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This thesis describes quantum algorithms for Hamiltonian simulation, ordinary differ-
ential equations (ODEs), and partial differential equations (PDEs).

Product formulas are used to simulate Hamiltonians which can be expressed as a sum
of terms which can each be simulated individually. By simulating each of these terms in
sequence, the net effect approximately simulates the total Hamiltonian. We find that the
error of product formulas can be improved by randomizing over the order in which the
Hamiltonian terms are simulated. We prove that this approach is asymptotically better than
ordinary product formulas and present numerical comparisons for small numbers of qubits.

The ODE algorithm applies to the initial value problem for time-independent first order
linear ODEs. We approximate the propagator of the ODE by a truncated Taylor series,
and we encode the initial value problem in a large linear system. We solve this linear
system with a quantum linear system algorithm (QLSA) whose output we perform a post-
selective measurement on. The resulting state encodes the solution to the initial value
problem. We prove that our algorithm is asymptotically optimal with respect to several

system parameters.



The PDE algorithms apply the finite difference method (FDM) to Poisson’s equation,
the wave equation, and the Klein-Gordon equation. We use high order FDM approxima-
tions of the Laplacian operator to develop linear systems for Poisson’s equation in cubic
volumes under periodic, Neumann, and Dirichlet boundary conditions. Using QLSAs, we
output states encoding solutions to Poisson’s equation. We prove that our algorithm is ex-
ponentially faster with respect to the spatial dimension than analogous classical algorithms.
We also consider how high order Laplacian approximations can be used for simulating the
wave and Klein-Gordon equations. We consider under what conditions it suffices to use
Hamiltonian simulation for time evolution, and we propose an algorithm for these cases

that uses QLS As for state preparation and post-processing.
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Chapter 1: Introduction

It is a truth universally acknowledged, that anything written about quantum simulation

must begin with the quote

13

. nature isn’t classical, dammit, and if you want to make a simulation of

nature, you’d better make it quantum mechanical...” - Richard Feynman [42]

from the keynote where Feynman first proposed using quantum computers to simulate
quantum mechanics. This thesis presents algorithms to simulate Hamiltonians and to sim-
ulate systems described by differential equations other than Schrédinger’s equation. In par-
ticular we will consider algorihtms for linear ordinary differential equations (ODEs) and
linear partial differential equations (PDEs). Most of these algorithms appear in previous
publications, namely Refs. [[16] 28, [33]], and a forthcoming article on PDEs with Andrew
Childs and Jinpeng Liu.

Hamiltonian simulation has received a great deal of attention, from Lloyd’s original al-
gorithm for local Hamiltonians [67] to the more recent quantum signal processing approach
of Low and Chuang [68]]. Hamiltonian simulation is an algorithmic primitive that is used
for a variety of other algorithms, including quantum linear systems algorithms (QLSAs)
which appear throughout this dissertation. We use QLSAs as primitives for the ODE and
PDE algorithms; in fact the ODE algorithm amounts to solving a cleverly designed linear
system and then post-selecting. QLSAs will also be used in the pre- and post-processing

steps of certain cases of the wave equation algorithm. QLSAs provide a crucial perspective



for studying finite difference operators in other partial differential equation algorithms.

1.1 Hamiltonian Simulation

We state the problem of Hamiltonian simulation as follows.

HAMILTONIAN SIMULATION (GENERAL STATEMENT): Given the ability to produce an
initial state |yp), a Hamiltonian H, an evolution time 7', and an error parameter €, output a
state that is € close to exp(—iHT)| ).

There are several details left out of this statement: How is the initial state prepared?
How do you compute the Hamiltonian? What norm is used to measure the distance between
states? Initial states of interest must be efficiently preparable, and for our purposes it is
sufficient to assume that we can implement a state preparation oracle, ie, an efficiently
implementable unitary Uy, such that Up.,|0)®" = |yp). Note that the problem is how to
implement a unitary, not a quantum channel, which requires the simulation of a Lindblad
master equation.

There are many norms that can be used to measure the distance between states. Since
pure states exist in a Hilbert space, it is natural to use the £>-norm. For mixed states, the
distance between density matrices can be measured using fidelity or trace distance [74]]. In
Chapter 2 we will use the diamond norm, which is actually a distance measure for quantum
channels which implies an error bound on the states output by the channel. This is because
the algorithm we present outputs a distribution of states generated by an algorithm using
classical randomness.

The first breakthrough algorithm in Hamiltonian simulation appears in Ref. [67]], which
proposes using product formulas [89] to simulate local Hamiltonians, ie, Hamiltonians
which can be expressed as a sum of other Hamiltonians each of which acts on a limited

number of qubits. Moving beyond the local model of Hamiltonians, Ref. [4] proposed



the first algorithm for sparse Hamiltonians, ie, Hamiltonians with a constant number, d, of
efficiently computable non-zero entries in each row/column.

The sparse model of Hamiltonians makes use of two oracles for computing the locations
and values of non-zero entries [15]. Formally, the entry location oracle acts as Oy |j,1) =
|7,v(j,1)) where v(j,I) is the column index of the /th non-zero entry in the jth row. The
entry value oracle acts as Oz|j,k,z) = |j,k,z+Aj ). In general we might only refer to a
single query oracle O4 = |0)(0|®04; + |1)(1|®@0O42 which can implement O4; and Oy
with only a single control qubit. The number of times an algorithm uses O4; and Oy, is the
query complexity of the algorithm and constitutes an efficiency measure of the algorithm.
The time complexity of an algorithm can be taken to be (without loss of generality) the total
number of 1 and 2-qubit gates (eg H,T, and CNOT) used in the circuit implementing it.

Since the pioneering Hamiltonian simulation algorithms of Refs. [4,67], several im-
provements have been made in the asymptotic query and time complexity of these algo-
rithms, specifically how they scale with the evolution time, the sparsity, and the error. Ref.
[24] achieved linear scaling in ¢ but polynomial scaling in 1/€, which was improved on by
Refs. [13H15] which achieved O(log(1/¢€)) scaling. Ref.[13] uses the linear combination
of unitaries (LCU) technique of Ref. [62] to approximate the Taylor series of exp(iHt).
Ref. [15] also uses a LCU where the unitaries are quantum walk operators. Ref. [12]
was the first algorithm to achieve linear scaling in the sparsity, O(d), and also considered
the complexity of simulating non-sparse Hamiltonians and implementing general unitaries
(possibly non-sparse) given oracle access to their entries.

Although the previously mentioned algorithms scale optimally with respect to either
t or € individually, they mutually scaled multiplicatively (eg O(tlog(1/¢€))) when addi-
titve scaling (O(¢ +log(1¢))) is not ruled out by a no-go theorem. This additive scaling
was achieved in Ref. [9], which builds on the quantum walk algorithm of Ref. [15]], and

in Refs. [68]169], which provide algorithms in the block encoding model (qubitization or



quantum signal processing (QSP)). In the block encoding model, one considers implement-
ing Hamiltonians, H, which are subblocks of a unitary operator, eg, U = {I;I c

A, B, and C are only restricted by the fact that U is unitary. This is modeled using an ora-

A} where

cle Og, which acts as Og|0)" = |G), and a (n+m) x (n+ m) unitary U. Then the n x n
Hamiltonian which is simulated can be expressed as (G|U|G) where the inner product is
understood to be an isometric projection of U.

While the asymptotic complexity of an algorithm is important for designing efficient al-
gorithms, the exact number of gates needed to implement the algorithm is what matters in
practice. Ref. [27]] empirically estimates the efficiency of various Hamiltonian simulation
algorithms when applied to n-qubit Heisenberg spin chains (H = Y/ | X; ® Xi11 modn +
Yi®Yii1 modn+Zi ®Zit1 modn + riZi with r; randomly sampled from [—1, 1]) for n rang-
ing from ~ 10 to 100’s of qubits for a fixed error of 1073. For this benchmark problem,
although the QSP and Taylor series approaches have better asymptotic scaling than product
formula algorithms, product formulas are more efficient in terms of the number of qubits,
T-gates, and CNOT -gates. This kind of comparison is closest to how we numerically
compare deterministic and randomized product formulas in Chapter 2. For a Hamiltonian
H =} ;H;, we measure the efficiency by counting the total number of times a unitary of

the form exp(iHt) is implemented.

1.2 QLSAs

We state the quantum linear system problem as follows.
QUANTUM LINEAR SYSTEM PROBLEM (QLSP) (GENERAL STATEMENT): Given an
oracle to produce a state |») which is proportional to a vector b, oracle access to the matrix
A, and an error parameter €, output a state £-close to |A’lz>, the state proportional to A~ 1p.

More generally if A is singular, we can consider outputing a state proportional to Ath



where A™ is the Moore-Penrose pseudoinverse of A. In the following quantum algorithms
this applies if b does not have any support on the null space of A.
The existing QLSAs all use Hamiltonian simulation as a subroutine. If the matrix A is

Hermitian, then A is the Hamiltonian which is simulated. Otherwise, we can transform the

L = 0 A][x 0
i[9 4] -[9 0

so that we can assume without loss of generality that A is Hermitian (with the only overhead

linear system

being a single qubit in the formalization of the problem).

Ref. [52]] proposed the first QLSA which is now commonly refered to as HHL. It works
by preparing |b), applying phase estimation (PE) [60] to A, then performing a controlled
rotation on an ancilla qubit (controlled by the eigenvalue estimated by PE), and then post-
selecting on that qubit being either |0) or |1) (with only one of these corresponding to
success).

Ref. [52] also proved that estimating observables of solutions of well-conditioned linear
systems is BQP-complete. They construct a linear system whose solution is of the form
Y, o4|t)|w;) where ¢ indexes the gates of a circuit (possibly identity gates) and |y;) is the
state after the rth gate has been applied. By measuring the ¢ register and post-selecting on a
successful measurement, they produce the state output from a quantum circuit, which can
then be measured. This implies BQP-hardness. The completeness follows from the facts
that the linear system is efficienctly solvable and that the post-selective measurement has
high success probability.

The algorithm proposed in Ref. [52] had query complexity O(k?) where K is the con-
dition number of A. This was improved to O(k) scaling using variable time amplitude
amplification in Ref. [S]. This linear scaling is optimal as was proven in Ref. [52]], unless

BQP = PSPACE, since a sublinear QLSA could simulate quantum mechanics in sublinear



time, violating the no-fast-forwarding principle [11]. Using the BQP-complete linear sys-
tem problem, they also argue that any quantum algorithm for estimating an entry of ]A_lz)
can at best have poly(1/€) scaling unless BQP = PP. This argument however does not rule
out poly(log(1/€)) algorithms that only produce the state |A~'5). Developing algorithms
with this scaling is beneficial since they can be used as subroutines in algorithms for esti-
mating functions of |A*15); this reduction in the complexity of subroutines helps reduce
the complexity of the entire algorithm.

This poly(log(1/€)) scaling for producing |A=1B) is achieved in Refs. [23| [86], which
also propose O(k) algorithms. Both algorithms of Ref. [25] use the LCU technique [62].
One approximates A~! as a linear combination of exp(iAt;) terms for various evolution
times #; (essentially as a truncated Fourier series for 1/x). The other algorithm uses a
linear combination of quantum walk operators, which naturally allow for a Chebyshev
polynomial approximation of A~!. The algorithm of Ref. [86] is inspired by adiabatic
computation and only requires a single ancilla qubit (in addition to any ancilla used for
Hamiltonian simulation subroutines).

Some of the previously mentioned QLSAs can also be applied to non-sparse matri-
ces. For example, the Fourier algorithm Ref. [25] only requires the ability to simulate the
Hamiltonian A with high accuracy but with no restrictions on the Hamiltonian model, so a
non-sparse Hamiltonian simulation technique could simply be used as a subroutine. Like-
wise, the Chebyshev approach only requires the ability to perform a certain quantum walk
which is not required to have sparse structure.

Ref. [96] considers inverting non-sparse matrices assuming access to oracles that output
states proportional to the rows of A and a state whose amplitudes are proportional to the
% norms of the rows. Their algorithm scales linearly with the Frobenius norm ||A||r=
YA

general only provides a quadratic speed-up. Ref. [96] comments on using the non-sparse

2, which in the worst case is O(y/n) for an n x n matrix, so their algorithm in




Hamiltonian simulation algorithm of Ref. [12] as a subroutine in the HHL algorithm.

There is a very important caveat to make about QLSAs that also applies to the algo-
rithms presented in this thesis: These algorithms ‘solve’ linear systems and ODEs in the
sense that they output a quantum state proportional to the solution; they do not output the
value of every entry of the solution. These states do not encode information about the size
of the solution, but in the case of HHL the £2-norm is proportional to the success probability
of the post-selection step.

This means that if we want to extract any useful information about the solution, we
must make measurements on the state. Because of the additional costs incurred by post-
processing, it is important to specify what kind of output is needed for applications of
algorithms.

One of the first papers to consider the end-to-end application of a QLSA was Ref. [31]]
which considered estimating the radar scattering cross section of an object, specifically by
estimating the fraction of energy scattered in a direction input to the algorithm. Although
they don’t give a complete analysis of the complexity of their algorithm, they illustrate
the importance of considering how to estimate a function of interest and not just output
quantum states.

Because this paper did not fully analyze the complexity of their algorithm, it was not
clear what kind of quantum speed-up could be hoped for. Ref. [73] addressed this by
considering the complexity of outputting functionals of the solutions of PDEs up to error €.
They phrase their results in terms of this error since the error of the output is what matters
in practice (as opposed to, eg, the number of mesh points in a lattice, which are indirectly
related to the error). They argue that for PDEs with a fixed number of dimensions, at most
a polynomical speed-up is achievable. They also present a no-go argument that forbids
estimating an observable of a PDE solution with poly(log(1/€)) copies of the solution

state, since doing so could distinguish between states that are distance 0 apart using only



poly(log(1/8)) copies. As we already mentioned, we can at best hope for poly(1/¢) scaling
for the most general post-processing problem unless BQP = PP [52].

Another linear system based algorithm with a specific output appears in Ref. [94],
which developed an algorithm for estimating effective resistance, but the computational
hardness of doing so remained an open question. Although well-conditioned matrix in-
version is BQP-complete [52], estimating effective resistance specifically requires solving
a linear system where the matrix is a graph Laplacian and the input vector only has sup-
port on 2 entries. Subsequently, Ref. [36] presented a probabilistic log-space algorithm
for Laplacian linear systems that may be time efficient depending on parameters such as
the error tolerance; complementing this, Refs. [37, 38] studied BPL-completeness of ap-
proximating Laplacian eigenvalues. Motivated by these results, Appendix [A]argues for the
BPP-hardness of inverting exponentially large Laplacian linear systems and corresponds
to estimating a multiterminal effective resistance.

Ref. [55] developed a recommendation system algorithm. It takes as input a customer
and a preference matrix indicating which customers prefer which goods, and it outputs a
good which the input customer is likely to prefer. This algorithms is based on the singular
value decomposition of the preference matrix, which is assumed to be low rank. At the time
of its proposal, this algorithm performed faster than existing classical algorithms. Drawing
inspiration from this quantum algorithm, Ref. [90] presented a classical algorithm for the
same problem assuming access to the same data structure. One the one hand this is a perfect
demonstration of the importance classical lower bounds for the purpose of proving quantum
speed-ups; on the other hand, it is a success story about quantum approaches motivating
classical methods. Ref. [48] applied similar techniques for sampling from the inverse of a

low rank matrix.



1.3  Outline

The previous section reviewing Hamiltonian simulation is by no means comprehensive
(eg it doesn’t mention algorithms for quantum chemistry or quantum field theories) but is
intended to give an idea of the figures of merit relevant to assessing our algorithms (time
and query complexity, elementary exponentials). The previous section on QLSAs gives
an overview of their development over the last decade. See Ref. [35] for a pedagogical
introduction. In each subsequent chapter we review the literature relevant to the class of
DEs addressed in that chapter.

Chapter 2 presents results for simulating Hamiltonians using randomized Lie-Suzuki-
Trotter product formulas based on Ref. [28]. Deterministic product formulas produce
coherent errors. By randomizing over product formulas we generate a distribution of states
averaged over certain coeherent errors, which reduces the total error of the output state.

Chapter 3 presents an algorithm for simulating (solving the initial value problem) linear
time-independent ODEs of the form Z—’f — A%+ b based on Ref. [16]. This involves con-
structing a large linear system whose solution encodes X(¢) for several values of 7. After
producing this state, a post-selective measurement is used to produce a state proportional
to X(t) at the final time. The time evolution operator exp(At) is approximated using a trun-
cated Taylor series, which has the advantage that the accuracy can scale exponentially in
the truncation order. Analyzing this algorithm requires bounding the approximation er-
rors, condition number of the linear system, and success probability of the post-selective
measurement.

Chapter 4 presents algorithms for linear PDEs which are a component of a paper in
preparation with Andrew Childs and Jin-Peng Liu. We use the finite difference method
(FDM) to approximate Poisson’s equation for #(X) at X, a finite set of points in the domain.

This implies a linear system which we solve with QLSAs to output a state whose amplitudes



encode u(X) at X. Analyzing this algorithm requires bounding FDM errors and bounding
the condition number of the linear system.

Chapter 5 presents algorithms for the wave equation and Klein-Gordon equation based
on Ref. [33]. We again apply the FDM and show how to transform a second order PDE
into a first order ODE, which can then be solved using existing algorithms. We pay special
attention to the case where the time evolution is simply Hamiltonian simulation, and we
also discuss the role of QLSAs in state preparation and post-processing.

Chapter 6 concludes by discussing recent algorithmic progress, nonlinear differential
equations (NLDEs), and open problems. The Appendices include ancillary material on

linear systems and NLDEs.

1.4 Additional Research

This thesis covers the research I’ve done on differential equation algorithms; however,
in my time at QuICS I’ve worked on other research projects, most of which falls in the
intersection of graph theory and quantum information.

Carl Miller, Amir Kalev, and I studied extensions of the magic square and magic penta-
gram games to more general two-party binary constraint games on graphs [6]. We proved
that the magic square and magic pentagram games are unique in that they are the only
games in this class which certify that Alice and Bob share 2 Bell pairs (for the magic
square) or 3 Bell pairs (for the magic pentagram).

On the experimental side, I did control theory for Chris Monroe’s ‘Gates Lab’ (pri-
marily working with Caroline Figgatt, Kevin Landsman, and Norbert Linke) which uses a
blade trap to form an ion crystal with qubits encoded in electron levels and gates realized
via Raman beams and electron-phonon coupling. We realized the first instance of parallel

entangling gates between two pairs of ions as described in Ref. [43]].
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Chapter 2: Hamiltonian Simulation by Randomization

We first briefly review product formulas. We then present the randomization lemma
and illustrate how it can be used in a simple case. We prove technical lemmas pertaining to
how randomizing symmetrically reduces approximation error, and then we prove our main
result. We present numerics projecting how our algorithm compares to normal product
formulas for Heisenberg spin chains with hundreds of qubits, the benchmark system used
in Ref. [27].

We restate the theorems of Ref. [28]] verbatim, but for some results we give an intuitive

sketch in lieu of a proof and refer to Ref. [28] or other papers for the technical details.

2.1 Product Formulas

Lie-Suzuki-Trotter product formulas were first applied to quantum algorithms in Ref.

[67]] which proposed simulating

L
exp(—itH) = exp(—it Y H)) (2.1)

j=1
where each H; can be individually simulated, by applying the unitary ( ?:1 exp(—itH;/r))"
for a large integer r. This approximation becomes exact in the limit » — co. This is a first
order formula in the sense that it is accurate to first order in #, ie, the error is O(tz).

Refs. [87-89]] provided a recursive method formula for product formulas of arbitrarily

11



high accuracy. We denote the kth order accurate formula by S, and they are defined by

L
S1(4) := [ exp(AH;) (2.2)
j=1
L 1
Sa(A) := [ exp(AH;/2) [ ] exp(AH;) (2.3)
j=1 Jj=L
Sak(A) 1= Sak—a(piA)2S2k—a (1 — 4pi)A)Sak—z (piA)* (2.4)

where p, :=1/(4— 41/ (2"*1)). In general we assume that the target Hamiltonian is H =
Z?:l Hj and use A in place of —if since these formulas apply generally for A € C. We define
the target operator V(A) :=exp(AH). As in the first order case, V(1) is well approximated
by applying Sy (A/r)". The error from these formulas was bounded in Ref. [27], which

also provides bounds that take advantage of when some of the H; commute pairwise.

2.2 Randomized Algorithms

During the writing of Ref. [28], we became aware of Ref. [99] which presents a ran-
domized Hamiltonian simulation algorithm which is equivalent to the algorithm we present
here for randomizing over first order product formulas to generate a second order accurate
channel. Ref. [76] also proposes a random product formula algorithm for Hamiltonian
simulation. This algorithm is different from ours in that it evolves Hamiltonians in a fixed
order for random amounts of time whereas our algorithm evolves Hamiltonians in a random
order for fixed amounts of time.

Ref. [20] proposes a randomized algorithm for approximate unitary synthesis where,
instead of implementing a unitary using a fixed sequence of 1- and 2-qubit gates, ran-

domized sequences are applied. Ref. [20] uses the following lemma, which is crucial for

12



proving our results.

Lemma 1 ([20,53)). Let V be a target unitary, with associated channel V(p) =VpVT. Let

a,b > 0and {U,,U,,...,U,} be a set of unitaries such that
1. forall je{1,...,n} we have ||U; —V||< a;
2. there exist positive numbers {p;} such that Y}y pj=1and ||(L;p;U;) —V||<b.

It follows that £ =Y. ; p U; satisfies
1€ = V||o< a® +2b. (2.5)

The feature that makes this Lemma useful is that the channel £ has error linear in
the error of the average unitary but quadratic in the error of each U;. Thus, even if the
individual U; are only O(+/€) close to V, as long as their average Y ; p;U; is O(€) close to

V, the channel will be O(¢€) close to V.

2.3 The First Order Case

To see why randomization is useful, we will consider the simple case of a Hamiltonian
with two terms, H = H| + H,. The first order (deterministic) product formula for simulating

H is

S$1(A) = exp(AH}) exp(AH,) (2.6)

H} H;
= 14 A(H, +H>) +12(71 + 72 +H Hy) +0(A%) 2.7)
which has O((A|A|)?) error where A = max{||H, ||,||H2]||}. We define its reverse

STV (A) = exp(AH,)exp(AH]). (2.8)

13



which also has O((A|A|)?) error, so the error term corresponding to a in Lemma (1] is
O((A|A|)?). If we randomly apply either S; (1) or S™' (1), then the error term correspond-
ing to b in Lemmal[T]is

HV(M—%(Sl(l)ﬂLSﬁeV(l))H: O((AA])?). (2.9)

This suggests that the channel corresponding to randomly applying S;(4) and S¥(A)
should have O((A|A|)?) error in the diamond norm, improving on the O((A|4])?) of just
applying S1(A4) or STV(4).

The approach above only uses a single bit of randomness, but more generally we can
subdivide the evolution time ¢ into r segments of time #/r, and for each of these segments
we apply S (—it/r) and SV (—it /r) randomly, requiring r bits of randomness. The error of

this approach for Hamiltonians with more terms is characterized by the following theorem.
Theorem 1 (Randomized first-order error bound). Let {H, }§=1 be Hermitian matrices. Let

L
V(—it) = exp(—it ZH,) (2.10)

j=1

be the evolution induced by the Hamiltonian H = lele H; for time t € R. Define

L 1
Hexp (AH;) and ST'(A):= []exp(AH;). (2.11)
j=1 j=L

Let r € N be a positive integer and A = max||H|||. Then

4 3
V(i) =55 (S i)+ i) o< R exp (2L ) ZEE, exp (21 )

372 r
(2.12)

where, for A = —it, we associate channels V(A), S{(A), and S{*(A) with the unitaries

V(A), S1(A), and ST (1), respectively.
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The proof of this makes use of Lemma F.2 from Ref. [27].

Lemma 2 ([27]). For any x € C and k € N, we have

[x|*
< © - exp(ln). (2.13)

Z :
|
S_KS.

This lemma is used to bound the total error in Taylor expansions such as those appearing
in Eqns. and for A = —it/r. Next the subadditivity of the diamond norm is

applied for r applications of V(—it/r).

2.4 Randomized Operators

In our algorithm, the quantum channel simply consists of applying product formula
unitaries for H =} ; H; with the order of the H; terms rearranged. Generically such an

operator takes the form

exp(q1AHz, (1)) exp(q1AHy, (2)) - - exp(q1AHy, 1))
exp(q2AHy, (1)) exp(q2AHy,(2)) - - exp(q2AHyy 1))

(2.14)
exp(qxAHz, (1)) exp(qxAHy, (2)) -+ exp(qAHy (1))

where the ¢ are real numbers, and the 7; are permutations in Sym(L), the symmetric group

on L items, over which the channel randomly samples permutations. We state a technical
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lemma for the average of this kind of operator over Sym(L), namely the average

1
7 Y exp(qiAHg(z, (1)) exp(qiAHg(z,(2))) - - exp(q1 AHg (z, (1))
" oeSym(L)

exp(q2AH(1y(1))) €XP(q2AHo (my(2))) - €XP(q2AH s (7 (1))) (2.15)

exp(gxAHo (1)) €XP(qxAHg (7,(2))) - €XP(GxA Hos (1)) -

The order A* term in this operator’s Taylor expansion contains products of s H;’s. We define
it as a sum of a degenerate term and a nondegenerate term. The part of the order A* term
where these H; are pairwise distinct is known as the nondegenerate term; the remaining

part (where at least one H; appears twice in each contribution) is the degenerate term.

Lemma 3 (Randomization lemma). Define an average evolution operator as in Eqn. 213

and let s < L be a positive integer. The sth-order nondegenerate term of this operator is

[(q1+---+q)A) y

|
S My,
pairwise different

H,,, -

‘H,, .

s (2.16)
We refer the reader to Ref. [28] for the a line-by-line proof which amounts to counting
all nondegenerate contributions to the order A* terms in Eqn. and simplifying using
the symmetrization over permutations.
When we apply this to analyze our algorithm, the symmetrization over permutations
guarantees that there is no nondegenerate error term of order L or less. For the purposes of

our algorithm, this lemma will be instantiated for a 2kth order product formula.
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2.5 Error

The following lemma bounds the contribution of low order degenerate terms to the
operator V(A4). This will in turn be used to bound how much these terms can contribute to

the error of approximating V (1) by Eqn. 2.15]

Lemma 4. Let {Hj}§:1 be Hermitian operators with A := max;||H;

sletqp,....qx € R
with maxg|qx|< 1; and let s < L be a positive integer. Then the norm of the sth-order

degenerate term of the ideal evolution operator V(L) as in Eqn. is at most

(AL/}!)S[LS_L(L_1)...(L_S+1)] (2.17)

and the norm of the sth-order degenerate term of the average evolution operator as in Egn.

213 is at most
KA|A])®
u[LS—L(L—I)'“(L—S—FI)]. (2.18)
s!
The basic idea of the proof is that there are L* possible products of H;’s that appear in
the order A* term of V(A). Of these, L! /(L —s)! are nondegenerate and so can be ignored
since this is a lemma bounding degenerate terms. Counting only the degenerate terms and

applying the triangle inequality implies the stated bounds. We use this lemma to prove the

following.

Lemma 5. Let {H ,~}§:1 be Hermitian operators; let A € C and k,s € N. Define the target
evolution V(L) as in Egn. and define the permuted (2k)th-order formula S5 (A) as in

Eqn. [2.23] Then the sth-order error of the approximation

|
" oeSym(L

VA - = )Y S5(A) (2.19)
)
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s at most

0 0<s <2k,
(2.20)
2.5 1AJA])S 75—
( (s—Z)‘! ) L5 1 5> 2](,
where A := max||H,||.
Proof. 1t is sufficient to prove the stronger bound
(
0 0 <s <2k,
k—1 s
2B MM s _p(L—1)---(L—s+1)] 2k<s<L, 2.21)
D25 AR s s>L.

\

The case where 0 < s < 2k follows from the fact that the 2kth order product formula is
accurate at the sth order.

The case 2k < s < L follows from applying Lemma [ to bound the norms of the de-
generate terms in the exact evolution operator and the average operator (with x = 2 - 551
accounting for the periods of time evolution in the product formula operators being aver-
aged over).

The proof for s > L is similar to the proofs of Propositions F.3 and F.4 of Ref. [27]. [l

2.6 Main Result

We will make use of Lemma F.2 from Ref. [27].

L

=1 be Hermitian matrices.

Theorem 2 (Randomized higher-order error bound). Let {H;

Let

L
V(—it) := exp (—it Hj) (2.22)
j=1

be the evolution induced by the Hamiltonian H = Z?:l H; for time t. For any permutation
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o € Sym(L), define the permuted (2k)th-order formula recursively by

o L A 1 A
S3(A) = I Iexp (EHG(j)) I | exp (EHGU)>
j=1 =L

S (A) = [ST_o (PrA)PSS o (1 = 4p)A) ST ()],

(2.23)

with py :=1/(4 — 4D for k> 1. Let r € N and A := max||H,||. Then

V(—it)—& y S&(—it/r))r

ocSym(L)

<

gk—1 4k+2 k-1 2k+17 2k

<4(2 5" Ajr|L) ex (4'5k1A|t|L>+2(2 STTUA )L exp(2-5k1A|t|L>
((2k 4 1)1)%pakt1 r (2k — 1)1 72k r

(2.24)
where, for A = —it, we associate quantum channels V(1) and S5 () with the unitaries

V(A) and S5, (A), respectively.

Proof. We prove the finally inequality with —it replaced by a general A € C. It arises from
Lemmal([l} so we must bound the errors associated with the average unitary and each unitary
that is randomly applied.

The 2kth order product formula matches all terms up to O(A2%), and more particularly

the sth order term of V(1) — S5 (A) is

0 0<s <2k,
(2.25)

k—1 K
225 A s o5 o

S!

By Lemma F.2 of Ref. [27] (restated here as Lemma [2)) and analysis similar to Proposition

E.3 of Ref. [27], we bound the error in each unitary as

(2~5k_1A|7L’L)2k+]

V() =SuMlI= 2577

exp(2- 55 TA|A|L). (2.26)

19



This implies the first term on the right hand side of the main inequality.
To bound the error of the average unitary we apply, note that Lemma [5] implies the

sth-order term of V(1) — % Yoesym(r) S5 (4) is bounded by

0 0<s <2k,
(2.27)
(255 AA])S

s—1
=] L s > 2k,

so applying Lemma F.2 of Ref. [27]] again we have

(2 . 5k71A|A|)2k+1L2k

ST k)

exp(2-55IAIA|L).  (2.28)

HV(/I) — 7 Z( )Sgk(l)

*oeSym(L

The theorem then follows from applying Lemma |1} setting A = —ir/r, and using the dia-

mond norm’s subadditivity

V(—it)—(% y S&(—it/r))r

" oeSym(L)

<r

V(—it/r) —% Z Sy (—it/r)

" o€Sym(L)

<

(229)
O

2.7 Comparison of Algorithms

We compare deterministic and random product formulas by counting the number of
elementary exponentials, ie, unitaries of the form exp(iH;t) for any ¢ € R. This is a different
measure of efficiency from Ref. [27] which compares the efficiency of product formulas,
Taylor series algorithms, and quantum signal processing in terms of the total number of
elementary gates.

We use the same benchmark system as Ref. [27], a 1-D periodic Heisenberg spin chain
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H =

J

X <X Y <Y Z~Z .65
1Qj6j+1+Gj6j+1+0j6j+1+h16j (2.30)

n
where the qubit index is mod n and #; is chosen uniformly at random from [—1,1] for
different problem instances.

For the purpose of decomposing the Hamiltonian into smaller Hamiltonians corre-
sponding to the elementary exponentials exp(iH,t), we assume we can efficiently imple-
ment G}CG}C 1 G;} Gjy 1 GJZ.GJZ. 11, and Gj for all j. We fix the evolution time to be t = n and
the simulation precision to be € = 1073, With these parameters fixed the only remaining
one is n, the number of qubits, so we can compare algorithms based on how the number of
elementary exponentials scales with n.

We compare these algorithms using both analytically provable and numerical estimates
of the required number of elementary exponentials.

The analytical bounds of Ref. [27]] for the deterministic (labelled det) product formulas
take advantage of the fact that some of the terms in the Hamiltonian commute. Those for

the random (labelled rand) product formulas are based on our main result (ee Ref. [28] for

more details on the calculation). The number of elementary exponentials needed by the

2kth order formulas are rg,it/ rand and scale with n as below.
r(llet — 0(}’13) rget — 0(1’12'4) rget — 0<n2.28) (2.31)
rrland — 0(1’[3) rzand — 0(1’12'25> rgand — 0(n2.17) (2.32)

Similar to Ref. [27] we empirically estimate the efficiency by extrapolating from sim-
ulations for around 5 instances of Heisenberg spin chains (sampling /; again for each in-

stance) on 6-10 qubits. We assume that the number of elementary gates scales as a power-
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law of the number of qubits and find the relevant constant and exponent to fit the data for
6-10 qubits. We use this to project for up to 100 qubits.

Ref. [27] gives empirical bounds for deterministic (labelled demp) product formulas.
We make use of Lemma 7 of Ref. [[15]] which introduces a factor 2 to convert the bounds
of Ref. [27] to the diamond norm. The random (labelled remp) product formulas show a
significant improvement for the first order case but only marginal improvement at higher

orders. The numbers of elementary exponentials scale as below.

PP _ 41432066 PdmP 580151471 FaemP — 2 7195160 (2.33)
AT =300.00"0 AT =5.4580"4 TP =2.80401 12 (234)

We plot the data for the empirical estimates on 6-10 qubits and display the power law
line of fit. We also plot a comparison of analytical and empirical bounds projected for
10-100 qubits. From this second plot, it is apparent that the 6th order formulas (both
deterministic and random) are more efficient than the other orders. This also shows that

there is practically no advantage to be had by using randomized product formulas.

22



106 . . . . T 10° 10?

105 F
k / ~ 102 / "

10*

First order Fourth order Sixth order
oDeterministic oDeterministic o Deterministic
o Randomized o Randomized o Randomized
3 I . . . . 1 I . . . . 1 I I . . .
10 6 7 8 9 10 10 6 7 8 9 10 10 6 7 8 9 10
n n n

Figure 1: Numerical comparison and lines of fit for deterministic and random product formulas of
the same order. Error bars (when included) account for error from sampling over a limited number
of instances of Heisenberg spin models. Figure from Ref. [28] credit to Yuan Su.
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Figure 2: Elementary exponential counts for 4th/6th order deterministic/random product formulas.

Solid markers indicate analytically proven bounds, and open markers indicate numerical estimates.
The sixth order empirical data almost completely overlap. Figure from Ref. [28]] credit to Yuan Su.
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Chapter 3: Ordinary Differential Equations

The most general form of the time-independent Schrodinger’s equation is

d .
2V =) (3.1)

where the only restriction on H is that it is Hermitian. This is a special case of the most

general time-independent first-order linear ODE
—X=AX+b (3.2)

where b can be any vector and A can be any invertible square matrix (this assumption
implies the existence of a solution and is used in proving the efficiency of our algorithm).

Given an initial condition, X(0), and an evolution time, 7, the solution of this ODE is simply

(1) = exp(A1)Z(0) + (exp(At) —1)A~'D. (3.3)

When we defined the problem of Hamiltonian simulation, we were interested in out-
putting a quantum state that had undergone evolution, not outputting all the amplitudes of
the quantum state. Likewise, QLSAs output quantum states proportional to solutions of

linear systems. We define the problem of simulating an ODE in a similar manner.

QUANTUM ODE SIMULATION PROBLEM: Given a precision parameter €, an evolution
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time 7, and oracles, O4,0p, and O,, to compute the entries of A and to produce states

proportional to b and X(0), produce a state e-close to the state proportional to X(T).

The remainder of this chapter is based on Ref. [16]. First we briefly discuss the previous
quantum algorithm for ODEs and how its assumptions compare to ours. We then outline
the linear system which we solve with a QLSA and discuss the the post-selection of the
state produced by the QLSA. Then we present a number of technical lemmas and theorems
pertaining to the condition number of this linear system, the error due to the propagator
approximation, the success probability associated with the post-selective measurement, and
the complexity of the state preparation routine for the QLSA. We conclude with a statement
of our main result.

Here we reproduce the main lemmas and theorems of Ref. [[16] verbatim. Some of the
proofs are rather technical, so in some cases we give an intuitive sketch of the proof and

refer the reader to Ref. [16] for the complete analysis.

3.1 Previous Quantum Algorithms

The first quantum algorithm for solving linear ODEs was proposed by Berry in Ref.
[1O]]. This algorithm uses linear multi-step methods (LMMs) (such as the Euler and Runge-
Kutta methods) to approximate the time evolution. It encodes the multi-step method in a
linear system My = ¢ and uses a QLSA to produce a state proportional to y. The linear
system is constructed so that ¥ encodes X(z) at several different values of 7 € [0, T] (what is
known as a history state), so the QLSA is followed by a post-selection step which produces
a state proportional to X(7'). The algorithm of Ref. [10] has time and query complexities
that are O(poly(1/¢€)).

This ODE algorithm was followed by improved algorithms for Hamiltonian simulation
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[13} [14] which acheived O(polylog((1/¢€))) scaling, naturally raising the question if the
same scaling could be achieved for general ODEs. This question was answered in the
positive by Ref. [[16], which uses techniques similar in spirit to both the LMM algorithm
for ODEs [[10] and the truncated Taylor series algorithm for Hamiltonian simulation [[13]].
Similar to Ref. [10]], we state our main result in terms of the sparse oracle model for
A. However, both algorithm are amenable to non-sparse A provided that the Hamiltonian
0 A
AT 0
sumed that b is sparse; however, we do not assume bis sparse and instead assume access

} can be simulated using a non-sparse oracle model. Additionally, Ref. [10] as-

to an oracle that prepares states proporitonal to b. This is not a significant difference since
the oracle for this paper could be realized with the sparse state preparation routine used in
Ref. [10]]. The algorithm of Ref. [10] would also work using an oracle to produce states
proportional to b, and stating that algorithm’s complexity in terms of queries to O, could

only polynomially reduce the complexity’s dependence on b’s sparsity.

3.2 Linear Systems for ODEs

As in Ref. [10], we construct a large linear system whose solution is a history state;
unlike Ref. [10], the time evolution under the propagator exp(Ar) is not realized with
a LMM but instead by multiplying by a Taylor series approximation of exp(At) (as in

Ref. [13]). The Taylor series approximation is better than the LMM approximation since

1

-i» S0 even a relatively low order

the coefficients of the Taylor series of exp(z) decay as
truncation gives an accurate approximation. Specifically, we define the kth order truncated
Taylor series of e° as Ti.(z) := ZI;':O % ~ exp (z). Approximating the propagator in this way
also eliminates the need for additional hypotheses about A that are necessary for LMM

algorithms to guarantee the stability of the particular linear multi-step formula being used.

This Taylor series approximation is realized by inverting the following matrix.
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Definition 3.1. Let A be an N x N matrix, and let m,k,p € Z". Define

d m—1 k
Cosp(A) = Y 1) Gl0I— Y Y [itk+ 1)+ )itk + 1)+ j—1|®A/j
Jj=0 i=0 j=1
m—1 k d
=Y VI D+ D) i+ D) +jloi— Y )i 1]el,
i=0j=0 j=d—p+1

where d :=m(k+ 1)+ p, and I is the N x N identity matrix.
The full linear system we solve is

m—1

Cm,k,p<Ah)|x> = ‘O>‘xin> +h Z() ‘i<k+ 1) + l>|b>'

For example, the linear system Cy 3 1 (Ah)|x) = |0 |xin) + A Y| |4i + 1)|b) is

1
—Ah I
—Ah/2 1
—Ah/3 1
-1 -1 -1 -1 1 B
—Ah I [x) =
—Ah/2 1
—Ah/3 1
-1 -1 -1 -1 1
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|xin>

h|b)

h|b)

o O O

(3.4)

(3.5)

(3.6)



which has the solution

|xin>
h|b) + Ah|xiy)
(Ah?/2)|b) + (A2H? /2)|xin)
(A%h3 /31)|b) + (A3h /31)|xin)
ATNT3(Ah) — I)|b) + T5(Ah) |xin) = |x1,0) ~
h‘b> —|—Ah|x170>
(AR?/2)|b) + (A%h? 2)|x1 o)
(A%h3 /31)|b) + (A3h3 /31)|x1 o)
A=Y T5(AR) —1)|b) + T3’(Ah§|x1 0) = |x20) ~
X2.0

[x(h))

[x(2h))

More generally, the solution to the linear system in Eqn. [3.3]is

m—1
|0)xin) + ;) i(k+1)+1)|b)

%) = Cpp p(AR) !

which can be written as

m—1 k
Z Z (k1) 4 i)+ Y Ik 1) 4 ) o)
i=0 j=0 =
where the |x; ;) are
|X(),()> = |)Cin>,
k
|xi,0>:Z|xi—1,j), 1 <i<m,
Jj=0
[xi1) = Ahlxio) +hlb),  0<i<m,
xi ;) = (Ah/j)|xij—1),  0<i<m,2<j<k,
‘me) = ’xm,j—1>7 1<j<p.
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(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)



From these equations, we obtain

[%0,0) = |Xin),
[x0,j) = ((AR)/j)1x0.0) + ((AR)/ ™"/ j ) D), 1< j<k,
[x1,0) = Ti(Ah)|x0,0) + Sk (Ah)h|b)

~ expAh|xiy) + (expAh —I)A™'|b),
x1,j) = (AR /1)1 0) + ((AR)T71/j1)hIb), 1<j<k,
1x2,0) = Ti(Ah)|x10) + Sk (Ah)h|b)

~ exp 2Ah|xin) + (exp2Ah — 1A |b),

|Xm—1,0) = Tk (Ah)|xm—2,0) + Sk(Ah)h|D)
~ expAh(m—1)|xin) + (expAh(m — 1) — A~ |b),
[ 1.7) = (AR /1) bm1.0) + (ARY™1/ 1) b). 1<j<k
%m,0) = Ti(Ah)|xm—1,0) + Sk(Ah)h|b)
~ expAhm|xiy) + (expAhm —1)A™1|b),

|xm.,j> = |xm70>

~ expAhm|xiy) + (expAhm —1)A™'|b), 1<j<p.

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

As in Ref. [10], the solution of this linear system is a history state which encodes

X(¢) at several intermediate times. Only the |x; ;) with i =m,1 < j < p correspond to

approximations of X(7)/||X(T)||, so once we produce the state in Eqn. we post-select

on the first register being m(k + 1) or more. We use amplitude amplification to raise the

success probability of this measurement to ®(1).
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3.3 Condition Number

In this section we present a number of lemmas used to bound the condition number of
Cpn k,p(A) under the assumptions A is diagonalizable and has eigenvalues with non-positive

real part.

Lemma 6. Let A € C such that |A|< 1 and Re(A) < 0. Let m,k,p € Z" such that k > 5

and (k+1)!>2m, and let d = m(k+ 1) + p. Then for any n,1 € {0,1,...,d},

1Con e p (A1) DI v/ 1.04elo(2) (m+ p) (3.24)
with Ip(2) < 2.28 a modified Bessel function of the first kind, and
(1| Cog p(A) M1 < V/1.04e. (3.25)

Proof. The proof of this lemma is rather extensive. For concision’s sake, we give an in-
tuitive explanation of the first inequality, which is the one we use in the next lemma. We
refer the reader to Ref. [[16] for the full proof.

In the same way Eqn. [3.9) can be constructed as the solution of Eqn. [3.5] we can
construct the solution of C,, & ,(4)|x) = |1).

When [ > m(k+ 1) the solution has its first / — 1 amplitudes equal to 0 and the rest are
all 1, and this solution has norm < ,/p.

When 0 </ < m(k+ 1) then the solution takes a form similar to (although not exactly)
a history state such as Eqn. [3.9] This solution is close to the history state for the dynamical
system obeying x(¢) = 0 for 7 € [0, |//(k+ 1) |h] and % = Ax for later times with a O(1)
initial condition. Since A has non-positive real part, the solution x(¢#) won’t grow in time,

in which case the history state has at most m amplitudes encoding x(¢) at times between
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|1/(k+1)]hand T, the final time. Additionally there will be at most p amplitudes encoding
copies of x(7T'). This implies the O(y/m+ p) scaling in the first inequality. O

Lemma 7. Let A = VDV~ be a diagonalizable matrix, where D = diag(Ag, A1, ..., An_1)
satisfies |Ai|< 1 and Re(A;) <0 fori€ {0,1,...,N—1}. Let m,k,p € Z" such that k > 5
and (k+1)!>2m. Then

Gt p(A) 1| < 3Ky VE(m + p), (3.26)

where Ky = ||V||-|V~!|| is the condition number of V.

Proof. Diagonalize Cyp(A) as Cpyp(A) = VC(D)V ! with V = X9_,|j)(j|@V which

has condition number ky = Ky, so

[1Conep (A < [IVIICD)[V ] (3.27)

< xv||C(D)||- (3.28)

By definition ||C(D)~!||= max|ll,>||C(D)*1|l//)|]/|||l;/>|| for |y) € CUTDN which we can

write as |y) = Y4 1D |wi) = X% o w;.|1)|j). Then we have (by Cauchy-Schwarz and other

simple inequalities)

d
lc()~ w)l* = IIZZ(,)C(D)_W)IWHZ

d
<(@+1) Y |lco) " w)l*. (3.29)
[=0
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Now using the fact that D is diagonal we have
N—1

(D)~ 1) ) ||2—||Z‘//11C ) DI

j=

Z!%z\ ey~ DI

< 1.04ely(2)(

J=0

= 1.04elo(2) (m+ p)|[1yn)| . (3.30)
which implies

d
(D)) < 1.0delo(2)(d + 1)(m+p)I;)IHIIH)H2

= 1.04ely(2)(m(k+ 1)+ p+ 1) (m=+ p)|||w)]|?

6
<5 X 1.04ely(2)k(m + p)?|||w)]||*. (3.31)

This suffices to prove the theorem. 0

Lemma 8. Let A be an N x N matrix such that ||A||< 1. Let m,k,p € Zt, and k > 5. Then

ICn i p(A)]|< 2V (3.32)
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Proof. The matrix Cp, x ,(A) is the sum of the matrices

d
Cr =Y li)ler (3.33)
j=0
m—1 k
Cr=—Y Y I+ 1)(k+1))(i(k+1)+ jlf (3.34)
i=0 j=0
m—1 k d
C=—Y Y litk+ )+ )ik+1)+j—1@A/j— Y [H+1el  (3.35)
i=0 j=1 j=d—p+1

with d = m(k+ 1) + p. Since C) is just the identity matrix,

Ci||= 1. The matrix C,
has a block structure with k4 1 identity matrix blocks in select block rows, which im-
plies ||C2||= vk + 1. The matrix C3 contains the blocks on the first subdiagonal relevant
to the Taylor series approximation 7;(A) and relevant to how much of the history state
encodes X(T')/||X(T)||. We have ||C3||= max{1,||A||} = 1. Thus we have ||Cyx ,(A)||<

2+ Vk+1<2Vk. O

Our bounds on ||Cy, 4 »(A)|| and ||Cynx »(A)~!|| imply the following condition number

bound.

Theorem 3. Let A = VDV ~! be a diagonalizable matrix such that ||A||< 1,

D = diag(Ag, A1, ..., Av_1) and Re(A;) <0, fori € {0,1,....,N—1}. Let m,k,p € Z" such
thatk > 5 and (k+1)!>2m. Let C := Cy . ,(A), and let k¢ = ||C||-||C™|| be the condition
number of C. Then

ke < 6kyk(m+p), (3.36)

where ky = ||V||-|V~!|| is the condition number of V.
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3.4 Approximation Error

Theorem 4. Let A=V DV ! be a diagonalizable matrix, where D = diag(Ag, A1,...,Av_1)
satisfies Re(A;) <0forie€ {0,1,...,N—1}. Let h € R such that |Ah||< 1. Let |xi,),|b) €
CN, and let |x(t)) be defined by Eq. . Letm,k,p € Z* such thatk > 5 and (k+1)! > 2m.

Let |x; j) be defined by Egs. (@) and (@) Then for any j € {0,1,...,m},
[1x(iR)) = |xj0) 1< 2.8k j([[[xin) | +-mhl[|)]]) / (k+ 1), (3.37)

where ky = ||V ||-|[V ™| is the condition number of V.

Proof. The solution of the differential equation |x(jh)) satisfies
lx((j+ 1)h)) = expAh|x(jh)) + (expAh —)A~1|b), (3.38)
whereas |x; ) in Eqn. [3.9]satisfies
1xj+1.0) = Tk (Ah)|x;j0) + Sk(Ah)h|D) (3.39)

both with the initial condition |x(0)) = |xp ) = |xin). Since A is diagonal, we transform to

its eigenbasis defining [y(¢)) =V~ |x(¢)), [yi;) =V~ !x: ;). and |¢) = V~1|b) which satisfy

Y((j+1)h)) = exp Dhly(jh)) + (expDh —1)D™"|c) (3.40)

vj+1,0) = Tke(Dh)[y; 0) + Sk (Dh)hlc). (3.41)
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Since ||Dh||< 1, technical lemmas in the appendix of Ref. [[16] imply

|lexpDh—Ti(Dh)|] < 1/(k+1)! (3.42)

||S¢(Dh) — (expDh—)D 'R < 1/(k+1)!. (3.43)

These are used to bound the error 6; = |||y(jh)) — [yj0)|| as

J
) i ' .
8 < Gty max o) |+ )| (3.44)
So we must bound |||y; 0)||. For any i € {0,1,...,m} we have
yio) = (i(k+1)|[Cujep(D)”"[2), (3.45)

where (i(k+ 1)| acts as an isometry projecting out the first register, and

m—1

2) = [0)|yin) +1 Y |j(k+1)+1)]c). (3.46)
Jj=0

By applying the triangle inequality and Lemma[f] we arrive at the bound
[Ilyio)||< vV 1.04e(][]yin)||-+-mhl[[c)]])- (3.47)

This implies a bound on §;. When that bound is taken into account along with the basis
change from x to y coordinates (introducing a factor of ky), we arrive at the stated bound.

]
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3.5 Success Probability

Theorem 5. Let A=V DV ™! be a diagonalizable matrix, where D = diag(Ag, A1,...,Av_1)
satisfies Re(A;) <0forie€ {0,1,...,N—1}. Let h € R such that |Ah||< 1. Let |xi,),|b) €
CN, and let |x(t)) be defined by Eq. . Let m,k,p € Z such that

(k+ 1)1 = 70ky m(|||xin) || +mhl|[B)[]) /]| [x(mh))],
number of V. Let g = max,c(o || |[X(2))[|/[|[x(mh))||. Let |x) be defined by Eq. (@) and

= |[VII-IIV=Y| is the condition

let |x; j) be defined by Eq. (@) Then for any j € {0,1,...,p},

o)l o1

11222 — \/p+77mg2'

(3.48)

Proof. Note that all |x,, ;) are equal for j € {0,1...p} so we can take j = 0. Define

|Xgood) = Z|m (k+1)+ ) |xmj) = Z|m (k+1)+ j))|xmo) (3.49)
Jj=0 j=0
m—1 k

Xbad) = Y Z| (k=+1) + j)|xi j)- (3.50)
i=0 j=

So [x) = |xgood) + |Xbaa) and

112112 = [ Pegooa} ||+ [ xbaa) 1>
= (p+ 1)l Pm.0) 1>+l Febaa) | . (3.51)
Next we lower bound |||x,,0)|| and upper bound |||xpaq)||. Let g = |||x(mh))||. Using
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Thm. El, the definition of g, and the choice of k, we find

[[xi0)]] < 1.0dgg,  0<i<m-—1

0.96¢ < |[[xm,0)||< 1.044.

Likewise, we can bound |||x; ;)| as

2.08
[ lei )< ﬁ, 0<i<m—1,1<j<k
These bounds imply
|| ¥baa) || < 70.9mg>q>
so we have
2 2
lbsmo)® . (0.96g) o1

1IX)[*> — p(0.969)* +70.9mg?q> — p+7Tmg?*

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

O

This implies that setting p = m gives a ®(1/g?) success probability, which can be

boosted to ®(1) using amplitude amplification with O(g) repetitions of of the QLSA.

3.6 State Preparation

Lemma 9. Let O, be a unitary that maps |1)|¢) to |1)|9) for any |@) and maps |0)|0) to

|0)|Xin), where Xin = Xin/||Xin||- Let Op be a unitary that maps |0)|¢) to |0)|9) for any |)

and maps 1)|0) to [1)|b), where b =Db/||b|| . Suppose we know ||Zi|| and ||b||. Then the

state proportional to
m—1

10 xin) + 4 gwm 1)+ 1)|b)
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can be produced with a constant number of calls to O, and Oy, and poly(log (mk)) ele-

mentary gates.

Proof. Start with |0)|0) where the first register lies in C¢. Apply the following unitary to

the first register

¥, h||b
U— ||x1n|| \/ﬁ || || ‘1> <0’
VIEal Prmi2| B2 /|l P-mi2 B

% h||b
|| Xin | ) /mh||D|| 0)

10) +

+ —|1) - = (1]
VIal4mi2l Bl |l Poi? B
d
+ 10l (3.58)
j=2
Then apply the oracles O, and O}, to produce the state
1
V) (10} Fxin) + v/mh[1) b)) (3.59)

VIl i |[B] 2

Now apply a unitary mapping |0) to |0) and |1) to \/Lﬁ Z’}Zol |j(k+1)+1) on the first register
to produce the state needed for the QLSA. This can be done with poly(log (mk)) elementary

gates. [

3.7 Main Result

Theorem 6. Suppose A=VDV~!isan N x N diagonalizable matrix, where
D = diag(Ao, A1,...,Av—1) satisfies Re(A;) <0 for any j € {0,1,...,N —1}. In addition,
suppose A has at most s nonzero entries in any row and column, and we have an oracle

Oa that computes these entries. Suppose Xi, and b are N-dimensional vectors with known
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norms and that we have two controlled oracles, O, and Oy, that prepare the states pro-
portional to Xy, and b, respectively. Let X evolve according to the differential equation

%

2 _AR+D 3.60
I X+ (3.60)

with the initial condition X(0) = Xi,. Let T > 0 and

g:=tgﬁo’cly%lh(t)ll/IIX(T)ll- (3.61)

Then there exists a quantum algorithm that produces a state &-close to (T)/||X(T)|| in

norm, succeeding with probability Q(1), with a flag indicating success, using

O(kysgT ||Al|-poly(log (kysgBT||Al|/€))) (3.62)

queries to Oa, Oy, and Oy, where ky = ||V||-|V || is the condition number of V and

B = ([lx) [+T|1B))/|X(T))||. The gate complexity of this algorithm is larger than its

query complexity by a factor of poly(log (xysgBT||A||N/€)).

Proof. Fix the parameters h = T/[T||A||]], m = p =T /h = [T||A||], 6 = €/(25\/mg),
2log(Q)

log (log ()
Letd =m(k+1)+p

e <172, and k = [ J where © = 70gxy /([ lxn) [+ 715} 1)/ (&l (7)) ).

Consider applying the QLSA from Ref. [25] to solve Eqn. [3.5] If we measure the
first register, we are successful and measure a state in S = {m(k+1)...m(k+ 1)+ p} with
probability Q(1/g?), which we boost with amplitude amplification making O(g) uses of
the QLSA. Additionally, the post-selected state has error at most €. The details of the proof
of correctness can be found in Ref. [16]].

The matrix Cp, ¢ ,(A) is (d +1)N x (d +1)N with O(ks) sparsity and a condition num-
ber that is O(xykm). Using the sparse QLSA of Ref. [25] with O(g) steps of amplitude
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amplification as described gives the result stated in the theorem. O

This expression for the complexity has some quantities that are unique to ODE algo-
rithms and do not appear in the complexities of Hamiltonian simulation algorithms.

The linear scaling with g results from the fact that we use a history state and have a
post-selective measurement. If the ODE is simply a case of Hamiltonian simulation then
unitarity guarantees that g = 1. Under the assumption NP < BQP we can rule out the
possibility of algorithms running in time poly(log(g)) since otherwise we would be able
to solve NP-hard problems by solving fl—f = —Cx with C; j = §; (1 — c(x;)) where x; is the
binary encoding of i and c(x;) outputs 1(0) if it satisfies (or does not) a 3 — SAT clause.
An even stronger argument is that producing a state that has decayed to be exponentially
small would allow us to post-select on exponentially small amplitudes, which would impliy
BQP = PP by Theorem 3.4 of Ref. [1]].

Similar to g, the quantity f3 is related to the norms of the states as well as the inhomo-
geneity, but it is less concerning since the complexity scales as poly(log(f3)).

The condition number ki appears since we assume that A = VDV ~! is diagonalizable
and then use this to bound the condition number of the Cy, x ,(A). This factor is 1 for Hamil-
tonian simulation since Hamiltonians are diagonalized by unitaries which have condition
numbers of 1.

This algorithm scales optimally with respect to ||A||T since Hamiltonian simulation is a
special case, and the no-fast-forwarding theorem [[11] prohibits sublinear scaling in ||A||T".

This algorithm has a number of advantages over the algorithm of Ref. [10]. Most no-
tably it scales as poly(log(1/€)), but there are also polynomial improvements with respect
to s, ||A||T, and xy (Note: Some of the s dependence in Ref. [[10] is due to the assumption
that b is s sparse.). The term g does not appear in Ref. [10] because one of the hypotheses

of the main result is that g = O(1). The term 3 also does not appear; however, the com-
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plexity does scale polynomially with a similar term associated with the initial condition
and inhomogeneity, whereas the algorithm presented here has poly(log(f)) scaling.
Another advantage is that the only hypothesis required for stability of the Taylor series
method is that Re(A4;) < 0 for all eigenvalues A4; of A, ie, the arguments of the A; must lie in
[m/2,37/2]. In contrast, since Ref. [10] uses linear multistep methods, additional hypothe-
ses are needed to guarantee stability of the method which further restrict the arguments of

the A; to proper subintervals of [/2,37/2].
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Chapter 4: FDM for Poisson’s Equation

In the previous chapter we used QLSAs as subroutines for ODEs. This involved the
construction of a linear system whose solution was a history state which we performed
a post-selective measurement on. QLSAs are also a natural subroutine to consider for
PDE:s, since a vector can represent a solution to a PDE sampled at a set of points in the
domain. This representation of the data lends itself most naturally to algorithms using
the finite difference method (FDM). In this chapter we apply the FDM to solve Poisson’s
equation. The material in this chapter is originally written by A Ostrander; however, some
of the material is the same verbatim as in ‘High precision quantum algorithms for partial

differential equations’ (currently unpublished) by AM Childs, JP Liu, and A Ostrander.

4.1 Finite Difference Formulas

The FDM approximates the derivatives of a function f at a point X; in terms of f’s
values on a finite set of points {X'} = {X;} near X;. Generally there are no restrictions on
where these points are relative to X;, but it is simplest to sample from uniformly spaced
points. In the case we consider, this corresponds to discretizing [—1,1]¢ (or [0,27)¢) to a
d-dimensional rectangular (cyclic) lattice/mesh.

The spacing between points, which we denote as £, is one of the algorithmic parameters
that can be adjusted depending on the error tolerance. The other relevant algorithmic pa-

rameter is the order of accuracy of the formula, which determines how the error term scales
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as a power of the lattice spacing. If a formula uses more sample points, it can typically
have a higher order of accuracy than a formula using fewer sample points. One excep-
tion to this is that the trapezoid approximation of the first derivative is higher order than
the forward and backward difference formulas, but all these formulas only use 2 sample
points. However, given an order of accuracy, generally there is no unique finite difference
formula for that order since a jth order formula and a kth order formula can be combined to
give a min{ j,k}th order formula; however, the kth order formula with the smallest radius
is unique since combining this formula with a higher order formula will only increase the
radius.

Refs. [32, [72] consider generating coefficients starting from a Discrete Variable Re-
spresentation (DVR) of Laplacian operators (the operators relevant to Poisson’s equation).
Ref. [32] uses a truncated Lagrange interpolation formula to derive coefficients. This is
done by assuming interpolation data, eg, {(ik, f(ih)}!_, for n equidistant sample points.

The function f can then be approximated by the polynomial

N N —
f~ Y, fkh) ] (kh—llhh)' 4.1)

k=N I=—N,l#k

This polynomial can be differentiated twice, and coefficients can be extracted from the
resulting expression.

Coefficients can also be derived by writing the derivatives of f as linear combinations of
f at different sample points with undertermined coefficients. By expanding these function
values as Taylor series, equations restricting the coefficients can be derived. This approach
leads to a Vandermonde system [63], which is the framework of several papers on finite
difference formulas of arbitrarily high order. Ref. [57, 58] presents coefficients for up to
8th order finite difference formulas (some discovered numerically) and conjecture formulas

for arbitrary orders. Ref. [S9] rigorously proved the correctness of these formulas for first
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derivatives. Ref. [65] extended these results to formulas for non-uniform grids and more
asymmetric stencils (instead of just forward, backward, and central difference stencils).
These formulas have previously been used in quantum algorithms for estimating gradients
Ref. [47] and for simulating quantum many body systems Ref. [61]. This algorithm for
many body systems differs from most quantum chemistry algorithms, which work in the
second quantized electron orbital basis instead of working in the position basis where it is

natural to use the FDM.

4.2 Previous Quantum Algorithms

Within the quantum algorithms literature, linear PDEs have received a fair amount of
attention. Although this chapter is about PDEs without time evolution, here we also review
the literature for PDEs with time evolution, which is the focus of the next chapter. A large
part of the literature on quantum simulation considers quantum systems described by PDEs:
quantum chemistry and quantum field theories. Because the literature for these applications
is so large, we do not review it here and focus on ‘non-quantum’ PDEs.

Ref. [31] proposes applying preconditioning matrices and HHL to solve finite element
method (FEM) linear systems. The resource requirements of this algorithm are analyzed
in Ref. [80]]. Ref. [31] plausibly argues that sparse pre-conditioners can be implemented
within the framework of QLSAs for sparse matrices (with some overhead for solving an
optimization problem whose size scales with the sparsity). However, they do not analyze
the complexity of their algorithm in terms of the error required to actually estimate a quan-
tity of interest, eg, the error in a scattering cross section or a functional of the electric field
generated by stationary charges. Ref. [[73]] accounts for the error in these tasks and analyzes
what kind of quantum speed-ups can be achieved using the FEM and preconditioners. They

argue that at most a polynomial improvement over classical algorithms can be expected.
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Ref. [22]] considers solving Poisson’s equation over rectangular domains Q = [—1, 1]¢
under Dirichlet boundary conditions u(dQ) = 0 using 2nd order accurate FDM Laplacians.
The algorithm is essentially the same as HHL in that it diagonalizes the matrix and them
performs controlled rotations on an ancillary qubit; although the authors give an explicit
circuit for computing the inverse eigenvalues (whereas Ref. [52] merely assumed the ability
to do this). Ref. [22] claims that their circuit uses poly(log(1/€)) gates; this analysis
ignores the fact that the success probability is poly(1/€). A similar error is made in Ref.
[71]], which ignores the condition number and success probability.

Ref. [82] considers the problem of finding ascattering structures that would lead an
initial set of EM fields to scatter into a final field configuration; however, they do not prove
how efficient the algorithm is.

Refs. [44, 435] apply the reservoir method to the Dirac equation with a classical gauge
field (as input) and to general hyperbolic differential equations. These papers state the
speedup of the algorithm in terms of a quantity defined in Ref. [75] which is called the
quantum speedup. Ref. [45] generally claims exponential speedups over classical algo-
rithms; more specifically they achieve an exponential speedup with respect to the spatial

dimension, but they only achieve a polynomial speedup with respect to the simulation error.

4.3 FDM Linear Systems

For a scalar field u(X) € C, the canonical elliptic PDE is Poisson’s equation,

d 92
(Z W) u(x) = f(x), (4.2)
=1 9%;

which we consider solving on [0,27)¢ with periodic boundary conditions. This also implies

results for the domain Q = [—1,1]¢ under Dirichlet (1(dQ) = 0) and Neumann boundary
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conditions (7i - Vu(dQ) = 0, i.e., the normal derivative is 0, which for domain [—1,1]¢
equivalent to a |x _41 =0for j € [d)).
Since Poisson’s equation only involves second derivatives, the relevant 1D (central)

finite difference formula is (taking x; = jh for a mesh with uniform spacing /)

1

u'(0) = 33 Z rju(jh) (4.3)
j=—k

where the coefficients are [[61}165]]

.

21k,
Al

rj=q 2%k j=0 (4.4)
r—j ] c —[k]

\

We leave the dependence on the approximation order, k, implicit in this notation. The

following lemma characterizes the error of this formula.

Lemma 10 ([61, Theorem 7]). Let k > 1 and suppose u(x) € C**! for x € R. Define the
coefficients rj as in Eq. Then

d2u<x) d2k+1

il h2 Z v xz+Jh)+0(‘d pTa <62h>2k1> (4.5)

where

d2k+ 1 u

2k+1
7" u ( (4.6)

— | = max —(y)|.
dxz"“‘ VE[xi—khxi-+h] dx2k+1( )

Since we assume periodic boundary conditions and apply the same FDM formula at
each lattice site, the matrices we consider will be circulant. Define the 2n x 2n matrix

S to have entries S; ; = & j+1 mod2n- If we represent the solution u(x) as a vector i =
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Z?Zl u(mj/n)é;, then we can write (approximately) Poisson’s equation as

1 1 k S
L= alrol+ L (S +87 )i = @.7)
]:
where f = ): " f(mj/n)é;. This is the linear system of interest for our algorithm. For
classical algorithms we would be interested in outputting the entries of i#; in the quantum

case we output the state proportional to .

4.4 Condition Number

The following lemma characterizes the condition number of a circulant Laplacian on

2n points.

Lemma 11. The matrix L = rol + Zk-_ ri(S7 4 S~ j) has condition number k(L) = O (n?)

2( )J+‘ k'

Y pfor1<j<k rO——ZZ 1 7j, and k = o(n/3).

whererj =r_; =

Proof. We directly consider L’s eigenvalues since it is symmetric so its singular values are
the absolute values of its eigenvalues.

We first upper bound |L| using Gershgorin’s circle theorem [54] similar to Ref. [61].

Note that |rj|= - 2k

Fk=)(j+k)t = < 2/j? since ( (k!)? = KDY | The radius of the

NG — kA

Gershgorin disc is

k k 2 77:
2) Inl<2), 5 <= (4.8)
=1 =17

The center of the disc is rg, and

k 2
27
o] <2 Irj|< =5 (4.9)

=1
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so |L|< #.

To lower bound |L~!| we lowerbound the (absolute value of the) smallest non-zero
eigenvalue of L (since by construction the all-ones vector is a zero eigenvector).

Because L is a linear combination of the S which are circulant, L’s eigenvalues are sums

of roots of unity

k
M=ro+ Y ri(0+o™) (4.10)
j=1
k nlj
:ro+j2212rjcos(7) 4.11)
k 272 2 4
B neljc (7)) Tc;
_r0+j2212rj <1— 5 + e cos(T) (4.12)
212 k 413
el "k
— Iy nio(th) (4.13)
n o5 n

where @ = exp(7i/n) and the ¢; € [0,/;] dependent terms arise from the Taylor remainder
theorem. The last line follows from the fact that |r;|= O(1/j%).

The sum we are concerned with is
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L F=hal

= 2(k! )21__21 (/H_E;l(/)cj—])'
2@'?@}_;( V(kﬂ()zk()k i)

=2(k!) ﬁé( =) (<22kk) (k£7)!

:(k!)Z((;;))!k (12( 1k+]<k+]) ,é

=&y ((;/i;'k j:j;k(_ v (ik)
oo ()

_

Then we have

n n
2 3
T k
M=—S=4+0|—
! n? + (n4)

and the last term is vanishingly small since k = o(n?/3)

The following lemma extends this to d dimensions,

Lemma 12. Let L = rol—l—):’j‘.:l rj(Sj +S87j) wherer;=r_; =

K

2k

2( 1)/+1
]+k

)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

f0r1<]<k

22] (7, and k= o(n/3). ThematrixL’:L®I®d*1—|—I®L®I®d L -y

L has condition number k(L") = @(d /n?)
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Proof. By the triangle inequality for spectral norms, |L'|< d|L|. Since L has zero sum
rows by construction, the all-ones vector lies in its kernel, and thus the smallest non-zero

eigenvalue of L is the same as that of L. [

4.5 Error Analysis

We introduce several states for the purpose of error analysis. Let |u) be the state that is
proportional to i = Z?Z yu(mj/n)é; for the exact solution of the differential equation. Let
|iz) be the state output by a QLSA that exactly solves the linear system. Let |i) be the state
output by a QLSA with error. Then the total error of approximating |u) by |i) is bounded

by

) = @) < [lw) —[@) | +]]@) — |)] (4.24)

= ErpM + EQLSA (4.25)

and without loss of generality we can take €rpy and €prsa to be of the same order of

magnitude.

Lemma 13. Let u(¥) be the exact solution of (Y2, %)u()?) = f(X). Letu € R en-

code the exact solution in the sense that i = Ljend u(mj/n) Q% ej. Letic R(n)
be the exact solution of the FDM linear system hlzL’ i = f where L' is as above a d-
dimensional (2k)th order Laplacian where k = o(n*?3) and f = Z?ilf(nj/n)é’j. Then

L _ 2%+1,,
[ — | |< 02472 /D=2 | Tt (¢2 /4)k),

Proof. The remainder term of the central difference formula is O(| zil;iﬁ‘ |h?*=1(e/2)%), so

that

L J2kH1, o1\
—Lu:f+0(’W‘(eh/z) ) (4.26)
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where € is a (21)? dimensional vector whose entries are O(1). This implies

1 o 421y, I
so that
L d2k+1u L
lii— | = O (| Szt |(en/ 2% ) L) €] (428)
d2k+1u
= 0((2n)d/2‘W (eh/2)%+! //11). (4.29)

since in the worst case € is supported in the lowest lying eigenspace of L'. From the proof

of Lemma (12| we have A; = @(1/n?), and since & = ©(1/n), we have

o B d2k+lu
7 —al| = 0<2d/2n(d/2) 2et1 ) o ‘ (e/2)2k) (4.30)

which proves the theorem. ]

4.6 FDM Algorithms for Poisson’s Equation

To apply QLSAs, we must consider the complexity of simulating Hamiltonians which
correspond to Laplacian FDM operators. For periodic boundary conditions, the Laplacians
are circulant, so they can be diagonalized by the quantum Fourier transform (QFT), ie,
L = FDFT. In this case the simplest way to simulate exp(iLt) is to perform the inverse
QFT, apply controlled phase rotations exp(iDt ), and perform the QFT. Ref. [81] shows how
to exactly implement arbitrary diagonal unitaries on m qubits using O(2™) gates. Since
we consider Laplacians on n mesh sites, simulating exp(iLt) takes O(n) gates with the
dominant contribution coming from the phase rotations (which might be improved using

Ref. [95]] or Ref. [[13]).
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Theorem 7. (Poisson equation with periodic boundary conditions) There exists a quantum

algorithm that outputs a state €-close to |u) that runs in time

d2k+1 u

O(d*log” 1 (Vd| 7| /€)V/log(1/e)) (4.31)
and makes

_ 3 d2k+1u

O(dlog* P (V|5 1/8)V/log(1/e)) (4.32)

queries to the oracle for f for arbitrarily small y,3 > 0.

Proof. We use the Fourier series based QLSA from Ref. [25]. By Theorem 3 of that work,
the QLSA makes O(k+/log(k/€qLsa)) uses of a Hamiltonian simulation algorithm and
uses of the oracle for the inhomogeneity. For Hamiltonian simulation we use d parallel
QFTs and phase rotations as described in Ref. [81], for a total of O(dnK\/m )
gates. The condition number for the d-dimensional Laplacian scales as k = O(dn?).

We take erpm and €qgpsa to be of the same order and just write €. Then the QLSA has
time complexity O(n’+/log(n2/€)) and query complexity O(nlog(n®/¢€)). The parame-
ters we can adjust for the algorithm are the number of sites on the lattice » and the order of

the finite difference formula. To keep the error below the target error of € we require

9d/2,,(d/2)=2k+1 —d2k+1u ‘ (e/2)2k =0(¢) (4.33)
dx2k+1 - ) )

which is equivalent to

2k+lu
(—d/2) + (= (d/2) + 2k — 1)log(n) — 2klog(e/2) = Q(log(‘m‘/.s)). (4.34)

To satisfy this condition, we set k = dn” for some constant b < 2/3 (so that our condition
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number lemmas hold) and » sufficiently large, giving

n’log(n) :Q<$10g(’iﬁ;—;bf‘/e>>. (4.35)

421y,
ppsLan]

We set n = ©(log3/2+9 (| |/€)) to satisfy this criterion for arbitrary (b-dependent) o >

0. This suffices to prove the theorem. [

This can be compared to the cost of using the conjugate gradient method to solve the
same linear system classically. The sparse conjugate gradient algorithm for an N x N matrix
has time complexity O(Nsy/klog(1/¢)). For arbitrary dimension N = ©(n?), we have
s = dk = d*n” and k = O(dn?), so that the time complexity is
o(d*> log(l/s)10g3+1'5d+"5b+7/(\/3|Zi’;—ﬁﬂ/s)) for arbitrary ¥/ > 0. Alternatively, d fast
Fourier transforms could be used, although this will generally take

d2k+1 u

Q(n') = 9(10g3d/2(\/3| proEs] |/¢€)) time.

The sparse conjugate gradient algorithm has complexity O(Ns+/klog(1/€)) time com-

plexity. For arbitrary dimension N = @(n¢), s = dk = dn”, k = O(dn?), so that the time

d2k+1 u

complexity is O(d2n? 4 +21og(1/€)) = O(d*log(1 /&) log?*!-34+1:53b+Y (\/g]| et |/€)) for

arbitray ' > 0.
Alternatively, d fast Fourier transforms could be used, although this will generally take

Q(nd) = Q(log¥/2(Vd| 25t | /¢) time.

prLan]

4.7 Boundary Conditions via the Method of Images

We can apply the method of images [78] to deal with the boundary conditions. In
Ref. [83] the method of images is applied on graphs to analyze the spectrum of the graph
Laplacian of a path graph. In the method of images, the domain [—1,1] is extended to

include all of R, and the boundary conditions are related to symmetries of the solutions.
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For two Dirichlet boundary conditions there are two symmetries: the solutions are anti-
symmetric about —1, f(—x—1) = —f(x— 1), and anti-symmetric about 1, f(1+x) =
—f(1 —x). Continuity and anti-symmetry about —1 and 1 immediately imply the f(—1) =
f(1) =0, and this more generally implies f(x) = 0 for all odd x € Z and that f(x+4) =
f(x). For Neumann boundary conditions, the solutions are instead symmetric about —1
and 1, which implies f(x+2) = f(x)

We would like to combine the method of images with the FDM to arrive at finite differ-
ence formulas for this special case. In both cases, the method of images implies that the so-
lutions are periodic, so without loss of generality we can consider a mesh on [0, 27) instead
of amesh on R. We will find it useful to think of this mesh in terms of the cycle graph on 2n
vertices, ie (V,E) = (Zan,{(i,i+ 1)|i € Z3,}), which means that the vectors encoding the
solution u(x) will lie in R?". Let each vector & ; correspond to the vertex j. Then we divide
R?" into a symmetric and and anti-symmetric subspace, namely span{e jtemyi- j}?:l and
span{e; — ez 11— j}?: |- Vectors lying in the symmetric subspace correspond to solutions
that are symmetric about O and 7, so they obey Neumann boundary conditions at 0 and
7; similarly, vectors in the anti-symmetric space correspond to solutions obeying Dirichlet
boundary conditions at O and 7.

Restricting to a subspace of vectors reduces the size of the FDM vectors and matrices
we consider, and the symmetry of that subspace indicates how to adjust the coefficients. If

the FDM linear system is L = f” then L” has entries

(

Fliwj| £ Titj—1 i<k

" .
Li,j: Fi—j| k<i<n—k

Nij| £rom—i—j+1 n—k<i
\

where +(—) is chosen for Neumann (Dirichlet) boundary conditions and due to the trun-
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cation order k, r; = 0 for any j > k.

For the purpose of solving the new linear systems using quantum algorithms, we still
treat these cases as obeying periodic boundary conditions. We assume access to an oracle
that produces states |f”) proportional to the inhomogeneity f”(x). Then we apply the
QLSA for periodic boundary conditions using | f”')|4) to encode the inhomogeneity, which
will output solutions of the form |u”)|+). Here the ancilla is chosen to be |+)(|—)) for
Neumann (Dirichlet) boundary conditions.

The graph Laplacian (second order) for the path graph with Dirichlet boundary condi-
tions has diagonal entries which are all equal to 2; however, using the above specification
for the entries of L leads to the (1, 1) and (n,n) entries being 3 while the rest of the diagonal
entries are 2.

To reproduce the graph Laplacian, we must consider an alternative subspace restriction
used in Ref. [83]]. In this case it is easiest to consider the mesh of a cycle graph on 2n+2
vertices, where the vertices 0 and n 4 1 are selected as boundary points where the field
takes the value 0. The relevant antisymmetric subspace is now span{e; — ez, 12— j}7:1
(which has no support on ey and e, ). If we again write the linear system as L"@’ = f”,

then the Laplacian has entries

p

r|l~,j‘—ri+j lSk

Lij=1{r; k<i<n—k- (4.36)

| Tli=il ™ T2n—imjt2 n—k<i

We again assume access to an oracle producing states proportional to f”(x); how-
ever, we assume that this oracle operates in a Hilbert space with one additional dimension
compared to the previous approaches, ie, previously we considered just implementing U

whereas here we consider implementing L*)UT ﬂ . With this oracle we again prepare the
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state |f”'}|—) and solve Poisson’s equation for perioidc boundary conditions to output a
state [u”")|—) (where |u) lies in an n+ 1 dimensional Hilbert space but has no support on
the n + 1th basis state).

We in fact expect algorithms for Dirichlet boundary conditions to have lower (by a
factor of d) time and query complexity compared to periodic and Neumann boundary con-
ditions. This is because the |—) that appears in the inhomogeneous part of the linear system
guarantees that f is orthogonal to the all-ones vector, which spans the kernel of L. Within
this anti-symmetric subspace, the lowest eigenvalues is ®(d /n?) instead of ®(1/n?), so the

condition number is effectively reduced by a factor of d.

4.8 First Order PDEs

We conclude this chapter by considering what form linear systems might take for ap-

plying the FDM to first order PDEs. We use the backward difference approximation of

J(xi) = f(xi—h)
h
approximation gives some intuition for bounds on the condition number of higher order

..o d o
the derivative d—f| X~ because the form is simple and even a first order
x
FDM matrices with similar structure.

Using the backward difference method with a uniform square n x n grid for the equation

d d

(a—f—aa)u(x?y) :f(x7y) (437)

u(x,0) = a(x),u(0,y) = b(y) (4.38)
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we have the following linear system

[1+a 0 o ... 0
-1 1+« 0 0
0 -1 1+oa ... 0
L, 1| -« 0 0 l+o
Di=+1 0o _o¢ 0 1
0 0 —Q 0
0 0 0 —Q
0 0 0 0

o

o o

0 0
0 0
0 0
0 0
0 0
0 0
l+o 0
-1 140
_fl,l + —aalh%‘_
i +%52
fa31+52
fiat+%
22
f32
fi3 +%
2.3

]
U |
us,|

ui2
%)
uso

U3
[ 123 ]

[g1.1]
82,1
83,1

81,2
82,2

83,2

813

82,3

(4.39)

Since this matrix is lower triangular it can be explicitly inverted. Alternatively due to

the square mesh and the backward difference formula, the value u; ; only depends on f; ;

and two of u;_1 j, u; j—1, a; = a(ih), b; = b(ih). Thus we can write a recurrence relation
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with two indices

Ui

’

Ui

Ui

)

Ui, j

_ hfi 1+ oay +by _ hgi.1
I+a I+a
_ hfirtaaituig hgin | w1
= = +
1+ o 140 1+«
_ hfritbitoui kg | 0wy
1+ o 1+ o 1+«

_ hfijtou o +uio;  hgij

Xt j—1 + Ui—1,)

1+ o

140

1+ o

(4.40)
(4.41)
(4.42)

(4.43)

From this and the fact that 2 = 1/n it can be proven that ||D||= O(n) and ||D~!||= O(n).

Generalizing to d dimensions, the differential equation becomes (}; ai%)u()_c')

f(),

from which we construct the linear system Djii = g. The new linear system implies a

recurrence relation with d indices which can be used to bound the condition number of the

linear system.
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Chapter 5: FDM for the Wave and Klein-Gordon Equations

In the previous chapters, we considered algorithms for linear ODEs, which can easily
be used as primitive subroutines for solving PDEs with time evolution. We consider this
problem for the wave equation and Klein-Gordon equation. We begin by discussing how
to adapt first order ODE algorithms to PDEs that are second order in time, and this will
help motivate our choice of equations. FDM Laplacian matrices will again play a cru-
cial role in our algorithms. We discuss how to factor graph Laplacians and then consider
how the choice of boundary conditions affects the Laplacian and factorization. We dis-
cuss higher order Laplacians and their Gram factorizations, and we present a physically
motivated way to impose Dirichlet boundary conditions. We then discuss state prepara-
tion and post-processing routines and under what conditions they are used. We analyze
the complexity of the different steps in the algorithm and finally compare it to alternative

algorithms.

5.1 Second Order Equations with First Order Algorithms

For PDEs with time evolution, the existing Hamiltonian simulation or ODE algorithms
[10L116,26] can be combined with the FDM to produce algorithms. Since the wave equation
and Klein-Gordon equations are second order equations, we cannot directly apply Hamil-
tonian simulation or ODE algorithms but must first transform to a first order equation. In

general, any dynamical system can be transformed to one that is first order in time by in-
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troducing auxiliary variables. For instance to reduce a nth order equation to a n — 1th order

d" d"! d
dﬂbj = f(u) to the system dt”—? =, d—: = f(u) where v is the

auxiliary variable. This transformation introduces additional overhead which shows up in

equation, we transform

our algorithms as additional state preparation or post-selection steps.

One familiar approach to simulating the Klein-Gordon equation is to simulate the Dirac
equation and output just one of the spinor components since each component individually
obeys the wave equation. This is appealing since simulating the Dirac equation just requires
Hamiltonian simulation and not an ODE algorithm which has additional overhead costs.
Instead of the Dirac equation, another equation which implies the Klein-Gordon equation
could be simulated. This still requires introducing an auxiliary variable to reduce to a first
order equation.

We now consider the most general form of the first order ODE and argue about how
to simplify it with the goals of (1) simulating second order equations and (2) eliminating
ancilla qubit overheads. For a solution ¢ (%), we define ¢ = Y.ex 9(x;)é; where X is the
domain of interest and €; is jth basis vector (similar to the representation in the previous
chapter). The auxiliary variable also has a corresponding vector, 6, which can in principle

be of higher dimension than 6 . We can in general write the FDM ODE as

d[¢] [A B][¢
iils) = [ o] 3 o

where {(g} denotes the vertical concatenation of (3 and 6. This implies the second order
equation
d* [9] _ [A>+BC AB+BD| [¢ 5.2)
di2 |6| ~  |CA+DC D*+CB||6| '

We would like this to decouple into separate second order equations for (5 and 6, which

implies AB+ BD = CA+ DC = 0. Two simple ways to satisfy these conditions are to set
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B=C=0o0rA=D =0. Note that these are not the only assignments; the Dirac equation
has the different spinor components coupled non-trivially. Setting B = C = 0 nullifies the
need to introduce auxiliary variables since (5 and 6 are then decoupled in the original ODE.

Setting A = D = 0 we have that

d[¢ 0 B][¢
— % = 5 53
i Lol [¢ ol [3 5
and
& [¢] [BC 0][¢
ﬁ[é}_[o Slel (5.4
The naive way to define the auxiliary vector 6 is to set 6 = %J) in which case B =1,

which implies that C is a FDM Laplacian matrix. This results in the ODE

1
29[ 98
where L is defined as in the previous chapter. This in fact simulates wave equation evolution
for both ¢7 and 6. Since the matrix of this ODE is not anti-Hermitian, it is not amenable to
Hamiltonian simulation and a general ODE algorithm must be used.

All existing ODE algorithms involve solving highly structured linear systems. The
two we have discussed in this thesis [10, [16] produce a history state of the ODE evolu-
tion, which requires additional qubit overheads for the time register (and the Taylor series
truncation order register for Ref. [16]). The algorithm of Ref. [16] depends on using an
exponentially precise QLSA, and the LCU based QLSA [235]], uses additional ancilla for the
LCU; although, Ref. [86] subsequently presented a QLSA with constant ancilla overheads.

Because of these overheads, it would be more efficient if the ODE were in fact an

instance of Schrodinger’s equation. Assuming anti-Hermiticity (ie C = —B")and A =D =0
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(which suffices for decoupling) in the original ODE, we have

d[¢] [0 Bl[e

L6 = Lo o) 13 5o
d* [¢] [-BB'¢

i M = Lmé] G7)

so the matrix —BB" must be a FDM Laplacian operator.

5.2 Factoring Graph Laplacians

The Gram factorization of graph Laplacians is well understood [30, 34} 49] . Given a
graph G = (V,E), we define the graph Laplacian as the |V|x|V| matrix L(G) = D(G) —
A(G) where D(G) is the degree matrix with D; ; = §; jd; where d; is the number of edges
incident with vertex j and A(G) is the adjacency matrix with A; ; = 1 iff (i, j) € E and
A; j = 0 otherwise.

The Laplacian of G is Gram factored by signed incidence matrices, which are not
unique to the graph. They are defined by first creating a directed graph G’ = (V,E’) by
assigning arbitrary orientations to the edges of G. The |V|X|E| signed incidence matrix W

associated with this graph has entries

1 if j € E points away from i

Wij= 4 —1 ifj€E points towardsi - (5.8)

0 else
\

This also works for graphs with positively weighted edges and with loops (edges of the

form (i,i)) where the entries of A are equal to the edge weights. In this case the incidence
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matrix has entries

N if j € E 1s not a loop and points away from i

—/W; 1f j € E is not a loop and points towards i

Wij =9 (5.9)
VW if j € E 1s a loop and points towards i

0 else

where w; is the weight on edge j. Note that because we set L = WWT, L does not depend

on the edge orientations.

5.3 Boundary Conditions and Mass Terms

When approximating the FDM Laplacian in 1D, the two graph classess of interest are
the cycle graphs and path graphs. As in the last chapter, let S be the n X n circulant matrix
with entries S; j = §; j+1 modn- Then the graph Laplacian of the cycle on n vertices, Gy, is

L(C,)=2I-S—S5". So ;—}L(Cn) = —BB' for B = (1/h)(I — S) corresponds to the FDM

ry Z2f i)+ f(xi—h)+f(xith)

Laplacian operator using the central difference formula f”(x;) 7

under periodic boundary conditions.

For Neumann boundary conditions, we use arguments similar to those presented in the
previous chapter for the method of images, and we can write the Laplacian approximation
for the unit interval as ;—}L(Pn). We begin by considering a Laplacian for an infinite path
graph whose vertices are indexed by Z. Suppose we place a boundary at the 0 vertex and
impose Neumann boundary conditions (% lx,=0). We can realize this by fixing the field
to be @y on vertices indexed by Z~. Physically this corresponds to the case where ¢ is the

electrical potential and the boundary is of a perfect conductor. This effectively changes
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how the Laplacian acts on 47 as

2 -1 0 0 0] /[
) 1 2 -1 0 0] |y
Lo = ~1 2 =1 0]]¢o (5.10)

0 0 -1 2|

0

0 0 -1 2 —1|/|a
0

2 -1 0 0 07 [¢o
-1 2 =1 0 0/ |¢o
0 -1 2 —1 01 |¢o (5.11)
0 0 -1 2 —1{/|¢

0 0 0 -1 2] |¢

— LN eumann(p -

= do — 1 (5.12)

0 0 0 07/ d
00 0 0]]|d
0 1 —1 0] |¢o]. (5.13)
0 -1 2 —1]| ¢
0 0 —1 21| |¢

Thus we see that the FDM Neumann Laplacian for an interval [a,a + nh| under Neumann
boundary conditions is ;—ZL(PnH ).
To impose ¢ = 0 Dirichlet boundary conditions, we set ¢; =0 for i € Z~, which changes

how the Laplacian acts as
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0 2
-1 2 -1 0 0 1
0 0 do
0 0 -1 2 —1|]e
0 0 0 -1 2]||¢
5 -

—1 2 -1 01 |¢o

= LDirichletd_; =10
0 o -1 2 -1 01
0

0
— o
=1 2¢0—¢
201 —¢o— P
(0 0 0 0 0 0
00 -1 O 0 0
—loo 2 =1 o] |a
00 -1 2 —1| ¢
00 0 —1 2|

(5.14)

(5.15)

(5.16)

(5.17)

We can ignore the row indexed by —1 since it corresponds to a point in the boundary.

This Dirichlet Laplacian has the form 2/ — A(P,) and the FDM matrix is ;—21(21 —A(R)),

which differs from the Neumann Laplacian in the 1,1 and n,n entries.

The matrix 2 — A(P,) is referred to as a generalized Lalpacian [49] which generally

takes the form L(G) + M where L(G) is the Laplacian of a weighted graph and M is a

diagonal matrix, which can be interpreted as a potential energy operator in the vertex basis.

The weight term can be accounted for by adding a loop of weight M;; at every vertex i.

These are special cases of stoquastic matrices [8,19] which have non-positive off-diagonal

elements.

Here we have used graph theoretic arguments to impose Neumann and Dirichlet bound-

ary conditions, and we have seen how they affect the entries of the Laplacian. Taking an
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alternative approach for the path graph, P,, Ref. [83] presents arguments for imposing
Neumann boundary conditions that are the same as the method of image arguments we
presented in the previous chapter, and they wind up producing the ordinary graph Lapla-
cian D — A. For Dirichlet boundary conditions, in the previous chapter we presented 2
method of images arguments which lead to Laplacians 27 — A (the same as what we just
derived) and 41 — D — A.

In these examples, the different choices of boundary conditions only changed the value
of the 1,1 and n,n terms. Changing diagonal terms is also how to account for the mass term
in the FDM approximation of the Klein-Gordon equation. This is accomplished by adding
a loop at each vertex with weight m>h?, which changes the graph Laplacian by adding to it

the matrix m?h?1.

5.4 Higher Order Laplacians

In the previous chapter we used higher order Laplacians to solve Poisson’s equation.
Using higher order approximations has the advantage of improving accuracy, but it has the
disadvantage that imposing boundary conditions and Gram factoring are not as simple as
for graph Laplacians. We first discuss imposing boundary conditions.

For higher order Laplacians, there are a few ways to deal with boundary conditions.
We previously applied the method of images to modify the coefficients of the FDM linear
system. Here we consider physically motivated ways to impose the boundary conditions.
Maxwell’s equations in the Lorenz gauge and without sources imply that the electric and
magnetic fields evolve according to the wave equation. Assuming that the domain of inter-
est is surrounded by perfect conductors, the electric field goes to zero everywhere outside
the domain. This also implies that the electrical potential is constant everywhere outside

the domain. These cases suggest that we implement Neumann and Dirichlet boundary con-

66



ditions as in the previous section. We consider this for the k = 2 central difference formula.
For the electrical potential we implement Neumann boundary conditions as in the pre-

vious section, so that we change the way the FDM Laplacian matrix, ;—Z]L, acts as below

(excluding the prefactor of —1/h?).

5/2 —4/3 1/12 0 0 1 [¢2
—4/3 5/2 —4/3 1/12 0 | |¢
Lo=|1/12 —4/3 5/2 —4/3 1/12]| | ¢o (5.18)
0 1/12 —4/3 5/2 —4/3| | ¢
0 0 1/12 —4/3 52 || ¢
5/2 —4/3 1/12 0 0 71 [¢o
—4/3 5/2 —4/3 1/12 0 | |
— [ 1/12 —4/3 5/2 —4/3 1/12]| |do (5.19)
0 1/12 —4/3 5/2 —4/3| |¢
0 0 1/12 —4/3 5/2 | |

0

| (5/2=4/3-4/3+1/12)¢0+(1/12)91 5.20)
(5/2—4/3+1/12)¢0 — (4/3)91 + (1/12) > '
[0 0 0 0 0 oo
00 —1/12 1/12 0 oo

=10 0 5/4 —4/3 1/12] |¢o (5.21)
0 0 —5/4 5/2 —4/3| |¢
0 0 1/12 —4/3 5/2 | |¢

Even ignoring the vertex indexed by -1, the relevant submatrix is not symmetric, so it
can never by written as BB". This case falls outside of the scope of algorithms which we
consider, where the time evolution can be performed using Hamiltonian simulation.

For ¢ = 0 Dirichlet boundary conditions we modify the Laplacian as below.

67



5/2 —4/3 1/12 0 0 7 o
—4/3 5/2 —4/3 1/12 0 | |¢_,
Lé=|1/12 —4/3 5/2 —4/3 1/12]| | ¢ (5.22)
0 1/12 —4/3 5/2 —4/3| | ¢,
0 0 1/12 —4/3 5/2 || ¢
0 0 0 0
0 0 0 0
5/2 —4/3 1/12| | o (5.23)
—4/3 5/2 —4/3| | ¢
112 —4/3 5/2 | | ¢

(el e el e )
SO O oo

The resulting Laplacians have the advantage that they are symmetric (since they are based
on truncated central difference formulas) and positive-semidefinite, so they can be Gram
factored, so Hamiltonian simulation can be used for their time evolution. In contrast, there
are non-symmetric Laplacian approximations where the derivative of the field at x; is ap-
proximated using values of the field at points only to the right of x;.

Unlike graph Laplacians, the Gram factorization of these higher order Laplacians is
not as straight forward and requires a classical computation prior to implementing our
algorithm. The basic approach is to use the method of undetermined coefficients to set up
a quadratic system of equations for the entries of the Gram matrices. This is most simply
done when we assume the discretization mesh is a cycle so that L will be circulant and we
can write it as a sum of powers of S. For example, for the k = 2 Laplacian, we have (again

excluding the —1/h? prefactor)

L=((5/2)—(4/3)(S+S") + (1/12)(8* + (57)?)). (5.24)

Since this matrix is circulant, we also assume that its Gram matrix is circulant. We define
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the ansatz B = ¢S — (¢ +b)I +bS" to find a system of equations

2(c*+b*+cb) =52 (5.25)
ch=1/12 (5.26)
(c+b)>=4/3 (5.27)

which can then be solved for the Gram matrix entries. Since B has 3 (more generally k+ 1)
non-zero entries in each column, we interpret it as a hypergraph where each hyperedge is
incident with £+ 1 vertices. Numerical values for the Laplacian coefficients and the entries
of their Gram matrices up to k = 5 appear in Appendix B of Ref. [33]].

This suffices for the Gram matrices of circulant Laplacians. To generate Gram matrices
for Laplacians on a path graph mesh, P,, under Dirichlet boundary conditions, we consider

the following procedure.
1. Embed P, in a cycle C,,, for m > n+k.
2. Find the Gram matrix B’ for the higher order Laplacian on C,, (as described above).

3. Remove from B’ any rows for vertices not in P, and any columns for hyperedges not

incident with vertices in P,.

What remains is the Gram matrix for the Laplacian under Dirichlet boundary condi-
tions. Note that for general kth order Laplacians, this procedure specifies a weighted hy-
pergraph on n vertices with hyperedges that are incident with k4 1 or fewer vertices. In
fact there will be 2 hyperedges incident with j vertices for 1 < j < k, and each of these

edges will be incident with one of the two end vertices of B,.
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5.5 Multiple Dimensions and Non-Convex Domains

As in the previous chapter, graphs sums [34] (eg, a n x n grid is the sum of two path
graphs on n vertices) allow for simple extensions of 1D Laplacians to higher dimensional
Laplacians when the domain is rectangular, ie, of the form [—1,1]%. This is because the d-
dimensional Laplacian operator is a sum of 1 dimensional Laplacians, V> =} y %, SO we
can write the FDM matrix as in the statement of Lemma ;—;LI = ;—; (LRI 14 IRLe
[9472 oy @d—] ® L). This expression applies for periodic boundary conditions (when
L is a Laplacian for a cycle graph) and for Dirichlet and Neumann boundary conditions
(when L is one of the path graph Laplacians).

Our algorithm can be applied to convex domains other than [—1, 1]¢ and to non-convex

domains by considering appropriate meshes. This mesh can be constructed as follows.
1. Embed the domain in [—1, 1]¢.

2. Construct the hypergraph for L@ 1%~ + IQ L@ 19472 +... 41941 @ L with vertices

arranged as in a cubic mesh and corresponding to points in [—1,1]%.

3. Remove all vertices in the mesh whose corresponding points do not lie in the domain.

Eliminate the incidence of these vertices with any hyperedge.
4. Remove any hyperedges not incident with one of the domain points.

What remains after this procedure is a weighted hypergraph, and this hypergraph structure
provides the natural way to Gram factor the Laplacian matrix for the domain. As a test of
this approach for non-convex domains, in Fig. 3] we present numerical simulations of how

a wave propagates according to Eqn. [5.6]from its initial condition to 3 later points in time.
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c) ‘ d)

Figure 3: Wave propagation in non-convex domain. Subfigure a) shows the initial condition, and
b), ¢), and d) show the field at later points in time. Figure from Ref. [33] credit to Pedro Costa.

5.6 Initial Conditions

We assume access to controlled oracles that produce states proportional to the initial
conditions of the field, ¢(0), %h:o, and we assume knowledge of the /2 norms of these

vectors. Knowing the norms we can synthesize the unitary

- d$
U= 1 [lg,(mn —||£,—,|,:o||]. 58)
VIBOI 9 o2 LI ol 116(0)]

We solve the Schrodinger equation (instantiating B in Eqn. [5.6)
d[¢] —i[0 WwW][¢
|t == L 5.29
dt {9] h {W* 0} {9] 6:29)
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where W is the incidence matrix or hypergraph incidence matrix for a Laplacian. This

implies the following equation for the initial conditions

d — . —
z?ﬂt:()} _ {Welf—()} (5.30)
[%mt—o h WT(Z)\,:()

so to initialize a state proportional to 6 /=0 we must use a QLSA to invert W since we are
only given access to an oracle for %hzo. So the full state preparation routine is to apply
the unitary in Eqn. [5.28] to an ancilla qubit, apply the controlled unitaries for the initial

conditions, and then apply the pseudoinverse of B.

5.7 Post-Processing

The post-processing step depends on the state we want to output. Initial value prob-
lems are typically stated in terms of outputting the field, which in our case corresponds to
outputting |¢(T)); however, due to the introduction of the auxiliary variable we can also
output a state proportional to |@>

If our goal is to output |¢(7)), then we measure the qubit to which we applied the
unitary in Eqn. [5.28] during state preparation. This qubit indexes the parts of the state
encoding 5 and 6, and measuring 0 indicates that the remaining state is proportional 5 (T).

In general, the success probability of this measurement will depend on the system itself,
similar to how our ODE algorithm’s success probability depends on the solution’s final
amplitude relative to its maximum amplitude during its evolution. For example, the field
¢ (x,t) = sin(x) cos(t) satisfies the wave equation, but when ¢ = J 4 nx for n € Z the field
is uniformly zero while its time derivative is non-zero. At these points in time, an accurate
simulation of the field would have (J; — 0, so the final measurement would almost always

output 1, indicating failure.

If our goal is to output a state proportional to %, then we must post-process the part of
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the state proportional to 6 and multiply by W. A simply way to perform this multiplication
is to use a variation of the HHL QLSA as follows (using phase estimation and a controlled

rotation):

(W'dg/dr)[0)]0) = Y alA;)[0)[0) (531)
J
— Y aj|A)|4)]0) (5.32)
J
ey c2—2?
= Lol AIA) | F10)+F—F—1) | (5.33)
J

Note that this mainly differs from the HHL procedure in that the eigenvalue now appears
in the numerator of the amplitude, corresponding to multiplication instead of inversion.
This rotation is followed by post-selecting on the ancilla qubit being |0), which in the worst
case occurs with success probability min;|4;|?/||W|[>= k(W)?, which can be improved to

linear in k(W) scaling as in Ref. [5].

5.8 Complexity Analysis

Instead of stating the complexity for arbitrary domains we consider the complexity of
simulating the wave equation in a cubic region with side length / in d dimensions.

A 2k + 1 sparse Laplacian with O(th ) error in 1D has a k + 1 sparse incidence matrix.
Concatenating d such incidence matrices for a d-dimensional Laplacian leads to sparsity
s =d(k+1). Assuming the 2k + 1th derivative (with respect to any coordinate) of the
solution is bounded by a constant, the error that accumulates after evolving for time 7 is
€ = O(Th*5/9=2) which implies the grid spacing scales as h = ©((g/T)4/25=4)),

The state preparation procedure has time complexity O(sd>/20(T /€)4/25=4)), and the

time evolution via Hamiltonian simulation has time complexity O(sdT (T /&)4/25=4)). The
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query complexities are similarly bounded since we use O which suppresses poly(log(-))
overhead factors.

The Hamiltonian simulation algorithm of [15]] has gate complexity

log(t/€)
01[ | 5/2’58]—, 5.34
<[+ 10g72 e/ LS (5.34
where T =5 ||H || ,ax > ||H || max 1S the largest norm of a matrix element of H, s is the sparsity

of H, and n is the number of qubits. For a first order Laplacian, the Hamiltonian we simulate
for time evolution has parameters s = 2d (since each vertex is incident with 2 edges),

|H||\nax = 1/h, and n = log, [(1+d)(I/h)?], so the time evolution step has complexity

max

0 % (log ((1 +d)(l/h)d> +log¥/? (M)) oz (Ge)

= =0 {ﬁ} (5.35)
he ) ) loglog (34) '

h

and the query complexity for the state preparation is the same up to poly(log(-)) factors.

5.9 Comparison to ODE approaches

We already discussed the ancilla qubit overheads that a Hamiltonian simulation based

algorithm avoids compared to an ODE algorithm for the equation

d[¢] [0 I|[¢
ils) [ ol 5] o

This in fact implies that both ¢3 and 6 evolve according to FDM wave equation approxima-

tions. Instantiating this for t = 0 we find

5
[d—?bo
ﬁ|

dr 11=0

To prepare the initial state for the ODE we must assume oracle access. We can assume

6(0)
= S (5.37
L—%Ld»((»] :
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access to oracles for 5 and % without loss of generality, in which case the state preparation
involves an application of the unitary in Eqn. [5.28] followed by the oracles for the initial
conditions. This takes advantage of the asymmetry of the ODE, since assuming oracles for
6 and % would require applying the pseudoinverse of L as part of the state preparation,
which introduces additional overhead. So we see that using this ODE requires no additional
state preparation or post-processing (such as applying QLSAs), but it incurs the overheads

of using an ODE algorithm.
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Chapter 6: Conclusion

We begin with a summary of the main chapters of this thesis. We follow that with a dis-
cussion of how the field has progressed following these results. We conclude by presenting

several open problems.

6.1 Summary of Results

In Chapter 2] we described the Hamiltonian simulation algorithm of Ref. [28] which
is based on randomly applying different product formulas. We proved technical lemmas
characterizing degenerate and non-degenerate terms in the averages of product formulas,
and we bounded error terms at different orders in the Taylor expansions of these average
operators. This allowed us to characterize the total error for the quantum channel applying
randomized product formulas, and we found asymptotically better scaling compared to
deterministic product formulas. We also presented numerics estimating the number of
elementary exponentials needed to simulate a Heisenberg spin chain using deterministic
and randomized product formulas.

In Chapter [3] we presented the ODE algorithm of Ref. [16] which used a QLSA to
generate a history state of the ODE solution which we then perform a post-selective mea-
surement on. We proved several technical lemmas bounding the condition number of the
linear system, the error due to the Taylor series approximaiton of exp(Ar), the success

probability of the post-selective measurement, and the complexity of state preparation for
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the QLSA. We proved that our algorithm scales optimally with respect to the matrix norm,
evolution time, and error.

In Chapter 4] we considered applying QLSAs to the Poisson equation. We constructed
linear systems where the matrix was a FDM operator approximating the Laplacian and the
solution had components equal to the PDE solution on uniformly spaced points in the do-
main. We bounded the condition number of this matrix and its approximation error. We
used these bounds to prove the existence of a time and query efficient quantum algorithm
whose complexity is poly(log(1/¢€)) and exponentially faster with respect to the spatial di-
mension than comparable classical algorithms. We argued for how to use the method of
images to extend our algorithm from periodic boundary conditions to Dirichlet and Neu-
mann boundary conditions. We also illustrated how the FDM can be extended to more
general first order BVPs.

In Chapter [5] we presented the wave and Klein-Gordon equation algorithms of Ref.
[33]] which also used FDM Laplacian approximations. We considered how to transform
equations that are second order in time to equations that are first order in time. We found
the wave equation and Klein-Gordon equation to be natural candidates, when restricting to
Hamiltonian simulation with certain block structure that leads to decoupled second order
equations. We saw how to impose Neumann and Dirichlet boundary conditions for first
order Laplacians, and we considered Dirichlet boundary conditions for higher order Lapla-
cians. We also considered how QLSAs are used in state preparation and post-processing,

depending on oracle assumptions and the desired output.

6.2 Progress on Randomization for Hamiltonian Simulation

Following our work on randomization for Hamiltonian simulation, Campbell proposed

an algorithm [21]] where evolution under the terms of the Hamiltonian occurs with prob-
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ability proportional to the strength of each term. Ref. [17] uses similar randomization

techniques to simulate time-dependent Hamiltonians.

6.3 Progress on ODEs

Since publishing the ODE algorithm, Childs and Liu [26] have developed algorithms
for time-dependent ODEs which also achieve O(poly(log(1/¢€))) query complexity. Their
algorithm for the initial value problem also achieves optimal scaling with respect to the
matrix norm. They also consider the problem of outputing a state at an intermediate time

given the initial and final states.

6.4 Nonlinear Differential Equations

For general nonlinearities, the scope of possible quantum speed-ups is limited since
there are strong no-go arguments for the simulation of generic NLDEs [3, [/, 29]. The in-
tuition underlying these arguments is that NLDEs can have trajectories that diverge expo-
nentially quickly (ie they can have positive Lyapunov exponents) and that this exponential
divergence can be leveraged to speed-up computations and violate known lower bounds
(such as for unstructured search or state discrimination).

Despite these limitations, several algorithms for NLDEs have been proposed. The first
of these algorithms appeared in Ref. [64] that uses the Euler method to solve the initial
value problem for NLDEs, but its resources scale exponentially in the system parameters
(as required by the no-go arguments). Somma et. al. [97] study a quantum version of a
classical Monte Carlo algorithm for fluid flow. This algorithm achieves a quadratic speed-
up over the classical version since quantum computers can sample from Markov chains
quadratically faster. Other heuristic algorithms for computational fluid dynamics have been

proposed in Refs. [84] 85, O1]]. A special linear case of the Vlasov equation (which is
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generally nonlinear) is treated in the algorithm of Ref. [39]. Ref. [70] uses variational
algorithms to find the ground state of the nonlinear Schrodinger equation and uses the
FDM; although efficient time evolution algorithms for the nonlinear Scrhodinger equation
are forbidden by no-go arguments.

Since we can not hope to efficiently simulate arbitrary NLDEs, we can ask the question
“What kinds of NLDEs can quantum computers simulate efficiently?” The no-go argu-
ments rely on the existence of positive Lyapunov exponents, so they do not apply to certain
dissipative systems (as an example) which might be efficiently simulable. This raises the
question of what other lower bounds and no-go arguments can be developed for NLDEs
without positive Lyapunov exponents.

This also raises the question of how imposing other kinds of structure on NLDEs might
make them efficently simulable. Conservation laws are one source of additional structure;
however, just having a conserved quantity such as energy is not sufficient since Ref. [77]
shows that simulating point masses evolving classically under gravitational or Coulomb
interactions is PSPACE-hard.

Another source of structure is to impose that the NLDE is a transformation of a linear
DE. For example, the Korteweg-de Vries equation is equivalent to the heat equation under
the Cole-Hopf transformation [40]. Another such equation is the Riccati equation. Radon’s
Lemma [2] characterizes the solutions of the Riccati equation in terms of the solutions
of a linear ODE. In this case, existing algorithms for Hamiltonian simulation, ODEs, and
linear systems can be pieced together to form quantum algorithms for the original nonlinear
problem (albeit with caveats). We provide a sketch of this algorithm in Appendix

The algorithm for the Riccati equation is basically several standard quantum algorithms
pieced together in a natural way. Another case where standard quantum algorithms can
be applied is to bound the moments of NLDEs, which can be done using semidefinite

programs (SDPs) as shown in Refs. [23| 41, 50]. Quantum algorithms for SDPs have
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been studied in Refs. [18} 156,92, 93] and allow for polynomial speed-ups over classical
algorithms. It is natural to ask if this speed-up still holds when bounding the moments of

NLDE:s (and under what conditions or oracle models).

6.5 Other Open Questions

After developing our Hamiltonian simulation algorithm, Ref. [66] described ‘quantum
interpolation’, a method to implement certain unitaries which can be specialized to Hamil-
tonian simulation to generate new product formulas. This result can naturally be combined
with the randomization tools we used for our Hamiltonian simulation algorithm. When ini-
tially developing our randomized algorithm, we found continuous families of ‘randomized
quantum interpolation product formula’. However, even characterizing these algorithms
requires classical precomputation which seems to be prohibitively costly. Is there a way
to get around this precomputation? One of the advantages of ordinary Suzuki-Trotter for-
mulas is that they are defined recursively, so formulas of arbitrarily high accuracy can be
developed. How can this be done for quantum interpolation?

Our ODE algorithm has multiplicative scaling with respect to # and € (eg O(tlog(1/€)))
while the state of the art for Hamiltonian simulation is additive with respect to these terms
(eg O(t +1og(1€)) [9,168,69]). Can additive scaling be achieved for ODEs?

We only considered the FDM for uniformly spaced lattices; however, using a non-
uniformly spaced mesh might be more natural in some applications (eg having a denser
grid where the field is expected to change the most). It is natural to ask what kind of
promises must be made about a class of DEs such that non-uniform mesh algorithms are
faster within that class. The analysis of non-uniform mesh algorithms is complicated by
the lack of symmetry in the formulas (symmetry which we made use of and in practice may

be easier to implement). What techniques can be used to bound their complexities?
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Our FDM algorithms assumed oracles for producing the states corresponding to inho-
mogeneities and initial conditions. For practical problems, what methods might be used to
realize these oracles beyond the methods of Refs. [51}[79,(98]]?

Our PDE algorithms provide exponential speed-ups with respect to the dimension, but
for fixed dimension they may only give polynomial improvements with respect to the ap-
proximation error. What kind of quantum speed-ups can be achieved in fixed dimension?
What classical lower bounds and quantum upper bounds can we prove for the complexity
of these PDE problems?

In the algorithms for the wave equation and Klein-Gordon equation, we imposed ¢ = 0
Dirichlet boundary conditions on high order Laplacians by truncating a central difference
formula FDM matrix. We derived this by starting with arbitrarily large rectangular meshes
encompassing the domain mesh and fixing the field to be 0 on mesh points lying outside the
domain of the differential equation (motivated by the physical example of electric fields go-
ing to 0 inside conductors). An alternative approach would be to start with the nodes in the
domain and only add a single layer of ghost nodes that lie on the boundary. Then the value
of the field at the boundary points can be fixed, and the derivatives can be approximated
near the boundary using formulas other than the central difference formulas. This would in
fact allow for generic Dirichlet boundary conditions to be imposed. The downside to this
approach is that the Laplacian operators are not symmetric, so instead of Hamiltonian sim-
ulation an ODE algorithm must be used including an inhomogeneous term for non-trivial
boundary conditions.

In the wave equation algorithm, to use higher order Laplacians, we must find their
Gram factorizations, which requires a classical pre-computation. What is the most efficient
way to perform this? Are there simple analytical expressions for the entries of the Gram
matrices? In Appendix B of Ref. [33], we discuss FDM Laplacians in 2+ dimensions that

are not simply linear combinations of 1D Laplacians. How can these be efficiently Gram
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factored? How does their performance compare to the Laplacians we propose?

In Appendix [A] we sketch an argument for the BPP-hardness of inverting Laplacian
matrices for general graphs (not just path graphs as considered for PDEs). Formalizing this
remains to be done. Using the algorithm of Ref. [36], can this be made into a completeness
result?

The algorithms we have presented solve problems where the output is a quantum state
that is proportional to the solution of an ODE or a PDE. However, to learn anything about
the solutions to the DEs we must post-process these states, eg, by estimating observables,
which is a different computational task and will require additional overhead not considered

here.
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Appendix A: BPP-hardness of Laplacian Linear Systems

Following Refs. [36, 46| developing BPL algorithms for solving Laplacian linear sys-
tems, Ref. [37,38], showed that approximating the second eigenvalue of graph Laplacians
is BPL-hard. Here we sketch a heuristic argument that estimating ¥’ X is BPP-hard where
X is the solution of an exponentially large Laplacian linear system and ¥ is a specially con-
structed vector.

This hardness reduction is inspired by the HHL construction that shows that inverting
sparse, exponentially large matrices is BQP-complete. The HHL construction relies on a
decomposition of the quantum circuit into a universal set of local unitaries, such as the
Hadamard, phase, and controlled-not gates. For the BPP-hard construction we use the
fact that the Toffoli (doubly controlled-not) gate is universal for classical deterministic
computation. Since the Toffoli gate is deterministic but BPP is a language for random
computation, we model the randomness by augmenting the computational bits with random
coin bits; randomness is introduced into the computational bit space by controlling on the
values of these coin bits.

Suppose we are given a classical circuit C operating on a space of computational bits
and coin bits such that sampling over the space of coin bits approximates a BPP com-
putation. Further suppose we have a decomposition of this circuit into a sequence of m
Toffoli gates, ie, C = HT:I T;. Without loss of generality, we can assume that the circuit
performs the computation, copies the output bit to an output register, and then uncomputes

any ‘garbage’ in the computational bits. Then the output of the circuit is a set of bits all of
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which are set to 0 except for the output bit and the random coin bits.

As in HHL we first construct an asymmetric matrix.

M =1—exp(—1/m)Q (A.1)
m 2m 3m ;
EZ!JH jeTi— Y lj+nilel— Y [i+1 wasm) (j@T,,_; (A2)
j=1 j=m+1 j=2m+1

The condition number of this matrix is ®(m), ie, it scales with the number of Toffoli
gates in the classical circuit.

To see how this matrix can be used to encode a computation, consider the linear system

M|x> = |0>clock|0>comp|c>coin (A.3)

where |0) /o0 is in the 3m-dimensional ‘clock’ Hilbert space, |0)comp lies in the compu-
tational space, and |c) ., lies in the coin space. The solution of this linear system is the

history state

|x) = Z i) w)) (A.4)
where
0)|c) ji=1
-1 T0)e)  2<j<m
lyj) = . (A.5)
[Ti Tk|0)[c) m+1<j<2m

H3’"“ IT |0V e) 2m+1<j<3m

Note that when the clock register encodes a value between m+ 1 and 2m, the rest of the
state corresponds to the state after the computation where all the bits are guaranteed to be
zero except for the output bit and the coin bits.

If the coin state |¢)oin corresponds to a distribution of coins, then the quantity (y|x) is
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proportional to the number of computational paths (in the distribution) outputing O minus

the number of computational paths outputing 1, where

2m
‘y> - Z |-j>’_>UWPW|O>C()mp\()u1‘put|c>coin- (A.6)
j=m+1

Thus if |¢)¢oin corresponds to a sufficiently large distribution of coins, then (y|x) is positive
(or negative) if the output of the BPP computation is O (or 1) with high probability.

Now that we have argued that the solution of this linear system is BPP-hard, it remains
to conver the linear system into a graph Laplacian linear system. We begin by symmetrizing
the matrix

MM = (14exp(—2/m))1 —exp(—1/m)(Q+ Q") (A7)

where we have used the fact that Q is unitary. The linear system then reads M™M|x) =
M0 c10ck|0) comp|€) coin-

Since each row of Q has exactly one non-zero entry which is equal to 1, this matrix is
symmetric diagonally dominant with negative entries off of the diagonal. Now the linear
system can be converted to a Laplacian linear system using some standard tricks, namely

we map the matrix and vectors according to

MM s exp(—1/m)(2I — Q+ Q") @ b + (1 +exp(—2/m) — 2exp(—1/m) R [(l, — X) /2]

(A.8)
Vi V®|—) (A.9)
where I, denotes the 2 x 2 identity matrix. Note that [(I, —X)/2] = |—)(—|, so this new

matrix acts on vectors of the form ¥® |—) equivalently to how MM acts on the vector |v).

The matrix produced by this mapping corresponds to a weighted graph Laplacian.
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Appendix B: Riccati Equation Algorithm

In this appendix we sketch a heuristic quantum algorithm for solving a special case
of the Riccati equation and then comment on how this relates to the more general Riccati
equation.

The problem we consider is:

QUANTUM RICCATI EQUATION SIMULATION: Let V, a N X N matrix, evolve according to
the differential equation

dv
E:H—iHVjLVZ (B.1)

where H is a Hamiltonian which we can simulate. Let the initial condition U (0) be a uni-
tary. Given access to an oracle that implements a controlled applicaiton of U (0), produce a

quantum state proportional to one of the columns of U (T).

B.1 Linearizing the Riccati Equation

Under the transformation V = (d—U)U ~1 Eqn. is equivalent to the following ODE.

t

% [dUU/dt} B [—OI 11{1} [dUU/dJ (B.2)

dUu /dt}
obey the Schrodinger equation and we can use Hamiltonian simulation algorithms for the

The square matrix on the RHS above is anti-Hermitian, so the columns of {
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time evolution.

B.2 Qubitization and Matrix Inversion

One of the difficulties with this approach is that at the end of the linear evolution we
have to transform back to the original V coordinates. This requires applying U(T)~!; how-
ever, non-sparse models of Hamiltonian simulation (such as qubitization or block encoding)

can be used to implement this transformation. Note that

00 1 1
X®H=(1/V2) (1) (1) (1) _01 (B.3)
1 -1 0 0
and define W (0) as
0 0 U U
W(0) = WiWa(X @ H & )W, W l?* : dU(/) i) (dUO/dt) _(dg/d’) (B.4)
Ut —(du/dt)T 0 0
Wi = |00)(00|@U (0) + (I — [00)(00]) ® I (B.5)
Wa = |01)(01|®(dU /dr)(0) + (I — [01)(01]) @1 (B.6)

Since U and dU /dt are only given to us at t = 0 we need to evolve W forward in time. More
specifically, we need to perform the inversion U(T)~!. We can achieve this by evolving

the relevant subblocks of this matrix according to Eqn. [B.2]
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0 I 00][0 0 U U 0 —I 0
— —1 iH 0 0| |0 0 (dU /dt) —(dU /dr) I —iH 0
W =ep | o o o ol |ut (av/an 0 0 0 0 0
0 0 0 0] U —(du/dt)" 0 0 0 0 0
(B.7)
0 0 U(T) o(T)
_| 0 0 (@U/dt)|r (dQ/dt)|r (B.8)
UM (au/an)t|r 0 0 '
Q(T)" (dQ/dr)'|r 0 0

where Q(T) is the solution of the differential equation produced from the initial conditions
Q(0) = U(0) and dQ/dt|p= —dU /dt|p. We can now apply block encoding to select the

submatrix of W(T') that corresponds to the Hamiltonian which will be simulated when

applying U (T)~ 1.

= _ 0 U(T)
@ 0|RQJAW(T)I®|0)®I1] = {U(T)T 0 ] (B.9)
. o . I 0 U(T)
This suffices to show that we can in principle simulate the Hamiltonian Uy o |

B.3 The Full Algorithm

Suppose that we are asked to produce a state proportional to the jth column of V(T') =

(dU /dt)|7U(T)~ L.
1. Prepare the state |j).

2. Apply the inverse U(T) ! using a QLSA whose Hamiltonian simulation subroutine

makes uses of the block encoding discussed above.

3. Multiply by (dU/dt)|r (eg by modifying HHL for multiplication instead of inver-

88

S O OO



sion).

Alternatively, if we are asked to produce a state proportional to the jth row of V(T') we

can do the following.

1. Prepare the state [01)]).
2. Apply the unitary W(T).

3. Apply (U(T)")~! to the relevant subspace using a QLSA and the block encoding

discussed above.

4. Measure the first two qubits, post-selecting on them being in the state |10).

These are merely heuristic outlines for the algorithms for simulating the Ricatti equa-
tion. A formal analysis of these algorithms will reveal that several algorithmic overheads
exist, such as dependence on the condition numbers of U(T') and (dU /dt)r and depen-

dence on post-selection probabilities.

B.4 Radon’s Lemma

The kind of linearization seen in the last section is summarized for more genera Riccati
equations by Radon’s Lemma. We restate this lemma here (Theorem 3.1.1 from Ref. [2]).

For the purposes of this lemma, we define the Riccati Differential Equation as

aw
E =M271(t)—{—Mz’z(l)W—WMl’l(l‘)—WM172(I)W (RDE) (B.10)

Lemma 14. (Radon’s Lemma) Let M| | € R, M|, € R™™, M, 1 € R™", M 5 € R™™,

then the following holds:
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1. Let W(t) € R™" be a solution of RDE in the interval [ty,tf] C R. If Q,0(t) € R™"

is a solution of the IVP

d
d—? = (M1 +M2W)Q, O(rg) = 1 (B.11)

and P(t) :== W(t)Q(t), then {g] is a solution of the associated linear system (of

differential equations)
d |0 My M2| |0
— = ’ ’ . L B.12
dt [P] [Mz,l Mp| |P (£) (B-12)

2. If {%} is a real solution of the system L such that Q(t) € R"*" is regular for t €

[to,1r] C R, then
W fto,t7] = R™ 1+ P()Q (1) = W(r) (B.13)

is a real solution of RDE.

3. In case of a complex parameter t and My € C*", My, € C™"™, My € C™",
My, € C™™ and also W(t) € C™*", the assertions 1 and 2 remain valid if we

replace therein the interval [ty,t¢] by an arbitrary domain G C C with ty € G.

Simulating the RDE requires modifying the algorithm that we sketched in the previous
section. Linearizing the RDE produces an ODE which is not necessarily an instance of
Schrodinger’s equation, so a coherent ODE algorithm (such as that in Ref. [16] ) must be
used for the time evolution. If the algorithm in Ref. [16] is used, then during the matrix
inversion step, the subblock selection must take into account the structure of the history

state as well as the success/failure flag qubits used in the QLSA.
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