(A)−1‖≤ 3κV
√

k(m+ p), (3.26)

where κV = ‖V‖·‖V−1‖ is the condition number of V .

Proof. Diagonalize Cm,k,p(A) as Cm,k,p(A) = V̄C(D)V̄−1 with V̄ = ∑
d
j=1| j〉〈 j|⊗V which

has condition number κV̄ = κV , so

||Cm,k,p(A)|| ≤ ||V̄ ||·||C(D)||·||V̄−1|| (3.27)

≤ κV ||C(D)||. (3.28)

By definition ||C(D)−1||= max|ψ〉||C(D)−1|ψ〉||/|||ψ〉|| for |ψ〉 ∈ C(d+1)N which we can

write as |ψ〉= ∑
d
l=0|l〉|ψl〉= ∑

d
l=0 ψ j,l|l〉| j〉. Then we have (by Cauchy-Schwarz and other

simple inequalities)

||C(D)−1|ψ〉||2 = ||
d

∑
l=0

C(D)−1|l〉|ψl〉||2

≤ (d +1)
d

∑
l=0
||C(D)−1|l〉|ψl〉||2. (3.29)

31

Now using the fact that D is diagonal we have

||C(D)−1|l〉|ψl〉||2 = ||
N−1

∑
j=0

ψ j,lC(λ j)
−1|l〉| j〉||2

=
N−1

∑
j=0
|ψ j,l|2||C(λ j)

−1|l〉||2

≤ 1.04eI0(2)(m+ p)
N−1

∑
j=0
|ψ j,l|2

= 1.04eI0(2)(m+ p)|||ψl〉||2. (3.30)

which implies

||C(D)−1|ψ〉||2 ≤ 1.04eI0(2)(d +1)(m+ p)
d

∑
l=0
|||ψl〉||2

= 1.04eI0(2)(m(k+1)+ p+1)(m+ p)|||ψ〉||2

≤ 6
5
×1.04eI0(2)k(m+ p)2|||ψ〉||2. (3.31)

This suffices to prove the theorem.

Lemma 8. Let A be an N×N matrix such that ‖A‖≤ 1. Let m,k, p ∈ Z+, and k≥ 5. Then

‖Cm,k,p(A)‖≤ 2
√

k. (3.32)

32

Proof. The matrix Cm,k,p(A) is the sum of the matrices

C1 =
d

∑
j=0
| j〉〈 j|⊗I (3.33)

C2 =−
m−1

∑
i=0

k

∑
j=0
|(i+1)(k+1)〉〈i(k+1)+ j|⊗I (3.34)

C3 =−
m−1

∑
i=0

k

∑
j=1
|i(k+1)+ j〉〈i(k+1)+ j−1|⊗A/ j−

d

∑
j=d−p+1

| j〉〈 j+1|⊗I (3.35)

with d = m(k + 1) + p. Since C1 is just the identity matrix, ||C1||= 1. The matrix C2

has a block structure with k + 1 identity matrix blocks in select block rows, which im-

plies ||C2||=
√

k+1. The matrix C3 contains the blocks on the first subdiagonal relevant

to the Taylor series approximation Tk(A) and relevant to how much of the history state

encodes ~x(T)/||~x(T)||. We have ||C3||= max{1, ||A||} = 1. Thus we have ||Cm,k,p(A)||≤

2+
√

k+1≤ 2
√

k.

Our bounds on ||Cm,k,p(A)|| and ||Cm,k,p(A)−1|| imply the following condition number

bound.

Theorem 3. Let A =V DV−1 be a diagonalizable matrix such that ‖A‖≤ 1,

D = diag(λ0,λ1, . . . ,λN−1) and Re(λi)≤ 0, for i ∈ {0,1, . . . ,N−1}. Let m,k, p ∈ Z+ such

that k≥ 5 and (k+1)!≥ 2m. Let C :=Cm,k,p(A), and let κC = ‖C‖·‖C−1‖ be the condition

number of C. Then

κC ≤ 6κV k(m+ p), (3.36)

where κV = ‖V‖·‖V−1‖ is the condition number of V .

33

3.4 Approximation Error

Theorem 4. Let A=V DV−1 be a diagonalizable matrix, where D= diag(λ0,λ1, . . . ,λN−1)

satisfies Re(λi)≤ 0 for i ∈ {0,1, . . . ,N−1}. Let h ∈R+ such that ‖Ah‖≤ 1. Let |xin〉, |b〉 ∈

CN , and let |x(t)〉 be defined by Eq. (3.3). Let m,k, p∈Z+ such that k≥ 5 and (k+1)!≥ 2m.

Let |xi, j〉 be defined by Eqs. (3.8) and (3.9). Then for any j ∈ {0,1, . . . ,m},

‖|x(jh)〉− |x j,0〉‖≤ 2.8κV j(‖|xin〉‖+mh‖|b〉‖)/(k+1)! , (3.37)

where κV = ‖V‖·‖V−1‖ is the condition number of V .

Proof. The solution of the differential equation |x(jh)〉 satisfies

|x((j+1)h)〉= expAh|x(jh)〉+(expAh− I)A−1|b〉, (3.38)

whereas |x j,0〉 in Eqn. 3.9 satisfies

|x j+1,0〉= Tk(Ah)|x j,0〉+Sk(Ah)h|b〉 (3.39)

both with the initial condition |x(0)〉= |x0,0〉= |xin〉. Since A is diagonal, we transform to

its eigenbasis defining |y(t)〉=V−1|x(t)〉, |yi, j〉=V−1|xi, j〉, and |c〉=V−1|b〉which satisfy

|y((j+1)h)〉= expDh|y(jh)〉+(expDh− I)D−1|c〉 (3.40)

|y j+1,0〉= Tk(Dh)|y j,0〉+Sk(Dh)h|c〉. (3.41)

34

Since ||Dh||< 1, technical lemmas in the appendix of Ref. [16] imply

||expDh−Tk(Dh)|| ≤ 1/(k+1)! (3.42)

||Sk(Dh)− (expDh− I)D−1h−1|| ≤ 1/(k+1)! . (3.43)

These are used to bound the error δ j = |||y(jh)〉− |y j,0〉|| as

δ j ≤
j

(k+1)!
max
0≤i≤ j

|||yi,0〉||+h|||c〉||. (3.44)

So we must bound |||yi,0〉||. For any i ∈ {0,1, . . . ,m} we have

|yi,0〉= 〈i(k+1)|Cm,k,p(D)−1|z〉, (3.45)

where 〈i(k+1)| acts as an isometry projecting out the first register, and

|z〉= |0〉|yin〉+h
m−1

∑
j=0
| j(k+1)+1〉|c〉. (3.46)

By applying the triangle inequality and Lemma 6, we arrive at the bound

|||yi,0〉||≤
√

1.04e(|||yin〉||+mh|||c〉||). (3.47)

This implies a bound on δ j. When that bound is taken into account along with the basis

change from x to y coordinates (introducing a factor of κV), we arrive at the stated bound.

35

3.5 Success Probability

Theorem 5. Let A=V DV−1 be a diagonalizable matrix, where D= diag(λ0,λ1, . . . ,λN−1)

satisfies Re(λi)≤ 0 for i ∈ {0,1, . . . ,N−1}. Let h ∈R+ such that ‖Ah‖≤ 1. Let |xin〉, |b〉 ∈

CN , and let |x(t)〉 be defined by Eq. (3.3). Let m,k, p ∈ Z+ such that

(k+1)!≥ 70κV m(‖|xin〉‖+mh‖|b〉‖)/‖|x(mh)〉‖, where κV = ‖V‖·‖V−1‖ is the condition

number of V . Let g = maxt∈[0,mh]‖|x(t)〉‖/‖|x(mh)〉‖. Let |x〉 be defined by Eq. (3.8) and

let |xi, j〉 be defined by Eq. (3.9). Then for any j ∈ {0,1, . . . , p},

‖|xm, j〉‖
‖|x〉‖

≥ 1√
p+77mg2

. (3.48)

Proof. Note that all |xm, j〉 are equal for j ∈ {0,1 . . . p} so we can take j = 0. Define

|xgood〉=
p

∑
j=0
|m(k+1)+ j〉|xm, j〉= (

p

∑
j=0
|m(k+1)+ j〉)|xm,0〉 (3.49)

|xbad〉=
m−1

∑
i=0

k

∑
j=0
|i(k+1)+ j〉|xi, j〉. (3.50)

So |x〉= |xgood〉+ |xbad〉 and

|||x〉||2 = |||xgood〉||2+|||xbad〉||2

= (p+1)|||xm,0〉||2+|||xbad〉||2. (3.51)

Next we lower bound |||xm,0〉|| and upper bound |||xbad〉||. Let q = |||x(mh)〉||. Using

36

Thm. 4, the definition of g, and the choice of k, we find

|||xi,0〉|| ≤ 1.04gq, 0≤ i≤ m−1 (3.52)

0.96q≤ |||xm,0〉||≤ 1.04q. (3.53)

Likewise, we can bound |||xi, j〉|| as

|||xi, j〉||≤
2.08gq

j!(3− e)
, 0≤ i≤ m−1, 1≤ j ≤ k. (3.54)

These bounds imply

|||xbad〉||2≤ 70.9mg2q2 (3.55)

so we have
|||xm,0〉||2

|||x〉||2
≥ (0.96q)2

p(0.96q)2 +70.9mg2q2 ≥
1

p+77mg2 . (3.56)

This implies that setting p = m gives a Θ(1/g2) success probability, which can be

boosted to Θ(1) using amplitude amplification with O(g) repetitions of of the QLSA.

3.6 State Preparation

Lemma 9. Let Ox be a unitary that maps |1〉|φ〉 to |1〉|φ〉 for any |φ〉 and maps |0〉|0〉 to

|0〉|x̄in〉, where x̄in =~xin/‖~xin‖. Let Ob be a unitary that maps |0〉|φ〉 to |0〉|φ〉 for any |φ〉

and maps |1〉|0〉 to |1〉|b̄〉, where b̄ =~b/‖~b‖ . Suppose we know ‖~xin‖ and ‖~b‖. Then the

state proportional to

|0〉|xin〉+h
m−1

∑
i=0
|i(k+1)+1〉|b〉 (3.57)

37

can be produced with a constant number of calls to Ox and Ob, and poly(log(mk)) ele-

mentary gates.

Proof. Start with |0〉|0〉 where the first register lies in Cd . Apply the following unitary to

the first register

U =

 ||~xin||√
||~xin||2+mh2||~b||2

|0〉+
√

mh||~b||√
||~xin||2+mh2||~b||2

|1〉

〈0|
+

 ||~xin||√
||~xin||2+mh2||~b||2

|1〉−
√

mh||~b||√
||~xin||2+mh2||~b||2

|0〉

〈1|
+

d

∑
j=2
| j〉〈 j|. (3.58)

Then apply the oracles Ox and Ob to produce the state

|ψ ′〉= 1√
||~xin||2+mh2||~b||2

(
|0〉|xin〉+

√
mh|1〉|b〉

)
. (3.59)

Now apply a unitary mapping |0〉 to |0〉 and |1〉 to 1√
m ∑

m−1
j=0 | j(k+1)+1〉 on the first register

to produce the state needed for the QLSA. This can be done with poly(log(mk)) elementary

gates.

3.7 Main Result

Theorem 6. Suppose A =V DV−1 is an N×N diagonalizable matrix, where

D = diag(λ0,λ1, . . . ,λN−1) satisfies Re(λ j) ≤ 0 for any j ∈ {0,1, . . . ,N−1}. In addition,

suppose A has at most s nonzero entries in any row and column, and we have an oracle

OA that computes these entries. Suppose~xin and~b are N-dimensional vectors with known

38

norms and that we have two controlled oracles, Ox and Ob, that prepare the states pro-

portional to ~xin and ~b, respectively. Let ~x evolve according to the differential equation

d~x
dt

= A~x+~b (3.60)

with the initial condition~x(0) =~xin. Let T > 0 and

g := max
t∈[0,T]

‖~x(t)‖/‖~x(T)‖. (3.61)

Then there exists a quantum algorithm that produces a state ε-close to~x(T)/‖~x(T)‖ in `2

norm, succeeding with probability Ω(1), with a flag indicating success, using

O(κV sgT‖A‖·poly(log(κV sgβT‖A‖/ε))) (3.62)

queries to OA, Ox, and Ob, where κV = ‖V‖·‖V−1‖ is the condition number of V and

β = (‖|xin〉‖+T‖|b〉‖)/‖|x(T)〉‖. The gate complexity of this algorithm is larger than its

query complexity by a factor of poly(log(κV sgβT‖A‖N/ε)).

Proof. Fix the parameters h = T/dT ||A||e, m = p = T/h = dT ||A||e, δ = ε/(25
√

mg),

ε ≤ 1/2, and k =
⌊

2log(Ω)

log(log(Ω))

⌋
where Ω = 70gκV m3/2(|||xin〉||+T |||b〉||)/(ε|||x(T)〉||).

Let d = m(k+1)+ p

Consider applying the QLSA from Ref. [25] to solve Eqn. 3.5. If we measure the

first register, we are successful and measure a state in S = {m(k+1) . . .m(k+1)+ p} with

probability Ω(1/g2), which we boost with amplitude amplification making O(g) uses of

the QLSA. Additionally, the post-selected state has error at most ε . The details of the proof

of correctness can be found in Ref. [16].

The matrix Cm,k,p(A) is (d +1)N× (d +1)N with O(ks) sparsity and a condition num-

ber that is O(κV km). Using the sparse QLSA of Ref. [25] with O(g) steps of amplitude

39

amplification as described gives the result stated in the theorem.

This expression for the complexity has some quantities that are unique to ODE algo-

rithms and do not appear in the complexities of Hamiltonian simulation algorithms.

The linear scaling with g results from the fact that we use a history state and have a

post-selective measurement. If the ODE is simply a case of Hamiltonian simulation then

unitarity guarantees that g = 1. Under the assumption NP 6⊆ BQP we can rule out the

possibility of algorithms running in time poly(log(g)) since otherwise we would be able

to solve NP-hard problems by solving d~x
dt =−C~x with Ci, j = δi, j(1− c(xi)) where xi is the

binary encoding of i and c(xi) outputs 1(0) if it satisfies (or does not) a 3− SAT clause.

An even stronger argument is that producing a state that has decayed to be exponentially

small would allow us to post-select on exponentially small amplitudes, which would impliy

BQP= PP by Theorem 3.4 of Ref. [1].

Similar to g, the quantity β is related to the norms of the states as well as the inhomo-

geneity, but it is less concerning since the complexity scales as poly(log(β)).

The condition number κV appears since we assume that A = V DV−1 is diagonalizable

and then use this to bound the condition number of the Cm,k,p(A). This factor is 1 for Hamil-

tonian simulation since Hamiltonians are diagonalized by unitaries which have condition

numbers of 1.

This algorithm scales optimally with respect to ‖A‖T since Hamiltonian simulation is a

special case, and the no-fast-forwarding theorem [11] prohibits sublinear scaling in ‖A‖T .

This algorithm has a number of advantages over the algorithm of Ref. [10]. Most no-

tably it scales as poly(log(1/ε)), but there are also polynomial improvements with respect

to s,‖A‖T, and κV (Note: Some of the s dependence in Ref. [10] is due to the assumption

that~b is s sparse.). The term g does not appear in Ref. [10] because one of the hypotheses

of the main result is that g = O(1). The term β also does not appear; however, the com-

40

plexity does scale polynomially with a similar term associated with the initial condition

and inhomogeneity, whereas the algorithm presented here has poly(log(β)) scaling.

Another advantage is that the only hypothesis required for stability of the Taylor series

method is that Re(λ j)≤ 0 for all eigenvalues λ j of A, ie, the arguments of the λ j must lie in

[π/2,3π/2]. In contrast, since Ref. [10] uses linear multistep methods, additional hypothe-

ses are needed to guarantee stability of the method which further restrict the arguments of

the λ j to proper subintervals of [π/2,3π/2].

41

Chapter 4: FDM for Poisson’s Equation

In the previous chapter we used QLSAs as subroutines for ODEs. This involved the

construction of a linear system whose solution was a history state which we performed

a post-selective measurement on. QLSAs are also a natural subroutine to consider for

PDEs, since a vector can represent a solution to a PDE sampled at a set of points in the

domain. This representation of the data lends itself most naturally to algorithms using

the finite difference method (FDM). In this chapter we apply the FDM to solve Poisson’s

equation. The material in this chapter is originally written by A Ostrander; however, some

of the material is the same verbatim as in ‘High precision quantum algorithms for partial

differential equations’ (currently unpublished) by AM Childs, JP Liu, and A Ostrander.

4.1 Finite Difference Formulas

The FDM approximates the derivatives of a function f at a point ~xi in terms of f ’s

values on a finite set of points {X} = {~x j} near ~xi. Generally there are no restrictions on

where these points are relative to ~xi, but it is simplest to sample from uniformly spaced

points. In the case we consider, this corresponds to discretizing [−1,1]d (or [0,2π)d) to a

d-dimensional rectangular (cyclic) lattice/mesh.

The spacing between points, which we denote as h, is one of the algorithmic parameters

that can be adjusted depending on the error tolerance. The other relevant algorithmic pa-

rameter is the order of accuracy of the formula, which determines how the error term scales

42

as a power of the lattice spacing. If a formula uses more sample points, it can typically

have a higher order of accuracy than a formula using fewer sample points. One excep-

tion to this is that the trapezoid approximation of the first derivative is higher order than

the forward and backward difference formulas, but all these formulas only use 2 sample

points. However, given an order of accuracy, generally there is no unique finite difference

formula for that order since a jth order formula and a kth order formula can be combined to

give a min{ j,k}th order formula; however, the kth order formula with the smallest radius

is unique since combining this formula with a higher order formula will only increase the

radius.

Refs. [32, 72] consider generating coefficients starting from a Discrete Variable Re-

spresentation (DVR) of Laplacian operators (the operators relevant to Poisson’s equation).

Ref. [32] uses a truncated Lagrange interpolation formula to derive coefficients. This is

done by assuming interpolation data, eg, {(ih, f (ih)}n
i=1 for n equidistant sample points.

The function f can then be approximated by the polynomial

f (x)≈
N

∑
k=−N

f (kh)
N

∏
l=−N,l 6=k

(
x− lh

kh− lh

)
. (4.1)

This polynomial can be differentiated twice, and coefficients can be extracted from the

resulting expression.

Coefficients can also be derived by writing the derivatives of f as linear combinations of

f at different sample points with undertermined coefficients. By expanding these function

values as Taylor series, equations restricting the coefficients can be derived. This approach

leads to a Vandermonde system [63], which is the framework of several papers on finite

difference formulas of arbitrarily high order. Ref. [57, 58] presents coefficients for up to

8th order finite difference formulas (some discovered numerically) and conjecture formulas

for arbitrary orders. Ref. [59] rigorously proved the correctness of these formulas for first

43

derivatives. Ref. [65] extended these results to formulas for non-uniform grids and more

asymmetric stencils (instead of just forward, backward, and central difference stencils).

These formulas have previously been used in quantum algorithms for estimating gradients

Ref. [47] and for simulating quantum many body systems Ref. [61]. This algorithm for

many body systems differs from most quantum chemistry algorithms, which work in the

second quantized electron orbital basis instead of working in the position basis where it is

natural to use the FDM.

4.2 Previous Quantum Algorithms

Within the quantum algorithms literature, linear PDEs have received a fair amount of

attention. Although this chapter is about PDEs without time evolution, here we also review

the literature for PDEs with time evolution, which is the focus of the next chapter. A large

part of the literature on quantum simulation considers quantum systems described by PDEs:

quantum chemistry and quantum field theories. Because the literature for these applications

is so large, we do not review it here and focus on ‘non-quantum’ PDEs.

Ref. [31] proposes applying preconditioning matrices and HHL to solve finite element

method (FEM) linear systems. The resource requirements of this algorithm are analyzed

in Ref. [80]. Ref. [31] plausibly argues that sparse pre-conditioners can be implemented

within the framework of QLSAs for sparse matrices (with some overhead for solving an

optimization problem whose size scales with the sparsity). However, they do not analyze

the complexity of their algorithm in terms of the error required to actually estimate a quan-

tity of interest, eg, the error in a scattering cross section or a functional of the electric field

generated by stationary charges. Ref. [73] accounts for the error in these tasks and analyzes

what kind of quantum speed-ups can be achieved using the FEM and preconditioners. They

argue that at most a polynomial improvement over classical algorithms can be expected.

44

Ref. [22] considers solving Poisson’s equation over rectangular domains Ω = [−1,1]d

under Dirichlet boundary conditions u(∂Ω) = 0 using 2nd order accurate FDM Laplacians.

The algorithm is essentially the same as HHL in that it diagonalizes the matrix and them

performs controlled rotations on an ancillary qubit; although the authors give an explicit

circuit for computing the inverse eigenvalues (whereas Ref. [52] merely assumed the ability

to do this). Ref. [22] claims that their circuit uses poly(log(1/ε)) gates; this analysis

ignores the fact that the success probability is poly(1/ε). A similar error is made in Ref.

[71], which ignores the condition number and success probability.

Ref. [82] considers the problem of finding ascattering structures that would lead an

initial set of EM fields to scatter into a final field configuration; however, they do not prove

how efficient the algorithm is.

Refs. [44, 45] apply the reservoir method to the Dirac equation with a classical gauge

field (as input) and to general hyperbolic differential equations. These papers state the

speedup of the algorithm in terms of a quantity defined in Ref. [75] which is called the

quantum speedup. Ref. [45] generally claims exponential speedups over classical algo-

rithms; more specifically they achieve an exponential speedup with respect to the spatial

dimension, but they only achieve a polynomial speedup with respect to the simulation error.

4.3 FDM Linear Systems

For a scalar field u(~x) ∈ C, the canonical elliptic PDE is Poisson’s equation,

(
d

∑
j=1

∂ 2

∂x2
j

)
u(x) = f (~x), (4.2)

which we consider solving on [0,2π)d with periodic boundary conditions. This also implies

results for the domain Ω = [−1,1]d under Dirichlet (u(∂Ω) = 0) and Neumann boundary

45

conditions (n̂ ·∇u(∂Ω) = 0, i.e., the normal derivative is 0, which for domain [−1,1]d is

equivalent to ∂u
∂x j
|x j=±1 = 0 for j ∈ [d]).

Since Poisson’s equation only involves second derivatives, the relevant 1D (central)

finite difference formula is (taking x j = jh for a mesh with uniform spacing h)

u′′(0)≈ 1
h2

k

∑
j=−k

r ju(jh) (4.3)

where the coefficients are [61, 65]

r j :=

2(−1) j+1(k!)2

j2(k− j)!(k+ j)! j ∈ [k]

−2∑
k
j=1 r j j = 0

r− j j ∈ −[k].

(4.4)

We leave the dependence on the approximation order, k, implicit in this notation. The

following lemma characterizes the error of this formula.

Lemma 10 ([61, Theorem 7]). Let k ≥ 1 and suppose u(x) ∈C2k+1 for x ∈ R. Define the

coefficients r j as in Eq. 4.4. Then

d2u(xi)

dx2 =
1
h2

k

∑
j=−k

r ju(xi + jh)+O
(∣∣∣d2k+1u

dx2k+1

∣∣∣(eh
2

)2k−1)
(4.5)

where

∣∣∣d2k+1u
dx2k+1

∣∣∣ := max
y∈[xi−kh,xi+kh]

∣∣∣d2k+1u
dx2k+1 (y)

∣∣∣. (4.6)

Since we assume periodic boundary conditions and apply the same FDM formula at

each lattice site, the matrices we consider will be circulant. Define the 2n× 2n matrix

S to have entries Si, j = δi, j+1 mod 2n. If we represent the solution u(x) as a vector ~u =

46

∑
2n
j=1 u(π j/n)~e j, then we can write (approximately) Poisson’s equation as

1
h2 L~u =

1
h2 [r0I +

k

∑
j=1

r j(S j +S− j)]~u = ~f (4.7)

where ~f = ∑
2n
j=1 f (π j/n)~e j. This is the linear system of interest for our algorithm. For

classical algorithms we would be interested in outputting the entries of ~u; in the quantum

case we output the state proportional to~u.

4.4 Condition Number

The following lemma characterizes the condition number of a circulant Laplacian on

2n points.

Lemma 11. The matrix L = r0I +∑
k
j=1 r j(S j +S− j) has condition number κ(L) = Θ(n2)

where r j = r− j =
2(−1) j+1(k!)2

j2(k− j)!(j+k)! for 1≤ j ≤ k, r0 =−2∑
k
j=1 r j, and k = o(n2/3).

Proof. We directly consider L’s eigenvalues since it is symmetric so its singular values are

the absolute values of its eigenvalues.

We first upper bound |L| using Gershgorin’s circle theorem [54] similar to Ref. [61].

Note that |r j|= 2(k!)2

j2(k− j)!(j+k)! ≤ 2/ j2 since (k!)2

(k− j)!(j+k)! =
k!/(k− j)!
(k+ j)!/k! < 1. The radius of the

Gershgorin disc is

2
k

∑
j=1
|r j| ≤ 2

k

∑
j=1

2
j2 ≤

2π2

3
. (4.8)

The center of the disc is r0, and

|r0| ≤ 2
k

∑
j=1
|r j|≤

2π2

3
, (4.9)

47

so |L|≤ 4π2

3 .

To lower bound |L−1| we lowerbound the (absolute value of the) smallest non-zero

eigenvalue of L (since by construction the all-ones vector is a zero eigenvector).

Because L is a linear combination of the S which are circulant, L’s eigenvalues are sums

of roots of unity

λl = r0 +
k

∑
j=1

r j(ω
l j +ω

−l j) (4.10)

= r0 +
k

∑
j=1

2r j cos(
πl j
n

) (4.11)

= r0 +
k

∑
j=1

2r j

(
1− π2l2 j2

2n2 +
(πc j)

4

4!n4 cos(
πc j

n
)

)
(4.12)

=−π2l2

n2

k

∑
j=1

r j j2 +O
(

l4k3

n4

)
(4.13)

where ω = exp(πi/n) and the c j ∈ [0, l j] dependent terms arise from the Taylor remainder

theorem. The last line follows from the fact that |r j|= O(1/ j2).

The sum we are concerned with is

48

−
k

∑
j=1

r j j2 =
k

∑
j=1

j2 2(−1) j(k!)2

j2(k+ j)!(k− j)!
(4.14)

= 2(k!)2
k

∑
j=1

(−1) j

(k+ j)!(k− j)!
(4.15)

= 2(k!)2 1
(2k)!

k

∑
j=1

(−1) j (2k)!
(k+ j)!(k− j)!

(4.16)

= 2(k!)2 1
(2k)!

k

∑
j=1

(−1) j (2k)!
(k± j)!(2k− (k± j))!

(4.17)

= (k!)2 (−1)k

(2k)!

(
k

∑
j=1

(−1)k+ j
(

2k
k+ j

)
+

k

∑
j=1

(−1)k− j
(

2k
k− j

))
(4.18)

= (k!)2 (−1)k

(2k)!

2k

∑
j=0, j 6=k

(−1) j
(

2k
j

)
(4.19)

= (k!)2 (−1)k

(2k)!
((1−1)2k− (−1)k

(
2k
k

)
) (4.20)

=−1 (4.21)

Then we have

λl =−
π2l2

n2 +O
(

l4k3

n4

)
(4.22)

λ1 =−
π2

n2 +O
(

k3

n4

)
(4.23)

and the last term is vanishingly small since k = o(n2/3)

The following lemma extends this to d dimensions,

Lemma 12. Let L = r0I+∑
k
j=1 r j(S j +S− j) where r j = r− j =

2(−1) j+1(j!)2

j2(j−k)!(j+k)! for 1≤ j ≤ k,

r0 =−2∑
k
j=1 r j, and k= o(n2/3). The matrix L′= L⊗I⊗d−1+I⊗L⊗I⊗d−2+ · · ·+I⊗d−1⊗

L has condition number κ(L′) = Θ(d/n2)

49

Proof. By the triangle inequality for spectral norms, |L′|≤ d|L|. Since L has zero sum

rows by construction, the all-ones vector lies in its kernel, and thus the smallest non-zero

eigenvalue of L is the same as that of L′.

4.5 Error Analysis

We introduce several states for the purpose of error analysis. Let |u〉 be the state that is

proportional to ~u = ∑
2n
j=1 u(π j/n)~e j for the exact solution of the differential equation. Let

|ū〉 be the state output by a QLSA that exactly solves the linear system. Let |ũ〉 be the state

output by a QLSA with error. Then the total error of approximating |u〉 by |ũ〉 is bounded

by

||u〉− |ũ〉| ≤ ||u〉− |ū〉|+||ū〉− |ũ〉| (4.24)

= εFDM + εQLSA (4.25)

and without loss of generality we can take εFDM and εQLSA to be of the same order of

magnitude.

Lemma 13. Let u(~x) be the exact solution of (∑d
i=1

d2

dx2
i
)u(~x) = f (~x). Let ~u ∈ R(2n)d

en-

code the exact solution in the sense that ~u = ∑ j∈Zd
2n

u(π j/n)
⊗d

i=1 e ji . Let ū ∈ R(2n)d

be the exact solution of the FDM linear system 1
h2 L′ū = ~f , where L′ is as above a d-

dimensional (2k)th order Laplacian where k = o(n2/3) and ~f = ∑
2n
j=1 f (π j/n)~e j. Then

||~u− ū||≤ O(2d/2n(d/2)−2k+1|d2k+1u
dx2k+1 |(e2/4)k).

Proof. The remainder term of the central difference formula is O(|d2k+1u
dx2k+1 |h2k−1(e/2)2k), so

that

1
h2 L′~u = ~f +O

(∣∣∣d2k+1u
dx2k+1

∣∣∣(eh/2)2k−1
)
~ε (4.26)

50

where~ε is a (2n)d dimensional vector whose entries are O(1). This implies

1
h2 L′(~u− ū) = O

(∣∣∣d2k+1u
dx2k+1

∣∣∣(eh/2)2k−1
)
~ε (4.27)

so that

||~u− ū||= O
(∣∣∣d2k+1u

dx2k+1

∣∣∣(eh/2)2k+1
)
||(L′)−1~ε|| (4.28)

= O
(
(2n)d/2

∣∣∣d2k+1u
dx2k+1

∣∣∣(eh/2)2k+1/λ1

)
. (4.29)

since in the worst case~ε is supported in the lowest lying eigenspace of L′. From the proof

of Lemma 12 we have λ1 = Θ(1/n2), and since h = Θ(1/n), we have

||~u− ū||= O
(

2d/2n(d/2)−2k+1
∣∣∣d2k+1u
dx2k+1

∣∣∣(e/2)2k
)

(4.30)

which proves the theorem.

4.6 FDM Algorithms for Poisson’s Equation

To apply QLSAs, we must consider the complexity of simulating Hamiltonians which

correspond to Laplacian FDM operators. For periodic boundary conditions, the Laplacians

are circulant, so they can be diagonalized by the quantum Fourier transform (QFT), ie,

L = FDF†. In this case the simplest way to simulate exp(iLt) is to perform the inverse

QFT, apply controlled phase rotations exp(iDt), and perform the QFT. Ref. [81] shows how

to exactly implement arbitrary diagonal unitaries on m qubits using O(2m) gates. Since

we consider Laplacians on n mesh sites, simulating exp(iLt) takes O(n) gates with the

dominant contribution coming from the phase rotations (which might be improved using

Ref. [95] or Ref. [13]).

51

Theorem 7. (Poisson equation with periodic boundary conditions) There exists a quantum

algorithm that outputs a state ε-close to |u〉 that runs in time

Õ(d2 log9/2+γ(
√

d|d
2k+1u

dx2k+1 |/ε)
√

log(1/ε)) (4.31)

and makes

Õ(d log3+β (
√

d|d
2k+1u

dx2k+1 |/ε)
√

log(1/ε)) (4.32)

queries to the oracle for ~f for arbitrarily small γ,β > 0.

Proof. We use the Fourier series based QLSA from Ref. [25]. By Theorem 3 of that work,

the QLSA makes O(κ
√

log(κ/εQLSA)) uses of a Hamiltonian simulation algorithm and

uses of the oracle for the inhomogeneity. For Hamiltonian simulation we use d parallel

QFTs and phase rotations as described in Ref. [81], for a total of O(dnκ
√

log(κ/εQLSA))

gates. The condition number for the d-dimensional Laplacian scales as κ = O(dn2).

We take εFDM and εQLSA to be of the same order and just write ε . Then the QLSA has

time complexity O(n3
√

log(n2/ε)) and query complexity O(n2 log(n2/ε)). The parame-

ters we can adjust for the algorithm are the number of sites on the lattice n and the order of

the finite difference formula. To keep the error below the target error of ε we require

2d/2n(d/2)−2k+1
∣∣∣d2k+1u
dx2k+1

∣∣∣(e/2)2k = O(ε), (4.33)

which is equivalent to

(−d/2)+(−(d/2)+2k−1) log(n)−2k log(e/2) = Ω

(
log
(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε

))
. (4.34)

To satisfy this condition, we set k = dnb for some constant b < 2/3 (so that our condition

52

number lemmas hold) and n sufficiently large, giving

nb log(n) = Ω

(1
d

log
(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε

))
. (4.35)

We set n = Θ(log3/2+δ (|d2k+1u
dx2k+1 |/ε)) to satisfy this criterion for arbitrary (b-dependent) δ >

0. This suffices to prove the theorem.

This can be compared to the cost of using the conjugate gradient method to solve the

same linear system classically. The sparse conjugate gradient algorithm for an N×N matrix

has time complexity O(Ns
√

κ log(1/ε)). For arbitrary dimension N = Θ(nd), we have

s = dk = d2nb and κ = O(dn2), so that the time complexity is

O(d2.5 log(1/ε) log3+1.5d+1.5b+γ ′(
√

d|d2k+1u
dx2k+1 |/ε)) for arbitrary γ ′ > 0. Alternatively, d fast

Fourier transforms could be used, although this will generally take

Ω(nd) = Ω(log3d/2(
√

d|d2k+1u
dx2k+1 |/ε)) time.

The sparse conjugate gradient algorithm has complexity O(Ns
√

κ log(1/ε)) time com-

plexity. For arbitrary dimension N = Θ(nd), s = dk = dnb, κ = O(dn2), so that the time

complexity is O(d2n2+d+b log(1/ε)) =O(d2 log(1/ε) log3+1.5d+1.5b+γ ′(
√

d|d2k+1u
dx2k+1 |/ε)) for

arbitray γ ′ > 0.

Alternatively, d fast Fourier transforms could be used, although this will generally take

Ω(nd) = Ω(log3d/2(
√

d|d2k+1u
dx2k+1 |/ε) time.

4.7 Boundary Conditions via the Method of Images

We can apply the method of images [78] to deal with the boundary conditions. In

Ref. [83] the method of images is applied on graphs to analyze the spectrum of the graph

Laplacian of a path graph. In the method of images, the domain [−1,1] is extended to

include all of R, and the boundary conditions are related to symmetries of the solutions.

53

For two Dirichlet boundary conditions there are two symmetries: the solutions are anti-

symmetric about −1, f (−x− 1) = − f (x− 1), and anti-symmetric about 1, f (1+ x) =

− f (1−x). Continuity and anti-symmetry about−1 and 1 immediately imply the f (−1) =

f (1) = 0, and this more generally implies f (x) = 0 for all odd x ∈ Z and that f (x+ 4) =

f (x). For Neumann boundary conditions, the solutions are instead symmetric about −1

and 1, which implies f (x+2) = f (x)

We would like to combine the method of images with the FDM to arrive at finite differ-

ence formulas for this special case. In both cases, the method of images implies that the so-

lutions are periodic, so without loss of generality we can consider a mesh on [0,2π) instead

of a mesh on R. We will find it useful to think of this mesh in terms of the cycle graph on 2n

vertices, ie (V,E) = (Z2n,{(i, i+ 1)|i ∈ Z2n}), which means that the vectors encoding the

solution u(x) will lie in R2n. Let each vector~e j correspond to the vertex j. Then we divide

R2n into a symmetric and and anti-symmetric subspace, namely span{e j+e2n+1− j}n
j=1 and

span{e j− e2n+1− j}n
j=1. Vectors lying in the symmetric subspace correspond to solutions

that are symmetric about 0 and π , so they obey Neumann boundary conditions at 0 and

π; similarly, vectors in the anti-symmetric space correspond to solutions obeying Dirichlet

boundary conditions at 0 and π .

Restricting to a subspace of vectors reduces the size of the FDM vectors and matrices

we consider, and the symmetry of that subspace indicates how to adjust the coefficients. If

the FDM linear system is L′′~u′′ = ~f ′′ then L′′ has entries

L′′i, j =

r|i− j|± ri+ j−1 i≤ k

r|i− j| k < i≤ n− k

r|i− j|± r2n−i− j+1 n− k ≤ i

where +(−) is chosen for Neumann (Dirichlet) boundary conditions and due to the trun-

54

cation order k, r j = 0 for any j > k.

For the purpose of solving the new linear systems using quantum algorithms, we still

treat these cases as obeying periodic boundary conditions. We assume access to an oracle

that produces states | f ′′〉 proportional to the inhomogeneity f ′′(x). Then we apply the

QLSA for periodic boundary conditions using | f ′′〉|±〉 to encode the inhomogeneity, which

will output solutions of the form |u′′〉|±〉. Here the ancilla is chosen to be |+〉(|−〉) for

Neumann (Dirichlet) boundary conditions.

The graph Laplacian (second order) for the path graph with Dirichlet boundary condi-

tions has diagonal entries which are all equal to 2; however, using the above specification

for the entries of L leads to the (1,1) and (n,n) entries being 3 while the rest of the diagonal

entries are 2.

To reproduce the graph Laplacian, we must consider an alternative subspace restriction

used in Ref. [83]. In this case it is easiest to consider the mesh of a cycle graph on 2n+2

vertices, where the vertices 0 and n+ 1 are selected as boundary points where the field

takes the value 0. The relevant antisymmetric subspace is now span{e j − e2n+2− j}n
j=1

(which has no support on e0 and en+1). If we again write the linear system as L′′~u′′ = ~f ′′,

then the Laplacian has entries

L′′i, j =

r|i− j|− ri+ j i≤ k

r|i− j| k < i≤ n− k

r|i− j|− r2n−i− j+2 n− k ≤ i

. (4.36)

We again assume access to an oracle producing states proportional to f ′′(x); how-

ever, we assume that this oracle operates in a Hilbert space with one additional dimension

compared to the previous approaches, ie, previously we considered just implementing U

whereas here we consider implementing
[

U ~0
~0T 1

]
. With this oracle we again prepare the

55

state | f ′′〉|−〉 and solve Poisson’s equation for perioidc boundary conditions to output a

state |u′′〉|−〉 (where |u′′〉 lies in an n+1 dimensional Hilbert space but has no support on

the n+1th basis state).

We in fact expect algorithms for Dirichlet boundary conditions to have lower (by a

factor of d) time and query complexity compared to periodic and Neumann boundary con-

ditions. This is because the |−〉 that appears in the inhomogeneous part of the linear system

guarantees that ~f is orthogonal to the all-ones vector, which spans the kernel of L′. Within

this anti-symmetric subspace, the lowest eigenvalues is Θ(d/n2) instead of Θ(1/n2), so the

condition number is effectively reduced by a factor of d.

4.8 First Order PDEs

We conclude this chapter by considering what form linear systems might take for ap-

plying the FDM to first order PDEs. We use the backward difference approximation of

the derivative
d f
dx
|xi≈

f (xi)− f (xi−h)
h

because the form is simple and even a first order

approximation gives some intuition for bounds on the condition number of higher order

FDM matrices with similar structure.

Using the backward difference method with a uniform square n×n grid for the equation

(
∂

∂x
+α

∂

∂x
)u(x,y) = f (x,y) (4.37)

u(x,0) = a(x),u(0,y) = b(y) (4.38)

56

we have the following linear system

D~u =
1
h

1+α 0 0 . . . 0 0 0 . . . 0 0
−1 1+α 0 . . . 0 0 0 . . . 0 0
0 −1 1+α . . . 0 0 0 . . . 0 0
. .
−α 0 0 . . . 1+α 0 0 . . . 0 0
0 −α 0 . . . −1 1+α 0 . . . 0 0
0 0 −α . . . 0 −1 1+α . . . 0 0
. .
0 0 0 . . . −α 0 0 . . . 1+α 0
0 0 0 . . . 0 −α 0 . . . −1 1+α

u1,1
u2,1
u3,1

...
u1,2
u2,2
u3,2

...
u1,3
u2,3

=

f1,1 +
αa1+b1

h
f2,1 +

αa2
h

f3,1 +
αa3

h
...

f1,2 +
b2
h

f2,2
f3,2
...

f1,3 +
b3
h

f2,3

=

g1,1
g2,1
g3,1

...
g1,2
g2,2
g3,2

...
g1,3
g2,3

(4.39)

Since this matrix is lower triangular it can be explicitly inverted. Alternatively due to

the square mesh and the backward difference formula, the value ui, j only depends on fi, j

and two of ui−1, j, ui, j−1, ai = a(ih), bi = b(ih). Thus we can write a recurrence relation

57

with two indices

u1,1 =
h f1,1 +αa1 +b1

1+α
=

hg1,1

1+α
(4.40)

ui,1 =
h fi,1 +αai +ui−1,1

1+α
=

hgi,1

1+α
+

ui−1,1

1+α
2≤ i≤ n (4.41)

u1,i =
h f1,i +bi +αu1,i−1

1+α
=

hg1,i

1+α
+

αu1,i−1

1+α
2≤ i≤ n (4.42)

ui, j =
h fi, j +αui, j−1 +ui−1, j

1+α
=

hgi, j

1+α
+

αui, j−1 +ui−1, j

1+α
2≤ i, j ≤ n (4.43)

From this and the fact that h = 1/n it can be proven that ||D||= O(n) and ||D−1||= O(n).

Generalizing to d dimensions, the differential equation becomes (∑i αi
∂

∂xi
)u(~x) = f (~x),

from which we construct the linear system Dd~u = ~g. The new linear system implies a

recurrence relation with d indices which can be used to bound the condition number of the

linear system.

58

Chapter 5: FDM for the Wave and Klein-Gordon Equations

In the previous chapters, we considered algorithms for linear ODEs, which can easily

be used as primitive subroutines for solving PDEs with time evolution. We consider this

problem for the wave equation and Klein-Gordon equation. We begin by discussing how

to adapt first order ODE algorithms to PDEs that are second order in time, and this will

help motivate our choice of equations. FDM Laplacian matrices will again play a cru-

cial role in our algorithms. We discuss how to factor graph Laplacians and then consider

how the choice of boundary conditions affects the Laplacian and factorization. We dis-

cuss higher order Laplacians and their Gram factorizations, and we present a physically

motivated way to impose Dirichlet boundary conditions. We then discuss state prepara-

tion and post-processing routines and under what conditions they are used. We analyze

the complexity of the different steps in the algorithm and finally compare it to alternative

algorithms.

5.1 Second Order Equations with First Order Algorithms

For PDEs with time evolution, the existing Hamiltonian simulation or ODE algorithms

[10, 16, 26] can be combined with the FDM to produce algorithms. Since the wave equation

and Klein-Gordon equations are second order equations, we cannot directly apply Hamil-

tonian simulation or ODE algorithms but must first transform to a first order equation. In

general, any dynamical system can be transformed to one that is first order in time by in-

59

troducing auxiliary variables. For instance to reduce a nth order equation to a n−1th order

equation, we transform
dnu
dtn = f (u) to the system

dn−1u
dtn−1 = v,

dv
dt

= f (u) where v is the

auxiliary variable. This transformation introduces additional overhead which shows up in

our algorithms as additional state preparation or post-selection steps.

One familiar approach to simulating the Klein-Gordon equation is to simulate the Dirac

equation and output just one of the spinor components since each component individually

obeys the wave equation. This is appealing since simulating the Dirac equation just requires

Hamiltonian simulation and not an ODE algorithm which has additional overhead costs.

Instead of the Dirac equation, another equation which implies the Klein-Gordon equation

could be simulated. This still requires introducing an auxiliary variable to reduce to a first

order equation.

We now consider the most general form of the first order ODE and argue about how

to simplify it with the goals of (1) simulating second order equations and (2) eliminating

ancilla qubit overheads. For a solution φ(~x), we define ~φ = ∑x j∈X φ(x j)~e j where X is the

domain of interest and ~e j is jth basis vector (similar to the representation in the previous

chapter). The auxiliary variable also has a corresponding vector, ~θ , which can in principle

be of higher dimension than ~φ . We can in general write the FDM ODE as

d
dt

[
~φ
~θ

]
=

[
A B
C D

][
~φ
~θ

]
(5.1)

where
[
~φ
~θ

]
denotes the vertical concatenation of ~φ and ~θ . This implies the second order

equation
d2

dt2

[
~φ
~θ

]
=−

[
A2 +BC AB+BD
CA+DC D2 +CB

][
~φ
~θ

]
. (5.2)

We would like this to decouple into separate second order equations for ~φ and ~θ , which

implies AB+BD = CA+DC = 0. Two simple ways to satisfy these conditions are to set

60

B =C = 0 or A = D = 0. Note that these are not the only assignments; the Dirac equation

has the different spinor components coupled non-trivially. Setting B = C = 0 nullifies the

need to introduce auxiliary variables since ~φ and ~θ are then decoupled in the original ODE.

Setting A = D = 0 we have that

d
dt

[
~φ
~θ

]
=

[
0 B
C 0

][
~φ
~θ

]
(5.3)

and
d2

dt2

[
~φ
~θ

]
=

[
BC 0
0 CB

][
~φ
~θ

]
. (5.4)

The naive way to define the auxiliary vector ~θ is to set ~θ = d
dt
~φ in which case B = I,

which implies that C is a FDM Laplacian matrix. This results in the ODE

d
dt

[
~φ
~θ

]
=

[
0 I
−1
h2 L 0

][
~φ
~θ

]
(5.5)

where L is defined as in the previous chapter. This in fact simulates wave equation evolution

for both ~φ and ~θ . Since the matrix of this ODE is not anti-Hermitian, it is not amenable to

Hamiltonian simulation and a general ODE algorithm must be used.

All existing ODE algorithms involve solving highly structured linear systems. The

two we have discussed in this thesis [10, 16] produce a history state of the ODE evolu-

tion, which requires additional qubit overheads for the time register (and the Taylor series

truncation order register for Ref. [16]). The algorithm of Ref. [16] depends on using an

exponentially precise QLSA, and the LCU based QLSA [25], uses additional ancilla for the

LCU; although, Ref. [86] subsequently presented a QLSA with constant ancilla overheads.

Because of these overheads, it would be more efficient if the ODE were in fact an

instance of Schrödinger’s equation. Assuming anti-Hermiticity (ie C =−B†) and A=D= 0

61

(which suffices for decoupling) in the original ODE, we have

d
dt

[
~φ
~θ

]
=

[
0 B
−B† 0

][
~φ
~θ

]
(5.6)

d2

dt2

[
~φ
~θ

]
=

[
−BB†~φ

−B†B~θ

]
(5.7)

so the matrix −BB† must be a FDM Laplacian operator.

5.2 Factoring Graph Laplacians

The Gram factorization of graph Laplacians is well understood [30, 34, 49] . Given a

graph G = (V,E), we define the graph Laplacian as the |V |×|V | matrix L(G) = D(G)−

A(G) where D(G) is the degree matrix with Di, j = δi, jd j where d j is the number of edges

incident with vertex j and A(G) is the adjacency matrix with Ai, j = 1 iff (i, j) ∈ E and

Ai, j = 0 otherwise.

The Laplacian of G is Gram factored by signed incidence matrices, which are not

unique to the graph. They are defined by first creating a directed graph G′ = (V,E ′) by

assigning arbitrary orientations to the edges of G. The |V |×|E| signed incidence matrix W

associated with this graph has entries

Wi, j =

1 if j ∈ E points away from i

−1 if j ∈ E points towards i

0 else

. (5.8)

This also works for graphs with positively weighted edges and with loops (edges of the

form (i, i)) where the entries of A are equal to the edge weights. In this case the incidence

62

matrix has entries

Wi, j =

√w j if j ∈ E is not a loop and points away from i

−√w j if j ∈ E is not a loop and points towards i

√w j if j ∈ E is a loop and points towards i

0 else

(5.9)

where w j is the weight on edge j. Note that because we set L =WW †, L does not depend

on the edge orientations.

5.3 Boundary Conditions and Mass Terms

When approximating the FDM Laplacian in 1D, the two graph classess of interest are

the cycle graphs and path graphs. As in the last chapter, let S be the n×n circulant matrix

with entries Si, j = δi, j+1 mod n. Then the graph Laplacian of the cycle on n vertices, Cn, is

L(Cn) = 2I− S− S†. So −1
h2 L(Cn) = −BB† for B = (1/h)(I− S) corresponds to the FDM

Laplacian operator using the central difference formula f ′′(xi) ≈ −2 f (xi)+ f (xi−h)+ f (xi+h)
h2

under periodic boundary conditions.

For Neumann boundary conditions, we use arguments similar to those presented in the

previous chapter for the method of images, and we can write the Laplacian approximation

for the unit interval as −1
h2 L(Pn). We begin by considering a Laplacian for an infinite path

graph whose vertices are indexed by Z. Suppose we place a boundary at the 0 vertex and

impose Neumann boundary conditions (dφ

dx |x0= 0). We can realize this by fixing the field

to be φ0 on vertices indexed by Z−. Physically this corresponds to the case where φ is the

electrical potential and the boundary is of a perfect conductor. This effectively changes

63

how the Laplacian acts on ~φ as

L~φ =

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

φ−2
φ−1
φ0
φ1
φ2

 (5.10)

7→ LNeumann~φ =

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

φ0
φ0
φ0
φ1
φ2

 (5.11)

=

0
0

φ0−φ1
2φ1−φ0−φ2

. . .

 (5.12)

=

0 0 0 0 0
0 0 0 0 0
0 0 1 −1 0
0 0 −1 2 −1
0 0 0 −1 2

φ0
φ0
φ0
φ1
φ2

 . (5.13)

Thus we see that the FDM Neumann Laplacian for an interval [a,a+nh] under Neumann

boundary conditions is
−1
h2 L(Pn+1).

To impose φ = 0 Dirichlet boundary conditions, we set φi = 0 for i∈Z−, which changes

how the Laplacian acts as

64

L~φ =

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

φ−2
φ−1
φ0
φ1
φ2

 (5.14)

7→ LDirichlet~φ =

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

0
0
φ0
φ1
φ2

 (5.15)

=

0
−φ0

2φ0−φ1
2φ1−φ0−φ2

. . .

 (5.16)

=

0 0 0 0 0
0 0 −1 0 0
0 0 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

0
0
φ0
φ1
φ2

 . (5.17)

We can ignore the row indexed by −1 since it corresponds to a point in the boundary.

This Dirichlet Laplacian has the form 2I−A(Pn) and the FDM matrix is −1
h2 (2I−A(Pn)),

which differs from the Neumann Laplacian in the 1,1 and n,n entries.

The matrix 2I−A(Pn) is referred to as a generalized Lalpacian [49] which generally

takes the form L(G) +M where L(G) is the Laplacian of a weighted graph and M is a

diagonal matrix, which can be interpreted as a potential energy operator in the vertex basis.

The weight term can be accounted for by adding a loop of weight Mi,i at every vertex i.

These are special cases of stoquastic matrices [8, 19] which have non-positive off-diagonal

elements.

Here we have used graph theoretic arguments to impose Neumann and Dirichlet bound-

ary conditions, and we have seen how they affect the entries of the Laplacian. Taking an

65

alternative approach for the path graph, Pn, Ref. [83] presents arguments for imposing

Neumann boundary conditions that are the same as the method of image arguments we

presented in the previous chapter, and they wind up producing the ordinary graph Lapla-

cian D−A. For Dirichlet boundary conditions, in the previous chapter we presented 2

method of images arguments which lead to Laplacians 2I−A (the same as what we just

derived) and 4I−D−A.

In these examples, the different choices of boundary conditions only changed the value

of the 1,1 and n,n terms. Changing diagonal terms is also how to account for the mass term

in the FDM approximation of the Klein-Gordon equation. This is accomplished by adding

a loop at each vertex with weight m2h2, which changes the graph Laplacian by adding to it

the matrix m2h2I.

5.4 Higher Order Laplacians

In the previous chapter we used higher order Laplacians to solve Poisson’s equation.

Using higher order approximations has the advantage of improving accuracy, but it has the

disadvantage that imposing boundary conditions and Gram factoring are not as simple as

for graph Laplacians. We first discuss imposing boundary conditions.

For higher order Laplacians, there are a few ways to deal with boundary conditions.

We previously applied the method of images to modify the coefficients of the FDM linear

system. Here we consider physically motivated ways to impose the boundary conditions.

Maxwell’s equations in the Lorenz gauge and without sources imply that the electric and

magnetic fields evolve according to the wave equation. Assuming that the domain of inter-

est is surrounded by perfect conductors, the electric field goes to zero everywhere outside

the domain. This also implies that the electrical potential is constant everywhere outside

the domain. These cases suggest that we implement Neumann and Dirichlet boundary con-

66

ditions as in the previous section. We consider this for the k = 2 central difference formula.

For the electrical potential we implement Neumann boundary conditions as in the pre-

vious section, so that we change the way the FDM Laplacian matrix, −1
h2 L, acts as below

(excluding the prefactor of −1/h2).

L~φ =

5/2 −4/3 1/12 0 0
−4/3 5/2 −4/3 1/12 0
1/12 −4/3 5/2 −4/3 1/12

0 1/12 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2

φ−2
φ−1
φ0
φ1
φ2

 (5.18)

7→

5/2 −4/3 1/12 0 0
−4/3 5/2 −4/3 1/12 0
1/12 −4/3 5/2 −4/3 1/12

0 1/12 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2

φ0
φ0
φ0
φ1
φ2

 (5.19)

=

0

(5/2−4/3−4/3+1/12)φ0 +(1/12)φ1
(5/2−4/3+1/12)φ0− (4/3)φ1 +(1/12)φ2

. . .

 (5.20)

=

0 0 0 0 0
0 0 −1/12 1/12 0
0 0 5/4 −4/3 1/12
0 0 −5/4 5/2 −4/3
0 0 1/12 −4/3 5/2

φ0
φ0
φ0
φ1
φ2

 (5.21)

Even ignoring the vertex indexed by -1, the relevant submatrix is not symmetric, so it

can never by written as BB†. This case falls outside of the scope of algorithms which we

consider, where the time evolution can be performed using Hamiltonian simulation.

For φ = 0 Dirichlet boundary conditions we modify the Laplacian as below.

67

L~φ =

5/2 −4/3 1/12 0 0
−4/3 5/2 −4/3 1/12 0
1/12 −4/3 5/2 −4/3 1/12

0 1/12 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2

φ−2
φ−1
φ0
φ1
φ2

 (5.22)

7→

0 0 0 0 0
0 0 0 0 0
0 0 5/2 −4/3 1/12
0 0 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2

0
0
φ0
φ1
φ2

 (5.23)

The resulting Laplacians have the advantage that they are symmetric (since they are based

on truncated central difference formulas) and positive-semidefinite, so they can be Gram

factored, so Hamiltonian simulation can be used for their time evolution. In contrast, there

are non-symmetric Laplacian approximations where the derivative of the field at xi is ap-

proximated using values of the field at points only to the right of xi.

Unlike graph Laplacians, the Gram factorization of these higher order Laplacians is

not as straight forward and requires a classical computation prior to implementing our

algorithm. The basic approach is to use the method of undetermined coefficients to set up

a quadratic system of equations for the entries of the Gram matrices. This is most simply

done when we assume the discretization mesh is a cycle so that L will be circulant and we

can write it as a sum of powers of S. For example, for the k = 2 Laplacian, we have (again

excluding the −1/h2 prefactor)

L = ((5/2)I− (4/3)(S+S†)+(1/12)(S2 +(S†)2)). (5.24)

Since this matrix is circulant, we also assume that its Gram matrix is circulant. We define

68

the ansatz B = cS− (c+b)I +bS† to find a system of equations

2(c2 +b2 + cb) = 5/2 (5.25)

cb = 1/12 (5.26)

(c+b)2 = 4/3 (5.27)

which can then be solved for the Gram matrix entries. Since B has 3 (more generally k+1)

non-zero entries in each column, we interpret it as a hypergraph where each hyperedge is

incident with k+1 vertices. Numerical values for the Laplacian coefficients and the entries

of their Gram matrices up to k = 5 appear in Appendix B of Ref. [33].

This suffices for the Gram matrices of circulant Laplacians. To generate Gram matrices

for Laplacians on a path graph mesh, Pn, under Dirichlet boundary conditions, we consider

the following procedure.

1. Embed Pn in a cycle Cm for m > n+ k.

2. Find the Gram matrix B′ for the higher order Laplacian on Cm (as described above).

3. Remove from B′ any rows for vertices not in Pn and any columns for hyperedges not

incident with vertices in Pn.

What remains is the Gram matrix for the Laplacian under Dirichlet boundary condi-

tions. Note that for general kth order Laplacians, this procedure specifies a weighted hy-

pergraph on n vertices with hyperedges that are incident with k+ 1 or fewer vertices. In

fact there will be 2 hyperedges incident with j vertices for 1 ≤ j ≤ k, and each of these

edges will be incident with one of the two end vertices of Pn.

69

5.5 Multiple Dimensions and Non-Convex Domains

As in the previous chapter, graphs sums [34] (eg, a n× n grid is the sum of two path

graphs on n vertices) allow for simple extensions of 1D Laplacians to higher dimensional

Laplacians when the domain is rectangular, ie, of the form [−1,1]d . This is because the d-

dimensional Laplacian operator is a sum of 1 dimensional Laplacians, ∇2 = ∑ j
∂ 2

∂x2
j
, so we

can write the FDM matrix as in the statement of Lemma 12, −1
h2 L′= −1

h2 (L⊗ I⊗d−1+ I⊗L⊗

I⊗d−2 + · · ·+ I⊗d−1⊗L). This expression applies for periodic boundary conditions (when

L is a Laplacian for a cycle graph) and for Dirichlet and Neumann boundary conditions

(when L is one of the path graph Laplacians).

Our algorithm can be applied to convex domains other than [−1,1]d and to non-convex

domains by considering appropriate meshes. This mesh can be constructed as follows.

1. Embed the domain in [−1,1]d .

2. Construct the hypergraph for L⊗I⊗d−1+I⊗L⊗I⊗d−2+· · ·+I⊗d−1⊗L with vertices

arranged as in a cubic mesh and corresponding to points in [−1,1]d .

3. Remove all vertices in the mesh whose corresponding points do not lie in the domain.

Eliminate the incidence of these vertices with any hyperedge.

4. Remove any hyperedges not incident with one of the domain points.

What remains after this procedure is a weighted hypergraph, and this hypergraph structure

provides the natural way to Gram factor the Laplacian matrix for the domain. As a test of

this approach for non-convex domains, in Fig. 3 we present numerical simulations of how

a wave propagates according to Eqn. 5.6 from its initial condition to 3 later points in time.

70

a) b)

c) d)

Figure 3: Wave propagation in non-convex domain. Subfigure a) shows the initial condition, and
b), c), and d) show the field at later points in time. Figure from Ref. [33] credit to Pedro Costa.

5.6 Initial Conditions

We assume access to controlled oracles that produce states proportional to the initial

conditions of the field, ~φ(0), d~φ
dt |t=0, and we assume knowledge of the `2 norms of these

vectors. Knowing the norms we can synthesize the unitary

U =
1√

||~φ(0)||2+||d~φdt |t=0||2

[
||~φ(0)|| −||d~φdt |t=0||
||d~φdt |t=0|| ||~φ(0)||

]
. (5.28)

We solve the Schrödinger equation (instantiating B in Eqn. 5.6)

d
dt

[
~φ
~θ

]
=
−i
h

[
0 W

W † 0

][
~φ
~θ

]
(5.29)

71

where W is the incidence matrix or hypergraph incidence matrix for a Laplacian. This

implies the following equation for the initial conditions

[d
dt
~φ |t=0

d
dt
~θ |t=0

]
=
−i
h

[
W~θ |t=0

W †~φ |t=0

]
(5.30)

so to initialize a state proportional to ~θ |t=0 we must use a QLSA to invert W since we are

only given access to an oracle for d~φ
dt |t=0. So the full state preparation routine is to apply

the unitary in Eqn. 5.28 to an ancilla qubit, apply the controlled unitaries for the initial

conditions, and then apply the pseudoinverse of B.

5.7 Post-Processing

The post-processing step depends on the state we want to output. Initial value prob-

lems are typically stated in terms of outputting the field, which in our case corresponds to

outputting |~φ(T)〉; however, due to the introduction of the auxiliary variable we can also

output a state proportional to |~φ(T)dt 〉.

If our goal is to output |~φ(T)〉, then we measure the qubit to which we applied the

unitary in Eqn. 5.28 during state preparation. This qubit indexes the parts of the state

encoding ~φ and ~θ , and measuring 0 indicates that the remaining state is proportional ~φ(T).

In general, the success probability of this measurement will depend on the system itself,

similar to how our ODE algorithm’s success probability depends on the solution’s final

amplitude relative to its maximum amplitude during its evolution. For example, the field

φ(x, t) = sin(x)cos(t) satisfies the wave equation, but when t = π

2 +nπ for n ∈ Z the field

is uniformly zero while its time derivative is non-zero. At these points in time, an accurate

simulation of the field would have ~φ =~0, so the final measurement would almost always

output 1, indicating failure.

If our goal is to output a state proportional to d~φ
dt , then we must post-process the part of

72

the state proportional to ~θ and multiply by W . A simply way to perform this multiplication

is to use a variation of the HHL QLSA as follows (using phase estimation and a controlled

rotation):

|W−1d~φ/dt〉|0〉|0〉= ∑
j

α j|Λ j〉|0〉|0〉 (5.31)

7→∑
j

α j|Λ j〉|λ̃ j〉|0〉 (5.32)

7→∑
j

α j|Λ j〉|λ̃ j〉

 λ̃ j

C
|0〉+

√
C2− λ̃ 2

j

C
|1〉

 . (5.33)

Note that this mainly differs from the HHL procedure in that the eigenvalue now appears

in the numerator of the amplitude, corresponding to multiplication instead of inversion.

This rotation is followed by post-selecting on the ancilla qubit being |0〉, which in the worst

case occurs with success probability min j|λ j|2/||W ||2= κ(W)2, which can be improved to

linear in κ(W) scaling as in Ref. [5].

5.8 Complexity Analysis

Instead of stating the complexity for arbitrary domains we consider the complexity of

simulating the wave equation in a cubic region with side length l in d dimensions.

A 2k+1 sparse Laplacian with O(h2k) error in 1D has a k+1 sparse incidence matrix.

Concatenating d such incidence matrices for a d-dimensional Laplacian leads to sparsity

s = d(k + 1). Assuming the 2k + 1th derivative (with respect to any coordinate) of the

solution is bounded by a constant, the error that accumulates after evolving for time T is

ε = O(T h2(s/d)−2), which implies the grid spacing scales as h = Θ((ε/T)d/2(s−d)).

The state preparation procedure has time complexity Õ(sd3/2`(T/ε)d/2(s−d)), and the

time evolution via Hamiltonian simulation has time complexity Õ(sdT (T/ε)d/2(s−d)). The

73

query complexities are similarly bounded since we use Õ which suppresses poly(log(·))

overhead factors.

The Hamiltonian simulation algorithm of [15] has gate complexity

O
[

τ

[
n+ log5/2 (τ/ε)

] log(τ/ε)

log log(τ/ε)

]
, (5.34)

where τ = s‖H‖max t, ‖H‖max is the largest norm of a matrix element of H, s is the sparsity

of H, and n is the number of qubits. For a first order Laplacian, the Hamiltonian we simulate

for time evolution has parameters s = 2d (since each vertex is incident with 2 edges),

‖H‖max = 1/h, and n = log2
[
(1+d)(l/h)d], so the time evolution step has complexity

O

[
dt
h

(
log
(
(1+d)(l/h)d

)
+ log5/2

(
2dt
hε

))
log
(2dt

hε

)
log log

(2dt
hε

)]= Õ
[

td2

h

]
(5.35)

and the query complexity for the state preparation is the same up to poly(log(·)) factors.

5.9 Comparison to ODE approaches

We already discussed the ancilla qubit overheads that a Hamiltonian simulation based

algorithm avoids compared to an ODE algorithm for the equation

d
dt

[
~φ
~θ

]
=

[
0 I
−1
h2 L 0

][
~φ
~θ

]
. (5.36)

This in fact implies that both ~φ and ~θ evolve according to FDM wave equation approxima-

tions. Instantiating this for t = 0 we find

[
d~φ
dt |t=0
d~θ
dt |t=0

]
=

[
~θ(0)
−1
h2 L~φ(0)

]
. (5.37)

To prepare the initial state for the ODE we must assume oracle access. We can assume

74

access to oracles for ~φ and dφ

dt without loss of generality, in which case the state preparation

involves an application of the unitary in Eqn. 5.28 followed by the oracles for the initial

conditions. This takes advantage of the asymmetry of the ODE, since assuming oracles for

~θ and dθ

dt would require applying the pseudoinverse of L as part of the state preparation,

which introduces additional overhead. So we see that using this ODE requires no additional

state preparation or post-processing (such as applying QLSAs), but it incurs the overheads

of using an ODE algorithm.

75

Chapter 6: Conclusion

We begin with a summary of the main chapters of this thesis. We follow that with a dis-

cussion of how the field has progressed following these results. We conclude by presenting

several open problems.

6.1 Summary of Results

In Chapter 2 we described the Hamiltonian simulation algorithm of Ref. [28] which

is based on randomly applying different product formulas. We proved technical lemmas

characterizing degenerate and non-degenerate terms in the averages of product formulas,

and we bounded error terms at different orders in the Taylor expansions of these average

operators. This allowed us to characterize the total error for the quantum channel applying

randomized product formulas, and we found asymptotically better scaling compared to

deterministic product formulas. We also presented numerics estimating the number of

elementary exponentials needed to simulate a Heisenberg spin chain using deterministic

and randomized product formulas.

In Chapter 3 we presented the ODE algorithm of Ref. [16] which used a QLSA to

generate a history state of the ODE solution which we then perform a post-selective mea-

surement on. We proved several technical lemmas bounding the condition number of the

linear system, the error due to the Taylor series approximaiton of exp(At), the success

probability of the post-selective measurement, and the complexity of state preparation for

76

the QLSA. We proved that our algorithm scales optimally with respect to the matrix norm,

evolution time, and error.

In Chapter 4 we considered applying QLSAs to the Poisson equation. We constructed

linear systems where the matrix was a FDM operator approximating the Laplacian and the

solution had components equal to the PDE solution on uniformly spaced points in the do-

main. We bounded the condition number of this matrix and its approximation error. We

used these bounds to prove the existence of a time and query efficient quantum algorithm

whose complexity is poly(log(1/ε)) and exponentially faster with respect to the spatial di-

mension than comparable classical algorithms. We argued for how to use the method of

images to extend our algorithm from periodic boundary conditions to Dirichlet and Neu-

mann boundary conditions. We also illustrated how the FDM can be extended to more

general first order BVPs.

In Chapter 5 we presented the wave and Klein-Gordon equation algorithms of Ref.

[33] which also used FDM Laplacian approximations. We considered how to transform

equations that are second order in time to equations that are first order in time. We found

the wave equation and Klein-Gordon equation to be natural candidates, when restricting to

Hamiltonian simulation with certain block structure that leads to decoupled second order

equations. We saw how to impose Neumann and Dirichlet boundary conditions for first

order Laplacians, and we considered Dirichlet boundary conditions for higher order Lapla-

cians. We also considered how QLSAs are used in state preparation and post-processing,

depending on oracle assumptions and the desired output.

6.2 Progress on Randomization for Hamiltonian Simulation

Following our work on randomization for Hamiltonian simulation, Campbell proposed

an algorithm [21] where evolution under the terms of the Hamiltonian occurs with prob-

77

ability proportional to the strength of each term. Ref. [17] uses similar randomization

techniques to simulate time-dependent Hamiltonians.

6.3 Progress on ODEs

Since publishing the ODE algorithm, Childs and Liu [26] have developed algorithms

for time-dependent ODEs which also achieve O(poly(log(1/ε))) query complexity. Their

algorithm for the initial value problem also achieves optimal scaling with respect to the

matrix norm. They also consider the problem of outputing a state at an intermediate time

given the initial and final states.

6.4 Nonlinear Differential Equations

For general nonlinearities, the scope of possible quantum speed-ups is limited since

there are strong no-go arguments for the simulation of generic NLDEs [3, 7, 29]. The in-

tuition underlying these arguments is that NLDEs can have trajectories that diverge expo-

nentially quickly (ie they can have positive Lyapunov exponents) and that this exponential

divergence can be leveraged to speed-up computations and violate known lower bounds

(such as for unstructured search or state discrimination).

Despite these limitations, several algorithms for NLDEs have been proposed. The first

of these algorithms appeared in Ref. [64] that uses the Euler method to solve the initial

value problem for NLDEs, but its resources scale exponentially in the system parameters

(as required by the no-go arguments). Somma et. al. [97] study a quantum version of a

classical Monte Carlo algorithm for fluid flow. This algorithm achieves a quadratic speed-

up over the classical version since quantum computers can sample from Markov chains

quadratically faster. Other heuristic algorithms for computational fluid dynamics have been

proposed in Refs. [84, 85, 91]. A special linear case of the Vlasov equation (which is

78

generally nonlinear) is treated in the algorithm of Ref. [39]. Ref. [70] uses variational

algorithms to find the ground state of the nonlinear Schrödinger equation and uses the

FDM; although efficient time evolution algorithms for the nonlinear Scrhödinger equation

are forbidden by no-go arguments.

Since we can not hope to efficiently simulate arbitrary NLDEs, we can ask the question

“What kinds of NLDEs can quantum computers simulate efficiently?” The no-go argu-

ments rely on the existence of positive Lyapunov exponents, so they do not apply to certain

dissipative systems (as an example) which might be efficiently simulable. This raises the

question of what other lower bounds and no-go arguments can be developed for NLDEs

without positive Lyapunov exponents.

This also raises the question of how imposing other kinds of structure on NLDEs might

make them efficently simulable. Conservation laws are one source of additional structure;

however, just having a conserved quantity such as energy is not sufficient since Ref. [77]

shows that simulating point masses evolving classically under gravitational or Coulomb

interactions is PSPACE-hard.

Another source of structure is to impose that the NLDE is a transformation of a linear

DE. For example, the Korteweg-de Vries equation is equivalent to the heat equation under

the Cole-Hopf transformation [40]. Another such equation is the Riccati equation. Radon’s

Lemma [2] characterizes the solutions of the Riccati equation in terms of the solutions

of a linear ODE. In this case, existing algorithms for Hamiltonian simulation, ODEs, and

linear systems can be pieced together to form quantum algorithms for the original nonlinear

problem (albeit with caveats). We provide a sketch of this algorithm in Appendix B.

The algorithm for the Riccati equation is basically several standard quantum algorithms

pieced together in a natural way. Another case where standard quantum algorithms can

be applied is to bound the moments of NLDEs, which can be done using semidefinite

programs (SDPs) as shown in Refs. [23, 41, 50]. Quantum algorithms for SDPs have

79

been studied in Refs. [18, 56, 92, 93] and allow for polynomial speed-ups over classical

algorithms. It is natural to ask if this speed-up still holds when bounding the moments of

NLDEs (and under what conditions or oracle models).

6.5 Other Open Questions

After developing our Hamiltonian simulation algorithm, Ref. [66] described ‘quantum

interpolation’, a method to implement certain unitaries which can be specialized to Hamil-

tonian simulation to generate new product formulas. This result can naturally be combined

with the randomization tools we used for our Hamiltonian simulation algorithm. When ini-

tially developing our randomized algorithm, we found continuous families of ‘randomized

quantum interpolation product formula’. However, even characterizing these algorithms

requires classical precomputation which seems to be prohibitively costly. Is there a way

to get around this precomputation? One of the advantages of ordinary Suzuki-Trotter for-

mulas is that they are defined recursively, so formulas of arbitrarily high accuracy can be

developed. How can this be done for quantum interpolation?

Our ODE algorithm has multiplicative scaling with respect to t and ε (eg Õ(t log(1/ε)))

while the state of the art for Hamiltonian simulation is additive with respect to these terms

(eg Õ(t + log(1ε)) [9, 68, 69]). Can additive scaling be achieved for ODEs?

We only considered the FDM for uniformly spaced lattices; however, using a non-

uniformly spaced mesh might be more natural in some applications (eg having a denser

grid where the field is expected to change the most). It is natural to ask what kind of

promises must be made about a class of DEs such that non-uniform mesh algorithms are

faster within that class. The analysis of non-uniform mesh algorithms is complicated by

the lack of symmetry in the formulas (symmetry which we made use of and in practice may

be easier to implement). What techniques can be used to bound their complexities?

80

Our FDM algorithms assumed oracles for producing the states corresponding to inho-

mogeneities and initial conditions. For practical problems, what methods might be used to

realize these oracles beyond the methods of Refs. [51, 79, 98]?

Our PDE algorithms provide exponential speed-ups with respect to the dimension, but

for fixed dimension they may only give polynomial improvements with respect to the ap-

proximation error. What kind of quantum speed-ups can be achieved in fixed dimension?

What classical lower bounds and quantum upper bounds can we prove for the complexity

of these PDE problems?

In the algorithms for the wave equation and Klein-Gordon equation, we imposed φ = 0

Dirichlet boundary conditions on high order Laplacians by truncating a central difference

formula FDM matrix. We derived this by starting with arbitrarily large rectangular meshes

encompassing the domain mesh and fixing the field to be 0 on mesh points lying outside the

domain of the differential equation (motivated by the physical example of electric fields go-

ing to 0 inside conductors). An alternative approach would be to start with the nodes in the

domain and only add a single layer of ghost nodes that lie on the boundary. Then the value

of the field at the boundary points can be fixed, and the derivatives can be approximated

near the boundary using formulas other than the central difference formulas. This would in

fact allow for generic Dirichlet boundary conditions to be imposed. The downside to this

approach is that the Laplacian operators are not symmetric, so instead of Hamiltonian sim-

ulation an ODE algorithm must be used including an inhomogeneous term for non-trivial

boundary conditions.

In the wave equation algorithm, to use higher order Laplacians, we must find their

Gram factorizations, which requires a classical pre-computation. What is the most efficient

way to perform this? Are there simple analytical expressions for the entries of the Gram

matrices? In Appendix B of Ref. [33], we discuss FDM Laplacians in 2+ dimensions that

are not simply linear combinations of 1D Laplacians. How can these be efficiently Gram

81

factored? How does their performance compare to the Laplacians we propose?

In Appendix A we sketch an argument for the BPP-hardness of inverting Laplacian

matrices for general graphs (not just path graphs as considered for PDEs). Formalizing this

remains to be done. Using the algorithm of Ref. [36], can this be made into a completeness

result?

The algorithms we have presented solve problems where the output is a quantum state

that is proportional to the solution of an ODE or a PDE. However, to learn anything about

the solutions to the DEs we must post-process these states, eg, by estimating observables,

which is a different computational task and will require additional overhead not considered

here.

82

Appendix A: BPP-hardness of Laplacian Linear Systems

Following Refs. [36, 46] developing BPL algorithms for solving Laplacian linear sys-

tems, Ref. [37, 38], showed that approximating the second eigenvalue of graph Laplacians

is BPL-hard. Here we sketch a heuristic argument that estimating ~vT~x is BPP-hard where

~x is the solution of an exponentially large Laplacian linear system and~v is a specially con-

structed vector.

This hardness reduction is inspired by the HHL construction that shows that inverting

sparse, exponentially large matrices is BQP-complete. The HHL construction relies on a

decomposition of the quantum circuit into a universal set of local unitaries, such as the

Hadamard, phase, and controlled-not gates. For the BPP-hard construction we use the

fact that the Toffoli (doubly controlled-not) gate is universal for classical deterministic

computation. Since the Toffoli gate is deterministic but BPP is a language for random

computation, we model the randomness by augmenting the computational bits with random

coin bits; randomness is introduced into the computational bit space by controlling on the

values of these coin bits.

Suppose we are given a classical circuit C operating on a space of computational bits

and coin bits such that sampling over the space of coin bits approximates a BPP com-

putation. Further suppose we have a decomposition of this circuit into a sequence of m

Toffoli gates, ie, C = ∏
m
j=1 Tj. Without loss of generality, we can assume that the circuit

performs the computation, copies the output bit to an output register, and then uncomputes

any ‘garbage’ in the computational bits. Then the output of the circuit is a set of bits all of

83

which are set to 0 except for the output bit and the random coin bits.

As in HHL we first construct an asymmetric matrix.

M = I− exp(−1/m)Q (A.1)

Q≡
m

∑
j=1
| j+1〉〈 j|⊗Tj−

2m

∑
j=m+1

| j+1〉〈 j|⊗I−
3m

∑
j=2m+1

| j+1 mod 3m〉〈 j|⊗T †
3m+1− j (A.2)

The condition number of this matrix is Θ(m), ie, it scales with the number of Toffoli

gates in the classical circuit.

To see how this matrix can be used to encode a computation, consider the linear system

M|x〉= |0〉clock|0〉comp|c〉coin (A.3)

where |0〉clock is in the 3m-dimensional ‘clock’ Hilbert space, |0〉comp lies in the compu-

tational space, and |c〉coin lies in the coin space. The solution of this linear system is the

history state

|x〉= 1
1− exp(−3)

3m

∑
j=1
| j〉|ψ j〉 (A.4)

where

|ψ j〉=

|0〉|c〉 j = 1

∏
j−1
k=1 Tk|0〉|c〉 2≤ j ≤ m

∏
m
k=1 Tk|0〉|c〉 m+1≤ j ≤ 2m

∏
3m+1− j
k=1 Tk|0〉|c〉 2m+1≤ j ≤ 3m

. (A.5)

Note that when the clock register encodes a value between m+1 and 2m, the rest of the

state corresponds to the state after the computation where all the bits are guaranteed to be

zero except for the output bit and the coin bits.

If the coin state |c〉coin corresponds to a distribution of coins, then the quantity 〈y|x〉 is

84

proportional to the number of computational paths (in the distribution) outputing 0 minus

the number of computational paths outputing 1, where

|y〉=
2m

∑
j=m+1

| j〉|−〉out put |0〉comp\out put |c〉coin. (A.6)

Thus if |c〉coin corresponds to a sufficiently large distribution of coins, then 〈y|x〉 is positive

(or negative) if the output of the BPP computation is 0 (or 1) with high probability.

Now that we have argued that the solution of this linear system is BPP-hard, it remains

to conver the linear system into a graph Laplacian linear system. We begin by symmetrizing

the matrix

M†M = (1+ exp(−2/m))1− exp(−1/m)(Q+Q†) (A.7)

where we have used the fact that Q is unitary. The linear system then reads M†M|x〉 =

M†|0〉clock|0〉comp|c〉coin.

Since each row of Q has exactly one non-zero entry which is equal to 1, this matrix is

symmetric diagonally dominant with negative entries off of the diagonal. Now the linear

system can be converted to a Laplacian linear system using some standard tricks, namely

we map the matrix and vectors according to

M†M 7→ exp(−1/m)(2I−Q+Q†)⊗ I2+(1+exp(−2/m)−2exp(−1/m))I⊗ [(I2−X)/2]

(A.8)

~v 7→~v⊗|−〉 (A.9)

where I2 denotes the 2× 2 identity matrix. Note that [(I2−X)/2] = |−〉〈−|, so this new

matrix acts on vectors of the form~v⊗|−〉 equivalently to how M†M acts on the vector |v〉.

The matrix produced by this mapping corresponds to a weighted graph Laplacian.

85

Appendix B: Riccati Equation Algorithm

In this appendix we sketch a heuristic quantum algorithm for solving a special case

of the Riccati equation and then comment on how this relates to the more general Riccati

equation.

The problem we consider is:

QUANTUM RICCATI EQUATION SIMULATION: Let V , a N×N matrix, evolve according to

the differential equation
dV
dt

= I + iHV +V 2 (B.1)

where H is a Hamiltonian which we can simulate. Let the initial condition U(0) be a uni-

tary. Given access to an oracle that implements a controlled applicaiton of U(0), produce a

quantum state proportional to one of the columns of U(T).

B.1 Linearizing the Riccati Equation

Under the transformation V = (dU
dt)U

−1, Eqn. B.1 is equivalent to the following ODE.

d
dt

[
U

dU/dt

]
=

[
0 I
−I iH

][
U

dU/dt

]
(B.2)

The square matrix on the RHS above is anti-Hermitian, so the columns of
[

U
dU/dt

]
obey the Schrödinger equation and we can use Hamiltonian simulation algorithms for the

86

time evolution.

B.2 Qubitization and Matrix Inversion

One of the difficulties with this approach is that at the end of the linear evolution we

have to transform back to the original V coordinates. This requires applying U(T)−1; how-

ever, non-sparse models of Hamiltonian simulation (such as qubitization or block encoding)

can be used to implement this transformation. Note that

X⊗H = (1/
√

2)

0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0

 (B.3)

and define W̄ (0) as

W̄ (0) =W1W2(X⊗H⊗ I)W †
1 W †

2 =

0 0 U U
0 0 (dU/dt) −(dU/dt)

U† (dU/dt)† 0 0
U† −(dU/dt)† 0 0

 (B.4)

W1 = |00〉〈00|⊗U(0)+(I−|00〉〈00|)⊗ I (B.5)

W2 = |01〉〈01|⊗(dU/dt)(0)+(I−|01〉〈01|)⊗ I (B.6)

Since U and dU/dt are only given to us at t = 0 we need to evolve W̄ forward in time. More

specifically, we need to perform the inversion U(T)−1. We can achieve this by evolving

the relevant subblocks of this matrix according to Eqn. B.2.

87

W̄ (T) = exp

0 I 0 0
−I iH 0 0
0 0 0 0
0 0 0 0

0 0 U U
0 0 (dU/dt) −(dU/dt)

U† (dU/dt)† 0 0
U† −(dU/dt)† 0 0

exp

0 −I 0 0
I −iH 0 0
0 0 0 0
0 0 0 0

(B.7)

=

0 0 U(T) Q(T)
0 0 (dU/dt)|T (dQ/dt)|T

U(T)† (dU/dt)†|T 0 0
Q(T)† (dQ/dt)†|T 0 0

 (B.8)

where Q(T) is the solution of the differential equation produced from the initial conditions

Q(0) = U(0) and dQ/dt|0= −dU/dt|0. We can now apply block encoding to select the

submatrix of W̄ (T) that corresponds to the Hamiltonian which will be simulated when

applying U(T)−1.

[I⊗〈0|⊗I]W̄ (T)[I⊗|0〉⊗ I] =
[

0 U(T)
U(T)† 0

]
(B.9)

This suffices to show that we can in principle simulate the Hamiltonian
[

0 U(T)
U(T)† 0

]
.

B.3 The Full Algorithm

Suppose that we are asked to produce a state proportional to the jth column of V (T) =

(dU/dt)|TU(T)−1.

1. Prepare the state | j〉.

2. Apply the inverse U(T)−1 using a QLSA whose Hamiltonian simulation subroutine

makes uses of the block encoding discussed above.

3. Multiply by (dU/dt)|T (eg by modifying HHL for multiplication instead of inver-

88

sion).

Alternatively, if we are asked to produce a state proportional to the jth row of V (T) we

can do the following.

1. Prepare the state |01〉| j〉.

2. Apply the unitary W̄ (T).

3. Apply (U(T)†)−1 to the relevant subspace using a QLSA and the block encoding

discussed above.

4. Measure the first two qubits, post-selecting on them being in the state |10〉.

These are merely heuristic outlines for the algorithms for simulating the Ricatti equa-

tion. A formal analysis of these algorithms will reveal that several algorithmic overheads

exist, such as dependence on the condition numbers of U(T) and (dU/dt)T and depen-

dence on post-selection probabilities.

B.4 Radon’s Lemma

The kind of linearization seen in the last section is summarized for more genera Riccati

equations by Radon’s Lemma. We restate this lemma here (Theorem 3.1.1 from Ref. [2]).

For the purposes of this lemma, we define the Riccati Differential Equation as

dW
dt

= M2,1(t)+M2,2(t)W −WM1,1(t)−WM1,2(t)W (RDE) (B.10)

Lemma 14. (Radon’s Lemma) Let M1,1 ∈Rn×n, M1,2 ∈Rn×m, M2,1 ∈Rm×n, M2,2 ∈Rm×m,

then the following holds:

89

1. Let W (t) ∈ Rm×n be a solution of RDE in the interval [t0, t f]⊂ R. If Q,Q(t) ∈ Rn×n

is a solution of the IVP

dQ
dt

= (M1,1 +M1,2W)Q, Q(t0) = 1 (B.11)

and P(t) := W (t)Q(t), then
[

Q
P

]
is a solution of the associated linear system (of

differential equations)

d
dt

[
Q
P

]
=

[
M1,1 M1,2
M2,1 M2,2

][
Q
P

]
. (L) (B.12)

2. If
[

Q
P

]
is a real solution of the system L such that Q(t) ∈ Rn×n is regular for t ∈

[t0, t f]⊂ R, then

W : [t0, t f]→ Rm,n, t 7→ P(t)Q−1(t) =W (t) (B.13)

is a real solution of RDE.

3. In case of a complex parameter t and M1,1 ∈ Cn×n, M1,2 ∈ Cn×m, M2,1 ∈ Cm×n,

M2,2 ∈ Cm×m, and also W (t) ∈ Cm×n, the assertions 1 and 2 remain valid if we

replace therein the interval [t0, t f] by an arbitrary domain G⊂ C with t0 ∈ G.

Simulating the RDE requires modifying the algorithm that we sketched in the previous

section. Linearizing the RDE produces an ODE which is not necessarily an instance of

Schrödinger’s equation, so a coherent ODE algorithm (such as that in Ref. [16]) must be

used for the time evolution. If the algorithm in Ref. [16] is used, then during the matrix

inversion step, the subblock selection must take into account the structure of the history

state as well as the success/failure flag qubits used in the QLSA.

90

Bibliography

[1] Scott Aaronson. Quantum computing, postselection, and probabilistic polynomial-
time. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 461(2063):3473–3482, 2005.

[2] Hisham Abou-Kandil, Gerhard Freiling, Vlad Ionescu, and Gerhard Jank. Matrix
Riccati Equations in Control and Systems Theory. Birkhäuser, 2012.

[3] Daniel S Abrams and Seth Lloyd. Nonlinear Quantum Mechanics Implies
Polynomial-Time Solution for NP-complete and #P problems. Physical Review Let-
ters, 81(18):3992, 1998.

[4] Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state generation and sta-
tistical zero knowledge. In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pages 20–29. ACM, 2003.

[5] Andris Ambainis. Variable time amplitude amplification and a faster quantum algo-
rithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458, 2010.

[6] Alex Aleksandr Arkhipov. Extending and Characterizing Quantum Magic Games.
PhD thesis, Massachusetts Institute of Technology, 2012.

[7] Ning Bao, Adam Bouland, and Stephen P Jordan. Grover Search and the No-
Signaling Principle. Physical Review Letters, 117(12):120501, 2016.

[8] Michael Jarret Baume. Spectral graph theory with applications to quantum adiabatic
optimization. PhD thesis, 2016.

[9] Dominic Berry and Leonardo Novo. Corrected quantum walk for optimal hamiltonian
simulation. Quantum Information & Computation, 16(15-16):1295–1317, 2016.

[10] Dominic W Berry. High-order quantum algorithm for solving linear differential equa-
tions. Journal of Physics A: Mathematical and Theoretical, 47(10):105301, 2014.

91

[11] Dominic W Berry, Graeme Ahokas, Richard Cleve, and Barry C Sanders. Efficient
Quantum Algorithms for Simulating Sparse Hamiltonians. Communications in Math-
ematical Physics, 270(2):359–371, 2007.

[12] Dominic W. Berry and Andrew M. Childs. Black-box Hamiltonian Simulation and
Unitary Implementation. Quantum Info. Comput., 12(1-2):29–62, January 2012.

[13] Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D
Somma. Simulating Hamiltonian Dynamics with a Truncated Taylor Series. Physical
Review Letters, 114(9):090502, 2015.

[14] Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D
Somma. Exponential improvement in precision for simulating sparse hamiltonians.
Forum of Mathematics, Sigma, 5:e8, 2017.

[15] Dominic W Berry, Andrew M Childs, and Robin Kothari. Hamiltonian Simulation
with Nearly Optimal Dependence on all Parameters. In 2015 IEEE 56th Annual Sym-
posium on Foundations of Computer Science, pages 792–809. IEEE, 2015.

[16] Dominic W Berry, Andrew M Childs, Aaron Ostrander, and Guoming Wang. Quan-
tum Algorithm for Linear Differential Equations with Exponentially Improved De-
pendence on Precision. Communications in Mathematical Physics, 356(3):1057–
1081, 2017.

[17] Dominic W Berry, Andrew M Childs, Yuan Su, Xin Wang, and Nathan Wiebe.
Time-dependent Hamiltonian simulation with L1-norm scaling. arXiv preprint
arXiv:1906.07115, 2019.

[18] Fernando GSL Brandao, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M
Svore, and Xiaodi Wu. Quantum SDP Solvers: Large Speed-ups, Optimality, and
Applications to Quantum Learning. arXiv preprint arXiv:1710.02581, 2017.

[19] Sergey Bravyi, David P Divincenzo, Roberto Oliveira, and Barbara M Terhal. The
Complexity of Stoquastic Local Hamiltonian Problems. Quantum Information &
Computation, 8(5):361–385, 2008.

[20] Earl Campbell. Shorter gate sequences for quantum computing by mixing unitaries.
Physical Review A, 95(4):042306, 2017.

[21] Earl Campbell. A random compiler for fast Hamiltonian simulation. arXiv preprint
arXiv:1811.08017, 2018.

[22] Yudong Cao, Anargyros Papageorgiou, Iasonas Petras, Joseph Traub, and Sabre Kais.
Quantum algorithm and circuit design solving the Poisson equation. New Journal of
Physics, 15(1):013021, 2013.

92

[23] Sergei I Chernyshenko, P Goulart, D Huang, and Antonis Papachristodoulou. Poly-
nomial sum of squares in fluid dynamics: a review with a look ahead. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 372(2020):20130350, 2014.

[24] Andrew M Childs. On the Relationship Between Continuous- and Discrete-Time
Quantum Walk. Communications in Mathematical Physics, 294(2):581–603, 2010.

[25] Andrew M Childs, Robin Kothari, and Rolando D Somma. Quantum Algorithm for
Systems of Linear Equations with Exponentially Improved Dependence on Precision.
SIAM Journal on Computing, 46(6):1920–1950, 2017.

[26] Andrew M Childs and Jin-Peng Liu. Quantum spectral methods for differential equa-
tions. arXiv preprint arXiv:1901.00961, 2019.

[27] Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su. Toward
the first quantum simulation with quantum speedup. Proceedings of the National
Academy of Sciences, 115(38):9456–9461, 2018.

[28] Andrew M. Childs, Aaron Ostrander, and Yuan Su. Faster quantum simulation by
randomization. Quantum, 3:182, September 2019.

[29] Andrew M Childs and Joshua Young. Optimal state discrimination and unstructured
search in nonlinear quantum mechanics. Physical Review A, 93(2):022314, 2016.

[30] Fan RK Chung. Spectral Graph Theory. Number 92. American Mathematical Soc.,
1997.

[31] B David Clader, Bryan C Jacobs, and Chad R Sprouse. Preconditioned Quantum
Linear System Algorithm. Physical Review Letters, 110(25):250504, 2013.

[32] Daniel T Colbert and William H Miller. A novel discrete variable representation for
quantum mechanical reactive scattering via the S-matrix Kohn method. The Journal
of chemical physics, 96(3):1982–1991, 1992.

[33] Pedro CS Costa, Stephen Jordan, and Aaron Ostrander. Quantum algorithm for sim-
ulating the wave equation. Physical Review A, 99(1):012323, 2019.

[34] Dragoš Cvetković, Peter Rowlinson, and Slobodan Simić. An Introduction to the
Theory of Graph Spectra. Cambridge-New York, 2010.

[35] Danial Dervovic, Mark Herbster, Peter Mountney, Simone Severini, Naı̈ri Usher, and
Leonard Wossnig. Quantum linear systems algorithms: a primer. arXiv preprint
arXiv:1802.08227, 2018.

93

[36] Dean Doron, François Le Gall, and Amnon Ta-Shma. Probabilistic Logarithmic-
Space Algorithms for Laplacian Solvers. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[37] Dean Doron, Amir Sarid, and Amnon Ta-Shma. On Approximating the Eigenval-
ues of Stochastic Matrices in Probabilistic Logspace. computational complexity,
26(2):393–420, 2017.

[38] Dean Doron and Amnon Ta-Shma. On the Problem of Approximating the Eigenval-
ues of Undirected Graphs in Probabilistic Logspace. In International Colloquium on
Automata, Languages, and Programming, pages 419–431. Springer, 2015.

[39] Alexander Engel, Graeme Smith, and Scott E Parker. A Quantum Algorithm for the
Vlasov Equation. arXiv preprint arXiv:1907.09418, 2019.

[40] Lawrence C. Evans. Partial Differential Equations. American Mathematical Society,
Providence, R.I., 2010.

[41] Giovanni Fantuzzi, David Goluskin, Deqing Huang, and Sergei I Chernyshenko.
Bounds for Deterministic and Stochastic Dynamical Systems using Sum-of-Squares
Optimization. SIAM Journal on Applied Dynamical Systems, 15(4):1962–1988, 2016.

[42] Richard P Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6):467–488, 1982.

[43] Caroline Figgatt, Aaron Ostrander, Norbert M Linke, Kevin A Landsman, Daiwei
Zhu, Dmitri Maslov, and Christopher Monroe. Parallel entangling operations on a
universal ion-trap quantum computer. Nature, 572(7769):368–372, 2019.

[44] F Fillion-Gourdeau and Emmanuel Lorin. Simple digital quantum algorithm for
symmetric first-order linear hyperbolic systems. Numerical Algorithms, pages 1–37,
2018.

[45] François Fillion-Gourdeau, Steve MacLean, and Raymond Laflamme. Algorithm for
the solution of the Dirac equation on digital quantum computers. Physical Review A,
95(4):042343, 2017.

[46] François Le Gall. Solving Laplacian Systems in Logarithmic Space. arXiv preprint
arXiv:1608.01426, 2016.

[47] András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. Optimizing quantum
optimization algorithms via faster quantum gradient computation. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1425–
1444. Society for Industrial and Applied Mathematics, 2019.

94

[48] András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochas-
tic regression with logarithmic dependence on the dimension. arXiv preprint
arXiv:1811.04909, 2018.

[49] Chris Godsil and Gordon F Royle. Algebraic Graph Theory, volume 207. Springer
Science & Business Media, 2013.

[50] David Goluskin. Bounding Averages Rigorously Using Semidefinite Programming:
Mean Moments of the Lorenz System. Journal of NonLinear Science, 28(2):621–651,
2018.

[51] Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently
integrable probability distributions. arXiv preprint quant-ph/0208112, 2002.

[52] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum Algorithm for Linear
Systems of Equations. Physical Review Letters, 103(15):150502, 2009.

[53] Matthew B Hastings. Turning Gate Synthesis Errors into Incoherent Errors. Quantum
Information & Computation, 17(5-6):488–494, 2017.

[54] Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge university press,
2012.

[55] Iordanis Kerenidis and Anupam Prakash. Quantum Recommendation Systems. In 8th
Innovations in Theoretical Computer Science Conference (ITCS 2017), volume 67,
page 49. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[56] Iordanis Kerenidis and Anupam Prakash. A Quantum Interior Point Method for LPs
and SDPs. arXiv preprint arXiv:1808.09266, 2018.

[57] Ishtiaq Rasool Khan and Ryoji Ohba. Closed-form expressions for the finite differ-
ence approximations of first and higher derivatives based on Taylor series. Journal of
Computational and Applied Mathematics, 107(2):179–193, 1999.

[58] Ishtiaq Rasool Khan and Ryoji Ohba. Taylor series based finite difference approxi-
mations of higher-degree derivatives. Journal of Computational and Applied Mathe-
matics, 154(1):115–124, 2003.

[59] Ishtiaq Rasool Khan, Ryoji Ohba, and Noriyuki Hozumi. Mathematical proof of
closed form expressions for finite difference approximations based on Taylor series.
Journal of Computational and Applied Mathematics, 150(2):303–309, 2003.

[60] A Yu Kitaev. Quantum measurements and the Abelian Stabilizer Problem. arXiv
preprint quant-ph/9511026, 1995.

95

[61] Ian D Kivlichan, Nathan Wiebe, Ryan Babbush, and Alán Aspuru-Guzik. Bounding
the costs of quantum simulation of many-body physics in real space. Journal of
Physics A: Mathematical and Theoretical, 50(30):305301, 2017.

[62] Robin Kothari. Efficient algorithms in quantum query complexity. 2014.

[63] Randall J LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems, volume 98. Siam, 2007.

[64] Sarah K Leyton and Tobias J Osborne. A quantum algorithm to solve nonlinear dif-
ferential equations. arXiv preprint arXiv:0812.4423, 2008.

[65] Jianping Li. General explicit difference formulas for numerical differentiation. Jour-
nal of Computational and Applied Mathematics, 183(1):29–52, 2005.

[66] Yi-Xiang Liu, Jordan Hines, Ashok Ajoy, and Paola Cappellaro. Quantum interpola-
tion for digital quantum simulation. arXiv preprint arXiv:1903.01654, 2019.

[67] Seth Lloyd. Universal Quantum Simulators. Science, pages 1073–1078, 1996.

[68] Guang Hao Low and Isaac L Chuang. Optimal Hamiltonian Simulation by Quantum
Signal Processing. Physical Review Letters, 118(1):010501, 2017.

[69] Guang Hao Low and Isaac L Chuang. Hamiltonian Simulation by Qubitization. Quan-
tum, 3:163, 2019.

[70] Michael Lubasch, Jaewoo Joo, Pierre Moinier, Martin Kiffner, and Dieter
Jaksch. Variational Quantum Algorithms for Nonlinear Problems. arXiv preprint
arXiv:1907.09032, 2019.

[71] Anuradha Mahasinghe. Vibration Analysis of Cyclic Symmetrical Systems by Quan-
tum Algorithms. Mathematical Problems in Engineering, 2019, 2019.

[72] R Meyer. Trigonometric Interpolation Method for One-Dimensional Quantum-
Mechanical Problems. The Journal of Chemical Physics, 52(4):2053–2059, 1970.

[73] Ashley Montanaro and Sam Pallister. Quantum algorithms and the finite element
method. Physical Review A, 93(3):032324, 2016.

[74] Michael A Nielsen and Isaac Chuang. Quantum Computation and Quantum Informa-
tion, 2002.

[75] Anargyros Papageorgiou and Joseph F Traub. Measures of quantum computing
speedup. Physical Review A, 88(2):022316, 2013.

[76] David Poulin, Angie Qarry, Rolando Somma, and Frank Verstraete. Quantum Simu-
lation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert Space.
Physical Review Letters, 106(17):170501, 2011.

96

[77] John H Reif and Stephen R Tate. The complexity of N-body simulation. In Inter-
national Colloquium on Automata, Languages, and Programming, pages 162–176.
Springer, Berlin, Heidelberg, 1993.

[78] Lorenzo Adlai Sadun. Applied Linear Algebra: The Decoupling Principle. American
Mathematical Soc., 2007.

[79] Yuval R Sanders, Guang Hao Low, Artur Scherer, and Dominic W Berry. Black-
Box Quantum State Preparation without Arithmetic. Physical Review Letters,
122(2):020502, 2019.

[80] Artur Scherer, Benoı̂t Valiron, Siun-Chuon Mau, Scott Alexander, Eric Van den Berg,
and Thomas E Chapuran. Concrete resource analysis of the quantum linear-system
algorithm used to compute the electromagnetic scattering cross section of a 2D target.
Quantum Information Processing, 16(3):60, 2017.

[81] Norbert Schuch and Jens Siewert. Programmable Networks for Quantum Algorithms.
Physical Review Letters, 91(2):027902, 2003.

[82] Siddhartha Sinha and Peter Russer. Quantum computing algorithm for electromag-
netic field simulation. Quantum Information Processing, 9(3):385–404, 2010.

[83] D. Spielman. Rings, Paths, and Cayley Graphs (Course Notes), 2014.

[84] René Steijl. Quantum Algorithms for Fluid Simulations. 2019.

[85] René Steijl and George N Barakos. Parallel evaluation of quantum algorithms for
computational fluid dynamics. Computers & Fluids, 173:22–28, 2018.

[86] Yiğit Subaşı, Rolando D Somma, and Davide Orsucci. Quantum Algorithms for Sys-
tems of Linear Equations Inspired by Adiabatic Quantum Computing. Physical Re-
view Letters, 122(6):060504, 2019.

[87] Masuo Suzuki. Generalized Trotter’s formula and systematic approximants of ex-
ponential operators and inner derivations with applications to many-body problems.
Communications in Mathematical Physics, 51(2):183–190, 1976.

[88] Masuo Suzuki. Fractal decomposition of exponential operators with applications to
many-body theories and Monte Carlo simulations. Physics Letters A, 146(6):319–
323, 1990.

[89] Masuo Suzuki. General theory of fractal path integrals with applications to many-
body theories and statistical physics. Journal of Mathematical Physics, 32(2):400–
407, 1991.

97

[90] Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 217–228. ACM, 2019.

[91] Blaga Todorova and Rene Steijl. Quantum Algorithm for Collisionless Boltzmann
Equation based on the Reservoir Technique. In AIAA Scitech 2019 Forum, page 1406,
2019.

[92] Joran van Apeldoorn and András Gilyén. Improvements in Quantum SDP-Solving
with Applications. arXiv preprint arXiv:1804.05058, 2018.

[93] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Quantum
SDP-Solvers: Better Upper and Lower Bounds. In 2017 IEEE 58th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 403–414. IEEE, 2017.

[94] Guoming Wang. Efficient quantum algorithms for analyzing large sparse electrical
networks. Quantum Information & Computation, 17(11-12):987–1026, 2017.

[95] Jonathan Welch, Daniel Greenbaum, Sarah Mostame, and Alan Aspuru-Guzik. Effi-
cient quantum circuits for diagonal unitaries without ancillas. New Journal of Physics,
16(3):033040, 2014.

[96] Leonard Wossnig, Zhikuan Zhao, and Anupam Prakash. Quantum Linear System
Algorithm for Dense Matrices. Physical Review Letters, 120(5):050502, 2018.

[97] Guanglei Xu, Andrew J Daley, Peyman Givi, and Rolando D Somma. Turbulent
Mixing Simulation via a Quantum Algorithm. AIAA Journal, pages 687–699, 2017.

[98] Christof Zalka. Efficient Simulation of Quantum Systems by Quantum Computers.
Fortschritte der Physik: Progress of Physics, 46(6-8):877–879, 1998.

[99] Chi Zhang. Randomized Algorithms for Hamiltonian Simulation. In Monte Carlo
and Quasi-Monte Carlo Methods 2010, pages 709–719. Springer, 2012.

98

	Dedication
	Acknowledgements
	Introduction
	Hamiltonian Simulation
	QLSAs
	Outline
	Additional Research

	Hamiltonian Simulation by Randomization
	Product Formulas
	Randomized Algorithms
	The First Order Case
	Randomized Operators
	Error
	Main Result
	Comparison of Algorithms

	Ordinary Differential Equations
	Previous Quantum Algorithms
	Linear Systems for ODEs
	Condition Number
	Approximation Error
	Success Probability
	State Preparation
	Main Result

	FDM for Poisson's Equation
	Finite Difference Formulas
	Previous Quantum Algorithms
	FDM Linear Systems
	Condition Number
	Error Analysis
	FDM Algorithms for Poisson's Equation
	Boundary Conditions via the Method of Images
	First Order PDEs

	FDM for the Wave and Klein-Gordon Equations
	Second Order Equations with First Order Algorithms
	Factoring Graph Laplacians
	Boundary Conditions and Mass Terms
	Higher Order Laplacians
	Multiple Dimensions and Non-Convex Domains
	Initial Conditions
	Post-Processing
	Complexity Analysis
	Comparison to ODE approaches

	Conclusion
	Summary of Results
	Progress on Randomization for Hamiltonian Simulation
	Progress on ODEs
	Nonlinear Differential Equations
	Other Open Questions

	BPP-hardness of Laplacian Linear Systems
	Riccati Equation Algorithm
	Linearizing the Riccati Equation
	Qubitization and Matrix Inversion
	The Full Algorithm
	Radon's Lemma

	Bibliography

