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Tree species diversity is of paramount value to maintain forest health and to ensure 

that forests are able to provide all vital functions, such as creating oxygen, that are 

needed for mankind to survive. Most of the world’s tree species grow in the tropical 

region, but many of them are threatened with extinction due to increasing natural and 

human-induced pressures on the environment. Mapping tree species diversity in the 

tropics is of high importance to enable effective conservation management of these 

highly diverse forests. This dissertation explores a new approach to mapping tree 

species diversity by using information on the vertical canopy structure derived from 

full-waveform lidar data. This approach is of particular interest in light of the recently 

launched Global Ecosystem Dynamics Investigation (GEDI), a full-waveform 

spaceborne lidar. First, successful derivation of vertical canopy structure metrics is 



 
 

ensured by comparing canopy profiles from airborne lidar data to those from 

terrestrial lidar. Then, the airborne canopy profiles were used to map five 

successional vegetation types in Lopé National Park in Gabon, Africa. Second, the 

relationship between vertical canopy structure and tree species richness was evaluated 

across four study sites in Gabon, which enabled mapping of tree species richness 

using canopy structure information from full-waveform lidar. Third, the relationship 

between canopy structure and tree species richness across the tropics was established 

using field and lidar data collected in 16 study sites across the tropics. Finally, it was 

evaluated how the methods and applications developed here could be adapted and 

used for mapping pan-tropical tree species diversity using future GEDI lidar data 

products.  
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1. INTRODUCTION 

Over the last decades, airborne and spaceborne remote sensing systems have 

revolutionized the way we can observe, study and understand the Earth’s biosphere. 

Remote sensing allows us to gather information about remote regions at an 

unprecedented rate and to monitor the changes that are occurring rapidly across the 

face of the Earth. The continuous development of new methods to extract information 

from these new data is therefore relevant in the advancement of this field. In this 

dissertation, I investigate the use of full-waveform lidar data, a specific type of 

remote sensing data, for mapping tree species diversity in the tropics. 

1.1 MOTIVATION  

1.1.1 GLOBAL CHANGE AND BIODIVERSITY 

Change is a fundamental characteristic of the Earth and it allows for the provision of 

essential ecosystem services such as climate regulation, disturbance prevention, fresh 

water supply, soil formation, pollination and waste recycling (de Groot et al., 2002). 

The Earth has been in a relatively stable state over the last 10,000 years, but global 

pressures have increased tremendously since the industrial revolution and have 

induced environmental change at unprecedented and alarming rate (Rockstrom et al., 

2009) increasing glacier melting (Marzeion et al., 2014), environmental pollution 

(Vorosmarty et al., 2010), and deforestation (Hansen et al., 2013). Pressures on 

forests, both long-term stressors and short-term disturbances, are caused by human 

and natural drivers of change. Natural stressors, for example, can be changes in 
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precipitation or seasonality and the occurrence of extreme wind events affecting 

vegetation mortality and growth (Bonan, 2008). Humans can have a direct impact on 

vegetation, e.g. through deforestation for agriculture or urbanization, or afforestation 

through plantations, or an indirect impact, e.g. through dam construction which 

changes water supply downstream (Hansen et al., 2013; Ligon et al., 1995; Vitousek 

et al., 1997). In the last 300 years, 35% of pre-agricultural forest cover has been lost 

and 82% of the remaining forest is degraded (Watson et al., 2018). In the last century, 

species extinctions have increased to an estimated 1,000 – 10,000 times the 

background extinction rate, and habitat destruction occurs disproportionally in high-

diversity tropical regions where small-ranged species live (Pimm et al., 2014). The 

research in this dissertation focusses specifically on tropical forests because of their 

extremely high diversity and vulnerability.  

1.1.2 CONSERVATION MANAGEMENT 

Even though we are currently able to map deforestation (Hansen et al., 2013) and 

estimate species extinction rates (Pimm et al., 2014) at unprecedented accuracy, there 

are still many improvements needed in research and applications, to allow for 

effective conservation management of our planet and to protect it to the degree that 

all future generations of humans will be able to survive. Recently, initiatives have 

been proposed in order to streamline the closing of gaps on this knowledge front and 

move towards operational data products for conservation management as quickly as 

possible. The Convention of Biological Diversity (CBD) has proposed the Essential 

Biodiversity Variables (EBV’s); a list of relevant biodiversity indicators to achieve 

the Aichi Biodiversity Targets, a set of goals for the conservation of global 
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biodiversity (Pereira et al., 2013). To reach these goals, the CBD has proposed a list 

of biodiversity metrics to be derived from spaceborne remote sensing data; a 

challenge to be addressed over the next decade (Skidmore et al., 2015). In this 

dissertation I address this challenge through exploring a method for comprehensive 

mapping of tree species diversity across the tropics to enable better conservation 

management. These maps will strengthen our understanding of the value of tree 

species diversity in intact forests, and elucidate interactions between climate and 

ecosystems across spatial scales.  

1.2 BACKGROUND 

1.2.1 TROPICAL FORESTS 

Tropical forests are spread over five main biogeographical regions. The Neotropics in 

Central and South America, the African mainland, the island of Madagascar, the 

Sundaland tropics in South-East Asia and the region of Papua-New Guinea and 

Australia (Corlett and Primack, 2011). The climate across the tropical zones varies 

greatly and the Inter Tropical Convergence Zone controls the amount and timing of 

rainfall. In Africa, the rainless months are often misty and overcast, providing quite 

different conditions than in tropical America and continental Asia where dry periods 

are sunny (Corlett and Primack, 2011). Historically, biogeographical processes are 

known to be the most important driver of tree species diversity patterns at a large 

continental scale (Keil and Chase, 2019).  

The global estimate of the number of tropical tree species lays between 40,000 and 

53,000 species (Slik et al., 2015). The highest tree species diversity is found, in 
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decreasing order, in the Neotropics, then on Sundaland and last in African tropical 

forest (Corlett and Primack, 2011; Mutke and Barthlott, 2005). Tree species 

composition in the Neotropics evolved to be the most distinct of the three, as Central 

and South America were separated from Africa and South-East Asia about 70 million 

years ago, when they broke off from the Gondwana continent. The floristics in Africa 

and South-East Asia are more similar to each other, although Africa only has 10-20% 

of the species in families shared between the two regions. This disparity in species 

number was likely caused by drought in Africa during the last ice age which is also 

thought to have caused the characteristic African savanna-forest ecosystem (Corlett 

and Primack, 2011). At large spatial scales, historical biogeographical processes are 

most important for the distribution of tree species richness, but environmental 

variables have a stronger influence on spatial patterns of species richness at regional 

or local scales (Keil and Chase, 2019). For example, topographic heterogeneity, 

including the uplift of mountains in the Himalaya and the Andes, is an important 

factor that has affected speciation over large scales during past periods of climate 

change (Kreft and Jetz, 2007). On the other hand, at a local scale, soil nutrients 

explained 36-51% of tree species richness (within 25 – 50 ha plots) in study sites in 

Colombia, Ecuador and Panama (John et al., 2007).  

1.2.2 FUNCTION AND DIVERSITY 

Forests fulfill many key functions and are indispensable for a healthy earth in which 

humans and other organisms can thrive. For example, tropical forests play a key role 

in the regulation of local, regional and global climate, the regulation of watersheds, 

habitat provision for other organisms and indigenous cultures and they are an 
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important source of medicinal components (Watson et al., 2018). More intact and 

diverse forests are better able to provide these ecosystem services (Tuck et al., 2016). 

For example, intact forests are more efficient at storing CO2 from the atmosphere 

(Longo et al., 2016). Thus, understanding the patterns and drivers of tropical tree 

species diversity is essential.  

Ecosystems and their inherent diversity can be generally characterized along three 

principal dimensions: composition, structure and function. These three dimensions 

are key to biodiversity, which can be measured at the genetic, species and ecosystem 

level (Noss, 1990). Structural diversity of forests is commonly described by a 

combination of structural attributes related to variation in vertical foliage 

arrangement, canopy height, canopy density and deadwood (McElhinny et al., 2005). 

Following niche theory, a diverse combination of structural attributes is expected to 

promote the abundance and diversity of species by creating a large variety of 

ecological niches and habitat elements (MacArthur and MacArthur, 1961). 

1.2.3 DIVERSITY MAPPING 

Inventory and mapping of biodiversity has been a challenge for many decades. 

Identifying and monitoring species existence and extinction in the field is difficult. In 

2011, it was estimated that 86% of species on Earth are still unknown (Mora et al., 

2011). Despite this challenge, there are a lot of things we do know about the world’s 

biodiversity on a large scale. For example, biodiversity is higher near the equator than 

near the poles (Whittaker et al., 2001) and 44% of all vascular plant species are 

confined in endemic hotspots covering just 1.4% of the land surface (Myers et al., 
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2000). The hotspots of vascular plant species richness are in Central America, in the 

eastern Amazon, along the south-east coast of Brazil, along the east coast of 

Madagascar, in the northern part of the island of Borneo and along the northern 

slopes of the Himalaya’s, stretching east into South-East Asia (Mutke and Barthlott, 

2005). Three maps of vascular plant diversity derived by (Kreft and Jetz, 2007), using 

different methods, show alternative distributions with lower diversity along the east 

coast of Brazil and in south-east Asia’s mainland. All of these analyses were based on 

field data, in which the spatial distribution of the available field data is a limiting 

factor in extrapolating the species richness between field sites and across data-scarce 

areas. Combining the field-inventory species richness data with environmental 

information has enhanced the understanding of the drivers of such global patterns. 

Tropical tree species diversity is known to increase with increasing precipitation, 

forest stature (stage of growth), soil fertility, time since catastrophic disturbance and 

rate of canopy turnover, and to decrease with seasonality, latitude and altitude 

(Givnish, 1999).  

The list of variables that can be correlated with tree species richness at different 

scales is long and changes by observation scale (Keil and Chase, 2019). Moreover, 

the strength of the relationship between a variable and tree species richness may also 

change with resolution (plot size) as tree species richness is not linearly related with 

the area measured (species-area curve) (Hubbell, 2001). This does not only 

complicate the development of reliable predictive models at a certain resolution, but 

also complicates the extrapolation of estimates at one resolution to larger areas, which 
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complicates successful mapping of pantropical tree species richness at high spatial 

resolution.  

1.2.4 LIDAR FOR MAPPING DIVERSITY 

Forest structure is, just as species richness, influenced by a complex interaction of 

historic, environmental, and human related variables; precipitation in the wettest 

month being the most important single predictor of plant height (Moles et al., 2009). 

Forest structure traditionally measured in the field mainly comprised of four 

variables: canopy height, biomass, basal area/ha and tree density (Palace et al., 2015).  

However, active remote sensing measuring techniques have revolutionized the way 

we look at canopy structure. With lidar remote sensing, for example, it is now 

possible to not only obtain information on canopy height, but also on the position and 

amount of plant material along the vertical axis of the canopy (Tang et al., 2012). 

Palace et al. (2015) stressed that high resolution lidar data possesses vertical structure 

information that is inherently linked to ecological processes and forest dynamics that 

are exhibited in the structural properties of the forest.  

This wealth of information on the vertical structure has been hypothesized to be a 

proxy for vertical niche occupancy and relate, to some extent, to tree species richness; 

thus, this information may be used for mapping tropical tree species richness. 

Different tree species require different niches to grow and thus quantifying the 

occupation of the vertical forest niche space may relate to the number of different tree 

species present in an area. 
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Lidar data lends itself perfectly for studying the structural diversity as lidar 

instruments directly collect 3D measurements of both the horizontal and vertical 

vegetation structure (Lefsky et al., 2002). While a number of aspects of the vegetation 

structure have been derived and mapped from lidar data, they can generally be 

summarized to represent canopy height, canopy cover and vertical variation in foliage 

arrangement. Additionally, lidar measurements of forest structure can be used to 

estimate other biometric measurements such as basal area and tree density (Palace et 

al., 2015). The combination and diversity of forest structure attributes can be 

described at the individual tree, stand and ecosystem level, depending on the type of 

lidar instrument used. The structure of individual trees and small study sites is best 

measured with terrestrial lidar (Marselis et al., 2016), but high-density airborne lidar 

can also be used for studying the forest structure at the tree level (Coomes et al., 

2017). At the landscape level, airborne lidar is now a standard tool for studying forest 

stand structure (Asner et al., 2009; Kent et al., 2015). Although not available spatially 

continuously, spaceborne lidar data from the Icesat-1 instrument provides the means 

to describe 3D forest structure and its diversity across large regions, such as the 

Amazon (Tang and Dubayah, 2017).  

The use of lidar data for measuring forest structure and relating this to trees species 

diversity is currently of specific interest with the development of the Global 

Ecosystem Dynamics Investigation (GEDI). GEDI is a lidar instrument that was 

launched to the international space station in December 2018. It is the first 

spaceborne lidar instrument of its kind, specifically optimized to measure ecosystem 
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structure between 52 degrees latitude north and south from its vantage point on the 

International Space Station (ISS). The GEDI instrument has three lasers of which one 

is split into two beams resulting in four beams total. These laser beams are dithered 

back and forth creating a scanning pattern of 8 ground tracks. The between-track 

separation is 600 m at the equator and the along-track distance between lidar shots is 

60 m (Dubayah et al., under review). The lidar footprints have a nominal footprint of 

~25 m diameter, equivalent to the Land Vegetation and Ice Sensor (LVIS), which is 

the airborne predecessor of the GEDI instrument (Blair et al., 1999). The GEDI 

instrument will provide freely available lidar waveforms collected across the Earth 

and thus may be a source of particularly relevant information that can potentially be 

used for mapping tree species diversity across the tropics in case a significant 

relationship exists between the canopy structure metrics provided by GEDI and the 

tree species composition and diversity. 

1.3 RESEARCH OBJECTIVES 
The overall goal of my research is to explore the potential of full-waveform lidar data 

to characterize tree species diversity in the tropics. Three research objectives will help 

to reach this goal: (1) Assess whether full-waveform lidar data can be used to 

distinguish vegetation types with complex vertical structure along a successional 

gradient in Lopé National park, Gabon. (2) Explore the structure-diversity 

relationship in a tropical forest and savanna landscape across four study sites in 

Gabon. (3) Evaluate the existence of a pan-tropical relationship between vertical 

canopy structure and tree species richness. Finally, the gained insight are put into the 
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context of GEDI and its capability to aid mapping of tree species diversity across the 

tropics.  

1.4 DISSERTATION OUTLINE  
Chapter 2 first compares vertical canopy profiles derived from LVIS full-waveform 

airborne lidar data (collected with LVIS) with profiles derived from terrestrial lidar 

data. Then it evaluates the canopy structure of five distinct vegetation types in a 

forest-savanna mosaic and develops a model to classify the forest-savanna landscape 

in Lopé National Park into those five types.   

Chapter 3 first establishes the relation between canopy height and tree species 

diversity across four study sites in Gabon. Then it develops a predictive relationship 

between canopy structure metrics additional to canopy height and evaluates the 

increase in model performance. Lastly, canopy structure models are used to predict 

tree species diversity and richness within and between the four study sites in Gabon 

using gridded LVIS products and ICESat lidar waveforms.  

Chapter 4 first evaluates the differences in canopy structure across the tropics. Then, 

it summarizes the range in tree species richness and how this range changes by plot 

size. Finally, it assesses the relationship between vertical canopy structure and tree 

species richness at the local, regional and pan-tropical scale.  

Chapter 5 synthesizes the outcomes of the three studies and details how the findings 

of this study may affect the future of tree species diversity mapping using spaceborne 

lidar data from GEDI.   
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2. DISTINGUISHING VEGETATION TYPES WITH 

AIRBORNE WAVEFORM LIDAR DATA IN A 

TROPICAL FOREST-SAVANNA MOSAIC: A CASE 

STUDY IN LOPÉ NATIONAL PARK, GABON 

 

ABSTRACT 
Tropical forest vegetation structure is highly variable, both vertically and 

horizontally, and provides habitat to a large diversity of species. The forest-savanna 

mosaic in the northern part of Lopé National Park, Gabon, has a large and complex 

variation in vegetation structure along a successional gradient. The goal of this 

research is to assess whether large footprint full-waveform lidar data can be used to 

distinguish successional vegetation types based on their vertical structure in this area. 

Eleven vegetation metrics were derived from the lidar waveforms: canopy height, 

canopy fractional cover, total Plant Area Index (PAI) and vertical profile of PAI. The 

PAI profiles from airborne waveform lidar showed good agreement with those from 

Terrestrial Laser Scanning, sampled at eight field plots across different vegetation 

types (r2 = 0.95, RMSE = 0.63, bias = 0.41). The agreement further strengthened our 

confidence that lidar waveforms can be used to distinguish between the five 
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vegetation types, within the limits of the sampled structure, because TLS was known 

to provide distinct PAI profiles for these vegetation types. We then employed a 

Random Forest model, trained with 193 locations of known vegetation type, to 

classify the entire study area into five successional vegetation types (classification 

accuracy = 81.3%). The resulting predictive map revealed the overall spatial pattern 

of vegetation types across the study area. Our results suggest that lidar-derived 

vegetation profiles can provide valuable information on vegetation type and 

successional stage. This, in turn, can further help to improve habitat and biodiversity 

conservation and forest management activities. 

2.1 INTRODUCTION 
Increasing environmental and human pressures have led to broad-scale forest 

degradation, deforestation and fragmentation. This has had unprecedented impacts on 

the biomass stock, habitat characteristics and patterns in biodiversity (Bonan, 2008; 

Hansen et al., 2013; Naeem et al., 1999). However, the exact magnitude of forest 

change and its impacts on species composition, forest regrowth and successional 

pathways is unclear (Rockstrom et al., 2009; Schimel et al., 2013; Turner et al., 

2003). Large area mapping of the three dimensional vegetation structure in tropical 

forests, especially in biodiversity and biomass hotspots, is of utmost importance to 

enable better understanding of these impacts (Jantz et al., 2015; Palace et al., 2015; 

Tattoni et al., 2012; Tews et al., 2004; Vierling et al., 2011; Wright and Muller-

Landau, 2006). Applications of conventional passive optical imagery from air- and 

space- based platforms have been limited, as these data are not directly sensitive to 
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vertical vegetation structure. However, active remote sensing, especially from lidar 

instruments, has clearly demonstrated the ability to accurately measure both spatial 

and vertical vegetation structure, even over dense tropical rainforest (Bergen et al., 

2009; Goetz et al., 2007; Huang et al., 2014; Swatantran et al., 2012; Turner et al., 

2003; Whitehurst et al., 2013). Small footprint lidar data have been used to 

distinguish between successional vegetation types in temperate mixed-forests in the 

northwestern United States (Falkowski et al., 2009; Zimble et al., 2003). Temperate 

Eucalypt and tropical forest stands were distinguished and predicted in Australia in a 

similar study, using Plant Area Volume Density (PAVD) profiles derived from small-

footprint lidar data (Fedrigo et al., 2018). Full-waveform lidar data also provide 

valuable information to quantify vertical vegetation structure, as shown in a number 

of studies in the last two decades with NASA’s Land Vegetation and Ice Sensor 

(LVIS) (Blair et al., 1999; Tang et al., 2012; Tang and Dubayah, 2017). Thus, LVIS 

could theoretically also be used to distinguish successional vegetation types with 

distinct vertical structure. This is of great importance since the next spaceborne lidar 

mission, the Global Ecosystem Dynamics Investigation (GEDI), will deploy a full-

waveform lidar instrument, designed to measure global vegetation structure, on the 

International Space Station (ISS) in late 2018. GEDI will collect billions of lidar 

waveforms similar to LVIS during its nominal two-year mission, sampling between 

51.5° latitude North and South (Dubayah et al., under review; Stavros et al., 2017; 

Stysley et al., 2016). Hence, GEDI has a high potential to fill current observation gaps 

of tropical forest structure and provide unprecedented opportunities for ecological and 
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biodiversity studies (Jetz et al., 2016; Rose et al., 2015; Skidmore et al., 2015; Wolf 

et al., 2012). 

Here, we test the use of vegetation structural parameters derived from full-waveform 

LVIS lidar data to map landscape level patterns of interior and exterior forest 

structure in a tropical forest-savanna mosaic in the north-west corner of Lopé 

National Park in Gabon. Cuni-Sanchez et al. (2016) demonstrated the possibility to 

distinguish the vegetation profiles of five main successional vegetation types in this 

forest-savanna mosaic using Terrestrial Laser Scanning (TLS). TLS indirectly 

estimates vertical Plant Area Index (PAI) profiles using multi-angular lidar 

observations, but only provides these at the plot level, thus producing data over 

limited spatial scales (Newnham et al., 2015). However, large footprint airborne 

waveform lidar, such as LVIS, enables large area wall-to-wall mapping of the vertical 

vegetation profile, but only from the near-nadir view and thus may be less sensitive to 

differences in canopy element angle distribution and foliage clumping (Hopkinson et 

al., 2004; Jupp et al., 2009). Currently, there is a paucity of studies validating the 

estimation of vertical PAI profiles from large footprint full-waveform airborne lidar 

with TLS derived profiles, especially in African tropical rainforests. Hence, 

validating the PAI profiles from LVIS data with those from TLS, in this study 

environment, is of high importance.  

The goal of this research is to assess whether full-waveform lidar data can be used to 

distinguish vegetation types with complex vertical structure along a successional 

gradient. The remainder of this paper is structured as follows: first, the vertical 
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vegetation profiles from large footprint airborne lidar waveforms are validated against 

those from TLS. Then, field data are used to compare waveform-derived vegetation 

profiles between the main vegetation types. Subsequently, vegetation structure 

parameters, derived from the lidar waveforms, are used to spatially map the five main 

vegetation types. Then, an example application of this vegetation map for local 

conservation management of forest islands is demonstrated. Lastly, a discussion of 

the findings in light of the research goal and the implications for space-based 

observations of tropical forest structure from GEDI is provided. 

2.2 METHODS 

2.2.1 STUDY AREA & AVAILABLE DATASETS 

Much of what we know about Lopé National Park and the vegetation of its forest-

savanna mosaic comes from (White and Abernethy, 1997). The area is known for its 

exceptionally high species diversity in a successional gradient from savanna to 

complex tropical forest (White, 2001; White and Abernethy, 1997). Savanna 

fragments occur in this region as a remnant of long-term climate change, initially 

formed during an arid time period between 18000 and 12000 years ago. The annual 

rainfall is much lower (~1500 mm) than in other parts of this tropical region (~3000 

mm) because of the position relative to the Massif du Chaillu. This climatic niche, in 

combination with regular fires, led to the forest-savanna mosaic Lopé is known for 

today (White and Abernethy, 1997). The vegetation has been categorized in five 

broad probable successional vegetation types: (1) savanna, characterized by long 

grass, shrubs, solitary trees and frequent fires. (2) Colonizing forest, which results 
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from the dispersal, settlement and growth of pioneer species in unburned savanna. (3) 

Monodominant Okoumé forest, where Okoumé (Aucoumea klaineana Pierre) trees, 

one of the initial colonizers along with Azobé (Lophira alata Banks ex C.F.Gaertn.) 

and Ozouga (Sacoglottis gabonensis (Baill.) Urb.), form tall closed canopy even-aged 

patches with an open understory (White, 2001; White and Abernethy, 1997). (4) 

Marantaceae forest (also known as Young Marantaceae forest), where canopy can be 

rather open and the understory filled with a very dense layer of herbaceous plants 

from the Marantaceae and Zingiberaceae families. (5) Mixed forest (also known as 

Mixed Marantaceae forest), which is a more mature stage in the succession where tree 

species are more diversified and the understory clearer (White, 2001). Climate 

change, forest fires and elephant activity are hypothesized to contribute to the 

retreating and advancing of the forest boundary over time, resulting in forest islands 

within the savanna (Ukizintambara et al., 2007). Two distinct types of forest islands 

exist: bosquets and gallery forests. Bosquets are forest fragments fully isolated within 

the savanna, showing evidence of past human presence in their vicinity, while gallery 

forests are riverine forest fragments that occur along water streams and are more 

connected to the continuous forest (White and Abernethy, 1997). The two types of 

forest have distinct species composition and conservation value because of their 

different origin (Ukizintambara et al., 2007).  

Three types of data were available to study the vegetation in Lopé: field data, TLS 

data, and LVIS full-waveform lidar data. In this study, field information on 

“vegetation type” was obtained at 23 plot locations surveyed during two different 
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campaigns (ten 20x40m plots in 2013, and three 0.5ha and ten 1ha plots in 2016). The 

2013 field data were collected coincidentally with the TLS campaign (Cuni-Sanchez 

et al., 2016). The 2016 vegetation data were extracted from a vegetation inventory 

dataset collected during the AfriSAR campaign and available through ForestPlots.net 

(Labrière et al., 2018; Lopez-Gonzalez et al., 2011, 2009). AfriSAR was a joint 

airborne and field campaign between the European Space Agency (ESA) and the 

National Aeronautics and Space Administration (NASA), with collaboration from the 

Gabonese Studies and Space Observations Agency (AGEOS), the German Aerospace 

Center (DLR) and the French Aeronautics Space and Defense Research Lab 

(ONERA) (Fatoyinbo et al., 2017). The field plots were set up to cover a gradient in 

biomass and succession. Three constraints were used to determine the plot locations: 

within-plot vegetation type homogeneity, topographic homogeneity, and within 

spatial coverage of previously acquired P-band radar data. The vegetation type was 

determined by a local botanical expert through a visual assessment , prior to plot set 

up, and in line with the literature (e.g. Okoumé and Sacoglottis dominating "Okoumé 

forest") (White and Abernethy, 1997). TLS data were collected in 2013 with the 

RIEGL VZ-400 for eight plots at 6 scanning locations in 20x40 m plots (Cuni-

Sanchez et al., 2016). The TLS instrument had a nominal beam divergence of 0.35 

mrad, operated in the infrared (wavelength 1550 nm) and had a pulse repetition rate 

of 300 kHz. Scans were taken in the four corners and in the middle of the two long 

(40 m) sides. At each location, scans were performed at an angular resolution of 0.06° 

in azimuth and zenith directions to ensure full hemispherical coverage (Cuni-Sanchez 

et al., 2016). LVIS collected full-waveform lidar data with 1042 nm wavelength and 
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nominal footprint size of approximately 20 m in March 2016 during the AfriSAR 

campaign. Ten flight strips covered a wall-to-wall area of 10x75 km over Lopé NP 

(LVIS swath of 1km; Figure 1). We studied a 10x30 km area within the wall-to-wall 

LVIS sampling area that comprised the forest-savanna mosaic (black box in Figure 

1).  

PAI (area of plant material, in m2/m2) profiles were extracted from the TLS point 

clouds to represent the vertical vegetation profile. The PAI profile was calculated in 

bins of 0.5m according to the methods described by (Calders et al., 2014; Cuni-

Sanchez et al., 2016; Jupp et al., 2009). The plot-level TLS-derived PAI profile was 

calculated as the average from all TLS scans along the plot edges. This average PAI 

profile was then aggregated to different vertical bins (1, 3, and 5m respectively) to 

allow for comparison with LVIS data Figure 2. LVIS data were processed to retrieve 

ground elevation, vegetation height, canopy fractional cover, total effective PAI and 

the PAI profile at 1 m vertical resolution as part of the mission requirements from 

AfriSAR (Tang et al., 2014, 2012). PAI profiles from all LVIS waveforms within the 

plot boundaries were averaged to represent the plot level PAI profile. These PAI 

profiles were also vertically aggregated to 1, 3, 5 and 10 m vertical bins. Variation of 

the PAI was calculated at each height bin as the standard deviation of PAI from all 

TLS scans or LVIS waveforms in each plot at the given height. The PAI profiles of 

the TLS and LVIS instruments were than compared using R2, bias, Root Mean 

Squared Error (RMSE) and the Concordance Correlation Coefficient (CCC) 

(Lawrence and Lin, 1989). Agreement between LVIS and TLS PAI profiles would 
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suggest that LVIS data can be used to distinguish the successional vegetation types in 

Lopé, given that (Cuni-Sanchez et al., 2016) successfully used the TLS data to 

distinguish these same vegetation types. 

 

Figure 1: Inset on left: location of data collection in Gabon. Left: canopy height 
collected by the LVIS instrument and location of study area. Magenta outline shows 
location of right panel. Right: Location of subset of field plots in the Lopé forest-
savanna mosaic. 
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Figure 2: Workflow of study, grey boxes show main processes to reach study 
objectives. 
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2.2.2 LIDAR DATA PROCESSING 

PAI (area of plant material, in m2/m2) profiles were extracted from the TLS point 

clouds to represent the vertical vegetation profile. The PAI profile was calculated in 

bins of 0.5m according to the methods described by (Calders et al., 2014; Cuni-

Sanchez et al., 2016; Jupp et al., 2009). The plot-level TLS-derived PAI profile was 

calculated as the average from all TLS scans along the plot edges. This average PAI 

profile was then aggregated to different vertical bins (1, 3, and 5m respectively) to 

allow for comparison with LVIS data Figure 2. LVIS data were processed to retrieve 

ground elevation, vegetation height, canopy fractional cover, total effective PAI and 

the PAI profile at 1 m vertical resolution as part of the mission requirements from 

AfriSAR (Tang et al., 2014, 2012). PAI profiles from all LVIS waveforms within the 

plot boundaries were averaged to represent the plot level PAI profile. These PAI 

profiles were also vertically aggregated to 1, 3, 5 and 10 m vertical bins. Variation of 

the PAI was calculated at each height bin as the standard deviation of PAI from all 

TLS scans or LVIS waveforms in each plot at the given height. The PAI profiles of 

the TLS and LVIS instruments were than compared using R2, bias, Root Mean 

Squared Error (RMSE) and the Concordance Correlation Coefficient (CCC) 

(Lawrence and Lin, 1989). Agreement between LVIS and TLS PAI profiles would 

suggest that LVIS data can be used to distinguish the successional vegetation types in 

Lopé, given that (Cuni-Sanchez et al., 2016) successfully used the TLS data to 

distinguish these same vegetation types. 
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2.2.3 VEGETATION TYPE CLASSIFICATION 

We gridded canopy height, canopy cover fraction, total PAI and eight 5 m bins to 

describe the PAI profile (Tang et al., 2016) at a 25x25 m spatial resolution. This was 

to facilitate analysis of the structural variability within and between classes and allow 

for vegetation classification. Information on vegetation type was available as 

reference data for 193 pixels, covered by the 23 field plots. For each pixel the single-

pixel value of each metric (11 total) was extracted. A mean, standard deviation, and 

coefficient of variation were also calculated for each pixel, using a 3x3 window 

around the pixel to account for high local variability within vegetation types (adding 

33 metrics). Two training datasets were created based on the 193 pixels, with 11 

(pixel-based) and 44 (neighbor-based) vegetation metrics respectively. These training 

datasets were used to build two Random Forest classification models, with the 

randomForest package in R (Breiman, 2001). The resulting models were used to 

predict the vegetation class of all pixels in the 10x30 km study area, using the 

majority vote for each pixel, resulting in two spatial maps (pixel- and neighbor-based) 

of vegetation classes for the study area. Accuracy of the random forest classification 

was expressed with the out-of-bag estimate of the error rate, the confusion matrix of 

the out-of-bag classifications, the kappa value and omission and commission errors.  

The classified vegetation map was further refined ad-hoc by focusing on 

characteristics of forest islands and the location and extent of Colonizing forest to 

provide further insight in potential applications of the created product. Forest islands 

within the savanna are known to be either one of two types, bosquet or gallery forest. 

The vegetation structure of the bosquets and gallery forests may appear mostly 
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similar to that of colonizing forests, but they can be distinguished mainly depending 

on the proximity to water streams (Ukizintambara et al., 2007; White and Abernethy, 

1997). Therefore, spatial data on the hydrology would allow classification of forest 

islands within the savanna. A Digital Terrain Model (DTM) was created from the 

LVIS ground elevation, to assess the hydrological network. Flow direction and flow 

accumulation (Jenson and Domingue, 1988) were calculated in ArcGIS 10.4 and all 

cells with a weight greater than 30 were extracted (Tarboton et al., 1991). Flow 

accumulation was used to generate a stream order map with streams up to the 6th 

order. A forest-savanna map was derived from the vegetation classification created 

with the Random Forest model to extract forest islands from the savanna. All forested 

cells were clustered based on adjacent pixels in a four cell window to ensure pixel 

groups represented physically continuous (adjacent) forest. The large forest islands 

that formed the continuous forest were eliminated and the actual forest islands were 

classified as gallery forest or bosquet according to the following classification rule: 

forest islands overlapping with the location of a 4th or higher order stream, or directly 

adjacent to the Ogooué River, were classified as gallery forest. The cut-off value for 

water-carrying streams was determined by expert knowledge of the local river flow 

system. All remaining forest islands were identified as bosquet. The savanna edge 

was also determined from the vegetation type map and all Colonizing forest adjacent 

to savanna (eight cell window) was classified as edge-Colonizing forest. All 

Colonizing forest cells away from the edge were classified as inner-Colonizing forest.  
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2.3 RESULTS 

2.3.1 PAI PROFILE VALIDATION 

Cumulative PAI profiles at 1, 3 and 5m vertical intervals from LVIS and TLS showed 

good overall correspondence (5m: r2 = 0.95, RMSE = 0.63, bias = 0.41, CCC=0.94) 

(Figure 3, Chapter I.1 TLS-LVIS comparison multiple scales). A slight bias towards 

relatively higher LVIS PAI values occurred in some higher canopy strata. Standard 

deviation of PAI increased higher in the canopy. Total PAI from TLS measurements 

is generally lower than from LVIS.  

 

Figure 3: Cumulative Plant Area Index (PAI) profiles from Terrestrial Laser 
Scanning (y-axis) and airborne lidar data (x-axis) in vertical intervals of 5m for 
eight plots covering four vegetation types. Each point represents the average 
cumulative PAI up to indicated height (m), calculated as the mean of all TLS scans 
around the plot edge (TLS) or all waveforms within the plot boundary (LVIS). 
Whiskers indicate PAI standard deviation of the group of scans (TLS) or waveforms 
(LVIS) at indicated height. 1:1 line shown in grey. 
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2.3.2 VEGETATION STRUCTURE VALIDATION 

The five vegetation types were roughly distinguishable by their vegetation structure 

summarized by the PAI profile (10 m vertical interval), total PAI, canopy height 

and/or canopy cover Figure 4. More details on the structure of each vegetation type 

were obtained by studying the PAI profile at higher vertical resolution (5 m) and by 

observing the mean and standard deviation of the vegetation metrics within a 3x3 

window of the observed location (Chapter I.2 Vegetation structure metrics: Figure 25 

- Figure 28). Savanna was distinguished by low total PAI, canopy height and canopy 

cover. Monodominant Okoumé forest showed the highest canopy cover fraction 

(ranging between 0.93 – 0.99). Marantaceae forest, Mixed forest and Colonizing 

forest occurred with more similar characteristics. However, Colonizing forest 

generally had lower canopy height (mean height = 29m, compared to inner-forest 

mean height = 40 m). In Marantaceae forest, the PAI in lower strata (< 10 m) was 

generally lower than in Mixed forest (median of 0.81 compared to 1.73). Mixed forest 

occurred with the most diverse structure, highly variable at small spatial scale.  
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Figure 4: Seven metrics (y-axis) describing characteristics of the vegetation 
structure of five vegetation types (colored), ordered by successional stage. Each 
boxplot is composed of the pixel values within all field plots covered by one 
specific vegetation type. 

 
High spatial variation in vegetation structure at the forest edge and in the inner forest 

was revealed by a Red-Green-Blue image combining information on three PAI profile 

layers at 10 m vertical interval (Figure 5). In the south-east part of the study area the 

forest edge showed a more gradual transition towards savanna, with high PAI in the 

lower strata (< 10 m). In the north-east area, the forest-savanna edge was more 

abrupt. Inner-forest vegetation structure showed high pixel-to-pixel variation, but 

more homogenous areas were distinguished at the landscape scale.  
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Figure 5: PAI values of different vegetation height layers (left) combined into a 
Red-Green-Blue image (right), showing the variation in vertical vegetation structure 
across the study area. Zoom-in on right (location indicated with red box) reveals 
high structural variation over small scale.  

 

2.3.3 VEGETATION CLASSIFICATION AND SPATIAL ANALYSIS 

Both pixel- and neighbor-based Random Forest classifications highlighted the spatial 

distribution of the vegetation types across the study area (Figure 6; Chapter I.3 

Alternative classifications). The out-of-bag error estimate resulting from the pixel-

based Random Forest model was 18.7%, with a κ-value of 0.76 (Table 1). The inner-

forest in the center of the study area was dominated by Mixed forest, while the North 

and the South were dominated by Marantaceae forest. Colonizing forest occurred 

mainly along the savanna edge, but was also found in small formations in the inner 
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forest, often surrounded by Mixed forest. Monodominant Okoumé and Savanna, the 

two vegetation types with the most distinct vegetation structure (Figure 4), showed 

the lowest omission errors (13.7% and 4.0%, respectively). Omission errors were 

highest for Colonizing forest and Mixed forest (36.0% and 34.4%, respectively). 

Commission errors were roughly similar for all forest types, but lowest for savanna 

(Table 1). The extent of the Colonizing forest was largely over-estimated using 

neighbor-based vegetation metrics in the classification model (Chapter I.3 Alternative 

classifications). However, the apparent variation in inner-forest types from pixel-

based classification (observable as the “pixelated” nature of the classification in 

Figure 6) was reduced by incorporating neighbor information. Overall, the neighbor-

based approach provided a smoother, inner-forest classification with distinct 

vegetation patches of each type (Chapter I.3 Alternative classifications).  
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Figure 6: Classification of the five successional vegetation types in the study area, 
using pixel-based Random Forest classification. 

 

Table 1: Confusion matrix of pixel-based random forest classification using a total 
of 193 training pixels. Out-of-Bag estimate of the error rate is 18.7%. 

 

Savanna 
Colonizing 
forest 

Monodominant 
Okoumé 

Marantaceae 
forest 

Mixed 
forest Total 

Omission 
error 

Savanna 48 2 0 0 0 50 0.040 
Colonizing 
forest 

1 16 4 1 3 25 0.360 

Monodominant 
Okoumé 

0 1 44 3 3 51 0.137 

Marantaceae 
forest 

0 0 7 28 0 35 0.200 

Mixed forest 0 1 4 6 21 32 0.344 
Total 49 20 59 38 27 193 

 

Commission 
error 0.020 0.200 0.254 0.263 0.222 

  

κ = 0.76 



30 
 

The forest edge in the south-east part of the study area was generally accompanied by 

a band of Colonizing forest, while the forest edge in the north-west part of the study 

area was often characterized by a sharp boundary between forest and savanna (Figure 

7). Gallery forests were more abundant at the lower elevation than Bosquets. 

Bosquets were generally smaller in size than gallery forests (Figure 7).  

 
Figure 7: Digital Terrain Model (DTM) from LVIS data (left) showing zoom-in area 
of other figures (red box). Stream network (6th order stream is shown as the Ogooué 
river) overlain with inner- and edge-Colonizing forest (middle). DTM, stream order 
and forest island classification led to the discrimination between bosquets and 
gallery forest within savannas (right). 
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2.4 DISCUSSION 

2.4.1 VEGETATION STRUCTURAL VARIABILITY 

The cumulative PAI profiles derived from LVIS agree well with the TLS-derived 

cumulative PAI profiles at the plot level (Figure 3). However, there is a bias in the 

high strata (approx. > 35m), with the largest bias and lowest CCC value in 

monodominant Okoumé forest. This can be attributed to a combination of the 

attenuation and the occlusion effect, which the terrestrial laser instrument experiences 

from its ground-based perspective in tall, dense, forest (Calders et al., 2014; Hilker et 

al., 2010; Zhao et al., 2013). The larger observed variance in LVIS measurements 

compared to TLS measurements may be attributed to the different fields-of-view and 

angular sampling of the two instruments. LVIS measures the vegetation structure 

from (near-)nadir view and typically observes canopy gaps, while TLS measures the 

structure with a full hemispherical view and over a larger effective footprint size. 

Despite this, LVIS and TLS vertical PAI profiles show high correspondence at a plot 

scale of 20x40 m in these tropical forest ecosystems. This suggests that, within the 

limits of the site-specific range of vegetation structure sampled, we would be able to 

use the structural information to predict the five vegetation types spatially as opposed 

to using a data-mining approach to classify the area. 

The tropical forest vegetation structure as derived from LVIS data in Lopé National 

Park is highly variable and complex. Savanna, on the other hand, portrays low 

variability, both horizontally and vertically, at the plot scale because of the sparser 

vegetation, consisting mainly of grass, shrubs and the occasional isolated tree (Figure 
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4; White and Abernethy, 1997). Savanna is therefore distinguished easily from all 

forest types and classified with the highest accuracy. Colonizing forest shows high 

variability in vertical structure, as the structure highly depends on the time since 

colonization (White and Abernethy, 1997). Its structure is distinct from that of the 

other vegetation types as a result of its characterizing lower canopy height and cover 

and relatively high PAI in the lower strata (Figure 4). Monodominant Okoumé forest 

was best distinguished by high canopy height and high cover, with lower spatial 

variability (Figure 4; Chapter I.2 Vegetation structure metrics), because of the 

roughly even-aged nature of the stands (White, 2001). Marantaceae forest and Mixed 

forest have rather similar structural characteristics, which is in correspondence with 

the literature and the known vegetation structure in these forest types (White, 2001). 

In our analysis, Marantaceae forest generally has a lower PAI in the lower strata (< 10 

m) compared to Mixed forest, and was distinguished by this characteristic. However, 

this characteristic could seem slightly counter-intuitive at first sight as Marantaceae 

forests are known for their very dense herbaceous layer of Marantaceae up to 2-3m 

aboveground (White, 2001; White and Abernethy, 1997). That said, the LVIS signal 

from this thick herbaceous layer is most likely mixed with that from the ground, thus 

resulting in an erroneously lower-than-expected PAI for the lower strata (< 3m). 

Moreover, because Marantaceae outcompete woody seedlings and saplings in light 

competition, this results in a "vertical vegetation gap” between ca. 2-3 to 10 m 

aboveground, which is accurately depicted by the low LVIS-derived PAI for the 

corresponding layer, which allows for correct classification of Marantaceae forest. 

Mixed forest tends to have a more complex spatial structure with high horizontal and 
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vertical variation. This high variability in the LVIS-derived vegetation characteristics 

complicates successful differentiation of this vegetation class. 

2.4.2 VEGETATION CLASSIFICATION 

The high spatial variability of the forest structure becomes apparent when combining 

multiple layers of structural information into one image (Figure 5) showing a high 

small-scale diversity (from pixel-to-pixel) within the continuous forest. This spatial 

variation is reduced by classifying each pixel into one of the five vegetation types. 

Our classification results (overall accuracy 81.3%) can be discussed in the context of 

studies with similar aims and methods. However, note that these studies utilize small-

footprint lidar data and are not focused in the tropics. Falkowski et al. (2009) and 

Zimble et al. (2003) report a classification accuracy >90%, using small-footprint lidar 

data to distinguish single- and multi-layered temperate forests in the inland western 

United States. Zimble et al. (2003) used one decision rule to classify two types of 

forest while Falkowski et al. (2009) used two random forest models to classify, 

respectively, seven and six structurally different successional classes with class 

accuracies ranging between 63.64% to 100%. Fedrigo et al. (2018) used PAVD 

profiles and random forest models to classify a temperate forest stand in two 

vegetation types: Eucalypt and rainforest. They reported an overall accuracy of 84%. 

Our classification accuracy falls within the range of previously reported accuracies, 

given that a different type of lidar data were used and that our study site – with 4 

tropical forest types and savanna – is structurally more complex than those from the 

published studies.  
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Errors occur in our classification of the four forest types as their vertical vegetation 

structure is not completely different from each other, providing a fundamental 

limitation for solely using vertical structure information. Colonizing forest and Mixed 

forest show the lowest classification accuracy (both roughly 65%). The vertical 

structure of Colonizing forest can be variable as it depends largely on the time since 

colonization and growth rate and Mixed forest structure may resemble that of 

Monodominant Okoumé and Marantaceae forests, possibly because succession can 

lead to vegetation compositions with similar structures as those types. This variation 

leads to lower classification accuracy of the aforementioned two types. The neighbor-

based classification was not considered reliable in this forest-savanna mosaic, 

because Colonizing forest could not be depicted accurately with neighbor-based 

metrics as it generally only occurs as a narrow band along the forest edge. A 

hierarchical approach, using pixel-based estimates for the classification of savanna 

and Colonizing forest and neighbor-based values for inner-forest type classification 

was tested additionally (Chapter I.3 Alternative classifications). The results showed a 

classification with more homogenous inner-forest vegetation classes while 

maintaining the narrow band of Colonizing forest (Chapter I.3 Alternative 

classifications). However, additional field data would be needed to allow for 

sufficient validation of such a hierarchical approach, which is beyond the scope of 

this study.  

Two main assumptions of the classification process need to be taken into account 

when interpreting the results. First, the training data are assumed to be a 
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representative sample of the population. However, the 193 pixels available for the 

classification process in this study were largely clustered because multiple pixels 

were available for each of the 23 field plots, thus, even though the pixels are within 

the assigned vegetation type, they may potentially misrepresent the population. The 

sample of Colonizing forest pixels (the class with highest classification error) was 

low compared to the other vegetation types because of the edge-driven process of 

savanna colonization by forest encroachment. Whereas 1-ha field plots were laid out 

in the other vegetation types, Colonizing forest plots were only 0.5-ha (100 m along 

the edge x 50 m across the edge towards the inner forest), because often the 

Colonizing forest does not extend further from the edge. Additional field data 

providing the location of specific vegetation types, distributed over a larger area, is 

expected to provide further insight in the variation of the vertical vegetation structure 

within and between vegetation types and would help to create better classification 

models. Secondly, during the classification process it was assumed that each pixel of 

the entire study area could be classified as one of these five vegetation types. 

However, in reality this may not be the case. Succession is a continuous process and 

vegetation within a successional gradient may be at a stage in between two vegetation 

types, complicating a successful classification. Also, the 25 m resolution of the data 

may have led to increased confusion at the forest edge. For example, if the forest edge 

falls in the middle of a pixel, the PAI values of this pixel will be lower than if the 

entire cell would have been forested, but higher than if the entire pixel would have 

been savanna. At the forest-savanna intersection it is therefore logical to see a band of 

one-pixel width, with a vegetation structure characteristic to Colonizing forest, even 
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if in reality Colonizing forest is absent and there is a sharp forest-savanna boundary. 

This also leads to the erroneous classification of Colonizing forest when using 

neighbor- rather than pixel-based information in the classification process (Chapter 

I.3 Alternative classifications). 

We have shown that full-waveform airborne lidar data contains information that can 

be used to distinguish between different successional vegetation types from savanna 

to more mature tropical forest. In the future, it may be worth investigating forest with 

a continuous structural typology instead of, in this case, five vegetation classes. How 

to comprehensively derive information of forest structure from lidar waveforms in 

such a way should be studied. Combining the information describing the vegetation 

structure with the terrain below it (e.g. topography, soil type) can lead to further 

insight in landscape level forest function, species diversity or conservation value. The 

potential to classify forest islands into two classes with different species composition 

and conservation value, solely using lidar data, provides a promising application to 

nature conservation management (Ukizintambara et al., 2007). Previously, lidar 

waveforms have not been used widely to distinguish between different successional 

vegetation types, but with the upcoming launch of GEDI, it is increasingly important 

to explore applications such as this one, providing structural information for all 

tropical forests around the world and allowing for regional inter-comparison. This in 

turn may help to produce vegetation maps that are more policy relevant and thus lead 

to sounder ecosystem management.   
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2.5 CONCLUSION 
The species composition of five successional vegetation types in a forest-savanna 

mosaic in Gabon results in distinct vegetation structures that can be expressed 

through Plant Area Index (PAI) profiles. Large-footprint (~25 m) full-waveform 

airborne lidar data provide accurate PAI profiles for each of the vegetation types, as 

was shown by validating the airborne lidar-derived profiles against in-situ 

measurements from terrestrial lidar data. Waveform lidar derivatives were then used 

to predict the spatial pattern of successional vegetation types, using a random forest 

model. This shows potential for characterizing successional vegetation types and 

identifying transition zones with data from the upcoming Global Ecosystem 

Dynamics Investigation (GEDI), a mission that will deploy a lidar instrument on the 

International Space Station that will collect similar waveforms across the globe. 
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3. EXPLORING THE RELATION BETWEEN 

REMOTELY SENSED VERTICAL CANOPY 

STRUCTURE AND TREE SPECIES DIVERSITY IN 

GABON 

ABSTRACT 
Mapping tree species diversity is increasingly important in the face of environmental 

change and biodiversity conservation. We explore a potential way of mapping this 

diversity by relating forest structure to tree species diversity in Gabon. First, we test 

the relation between canopy height, as a proxy for niche volume, and tree species 

diversity. Then, we test the relation between vertical canopy structure, as a proxy for 

vertical niche occupation, and tree species diversity. We use large footprint full-

waveform airborne lidar data collected across four study sites in Gabon (Lopé, 

Mabounié, Mondah, and Rabi) in combination with in-situ estimates of species 

richness (S) and Shannon diversity (H’). Linear models using canopy height 

explained 44 and 43% of the variation in S and H’ at the 0.25 ha resolution. Linear 

models using canopy height and the Plant Area Volume Density (PAVD) profile 

explained 71% of this variation. We demonstrate applications of these models by 

mapping S and H’ in Mondah using a simulated GEDI-TanDEM-X fusion height 
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product, across the four sites using wall-to-wall airborne lidar data products, and 

across and between the study sites using ICESat lidar waveforms. The modeling 

results are encouraging in the context of developing pan-tropical structure-diversity 

models applicable to data from current and upcoming spaceborne remote sensing 

missions. 

3.1 INTRODUCTION 
Spatial information on tree species diversity is important to enable effective 

conservation and biodiversity management (Turner et al., 2003), and allow for a 

better understanding of scale dependent relationships between forest composition and 

productivity (Luo et al., 2019). Information on the local presence, absence, and 

diversity of tree species has traditionally been collected through in-situ forest 

inventories (Rios-Saldaña et al., 2018). Yet, those are time-consuming and expensive, 

which often prevents extensive and spatially representative coverage. Using such 

inventories in combination with remotely sensed data is one approach to overcome 

some of these limitations and relationships between remotely sensed environmental 

data (e.g. mean annual temperature, annual precipitation, dry season length, etc.) and 

vegetation species have been developed to map Amazonian and Global vascular plant 

diversity (Mutke and Barthlott, 2005; Ter Steege et al., 2003). However, these 

approaches incorporate little information on the vegetation itself and the data 

products are provided at spatial resolutions (typically ~100 km grid cells) not 

optimized for conservation management. 
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Huston (1979) pointed out that there is a large body of literature regarding the relation 

between forest structure and the diversity of different taxa, while only few studies 

explore the relation between forest structure and tree species diversity itself. It has 

since been argued on several occasions that vegetation structure could be related to 

tree species diversity via the occupation of vertical niche space. This is the basis of a 

potential structure-diversity relationship, and three hypotheses have been proposed to 

explain it (Gatti et al., 2017; Kohyama, 1996; Marks et al., 2016; Sheil and Burslem, 

2003). First, the forest architecture hypothesis asserts that tree species in the tropics 

have a higher variance in adult tree height, corresponding to higher species diversity, 

than in the temperate zone where short-statured stands with trees of uniform 

adulthood-height demonstrate less diversity (Kohyama, 1996, 1993). Second, the gap-

size frequency hypothesis, proposed by Sheil and Burslem (2003), asserts that canopy 

gaps provide a range of light conditions to which different species can be more or less 

specialized. A changing gap-size frequency distribution would allow different light 

regimes and thus different species to grow (Denslow, 1980). Third, the height-

diversity hypothesis asserts that a higher forest volume provides greater niche space 

and would thus likely result in a higher species diversity. A significant positive 

relation between tree species diversity and tree height, as a proxy for forest volume, 

was found, explaining a limited amount of the variance in tree species diversity 

within the USA and on a global scale (Gatti et al., 2017; Marks et al., 2016). 

However, Givnish (2017) objects that the use of just forest height leads to deceptive 

results since it only provides information on the potential trait space (volume below 

canopy) that could be occupied, but does not measure the occupation of this trait 
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space. In this study we address this caveat by exploring the relation between tree 

species diversity and the vertical vegetation structure; hereafter referred to as the 

structure-diversity relationship.  

Active remote sensing systems, such as lidar and radar provide information on the 

vertical arrangement of the canopy (Bergen et al., 2009). Specifically, full-waveform 

lidar data provide detailed and more direct measurements of the vertical profile of 

canopy elements, which is available from the previously earth-orbiting GLAS 

instrument onboard of the ICESat satellite (Tang and Dubayah, 2017), NASA’s 

airborne Land Vegetation and Ice Sensor (LVIS) (Blair et al., 1999; Tang et al., 2012) 

and the recently launched Global Ecosystem Dynamics Investigation (GEDI). Such 

vertical canopy profiles providing information on the amount of plant material (leaves 

and branches) along the vertical axis have previously been used to distinguish 

successional vegetation types in a tropical savanna-forest mosaic in Gabon (Marselis 

et al., 2018). We expect that these profiles also provide information on the occupation 

of available niche space between the forest floor and the top of the canopy and can be 

related to tree species diversity. The implication is that mapping tree species diversity 

in the tropics may then be feasible due to the launch of GEDI, which will collect 

billions of lidar waveforms between 51.6° latitude north and south of the equator, in 

December 2018. Data from other spaceborne missions, such as the TanDEM-X radar 

and the ICESat-2 lidar missions, may aid in the mapping process by gap-filling GEDI 

data products, and increasing the spatial resolution and extent of these data (Lee et al., 

2018; Qi and Dubayah, 2016). 
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The overall goal of this study is to explore the structure-diversity relationship in a 

tropical forest and savanna landscape in Gabon. In particular, we seek to understand 

whether vertical canopy structure explains more of the variance in tropical tree 

species diversity than canopy height alone and whether we can use this relationship to 

predict tree species diversity across Gabon using different remote sensing datasets.  

The remainder of the study is organized as follows: (i) we first create linear models to 

relate canopy height from lidar waveforms to tree species diversity from field data; 

(ii) we then use two sets of metrics describing the vertical canopy profile and relate 

these to the tree species diversity; (iii) we then compare the performance of these 

models; (iv) and use the height model to predict tree species diversity from LVIS 

canopy height and from GEDI-TanDEM-X fusion height products in Mondah; (v) 

and we apply the vertical structure model to gridded LVIS products and vertical 

profiles derived from ICESat to predict tree species diversity across and between four 

study sites. 

3.2 METHOD 
In this section, we introduce the four study sites and the datasets used. We explain the 

processing of the field and lidar data, followed by the model development for testing 

the structure-diversity relationship and the application of these models to create 

spatial predictions of tree species diversity from different active remote sensing data 

products.  

3.2.1 FIELD DATA PROCESSING 
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Gabon was chosen as case-study location because of the large availability of field and 

remote sensing datasets collected during the AfriSAR campaign (Fatoyinbo et al., 

2017). The four study sites in Gabon are referred to as Lopé, Mondah, Mabounié and 

Rabi (Figure 8) and each site includes multiple sampling plots. All sites fall within 

the general classification of tropical terra firme broadleaf forest, but have different 

species compositions and assemblies, disturbance history, and management regimes. 

The plots in this analysis are distributed between savanna, successional, degraded and 

old-growth tropical forest and are situated in climate zones with different annual 

precipitation and temperature (Table 2; Chapter II.1 Dataset details). In Lopé twelve 

stem mapped field plots (nine 1 ha, three 0.5 ha) were established in 2016 as part of 

the AfriSAR campaign. These data are available through ForestPlots.net (Labrière et 

al., 2018; Lopez-Gonzalez et al., 2011, 2009). The Mondah data were also collected 

during the AfriSAR campaign in 2016 and are publicly available through the NASA 

Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) 

(Fatoyinbo et al., 2018). The site comprises fifteen 1 ha stem mapped plots, thirteen 

of which are coincident with the LVIS lidar data. We excluded three of the thirteen 

plots from the Mondah site that consisted of a high percentage of unidentified trees 

(Chapter II.1 Dataset details). Twelve 1 ha field plots were established in Mabounié 

in 2012 (Labrière et al., 2018), of which 10 are coincident with LVIS lidar data and 

suitable for this study. A 25 ha plot comprises the Rabi site. These data were 

collected by the Smithsonian Conservation Biology Institute, National Zoological 

Park, and the Forest Global Earth Observatory (ForestGEO), and are available on 
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request through the ForestGEO website1. From the Rabi plot, we selected the thirteen 

non-adjacent hectares and considered them as separate plots for the analysis. 

Subsampling kept this study site from dominating the models, as the Rabi site 

consisted of a total sampled area twice as large as the other sites (Figure 9a). Field 

data collection at the four sites was performed by different people and organizations, 

which led to datasets with varying characteristics (in terms of e.g., plot layout and 

minimum DBH measured). Details about the study sites and field datasets are 

described in (Chapter: II.1 Dataset details). For consistency among the sites we only 

included trees with DBH ≥ 10 cm in our analysis. The availability of stem maps (in 

Lopé, Mondah, and Rabi) and subplots (in Mabounié) enabled testing of the structure-

diversity relation at different resolutions. This was necessary because species 

diversity and plot size are not linearly related (species-area curve, described by 

MacArthur and Wilson (1967) and no optimal resolution has been identified for the 

structure-diversity relation. Smaller plots were created by subdividing each original 

plot into smaller squares or rectangles to create 5 spatial resolutions: 1, 0.5, 0.25, 

0.0625 and 0.04 ha (Figure 9b). Mabounié data were only used at the 1 ha and 0.04 ha 

resolution, due to the absence of stem maps. At each resolution only plots with at 

least one identified tree were included in the analysis. This resulted in respectively 

41, 64, 128, 481 and 935 plots for the resolutions 1.0 ha through 0.04 ha. Tree species 

diversity was then quantified for each of the plots at all resolutions using two 

                                                 
1 https://forestgeo.si.edu/sites/africa/rabi 
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variables: the Shannon diversity (H’) and tree species richness (S) expressed as the 

total number of tree species per area (Morris et al., 2014). 

 
Figure 8: Field and lidar datasets from four regions (Mondah, Mabounié, Rabi and 
Lopé) in central and west Gabon are used in this study. LVIS lidar acquisitions are 
displayed as gridded canopy height (m). Insets show distribution of field plots 
across each study site, markers are not to scale of field plot size. 

 

 
Figure 9: (a) Thirteen 1 ha plots (dark grey) were selected from the 25 ha Rabi plot 
and included in this study. (b) Subdivision of 1 ha plots to allow for analyzing the 
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structure-diversity relationship at 5 spatial resolutions led to plots of sizes I. 
(100x100 m), II. (100x50 m), III. (50x50 m), IV. (25x25 m) and V. (20x20 m). 
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Table 2: Information for each of the study sites regarding the total sampled area, temperature and precipitation, the tree density, 
species richness and Shannon diversity calculated including only trees with DBH ≥ 10 cm, at the 1 ha resolution. 

Name 

Tota
l 

Are
a 

(ha) 

Mean 
Annual 

Temperatur
e 

(°C) 

Mean 
Annual 

Precipitation 
(mm/y) 

Total 
no. of 
trees 

Tree density 
(trees/ha) 

Total 
no. of 

species 
Species richness (S) 

(No. species/ha) 
Shannon diversity (H’) 

(H’/ha) 
     Range Mean Std  Range Mean Std Range Mean Std 
Lope 10.5  26-331 15001 3140 9-501 308 174 118 2-54 32 21.6 0.64-3.08 2.15 0.90 
Mondah 10  252 3000-35002 2368 26-453 237 173 139 7-75 32 21.3 1.46-3.58 2.60 0.69 
Mabounié 10  262 20302 3537 222-444 354 61 183 44-68 54 7.7 2.90-3.61 3.27 0.23 
Rabi 13  24-283 23003 6056 231-689 466 119 211 55-101 82 13.5 3.35-4.04 3.70 0.18 

1White (2001), 2Labrière et al. (2018), 3Lee et al. (2006). 
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3.2.2 LIDAR DATA PROCESSING 

Full-waveform lidar data were collected using the LVIS instrument with a 1 km 

swath width, a 1064 nm wavelength and a nominal footprint diameter of ~20 m 

across all study sites as part of the AfriSAR campaign in February and March 2016. 

The following metrics were derived from all lidar waveforms using mature, validated 

and published algorithms: Relative Height 100 (RH100), Plant Area Index (PAI) at 5 

m vertical resolution forming the Plant Area Volume Density (PAVD) profile and 

cumulative PAI at 5 m vertical resolution (Blair et al., 1999; Marselis et al., 2018; 

Tang et al., 2012). These footprint-level metrics are publicly available as part of the 

AfriSAR deliverables through the NASA ORNL DAAC (Tang et al., 2018). RH100 

was used to represent canopy top height. We chose the PAVD and cumulative PAI 

profile because they describe the vertical vegetation structure as a biophysical 

property that can also be derived from data from other instruments such as ICESat 

and GEDI, which enables transferability of the models. Additionally, they have 

previously been used to understand structural and functional differences between 

vegetation communities (Cuni-Sanchez et al., 2016; Decuyper et al., 2018; Marselis 

et al., 2018). For each plot, the average of all waveform metrics and the standard 

deviation of Canopy Height (RH100_sd) were calculated using all waveforms with 

the footprint center located within the plot boundary.  
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3.2.3 DATA ANALYSIS 

The field and lidar data processing resulted in five datasets, one for each spatial 

resolution, comprised of n samples, with n equivalent to the number of plots at the 

specific resolution. Each sample had one value for S, H’ and each of the lidar metrics. 

Four sets of lidar metrics were created to test the structure-diversity relationship 

(Table 3). We built linear models using metric sets 1 through 4 at each of the five 

spatial resolutions. Variable importance could not be rigorously assessed for the 

individual metrics due to collinearity between the metrics describing the vertical 

profile, since the existence of plant material higher in the canopy is dependent on the 

existence of material lower in the canopy. For each model, we performed leave-one-

plot-out cross-validation. All plots within a 1 ha plot were kept aside in the cross-

validation approach for models built at the 0.5, 0.25, 0.0625 and 0.04 ha resolutions, 

to avoid overestimation of model performance by the model being trained towards the 

local variation within the 1 ha plot. For each model, we calculated the R-squared (R2) 

and the Root Mean Squared Difference, as a percentage (RMSD%) of the mean 

observed S and H’, from the cross-validated predictions to evaluate model 

performance (Piñeiro et al., 2008). Bias was evaluated as the intercept of the linear 

relation between predicted (x-axis) and observed (y-axis) S and H’. An intercept not 

significantly different from 0 indicated an unbiased prediction. The slope of the linear 

relation indicated the consistency of the predicted and observed variables. A slope 

significantly different from 1 indicated no consistency (Piñeiro et al., 2008). We used 

95% confidence intervals around the R2 to evaluate whether metric sets 3 and 4 
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(canopy structure) led to significantly better diversity predictions than sets 1 and 2 

(canopy height).    

We used the canopy height and standard deviation of canopy height model at the 0.25 

ha resolution to predict S and H’ for Mondah from two datasets: 1) the canopy height 

product from LVIS gridded at 50 m and 2) a simulated GEDI-TanDEM-X fusion 

height product at 20 m resolution (Lee et al., 2018). TanDEM-X is a twin X-band 

SAR satellite mission from which the HH polarization was used for the fusion 

product. GEDI simulations were created from the LVIS waveforms using the GEDI 

simulator, considering 50% cloud cover (Hancock et al., 2019; Lee et al., 2018). We 

resampled the GEDI-TanDEM-X product to 50 m resolution and computed mean and 

standard deviation of forest height for each cell.  

We used the PAVD (starting at P10) and canopy height model at 0.25 ha resolution to 

predict S and H’ for all four regions. We applied these models to 1) LVIS data 

products gridded at 50 m resolution and 2) ICESat waveforms collected within and 

between the four study sites. We used all ICESat waveforms collected between 2004 

and 2006. P5 was omitted as it has a low accuracy due to the interference of slope 

with vegetation close to the surface within the nominal footprint of 50 m. 
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Table 3: Sets of metrics used in linear models predicting H’ and S. 

Metric 

set 

Model name Explanatory variables 

1 Height RH100 

2 Height and standard 

deviation of height 

RH100 + RH100_sd 

3 PAVD profile + height P5*, P10, P15, P20, P25, P30, P35, P40, P45, 

P50**, RH100 

4 Cumulative PAI 

profile + height 

CP5***, CP10, CP15, CP20, CP25, CP30, 

CP35, CP40, CP45, CP50, RH100 

 
*P5 = PAI between 0 and 5 m aboveground, subsequently P10 = the PAI between 5 

and 10 m etc.  

** P50 = PAI between 45 to 50 meters above ground, in case vegetation is higher 

than 50 meters this value indicates the PAI above 45 meters.  

*** CP5 = Cumulative PAI between 0 to 5 m aboveground, subsequently CP10 = the 
PAI between 0 and 10 m, etc. 
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3.3 RESULTS  
We first provide the results of the linear models using canopy height alone to predict 

S and H’. Then we provide the results of the models using the vertical canopy profile 

metrics to predict S and H’. Last, we show the spatial predictions of S and H’ created 

using the calibrated and validated models. 

3.3.1 MODELING RESULTS USING CANOPY HEIGHT 

The cross-validated linear models using canopy height (set 1) explains a limited 

percentage of the variance in H’ and S. At the 1.0 ha resolution, 28% and 35% of the 

variation in H’ and S is explained (R2=0.28 and R2=0.35). At the 0.25 ha resolution 

R2=0.43 and 0.44 (Figure 10; Chapter II.2 Model performance). Incorporating 

information on canopy height variation (set 2) increases R2 to 0.58 and 0.52 at the 

0.25 ha resolution. However, the R2 confidence intervals comparing the model 

performance using metric set 1 and 2 are overlapping at all spatial scales, suggesting 

that adding information on the variance in canopy height within a plot does not 

necessarily lead to better predictive models (Figure 10; Chapter II.2 Model 

performance).  
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Figure 10: Canopy height explains up to 44% of the variation in tree species 
richness and 43% of the variation in Shannon diversity across the study sites in 
Gabon (cross-validated results).   

 

3.3.2 MODELING RESULTS USING CANOPY STRUCTURE 

Including information on the vertical canopy profile (set 3) increases the explained 

variance in both H’ and S to 71% at the 0.25 ha resolution, a significant improvement 

in model performance (Figure 11; Chapter II.2 Model performance). Metric sets 3 and 

4, including two different expressions of the vertical canopy profile, generally lead to 

similar results and only the results of set 3 are discussed in the remainder of the paper 

(SI2). Our results show the best model performances for the structure-diversity 

relation (highest R2, lowest RMSD% and unbiased predictions) at the 0.25 ha 

resolution, for both H’ and S models (Figure 11; Figure 12; Chapter II.2 Model 

performance). 
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Figure 11: Linear models using height alone as a predictive variable generally show 
the lowest R2 and highest error (RMSD %). Adding variation in canopy height 
(RH100_sd) to the model leads to slightly better, but not statistically different, 
model performance (see overlapping error bars on the R2 plots). Incorporating 
information on canopy structure significantly improves the S and H models at the 
0.04 to 0.25 ha resolutions, when compared to using height alone. Error bars are 
larger at larger plot size because of smaller sample sizes. 
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Figure 12: Predicted vs. observed species richness and Shannon diversity resulting 
from the models using metric set 3 (PAVD profiles and height), points are colored 
by study site. 1.0 Ha resolution models are significantly biased, 0.25 ha models 
show highest accuracy and statistically unbiased predictions for both species 
richness and Shannon diversity. 
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3.3.3 PREDICTIVE MODELING RESULTS 

The 0.25 ha linear models using metric set 2 (model performance for H’: R2 = 0.58, 

RMSD = 24%; and S; R2 = 0.52, RMSD = 40%) were used to map H’ and S in 

Mondah from 1) LVIS gridded products and 2) GEDI-TanDEM-X gridded products 

(Figure 13). GEDI-TanDEM-X derived predictions for both species richness and 

Shannon Diversity are consistent with the LVIS predictions (R2 = 0.68 and R2=0.66) 

but overall biased slightly low (Figure 13).  

 

Figure 13: Shannon diversity and species richness predicted in Mondah using 
canopy height (RH100) and standard deviation of canopy height (RH100_sd). 
Predictions created from gridded LVIS data products and a simulated GEDI-
TanDEM-X fusion product. Points in center panel are colored by density. 
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Spatial predictions of H’ and S for all study sites were created from the LVIS wall-to-

wall data products and ICESat waveforms using the 0.25 ha linear models with the 

PAVD profile starting at P10 to P50 and canopy height (model performance for H’: 

R2 = 0.71, RMSD = 20%; and S; R2 = 0.71, RMSD = 31%) (Figure 14). The ICESat 

footprints overlapping with the wall-to-wall lidar show ICESat predictions of S and 

H’ are slightly higher than predictions from LVIS. Shannon diversity predictions 

(with R2 = 0.66 and RMSD = 26%) are more accurate than the species richness 

predictions (with R2 = 0.62 and RMSD = 38%). 

 
Figure 14: ICESat data enabled predictions of H’ and S within and between the 
study sites. ICESat richness predictions were biased slightly high compared to LVIS 
predictions. Points in center panel are colored by density.  
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3.4 DISCUSSION 
Our study presents regional results relating canopy height and vertical canopy 

structure, derived from active remote sensing data, to tree species diversity in African 

tropical forest. We first discuss the modeling results and the relationship between 

canopy structure and tree species diversity. Then we discuss some limitations to our 

approach and close with an outlook on the applications of the structure-diversity 

models.  

3.4.1 MODEL PERFORMANCE 

Canopy height has been hypothesized to be related to tree species diversity by 

assuming canopy height is a proxy for canopy volume, representing the available 

niche space. Our study shows a significant relationship between canopy height and 

the Shannon index and species richness; affirming that canopy height explains a 

limited percentage of the variation in tree species diversity. These results are in line 

with previous results found in the USA and globally by (Gatti et al., 2017; Marks et 

al., 2016). We expected that including information on the variance in canopy height 

within a plot might lead to better predictive models as the combination of metrics 

provides a more accurate proxy for forest volume than canopy height alone. Our 

models show an increase in R2 across all resolutions, but the improvement is not 

statistically significant. We then hypothesized that including information about the 

occupancy of vertical space, implemented by including the PAVD profile in the 

canopy height model, would lead to better predictions of tree species diversity. The 

PAVD profile is a direct measure of the degree of occupation of vertical niche space 

(divided in 5 m height bins) by plant material (PAI index) and thus resembles 
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occupied niche space instead of available niche space. Our results support the 

hypothesis as we find a statistically significant improvement in model performance at 

the 0.04 – 0.25 ha resolutions when including the PAVD profile. At larger plot sizes 

(0.5 and 1.0 ha) the R2 values increased but not significantly. We tested the structure-

diversity relation at different resolutions because neither species richness nor 

Shannon diversity is linearly related to plot size (Hill, 1973; MacArthur and Wilson, 

1967). Our models performed best at the 0.25 ha resolution (a decrease in 

performance was found for both smaller and larger plot sizes). We consider two 

potential explanations for this phenomenon. The first one is related to the quality of 

measurement: large plots tend to have greater sampling errors caused by a smaller 

sample size, while smaller plots are less precise due to a higher influence of 

geolocation error (though minimized by (Labrière et al., 2018), a small misalignment 

between plot and lidar data may still result in poorer model performance). The second 

potential explanation is the maximum natural variation in the structure-diversity 

relation at an intermediate resolution. In a small plot only a limited number of trees 

could possibly grow due to space constraints, reducing the total variability or upper 

boundary of tree species diversity. By contrast, the amount of different tree species 

may get close to a certain maximum in a large plot (as species-area curves suggest) 

while similar canopy structure may be found as in smaller plots. In our study, it is at 

an intermediate resolution that the largest variation in tree species/plot was found, as 

indicated by the highest coefficient of variation in tree species richness at the 0.25 ha 

resolution (Chapter II.3 Coefficient of variation). This trend is consistent with the 

trend of canopy structure with its maximum coefficient of variation at the 0.25 ha 
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resolution. Yet, it is difficult to decouple the two factors due to the limited data sets in 

this study, and additional research would be needed to better identify the ecological 

mechanisms behind this phenomenon. Nonetheless, the modeling results for 

predicting Shannon diversity and species richness follow the same trend - for both 

diversity variables the PAVD profile with height provides a significantly better model 

than using height alone at the 0.25 ha resolution – strengthening our confidence in the 

existence of a structure-diversity relationship across these study sites in Gabon. 

3.4.2 LIMITATIONS 

Time lag between field and lidar data collection was minimized, but we had to accept 

a maximum time-lag of five years (Rabi) which may have affected the strength of the 

structure-diversity relationship. The new census of the Rabi field data, which is under 

collection at the time of writing, may provide more insight on tree species diversity 

change over time and the effect of time-lag in the structure-diversity relation.  

The diversity metrics used to establish the structure-diversity relation rely heavily on 

the accuracy of species identification in the field. Tree species identification in the 

tropics can be very complex and highly trained local botanists are needed to provide 

the most accurate identification. In most of our study sites (Rabi, Mabounié and 

Lopé) the percentage of trees of unknown species was low, but in Mondah this 

percentage was much higher because the species identification was carried out by 

botanists with knowledge of vascular plant taxonomy in Gabon, but not specifically 

for the Mondah region (Chapter II.1 Dataset details). Slik et al. (2015) showed that 

higher percentages of unidentified trees can affect model outcomes, which should be 
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kept in mind when evaluating our results and future research could assess the specific 

impact of unidentified trees on our models, for example by re-inventory of the trees in 

Mondah.  

In our study, we were not able to include small trees because only two field inventory 

datasets included trees with DBH ≥ 1 cm, thus we included only trees with DBH ≥ 10 

cm to allow for consistency across all study sites. However, Fricker et al. (2015) 

showed that the inclusion of small trees in Barro Colorado Island (Panama) improved 

their model performance (relating species richness to various metrics describing 

terrain, hydrology and canopy structure) from R2 = 0.25 when using trees with DBH 

≥ 10 cm to R2 = 0.35 when using trees with DBH ≥ 1 cm. More information on small 

trees will be needed to assess their specific impacts on the models created in this 

study. 

The plots included in the analysis were distributed across different vegetation types: 

savanna, forest with different degrees of degradation, successional forest and low-

disturbance old-growth tropical forest. It is likely that the encountered structure-

diversity relationship is driven partly by this gradient in forest types. More 

undisturbed old-growth tropical forest plots would be needed to study the structure-

diversity relationship within old-growth forest. Additionally, it is yet unclear how the 

structure-diversity relationship holds or changes across different biogeographic 

regions, with changing limitations to tree growth, and different climatic niches that 

may change the canopy structure and the use of vertical niche space. Future research 

should focus on the transferability of the structure-diversity models to other regions 
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and continents to establish the potential of using this method pan-tropically or 

potentially across multiple biomes. Lastly, studying how the structure-diversity 

relationship changes between the local-scale, such as in a large plot like BCI (Fricker 

et al., 2015; Wolf et al., 2012), and at a regional scale, such as developed here and in 

(Mao et al., 2018; Robinson et al., 2018), will be important to ultimately evaluate the 

structure-diversity relationship pan-tropically.  

3.4.3 APPLICATIONS & FUTURE RESEARCH 

The commissioning of new satellite missions, providing information on vertical 

canopy structure, is an important incentive to explore the potential applications of the 

structure-diversity relationship. Here we demonstrated the application of the 

developed models to wall-to-wall LVIS data products to create predictive maps of 

diversity and richness in the four study sites. The spatial area covered by these wall-

to-wall products is limited due to the airborne nature of the data and data gaps occur 

as the laser energy does not penetrate clouds, which are often prevalent over Gabon. 

But, the real strength of our modeling approach lies in its potential to be applied to 

data from other instruments such as ICESat, GEDI, and TanDEM-X. The ICESat 

predictions overlapping with the LVIS wall-to-wall products showed S and H’ 

predictions around the 1:1 line. The scatter around the 1:1 line is partly caused by the 

model accuracy, the time-lag between these two data products (collected 10-12 years 

before the LVIS data) and the accuracy of the ICESat data products. But, the major 

drawback for using ICESat is the sparse sampling, leaving tens of kilometers between 

tracks over Gabon. On the contrary, the recently launched GEDI lidar mission will 

provide much denser lidar sampling with between-track spacing of 600 m and along-
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track spacing of 60 m. However, the nominal footprint size (~22 m diameter) is close 

to the smallest resolution tested here and our modelling results showed a higher 

predictive error compared to the models that can be applied directly to ICESat data. 

On the other hand, fusion of the GEDI waveforms with other active remote sensing 

data, such as from TanDEM-X radar, has the potential to change this resolution, fill in 

data gaps and provide wall-to-wall data products allowing for the application of 

models developed at different resolutions (Lee et al., 2018; Qi and Dubayah, 2016). It 

may then also be possible to build structure-diversity models directly on fused GEDI-

TanDEM-X data products when these data become available more widely after 

GEDI’s data collection. So far, it has been shown that canopy height can be retrieved 

using GEDI-TanDEM-X fusion, but, if we would be able to extract more information 

on the vertical canopy profile using GEDI and TanDEM-X data fusion, or fusion with 

another interferometric sensor such as on the BIOMASS mission, it may be possible 

to accomplish true wall-to-wall mapping of tree species diversity in the pan-tropics 

and beyond. 

3.5 CONCLUSION 
Canopy height alone, used as a proxy for niche volume, can predict a limited 

percentage of the variation in tree species diversity across a savanna-tropical forest 

landscape in Gabon, Africa. Including information on the vertical canopy structure, 

used as a proxy for vertical niche occupation, derived from large-footprint full-

waveform lidar data improved these models significantly. This structure-diversity 

relationship and the models developed here show potential for application to data 
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from active remote sensing satellites such as ICESat, TanDEM-X, BIOMASS and 

GEDI. Further research is encouraged to study the structure-diversity relationship 

across the tropics to establish the potential of mapping pantropical tree species 

diversity using measurements of canopy structure. 
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4. EVALUATING THE POTENTIAL OF FULL-

WAVEFORM LIDAR FOR MAPPING PAN-

TROPICAL TREE SPECIES RICHNESS 

ABSTRACT 
Mapping tree species richness across the tropics is of great interest for effective 

conservation management to prevent widespread species extinction. In this study, we 

evaluate the potential of full-waveform lidar data for mapping tree species richness 

across the tropics by relating measurements of vertical canopy structure, as a proxy 

for the occupation of vertical niche space, to tree species richness. First, we evaluate 

the characteristics of the vertical canopy structure across 15 study sites using 

simulated full-waveform lidar data and relate these findings to in-situ tree species 

information. Then, we develop structure-richness models at the local, regional and 

pan-tropical scale at three spatial resolutions (1.0, 0.25 and 0.0625 ha) using Poisson 

regression. The results show only a weak structure-richness relation at the local scale 

(within 25-50 ha plots). At the regional scale a stronger relationship was found 

between canopy structure and tree species richness across different tropical forest 

types; such as across our study sites in Gabon, across Central Africa and in South 

America (R2 ranging from 0.49-0.54, RMSE ranging between 18-57%, at 0.0625 ha 

resolution). A weaker but unbiased and significant relationship was found at the pan-
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tropical scale, including data across four continents (R2 = 0.41 and RMSE = 39%, 

0.0625 ha resolution). The 0.0625 ha resolution (25 x 25 m square plots) corresponds 

well to footprint-level measurements collected with the Global Ecosystem Dynamics 

Investigation (GEDI) launched in late 2018. Our results may thus serve as a basis for 

future development of structure-richness models to map tree species richness using 

vertical canopy structure information from GEDI lidar data. Yet such effort is 

contingent on the availability of a larger set of field reference data in South America 

and South-East Asia. Future research could also support the use of GEDI canopy 

structure data in frameworks using environmental and spectral information for 

modelling tree species richness across the tropics. 

4.1 INTRODUCTION 
Tropical forests are known for their high tree species diversity. Current estimates find 

at least 40,000 different tree species across the tropical region, but this number may 

be even higher than 53,000 species, in contrast to the 124 tree species growing in 

temperate forests (Slik et al., 2015). Trees are the backbone of tropical forest 

ecosystems. They play a crucial role in regulating global and local climate (e.g. by 

absorbing carbon dioxide from the atmosphere and by regulating water availability 

and runoff); providing a habitat to a variety of mammals, insects, and other 

organisms, and supporting the livelihoods of indigenous communities (Watson et al., 

2018). Unfortunately, 35% of pre-agricultural global forest cover has been lost over 

the past 300 years, largely due to increasing human pressures on the environment, and 

82% of the remaining forest is estimated to experience some degree of degradation 
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(Watson et al., 2018). Current extinction rates are estimated to be at least 1000 times 

higher than background extinction rates (Pimm et al., 2014), and it was recently 

estimated that in the Amazonian tropics alone around 25% of the tree species are 

threatened for extinction (Ter Steege et al., 2015). 

The scientific community has called for bolder science in conservation strategies to 

enable effective management of the Earth’s forests and allow for better conservation 

of our natural ecosystems (Watson et al., 2016). The Convention of Biological 

Diversity (CBD) and GEOBON have developed a list of important variables aiming 

to provide quantitative information on biodiversity to reach the Aichi biodiversity 

targets 2020 (Pereira et al., 2013; Skidmore et al., 2015). Among these Essential 

Biodiversity Variables (EBVs) is the need for mapping taxonomic diversity (Pereira 

et al., 2013). In this paper we focus on the use of active remote sensing techniques to 

meet this requirement for mapping taxonomic tree species diversity in the tropics. 

Some of the pioneering work quantifying the number of tree species across the globe 

dates back about 15 years ago (Kier et al., 2005; Mutke and Barthlott, 2005). Kier et 

al. (2005) mapped the number of different tree species by ecoregion based on field 

inventories, and Mutke and Barthlott (2005) created a continuous raster quantifying 

tree species richness for 10,000 km2 cells. More recently, remotely sensed data has 

become an essential part of mapping tree species richness in the tropics by providing 

consistent information across large scales (Keil and Chase, 2019). This use of remote 

sensing data can be categorized in two ways: first, remote sensing data is used to 

measure species, community or ecosystem-scale patterns directly. Second, 
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biodiversity patterns can be modeled indirectly using remote sensing data as 

predictive variables in combination with field observations (Anderson, 2018). 

Regression analysis using spectral data and field reference data is probably the most 

widely used method to map species diversity (Rocchini et al., 2016). For example, 

Foody and Cutler (2006) related a limited set of reference tree species richness data 

from the Danum Valley in Malaysia to Landsat TM information from the six non-

thermal wavebands using a neural network approach (n=10, r=0.69). Schäfer et al. 

(2016) mapped tree species richness in a tropical montane forest in the Taita Hills, 

Kenya, using a segmentation and clustering method based on spectral reflectance 

information from 129 spectral bands resulting in R2 = 0.5. Even though these methods 

have been progressively developing over the last decade, they are not yet operational 

for mapping tree species richness due to either insufficient accuracy or high spatial 

resolution across the tropics.    

Recently, canopy structure components measured using active remote sensing 

systems have been proposed as potentially useful for mapping tree species richness 

(Marselis et al., 2019; Robinson et al., 2018; Wolf et al., 2012). Several studies have 

shown promising results using this method in different parts of the tropics: Plant 

species richness was related locally to canopy height and topography derived from 

airborne lidar data in Barro Colorado Island, Panama (Wolf et al., 2012) and along an 

elevation gradient in Costa Rica (Robinson et al., 2018). Marselis et al. (2019) 

showed spatial mapping of tree species richness in different parts of Gabon, Africa, 

which was possible using information on canopy height and the vertical canopy 
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structure derived from full-waveform airborne lidar data. The growing use of canopy 

structure data for estimating tree species richness could potentially become 

operational at a pan-tropical scale with the rapidly increasing availability of 

spaceborne canopy structure information derived from the Global Ecosystem 

Dynamics Investigation (GEDI), a full-waveform spaceborne lidar system (Dubayah 

et al., under review). GEDI is expected to provide over 10 billion measurements of 

vertical canopy structure across the temperate and tropical forests between 2019 and 

2021. 

The main goal of this study is to evaluate the efficacy of full-waveform lidar for 

mapping tree species richness across the tropics. We address this goal by studying the 

following: First, we compare characteristics of the vertical canopy structure of 

tropical forests across the world. Then, we evaluate the differences in species richness 

and species-area curves across the different study sites. Subsequently, we evaluate the 

potential of developing local, regional and pantropical structure-richness 

relationships, relating canopy structure metrics to tree species richness measurements 

from the field at three spatial resolutions. Last, we discuss the potential of full-

waveform lidar data from GEDI for mapping tree species richness across the tropics 

using structure-richness relationships.  

4.2 BACKGROUND 
In this section we evaluate the existing literature on the biogeographical history, tree 

species diversity and canopy structure across the Earth’s tropical regions to provide a 

framework for the potential existence of one or more structure-richness relationships. 
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Tropical forests are spread over five main biogeographical regions. The Neotropics in 

central and south America, tropical forest on the African mainland, tropical forests on 

the island of Madagascar, the Sundaland tropics in South-East Asia and the tropical 

forests in the region of Papua-New Guinea and Australia. Tree species diversity of the 

largest regions is ranked, in decreasing order; the Neotropics, Sundaland and lastly 

the African tropical forest (Corlett and Primack, 2011). Historical biogeographical 

processes are known to be the most important driver of tree species diversity patterns 

at the continental scale (Keil and Chase, 2019). Tree species composition in the 

Neotropics evolved to be the most distinct of the three, as Central and South America 

were separated from Africa and South-East Asia about 70 million years ago when 

they broke off from the Gondwana continent. The floristics in Africa and South-East 

Asia are more similar to each other, although Africa only has 10-20% of the species 

in families shared between the two regions. The drought resulting from the latest ice 

age is expected to have been the primary cause of the reduced diversity in Africa, and 

also resulted in the characteristic African savanna-forest ecosystem (Corlett and 

Primack, 2011).  

Early spatial analyses of the vascular plant species richness by Barthlott et al. (2005), 

Kreft and Jetz (2007) and Mutke and Barthlott (2005) used field data to estimate the 

distribution of species richness across the globe. According to their analyses, in 

general, the hotspots of vascular plant species richness can be found in Central 

America, the eastern Amazon, along the south-east coast of Brazil and the east coast 

of Madagascar, in the northern part of the island of Borneo, and along the northern 
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slopes of the Himalaya’s, stretching east into south-east Asia (Mutke and Barthlott, 

2005). Three maps of vascular plant diversity derived by (Kreft and Jetz, 2007) using 

different methods show alternative distributions with lower diversity along the east 

coast of Brazil and in south-east Asia’s mainland. Both these analyses were based on 

field data, in which the spatial distribution of the available field data was a limiting 

factor in extrapolating species richness between field sites and across data-scarce 

areas. This extrapolation can be aided by known relationships between diversity and 

environmental factors. In general, tropical tree species diversity increases with 

increasing precipitation, forest stature, soil fertility, time since catastrophic 

disturbance and rate of canopy turnover and decreases with seasonality, latitude, and 

altitude (Givnish, 1999). At regional scales, topography was shown to be an 

important predictor in tree species diversity along an elevation gradient in Costa Rica 

with an elevation range of 33-2903 m, along a ~30 km transect (Robinson et al., 

2018). At the local scale, within 25 – 50 ha plots, soil nutrients explained 36-51% of 

tree species richness in study sites in Colombia, Ecuador and Panama (John et al., 

2007). Factors influencing tree species richness on a global scale differ from those 

affecting spatial patterns of species richness at regional or local scales. Large-grain 

studies show historical biogeography processes are more important, whereas smaller 

plot-scale studies have pointed to a strong role of environmental variables (Kreft and 

Jetz, 2007). 

The list of variables that can be correlated with tree species richness at different 

scales is long (Keil and Chase, 2019). Moreover, the strength of the relationship 
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between a variable and tree species richness may also change with resolution (plot 

size) as tree species richness is not linearly related with the area measured (species-

area curve) (Hubbell, 2001). This inconsistency complicates the development of 

reliable predictive models at a certain resolution, but also complicates the 

extrapolation of estimates at one resolution to a larger area, which complicates 

successful mapping of pantropical tree species richness at high spatial resolution.   

Similarly to species richness, forest structure is influenced by a complex interaction 

of historic, environmental, and human related variables; precipitation in the wettest 

month being the most important single predictor of plant height at the global scale 

(Moles et al., 2009). Forest structure traditionally measured in the field is mainly 

comprised of four variables: canopy height, biomass, basal area/ha and tree density 

(Palace et al., 2015). However, active remote sensing techniques have revolutionized 

the way we look at canopy structure (Newnham et al., 2015). With lidar remote 

sensing, for example, it is now possible to not only obtain information on canopy 

height, but also on the position and amount of plant material along the vertical axis of 

the canopy (Tang et al., 2012). Palace et al. (2015) stressed that the high resolution 

lidar data possesses vertical structure information that is inherently linked to 

ecological processes and forest dynamics that are exhibited in the structure properties 

of the forest.   

This wealth of information on the vertical structure has been hypothesized to be a 

proxy for vertical niche occupancy and to relate, to some extent, to tree species 

richness (Marselis et al., 2019). Different tree species require different niches to grow 
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and thus approximating a quantification of the occupation of that niche space may 

relate to the number of different tree species present in an area. In this study, we 

address the potential scale and resolution dependencies by exploring the relationships 

between vertical canopy structure and tree species richness at three spatial resolutions 

(0.0625, 0.25, and 1.0 ha) and across three spatial scales (local, regional and pan-

tropical). 

4.3 METHODS 
In this study we address the structure-richness relation in terra firme forest in the 

tropical region between 23.5° N & S. We compiled a comprehensive field and lidar 

dataset covering savanna, colonizing forest, old-growth tropical forest and forests 

under different degrees of degradation. We first discuss the available field, airborne 

lidar, and simulated GEDI data. Subsequently, we explore the vertical canopy 

structure and the range of species richness across all study sites. Finally, we outline 

the development of local, regional and pan-tropical structure-richness models.  

4.3.1 FIELD DATASETS 

All field datasets used in this study have been previously collected and published and 

have coincident airborne lidar data available. We used 15 datasets: one in Australia, 

two in South-East Asia, six in Africa, three in South America and three in Central 

America (Figure 15). Each field dataset is indicated with a three letter code and 

contains information on tree location, species and Diameter at Breast Height (DBH) 

and. The field information was used to calculate the reference values of species 

richness used to evaluate the structure-richness relationships.  
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Figure 15: Location of field sites across the three continents, colors of each study 
site are consistent throughout paper. Gridlines indicate 10° intervals in longitudinal 
and latitudinal directions. The size of the place markers represents the relative size 
of the total sampled area. 

All datasets were collected by different organizations and research teams resulting in 

different data characteristics (Table 4, Chapter III.1 Field data characteristics). Four 

datasets consisted of one large plot of 25 ha (rob, Australia and rab, Gabon) or 50 ha 

(dan, Malaysia and bci, Panama). The other eleven datasets consisted of multiple (3-

21) smaller plots with sizes ranging from 0.16 ha to 4.0 ha.   
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Table 4: Information on the original plot size, the amount of total area sampled in 
the field and the source of the data which is either a website where the data is 
published and/or a publication in which the data is described. 

Country Project 
name 

No.  native 
plots 

Total 
area (ha) Source 

Oceania 
Australia rob 1 25 (Bradford et al., 2014) 

South-East Asia 
Malaysia dan 1 50 https://forestgeo.si.edu/sites/asia/danum-

valley 
Borneo sep 9 36 (Jucker et al., 2018) 

Africa 
DRC mal 21 21 (Bastin et al., 2015) 
DRC  kea 19 19 (Kearsley et al., 2013) 
Gabon rab 1 25 (Memiaghe et al., 2016) 
Gabon lop 11 9.5 (Labrière et al., 2018) 
Gabon mon 10 10 (Fatoyinbo et al., 2017) 
Gabon mab 10 10 (Bastin et al., 2015; Labrière et al., 2018) 

South America 
Peru tam 6 6 (Boyd et al., 2013) 
Brazil s11 9 1.44 https://www.paisagenslidar.cnptia.embrapa.br/  
Brazil s12 19 4.8 https://www.paisagenslidar.cnptia.embrapa.br/  

Central America 
Costa 
Rica 

lsv 12 6 https://tropicalstudies.org/carbono-project/ 

Costa 
Rica 

cha 3 1.5  

Panama bci 1 50 https://forestgeo.si.edu/sites/neotropics/barro-
colorado-island 

 

In this study we assessed the structure-richness relationship at three spatial 

resolutions (1.0, 0.25, 0.0625 ha) because of the non-linear relationship between 

number of tree species (species richness (S)) and sample area. These plot sizes were 

selected because square 1.0 ha plots (100x100 m) are often-used in forestry, 

especially in biomass studies, square 0.25 ha (50x50 m) because this seemed to be the 

most optimal resolution to describe the structure-diversity relationship in Gabon 

(Marselis et al., 2019) and 0.0625 ha because this is a standardized size close to the 

https://forestgeo.si.edu/sites/asia/danum-valley
https://forestgeo.si.edu/sites/asia/danum-valley
https://www.paisagenslidar.cnptia.embrapa.br/
https://www.paisagenslidar.cnptia.embrapa.br/
https://tropicalstudies.org/carbono-project/
https://forestgeo.si.edu/sites/neotropics/barro-colorado-island
https://forestgeo.si.edu/sites/neotropics/barro-colorado-island
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GEDI footprint size, relevant when using the structure-richness relationship to map 

tree species richness with GEDI data. The datasets are used at one, two, or all three 

spatial resolutions to assess the structure-richness relationships, depending on the 

availability of stem maps or subplots (Chapter III.1 Field data characteristics). For 

each of the field sites we calculated the total number of tree species in the entire 

dataset and for each plot at each plot size (Table 5). Only live trees with a diameter at 

breast height (DBH) ≥ 10 cm were included, to create consistency among the 

datasets. 

Table 5: The total number of species identified for each study site and the average 
(x̄) and standard deviation (s) of the species richness for each of the three plot sizes 
expressed in last three columns as x̄  ± s (including only live trees with DBH ≥ 10 
cm). 

Country 
Project 
Name 

Total No. 
species 

Total 
sampled 
area (ha) 

Species 
richness 
1.0 ha 

Species 
richness 
0.25 ha 

Species 
richness 
0.0625 

ha 
Oceania 

Australia rob 205 25 98 ± 10 56 ± 8 27 ± 5 
South-East Asia 

Malaysia dan 430 50 117 ± 13 51 ± 7 19 ± 4 
Borneo sep 517 32 102 ± 22 53 ± 11 - 

Africa 
DRC mal 116 10.5 37 ± 11 20 ± 7 - 
DRC  kea 232 19 50 ± 23 24 ± 13 10 ± 6 
Gabon rab 234 25 84 ± 8 42 ± 6 17 ± 4 
Gabon lop 118 9.5 32 ± 22 17 ± 10 8 ± 4 
Gabon mon 146 10 32 ± 15 15 ± 9  7 ± 5 
Gabon mab 196 10 55 ± 8 - - 

South America 
Peru tam 517 6 171 ± 13 70 ± 9 24 ± 5 
Brazil s11 91 1.44 - - 17 ± 3 
Brazil s12 135 4.8 - - 16 ± 4 

Central America 
Costa Rica lsv 216 6 - 48 ± 8 19 ± 5 
Costa Rica cha 81 2 58 28 ± 5 13 ± 4 
Panama bci 220 50 87 ± 8 42 ± 6 17 ± 3 
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4.3.2 LIDAR DATASETS 

Each of the field data sets had coincident discrete return airborne laser scanning 

(ALS) data, or full-waveform lidar data from the Land Vegetation and Ice Sensor 

(LVIS), collected over the field plots within 5 years of the field data collection. We 

used the GEDI simulator (Hancock et al., 2019) to create lidar waveforms from the 

ALS data over the field plots. In this way, all lidar information could be processed in 

a consistent way across all study sites ensuring a reliable inter-comparison of canopy 

structure metrics derived from the waveforms and allowing for easy transfer of the 

developed models to future on-orbit GEDI data. Lidar waveforms were simulated 

with a 22 m ground footprint (Gaussian distribution of laser energy, σ = 5.5 m). Lidar 

waveform locations were determined by filling each field plot, using the original field 

plot size and shape, with footprint center locations 6.25 m from the plot edge and 5 m 

between footprint center locations (Figure 16). In this way, a reliable measure of 

canopy structure could be acquired for each plot by averaging lidar metrics from all 

waveforms in the plot, instead of using single waveforms in the plot center and 

evaluating structure-richness relationships based on such potentially biased or 

unrepresentative waveforms. The following information was extracted from each 

simulated lidar waveform using mature and published algorithms: Canopy height 

(expressed as the 98th percentile of the relative height metric; RH98), total Plant Area 

Index (PAI), and Plant Area Index at a 1 m vertical resolution (Drake et al., 2002; 

Hancock et al., 2019; Marselis et al., 2018; Tang et al., 2012). The 1 m vertical 

profile was aggregated into a 10 m vertical profile, summing all PAI values in each 

10 m vertical bin. The average of each of these metrics from all waveforms within 
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each plot were computed to represent the canopy structure for each plot at each 

spatial resolution. 

 

Figure 16: Illustration of simulated GEDI waveform layout. The GEDI waveforms 
(red circles) have a Gaussian energy distributed with σ=5.5 m, resulting in a 
roughly 22 m diameter footprint. Example of simulated footprint distribution 
locations in a 1.0 (solid outline), 0.25 and 0.0625 ha field plot (dotted outline). 

 

4.3.3 CANOPY STRUCTURE ACROSS THE TROPICS 

To evaluate the canopy characteristics across the different study sites we calculated 

the median Plant Area Volume Density profile (composed of PAI values for each 1 m 

vertical interval), using all simulated lidar waveforms for each study site. Additional 

to the median (50th percentile), we calculated the 10, 30, 70 and 90th percentiles of the 

PAI values in the same 1 m vertical bins, to provide a representative distribution of 

the canopy structure.  
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4.3.4 SPECIES RICHNESS ACROSS THE TROPICS 

Aside from calculating total species richness at each study site and at all three plot 

sizes, we also created species-area relationships, calculating the mean and standard 

deviation of species richness for plot sizes ranging from 0.01 to 50 ha to assess how 

the species richness changes by plot size across the study sites across the tropics. 

Each of the original field plots is filled with as many subplots as possible at each of 

these spatial resolutions (0.01, 0.0225, 0.04, 0.09, 0.16, 0.25, 0.36, 0.64, 1.0, 2.25, 

4.00, 6.25, 9.00, 12.25, 16.0, 25.0, 50.0 ha) and we assigned each tree to a subplot at 

each resolution. We then calculated species richness at each plot size for each study 

site. Which plot sizes are used at each study site depended on the original plot size 

and the presence/absence of stem maps (Chapter III.1 Field data characteristics). We 

removed all plots in which more than 20% of the trees were not identified to the 

genus level. We visualized the mean and standard deviation of species richness for 

each plot size at each study site to evaluate the differences in species-area curves 

across the tropics.  

4.3.5 STRUCTURE-RICHNESS ANALYSIS 

To evaluate the existence of a relationship between vertical canopy structure and tree 

species richness across the tropics, we developed models at three scales: local, 

regional and pan-tropical, because many historical and environmental drivers of (tree) 

species diversity have stronger or weaker relations depending on the scale of 

observation (Gaston, 2000; Keil and Chase, 2019). Definitions of the scales are 

presented in the following sections. 
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  Local analysis  

The local analysis focused on the structure-richness relationship within large (25 or 

50 ha) plots. With the local analysis we use data from field plots that are directly 

adjacent to evaluate the existence of a relationship between the number of different 

tree species (S) and the canopy structure expressed by canopy height (RH98) and the 

vertical canopy profile (PAI at 10 m height intervals). The local analysis was 

performed on data collected in bci (50 ha), rab and rob (25 ha). The other 50 ha plot 

(dan) was not found suitable for this analysis because the quality of the species 

identification was not consistent throughout the plot (Table 4; Chapter III.1 Field data 

characteristics). A Poisson regression model was used, because the species richness 

information consists of count data, to relate structure and species richness. We used 

5-fold cross-validation, extracting 20% of the data at random in each fold as test data. 

We first performed feature selection on the training data, choosing the model with the 

lowest BIC score, and constructing the predictive model based on the same training 

data. We evaluated the model performance with R2, RMSE% and bias based on the 

predictions for the test data. The average and standard deviation of these metrics were 

recorded for each study site at each resolution. 

  Regional and pan-tropical analysis 

The regional analysis focused on the structure-richness relationship based on non-

adjacent plots across study sites within the same country or continent. We evaluated 
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different combinations of study sites at three spatial resolutions (Table 6). To prevent 

the large plots from dominating the regional and pan-tropical analyses, we thinned 

their contribution to the regional and pan-tropical datasets. From the 25-ha plots we 

selected a 1-ha plots at each corner, and from the 50-ha plots we selected all corner 1-

ha plots (4 total) and the middle plots along the long side of the plot (6 1-ha plots 

total). To avoid mixing of local and regional effects, we employed a Monte-Carlo 

simulation approach in which we drew different samples from the full regional 

dataset. In each Monte-Carlo run we drew a random sample selecting one plot at the 

given resolution from each original plot location (especially important at the 0.25 and 

0.0625 ha resolution at which up to 16 plots exist at the location of each original 1 ha 

plot) and applied a cross-validation (80/20) or leave-one-out cross validation (if n ≤ 

25) approach. In the cross-validation we again performed a two-step approach in 

which we first selected features on the Poisson regression choosing the model with 

lowest BIC value (using the bestglm package in R), and then built the predictive 

model with the chosen variables. We applied the model to the test data and calculated 

the model performance statistics for each fold.  

The pan-tropical analysis focused on the structure-richness relationship combining 

the information from all 15 study sites across all tropical regions, in other words, it 

was a special case of the regional analysis in which data from all sites was included 

(Table 6). Hence, the same methods were used as for the regional analysis.  
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Table 6: Datasets used for regional and pan-tropical analysis of the structure-
richness relationships. Note that one region may not contain the same number of 
plots across all resolutions due to limitations in the availability of subplot and stem 
map information, limiting the use of data from some study sites to only one or two 
resolutions.  
Region 1 ha resolution 0.25 ha resolution 0.0625 ha 

resolution 
Gabon 31 

 

25 

 

26 

 
Africa 61 

 

55 

 

35 

 
Brazil   

 
 
 

  29 

 
South America   

 
 
 

  35 

 
Costa Rica   

 
 
 

21 

 

21 

 
Central 
America 

   
 
 
 

27 

 

27 

 
America 13 

 

33 

 

62 

 
South-East 
Asia 

11 

 

11 

 

  

Pan-tropical 97 

 

109 

 

11
0 

 
Legend:  
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4.4 RESULTS 
In this section we first show the canopy structure expressed by the vertical foliage 

profile for the different study sites. Then, we show the relationship between species 

richness and plot size across all study sites. These results are tied together in the 

results of the species-richness relationships at the local, regional, and pan-tropical 

scales. 

4.4.1 VERTICAL FOREST STRUCTURE ACROSS THE TROPICS 

The vertical canopy structure of forests, in terms of the distribution of plant material 

across the vertical axis is varies between regions across the tropics (Figure 17). 

Maximum canopy height in our study sites in the Neotropics and Central Africa 

average around 40 m and is slightly lower and Australia, while canopy heights in 

South-East Asia exceed 60 m. Many sites show a strong understory layer and a 

decrease in plant material through the canopy. Relative to the understory, the canopy 

layer may have a sharp decline in material (sep, Borneo; dan, Malaysia) or a steady 

decline along the vertical axis (bci, Panama; rab, Gabon; mal, DRC; rob, Australia). 

This pattern is exacerbated in degraded forests. In s11, s12 (Brazil) and mon (Gabon), 

the bulk of the plant material exists close to the forest floor at ~5 m height, but 

remnant trees in some plots may reach to 40 m. 

Other sites, especially undisturbed ones, have distinct canopy layers. In tam (Peru) 

and old-growth forests in lsv and cha (Costa Rica) we see multiple peaks of high 

density plant material across the vertical height. A multi-peak pattern is also strong in 

the profiles of kea (DRC) and lop (Gabon), reflecting the inherent structure of the 
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forest-savanna mosaic; showing two peaks in canopy material, one close to the 

ground ~5 m and one higher in the canopy, ~20-30 m. The less-disturbed mab 

(Gabon) forest shows high variability in canopy structure between the different plots, 

indicated by the wide shaded area in (Figure 17) remnant trees in some plots may 

reach to 40 m. 

 

Figure 17: Canopy structure expressed as the Plant Area Volume Density profile 
(PAVD), expressing the Plant Area Index for each 1 m vertical bin, displayed as the 
median of all plots within each study site (solid line), the 30th-70th h percentile 
(darker shaded area) and 10th-90th percentile (lighter shaded area). 
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4.4.2 SPECIES-AREA RELATIONSHIPS 

The number of species increases with plot size, but the rate of increase varies across 

study sites (Table 5). For example, in rob (Australia) a 1 ha plot contains 82-117 

species and 16-44 species in 0.0625 ha plots. tam (Peru) contains between 154-185 

species/ha, and 11-35 species in a 0.0625 ha plot, similar to rob. This indicates that 

the adjacent 0.0625 ha plots in tam must contain species’ compositions more different 

from each other than adjacent 0.0625 ha plots in rob (Australia), i.e. tam has a higher 

local species turnover rate than rob. The species-area curves vary in shape across 

study sites, with the highest total species richness in tam and lowest species richness 

in the African sites (Figure 18). Initial steep curves that decrease in steepness at larger 

plot sizes indicate a high local diversity but a lower regional diversity (e.g. when the 

area is increased, the same species are encountered). 

 
Figure 18: Relationships between tree species richness and area for each study site 
(note the change in y-axis across panels from left to right). 

 

4.4.3 STRUCTURE-RICHNESS MODELS 

Pulling together the information on tree species richness and canopy structure (RH98 

and Total PAI), we can see that generally speaking, species richness increases with 
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increasing canopy height and increasing total Plant Area Index across the tropics 

(Figure 19). 

 

Figure 19: Relation between canopy height (left) and total plant area index across 
three spatial scales for all study sites across the tropics. Each point represents one 
plot at the specific resolution. 
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The cross-validation results of the local models reveal weak structure-richness 

relationships. Of the three superplots, only the models in bci are significant ≥ 95% of 

the iterations, showing an evident relationship between the predicted and observed 

values (Figure 20). Even though species richness within all large plots can be 

predicted with a root mean squared error between 10-30% of the mean, the low 

RMSE% only indicates that the predictions at the local scale are around the mean 

species richness, and in rab and rob they are insensitive to the local variation in tree 

species richness (see example figures in Chapter III.2 Local model performance 

details).  

 

Figure 20: Cross-validated results of local structure-richness models. Open circles 
indicate less than 95% of the cross-validated models was significant. The models in 
Panama are significant across all plot sizes, whereas models in Gabon are 
insignificant at smaller plot size. The RMSE% is low for predictions at each study 
site, but little relationship exists between the predicted and observed data. All 
models are unbiased. 

Regional structure-richness models generally show better performance at all spatial 

resolutions (Figure 21) when compared to the local models (Figure 20) in terms of the 

variance in species richness that can be explained with the canopy structure 

information (higher R2 values). However, prediction error (as percentage of the mean 

species richness) is generally higher, partly due to the larger range in species richness 
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in these regional datasets. Regions of Gabon, Africa, Brazil and South America show 

the best model performance whereas regions including the Costa Rica datasets show 

much poorer performance (regions indicated with costarica, centralamerica and 

america (0.0625 and 0.25 ha)). Results from an analysis of the ecological distance 

(Bray-Curtis; Faith et al. (1987)) of the Costa Rica dataset show that, even though the 

species richness numbers in Costa Rica vary (Table 5), the plots share many of their 

species, i.e. the composition is similar. In the Gabon, Brazil and South-America 

datasets the variation in species richness is accompanied by a much larger variation in 

species composition (Chapter III.3 Ecological and structural distance). 

 
Figure 21: Cross-validated model performance of regional structure-richness 
models. Error bars indicate the 95% range of values for each metric. 

Global structure-richness models show similar performance across all resolutions 

with mean R2 ranging between 0.32 and 0.41 and RMSE% between 60 and 39%, 

respectively for the plot sizes from 1.0 and 0.0625 ha (Figure 22), indicating that around 

41% of the variation in tree species richness can be explained using canopy structure 

metrics alone at the 0.0625 ha resolution at the global scale. Sites with extremely high 

values of observed species richness are generally predicted poorly (Chapter III.4 

Detailed global modeling results).   
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Figure 22: Cross-validated model performance at the global scale in terms of R2, 
RMSE%, and bias. Error bars indicate the range between which 95% of the 
performance values of the cross-validated models fall. All models are statistically 
significant and unbiased. 

4.5 DISCUSSION 

4.5.1 STRUCTURE-RICHNESS RELATIONSHIP ACROSS SCALES 

In this study we explore the relationships between vertical canopy structure and tree 

species richness at different resolutions across the local, regional and pan-tropical 

scale. A variation in canopy structure between two plots in any given forest can be 

attributed to either: (1) the intra-variability of tree structure within the same species 

group or a (2) difference in structure caused by a difference in species composition. 

Similarly, a difference in the number of species per plot may either (1) reflect a 

difference in the composition between plots or (2) reflect the presence of a subset of 

the species from one plot in another. Based on the results in this study we argue that a 

significant structure-richness relationship exists between plots where differences in 

species composition have contributed to the difference in canopy structure and tree 

species richness based on the following findings: 
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At the local scale, within one big plot inside of one forest type, the variation in the 

canopy structure is determined largely by intra-variability within species (these 

superplots have a similar composition throughout the plot, see Chapter III.1 Field data 

characteristics). For example, an adult tree of species X may range in height from 20-

40 m, so even though a different structure can be measured in two plots of similar 

composition, this difference in structure is not be attributed to a difference in species 

composition. Furthermore, if a 20-m and 40-m tree of species X exist in the same 

plot, they could be predicted to be different species (s=2) based on the variation in 

structure, inflating the tree richness estimate. On the other hand, as the area observed 

increases in size it is more likely that the difference in structure is caused by a 

difference in composition. Individuals of most tropical forest species are spatially 

aggregated (Condit, 2000) so the composition between two adjacent plots is more 

similar than the composition between two plots farther away. This is the case for bci, 

where a 50 ha area was sampled and included in the local analysis, which led to 

successful prediction of species richness based on structure. Within the 25 ha’s 

sampled at rab and rob, the variation in composition is smaller and no significant 

structure-richness relationships were found (Chapter III.3 Ecological and structural 

distance). 

Further increasing in scale, we found that regions consisting of sites exhibiting large 

variation in species composition among plots show a much stronger structure-richness 

relationship (Chapter III.3 Ecological and structural distance). However, we note that 

model performance of the species-richness analysis differed drastically across regions 



94 
 

(either within a country or continent). The forest in lsv, Costa Rica, consist of largely 

similar species composition whereas the difference in composition is much higher in 

regions where the structure-richness models show better performance (South-

America, Brazil, Gabon, Africa), continuing the trend from the local scale models that 

richness can be better predicted in areas with greater species turnover.  

At the global scale we find a significant relationship between canopy structure and 

tree species richness across all spatial resolutions (plot sizes). At the higher resolution 

(0.0625 ha) this relationship appears to be stronger than at the lower resolution (1.0 

ha), but no significant difference was found. However, the observed difference may 

be attributed to the lower sensitivity of species richness to rare species at smaller plot 

sizes. For example, tam (Peru) plots have very high species richness at the 1 ha 

resolution (Table 5), whereas at the 0.0625 ha resolution the species richness range 

for this site is between 22-50 species, which is still higher than most other sites but 

much less extreme than at the 1.0 ha plot size. Because the 1.0 ha plot size captures 

more rare species in each plot, the 1.0 ha global model predictions for tam contain 

outliers that are not present in the 0.0625-ha plot size (Chapter III.4 Detailed global 

modeling results). Rare species do not contribute much to the canopy structure, thus 

complicating the relationship between structure and richness at a scale in which they 

contribute largely to the species richness value. 
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4.5.2 LIMITATIONS  

Here we will discuss the limitations to this study and describe the anticipated effects 

these limitations may have had on our results.  

The quantity of the data is one of the main limitations. This research could be 

significantly improved by using more coincident lidar and field data to thoroughly 

evaluate the existence and strength of the structure-richness relationship across all 

tropical regions. However, we acknowledge the collection of such data is costly and 

time-consuming. Here, we were able to exploit fifteen independently collected 

existing datasets (Chapter III.1 Field data characteristics). However, there is quite a 

data gap, especially in the Amazon basin, the mainland of South-East Asia and New 

Guinea. Apart from the spatial representation problem, the low number of plots for 

certain regions attributes largely to the observed variability in model performance. 

Comparing the pan-tropical models (with n ≥ 97 leads to much more stable model 

performance than for some regions with low number of plots). When the training 

dataset does not fully represent the range of structure in the full dataset, this may lead 

to highly erroneous precisions for some of the test plots. Especially with the use of 

Poisson regression such errors are exacerbated by the logarithmic link model, where 

errors can be exponentially higher when compared to using simple linear regression. 

On the other hand with linear regression, negative predictions are possible and the 

risk underestimating tree species richness at the high end of the spectrum is higher. 

Hence, we chose to use Poisson regression, knowing that it may lead to outlier 

predictions in certain cases that should be accounted for when operationalizing this 

method.  



96 
 

This study serves as a first attempt to study the pantropical structure-richness 

relationship and should be improved and further developed when more data becomes 

available. Additionally, the characteristics of each dataset differed widely because all 

data was collected by different people and institutions. We accounted for this as much 

as possible by using datasets only at reliable plot and subplot resolutions, including 

only trees ≥ 10 cm DBH and including only plots with a percentage of trees 

unidentified to the genus level smaller than 20%. Nonetheless, we acknowledge that 

the quality of the species identification may have affected our models. Although we 

tried to exclude plots with a high percentage of unidentified trees, it was also 

important to exploit the available data as much as possible and hence we chose the 

cut-off percentage of 20%. In the future, a genus-species relationship could be 

exploited to impute missing data and further increase the confidence of the structure-

richness models.   

The presence and absence of stem maps and subplots in each study site determined at 

which spatial resolutions the datasets could, and could not, be used. This resulted in 

the inclusion of different datasets for each region (Table 6). In this way it makes the 

inter-comparison of model performance in the same region at different resolutions 

unreliable because the models were not always built on the same data (plots and study 

sites), but we weighed this decision to maximize the largest possible variance in the 

structure-richness models. 
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4.5.3 FUTURE RESEARCH & APPLICATIONS   

Our results provide confidence regarding the existence of regional and global species-

richness models that may be exploited for mapping pan-tropical tree species richness. 

It appears that the most accurate predictions can be achieved at the regional scale 

when adequate data is available. However, in the absence of such data it may be of 

more immediate interest to further develop pan-tropical models which can explain 

~40% of variation in tree species richness. At the time of writing, GEDI is collecting 

canopy structure information close to the smallest resolution tested here (0.0625 ha) 

and thus this data may be well suited for mapping tree species richness across the 

tropics. GEDI is a sampling mission in which lidar waveforms with 25 m diameter 

footprints are collected across 8 tracks (600 m between-track spacing, 60 m along-

track spacing). GEDI gridded data products will have a 1 km2 resolution in which the 

GEDI data samples are averaged to 1 km2 values (Dubayah et al., under review). Our 

local scale models show that predictions of adjacent 0.0625 ha plots (or in the future, 

footprints) are on average correct, but they will not represent the local nuances in 

species richness within forests of uniform composition. We propose that the species 

richness predictions could potentially be used in a similar way as for gridded GEDI 

product and provide the average number of species/0.0625 ha within a 1 km2 cell, as 

such information may still be of interest to local land managers. Given the variable 

species-area relationships it is not easy to translate a species richness at 0.0625 ha 

resolution to the expected number of tree species in 1 km2. Also, we acknowledge 

that still only roughly 40% of the variance in species richness can be explained using 

just the lidar structure information and therefore we propose two research avenues of 
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potential interest: fusion with spectral data and using an environmental framework. 

Spectral data has previously been shown to predict some of the variance in tree 

species richness (Foody and Cutler, 2006; Schäfer et al., 2016) and may improve our 

models and allow for more accurate predictions of tree species richness across the 

tropics. Especially data from the hyperspectral HISUI (Matsunaga et al., 2013) 

instrument, that is soon to be launched to the International Space Station, may be 

highly relevant in such applications. Alternatively, we believe that the inclusion of 

structural data within previously developed bio-geographical frameworks to predict 

tree species diversity (Keil and Chase, 2019). Such frameworks could benefit from 

GEDI lidar data providing information on the occupation of the vertical niche space 

and likely improving predictions of tree species richness across the tropics. 
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4.6 CONCLUSION  
In this study we evaluated the existence of local, regional and global relationships 

between vertical canopy structure and tree species richness in the tropics at three 

spatial resolutions: 1.0, 0.25, and 0.0625 ha. Our results show that canopy structure 

can explain a limited percentage of variation in tree species richness across the 

different regions. On a pan-tropical scale between 41% of the variation in tree species 

richness can be explained with the vertical canopy structure using one single 

predictive model at a plot size similar to the GEDI footprint resolution. A full set of 

regional structure-richness models are most likely to aid accurate pan-tropical species 

richness mapping, but the development of such models is contingent on the 

availability of sufficient field data across the tropics. Alternatively, canopy structure 

information from GEDI could be included in existing modeling frameworks, 

combining spectral, environmental and structural information to provide more 

accurate tree species richness predictions. 
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5. DISCUSSION 

This chapter starts with a synthesis of the findings of this dissertation, followed by a 

summary of the limitation of the current study. Then, it describes the implications of 

these findings for future use on incoming spaceborne lidar data from the Global 

Ecosystem Dynamics Investigation (GEDI) mission. A set of final remarks conclude 

this dissertation.   

5.1 SYNTHESIS 
 The goal of this dissertation was to explore the potential of full-waveform lidar for 

characterizing tree species diversity in the tropics. This is of particular importance in 

the light of the recently launched GEDI mission, which will collect billions of lidar 

waveforms across all tropical forests. If a significant relationship exists between 

canopy structure and tree species diversity than this data may be used for mapping 

tree species diversity across the tropics. Such maps may then be used to inform 

biodiversity conservation and management and to enable a better understanding of the 

relationship between forest diversity and productivity.  

As a first step I verified that full-waveform lidar data provides accurate canopy 

structure profiles (in terms of Plant Area Index (PAI) binned along the vertical forest 

axis) by comparing them to those derived from terrestrial lidar data. In chapter 2 I 

also showed that successional vegetation types with different canopy structure can be 

distinguished and spatially classified using this information on the canopy structure 

along the vertical forest axis from full-waveform lidar data. Cuni-Sanchez et al., 
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(2016) previously showed that forest types with different tree species composition in 

Lopé National Park have a distinct canopy structure. This relationship has been 

explained in a successional setting: the savanna has an open structure with a tall 

grassy layer and scattered short-statured trees. Following first tree colonization of the 

savanna, a canopy structure evolves that is denser near the ground and more open at 

the top. A limited set of canopy species may then overgrow the colonizing species, 

forming a thick even-height foliage layer with a monodominant tree species 

composition. After first tree-fall and gap formation in the canopy layer, a changing 

light regime on the forest floor enables new species to grow. Eventually, the forest 

develops to a diverse tree species composition with heterogeneous canopy structure, 

both spatially and vertically  (Cuni-Sanchez et al., 2016; White, 2001; White and 

Abernethy, 1997). The differences in species composition in each successional stage 

are observable with full-waveform lidar data because they are expressed in the 

canopy structure, allowing for spatial mapping of the forest types using wall-to-wall 

lidar data products.  

Different numbers of tree species are found across the different forest types in Lopé 

NP. It has previously been hypothesized that canopy height, as a proxy for niche 

volume, must to some extent relate to differences in tree species diversity (Gatti et al., 

2017). Chapter 3 shows that this height-diversity relationship exists at a regional 

scale, across multiple study sites in Gabon: canopy height alone explains up to 44% 

of the variation in tree species diversity. Moreover, I expected that including 

information along the vertical axis of the forest, expressed by the Plant Area Index 
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(PAI) profile, would improve these tree species diversity predictions because these 

metrics contain information on the occupation of the niche volume. Our models 

explain up to 71% of the variation in tree species diversity across four study sites in 

Gabon when including this structural information. These results support the 

hypothesis that information on the occupation of vertical canopy space explains more 

of the variation in tree species diversity than canopy height alone.  

In chapter 4, an additional eleven datasets were used to evaluate the structure-

diversity relationship across the tropics. The results show that one single pan-tropical 

model, using information of the vertical canopy structure and canopy height, can 

explain up to 40% of the variation in tree species richness across the tropics. 

Continental scale models for South America and Africa show better results, 

explaining between 50-65% of the variation in tree species diversity. However, using 

canopy structure information to explain differences in tree species diversity at a small 

scale, such as within a 25 or 50 ha field plot, remains a challenge.  

In summary, the methods and results presented in this dissertation answer to the main 

goal of the dissertation by: 1) validating the correct vertical canopy profile extraction 

from full-waveform lidar data, 2) distinguishing successional vegetation types by 

their vertical structure, 3) establishing the existence of a  significant relationship 

between tree species diversity and canopy height, 4) supporting the hypothesis that 

information on vertical canopy structure explains more of the variation in tree species 

diversity than canopy height alone, 5) establishing significant relationships between 

canopy structure and tree species diversity in different biogeographical regions and 6) 



105 
 

across the tropics. These results are promising for mapping tree species diversity with 

GEDI lidar data, but it is important to highlight five constraints before interpreting the 

implications of the findings for application to spaceborne lidar data.  

5.2 LIMITATIONS OF THE CURRENT STUDY  
 Differences in canopy structure driven by succession (such as in Lopé, Gabon), 

various degrees of degradation (such as in mon, s11 and s12), and differences in 

species composition within old growth forests (such as in tam), can be distinguished 

with full-waveform lidar data. Such differences in canopy structure relate 

significantly to the tree species richness. However, in chapter 2 I found that it 

becomes increasingly difficult to use full-waveform lidar data to distinguish among 

different species compositions that have a similar canopy structure. Additionally, in 

chapter 4 I found that the relationship between canopy structure and tree species 

richness may be weak at a local scale, across plots of similar composition. These two 

limitations may complicate the use of the methods presented here and should be kept 

in mind when operationalizing the methods.  

The results of this dissertation only include an analysis of forests on solid ground 

(terra firme). It is important to note that the models presented here are not tested for 

other types of forests that occur in the tropics; such as mangroves or inundated 

forests. Such forests contain different species compositions with trees specialized to 

withstand extreme conditions. For example, the upper Gabon estuary is known for its 

extremely tall trees (62.8 m), but largely uniform species composition (Simard et al., 

2019). Hence, a relationship between canopy height and tree species richness 
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developed in a forest-savanna gradient is unlikely to produce accurate predictions in 

said mangrove forest.  

The nonlinear relationship between number of species and sampled area (species-area 

relationship) was expected to have an effect on the development and application of 

the structure-diversity relationship. The results from chapters 3 and 4 show that 

smaller plots (≤ 0.25 ha) may have a stronger structure-diversity relationship than 

larger plots (> 0.25 ha). However, not every dataset could be used at each tested 

resolution, depending on the original field plot size and the absence or presence of 

stem maps or subplots. Therefore, it is not yet possible to make a conclusive 

statement on the optimal plot size for the structure-diversity relationship.   

Additionally, the species-area relationship is different across all regions in the tropics. 

This affects both the quality of the structure-diversity models at different resolutions, 

and the upscaling of predictions made at one resolution to a different resolution. For 

example, in tam the species turnover rate is high, meaning that two adjacent small 

plots have very different species composition. This leads to high species richness 

numbers for large plots; at the 1.0 ha resolution, the species richness number in tam is 

far outside the ranges of species richness in all other sites. This leads to poor 

predictions of tree species diversity for tam at the 1.0 ha resolution. On the other 

hand, at a smaller plot size, the species richness range of the tam plots is well within 

the range of the other study sites, and tam predictions are no longer outliers. 

Additionally, if a certain number of species is predicted for a 0.25 ha plot, then the 

species-area curve of that specific region would be needed to establish the number of 
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species at a larger plot (for example, a 1.0 ha plot). Such species-area curves are not 

available for all regions in the world, complicating the scaling of plot-level 

predictions. Thus, both the non-linear species-area relationship and the regional 

variation of this relationship are important considerations in the effective use of these 

models.  

Between chapter 3 and 4 I explored both linear and Poisson regression models 

between canopy structure and tree species diversity, expressed as tree species richness 

(S) and Shannon index (H’) in chapter 3 and as S in chapter 4. Both models appear to 

have their advantages and disadvantages but based on the results of this study I am 

not able to determine whether one or the other is more appropriate. Linear models can 

only well-represent if a linear relationship exists between the lidar metrics and tree 

species diversity metrics. However, this relationship may not be exactly linear, 

especially when studying areas of extremely high diversity as seen in chapter 4 at the 

1.0 ha resolution for the tam study site. Therefore, I explored the use of a Poisson 

regression model using a log link function. This avoids negative diversity predictions 

(which are possible with the linear model) and allows for the capturing of a 

logarithmic relationship between explanatory variables and tree species diversity. 

However, in case the canopy structure in the training sample is not exactly 

representative of the measured canopy structure in the test dataset, this can lead to 

outlier predictions of diversity, greatly overestimating the diversity. Such large outlier 

predictions could be filtered relatively easily, but they do highlight the lack of a fully 
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representative set of canopy structure and tree species diversity information in certain 

regions.  

5.3 FUTURE DIRECTIONS: LOOKING FORWARD TO 

DATA FROM GEDI  
 The GEDI instrument launched to the International Space Station (ISS) in December 

2018 to acquire information on the spatial and vertical vegetation structure across all 

temperate and tropical forests. In a changing world with increasing human and 

environmental pressures on the natural systems, such information is of immediate 

importance to enable benchmark mapping of the world’s forested ecosystems. This 

study proposes to extend the use of spaceborne full-waveform lidar data beyond 

GEDI’s original mission goals; to study the use of full-waveform lidar data for 

mapping tree species diversity in the tropics. At the time this study was conducted, 

GEDI was mostly in the development and construction phase as it has been collecting 

science data only since April 2019 (Dubayah et al., under review). The incoming data 

was being processed at the time of this writing and therefore could not be included 

within the scope of this research. However, this study does provide valuable insights 

that can set the expectations for tree species diversity mapping with GEDI lidar data.  

GEDI is a sampling mission, which means that the instrument collects data samples 

instead of a continuous wall-to-wall data product. The GEDI instrument contains 

three lasers, of which one is split into two beams, the coverage beams, creating four 

laser beams total. These beams are optically dithered across their tracks creating a 

total of eight tracks with 600 m across-track spacing at the equator. The along-track 
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spacing is 60 m, allowing for non-overlapping footprints at a nominal footprint 

diameter of approximately 25 m (Dubayah et al., under review). The footprint and 

resulting waveform characteristics are highly similar to those from the Land 

Vegetation and Ice Sensor (LVIS) used in this study. Hence, results from this study 

provide excellent guidance for the use of GEDI data for mapping tree species 

diversity.  

Future research directions outlined in this chapter fall into two broad categories: (1) 

specifically following the line of research proposed in this dissertation using GEDI 

data alone, and (2) additional approaches, beyond the scope of this study, including 

other data source for mapping pan-tropical tree species richness.   

5.3.1 MAPPING SUCCESSIONAL VEGETATION TYPES 

 The results from chapter 2 show that highly accurate vertical canopy structure 

profiles can be derived from LVIS waveforms. Under desirable atmospheric 

conditions GEDI will provide similarly accurate information on the vertical canopy 

profile. These profiles are processed and published as Level 2B GEDI data products 

(Dubayah et al., under review). However, the method to classify a study site in 

successional vegetation types, as shown in chapter 2, cannot be applied to GEDI 

directly. There are two main limitations: (1) to allow for spatial mapping of the 

vegetation types, the method requires a wall-to-wall data product at 25 m resolution, 

but GEDI only provides circular data samples of ~25 m diameter. Hence, the 

classification method could be applied to the GEDI waveforms, but the predictions 

will not create a wall-to-wall map. A classification map could potentially be produced 
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if GEDI data are fused with radar data to produce a wall-to-wall product of canopy 

structure, but this would be contingent on the availability of such data and the further 

development of such fusion methods. (2) Another limitation to applying the 

classification method is that the vegetation types studied in Lopé National Park are 

confined to a small area. As such, the developed method cannot be extrapolated to 

other regions with different forest types. Instead, one may prefer a data driven method 

in which data mining of GEDI waveforms could be used to indicate groups of similar 

canopy structure (Moran et al., 2018) to classify forested areas across the pantropical 

forest region.  

5.3.2 ESTIMATING TREE SPECIES DIVERSITY IN GABON 

 The methods developed in chapter 3, estimating tree species diversity from structural 

data, can be applied most directly to incoming GEDI data. The 0.25 ha models have 

already been applied directly to waveforms from the ICESat-1 mission, 

demonstrating the considerable potential of applying 0.0625 ha models directly to 

GEDI waveforms. The modeling results show a reasonably strong relationship 

between canopy structure and tree species richness at the GEDI footprint level across 

the four study sites in Gabon (R2=0.6, RMSD = 34%; plot size 0.0625 ha). These 

0.0625 ha structure-diversity models developed in chapter 3 can be applied directly to 

incoming GEDI Level 2B data products (Dubayah et al., under review). These GEDI 

data products will contain the same information as the LVIS data products and thus 

the methods should be directly applicable to GEDI waveforms to predict tree species 

diversity (H’) and species richness (S) within the four study sites in Gabon from 

chapter 3. Such footprint-level predictions can be validated with predictions of S and 
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H’ from the wall-to-wall LVIS data at the four study sites at the same spatial 

resolution. This will provide the most direct validation of GEDI predictions and 

demonstrate the applicability of these structure-diversity models to GEDI data.  

Subsequently, I advise to study the development of a wall-to-wall product from these 

GEDI predictions. Inference methods can be used to create wall-to-wall data products 

for the average (and accompanying uncertainty) tree species richness/0.0625 ha 

samples within larger cells. Similar methods as those proposed to generate the 1 km 

gridded GEDI data products should be explored here as well (Patterson et al., 2019; 

Saarela et al., 2018). With these methods it should be possible to predict the ‘average 

tree species diversity per 0.0625 ha within a 1 km cell’. Alternatively, fusion with e.g. 

Tandem-X radar data should be explored further to generate wall-to-wall canopy 

structure maps, on which the structure-diversity models can be applied directly to 

map tree species diversity at a higher spatial resolution. 

5.3.3 ESTIMATING PAN-TROPICAL TREE SPECIES RICHNESS  

 It is of utmost importance to expand the calibration dataset used to develop the 

regional and pan-tropical structure-richness models. Currently, I used fifteen datasets 

across the tropics and it is important to note that the data included in the presented 

models is not necessarily representative of all terra firme forests across the pan-

tropics. Contingent on the availability of more data, structure-richness models should 

be constructed for tropical forests grouped by biogeographical history as defined in 

Corlett and Primack (2011), leading to a set of reliable models to be used for 

predicting tree species richness across the tropics. Any such predictions based on real 
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GEDI data should undergo deep scrutiny and resulting data products should be 

thoroughly validated before being used to advice ecosystem and biodiversity 

management. Given the data-dependency for the development of these models, I also 

propose alternative methods to combine GEDI canopy structure data with other 

datasets to further enable pan-tropical tree species diversity mapping. 

5.3.4 THE FUTURE IS FUSION 

 Data fusion between different sets of remote sensing data with information from 

GEDI may resolve a number of the limitations mentioned in this dissertation.  

Resolving GEDI’s spatial sampling limitation  

Fusion of GEDI lidar data with Tandem-X may allow for wall-to-wall mapping of 

canopy structure at a high spatial resolution such as was performed for canopy height 

in chapter 3. Currently such methods are further developed to fully exploit the 

information on vertical canopy structure captured by TanDEM-X by fusion with 

GEDI structural data (Lee et al., 2018; Qi et al., 2019). This may lead to the 

development of a fused GEDI-TanDEM-X product representing not only canopy 

height but also vertical canopy structure at high (~25 m) spatial resolution across the 

tropics. The structure-diversity models mentioned here at the 0.0625 ha resolution 

could be applied to such a fused data product and result in mapping tree species 

richness.  
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Improving model performance by including additional information  

Alternatively, data fusion with other remotely sensed information on different forest 

aspects could improve the models. For example, combining structural data from 

GEDI with multi- or hyper-spectral imagery may explain more of the variation in tree 

species diversity than canopy structure information alone. Spectral information by 

itself has shown to be useful for mapping variations in tree species diversity (Laurin 

et al., 2014) and it may be possible that such data explains a different portion of the 

variation in tree species diversity than the structural data does. Hence, fusion may 

improve the diversity estimates. Multi-spectral data fusion could be performed 

directly with information from Landsat images or even Landsat time series. The 

spectral information from Landsat may provide additional information on tree 

species, and time series information could add further information to this, given that 

seasonal differences between different forests could be captured and contribute useful 

information to the tree species diversity model. Upcoming hyperspectral data from 

the Hyperspectral Imager Suite (HISUI) mission has been identified by Stavros et al. 

(2017) as useful for deriving information on species, combining this with information 

on canopy structure may explain even more of the tree species diversity and build a 

path forward to pantropical tree species diversity mapping using spaceborne data 

from instruments on the ISS. 

Last, diversity of tree species is a complex interaction of many different mechanisms 

and canopy structure explains only a limited percentage of the variation in tree 

species diversity. Hence, tree species diversity has previously been mapped across 
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different grains using a set of environmental variables (Keil and Chase, 2019). I 

believe that such a method could also benefit from the inclusion of canopy structural 

data. Once GEDI has completed its nominal two year mission, information on both 

canopy height and internal canopy structure will be available at a 1 km spatial 

resolution between 52° degrees N & S (Dubayah et al., under review). The structural 

data could be incorporated in existing frameworks developed using environmental 

data (Keil and Chase, 2019). As structure data provides information on the occupation 

of the vertical niche space across the tropics, the inclusion of canopy structure 

information may further explain variations in tree species diversity across the tropics 

and may thus be used to improve pan-tropical tree species diversity mapping. 

5.3.5 IMPLICATIONS FOR ECOSYSTEM MANAGEMENT 

 A list of Essential Biodiversity Variables was generated to summarize the data needs 

for effective conservation and ecosystem management (Pereira et al., 2013). The 

development of information on the spatial distribution of taxonomic species diversity 

is among the variables of interest. Tree species diversity/richness maps across the 

tropics can be considered of high importance for biodiversity conservation. Such 

high-resolution maps providing consistent information across the entire tropics could: 

aid the prioritization of conservation areas, be used to estimate tree species loss after 

disturbance and may further the understanding of the interactions between biotic and 

abiotic environments over larger scales. Currently such maps do not exist and a call 

for bolder science in conservation strategies had been made to the community (Noss 

et al., 2012; Watson et al., 2016). This dissertation proposes such a bold idea, taking 

data from an instrument primarily developed for a different purpose (aboveground 
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biomass mapping) and exploiting the information for mapping tree species diversity. 

However, before the methods presented in this dissertation will be fully operational 

and able to provide data products that can be used directly by ecosystem managers, 

additional research as outlined in the previous chapters will need to be performed.  

5.4 FINAL REMARKS 
 To conclude, this dissertation shows the potential of using full-waveform lidar data 

to advance pan-tropical tree species diversity mapping. This is the first study of its 

kind and this line of research is by no means complete enough to allow for direct 

mapping of tree species diversity across the entire tropics with incoming GEDI data. 

However, a significant relationship between vertical canopy structure and tree species 

diversity exists, both in biographical regions and across the entire tropics. Continuing 

this line of research by including additional calibration and validation data, incoming 

GEDI data products, additional environmental variables, and/or other remotely sensed 

data, is therefore highly recommended to ultimately enable high-resolution mapping 

of tree species diversity and to facilitate effective conservation management of our 

valuable tropical ecosystems. 
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I. SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

I.1 TLS-LVIS COMPARISON MULTIPLE SCALES 
Comparison of the cumulative PAI profiles between TLS and LVIS with a vertical 

resolution of 3 m (Figure 23) and 1 m (Figure 24). Cumulative PAI profiles are 

provided at the plot level for eight field plots (20x40 m) collected in the four 

successional forest types (2 plots in each). Cumulative PAI profiles from LVIS and 

TLS show good correspondence in all plots, but with a bias in the higher strata 

(approx. > 35 m).  
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Figure 23: Cumulative PAI profiles from TLS (y-axis) and LVIS (x-axis) at 3 m 
vertical interval. Overall correlation results of all 8 plots: r2 = 0.95, RMSE = 0.65, 
bias = 0.41, CCC=0.94. 
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Figure 24: Cumulative PAI profiles from TLS (y-axis) and LVIS (x-axis) at 1 m 
vertical interval. At the 1 m interval profiles for the individual plots can be 
distinguished from the figure. Overall correlation results of all eight plots: r2 = 
0.95, RMSE = 0.61, bias = 0.38, CCC=0.94. 
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I.2 VEGETATION STRUCTURE METRICS 
Vegetation metrics showing aspects of the vertical structure of each vegetation type 

with vertical interval of the PAI profile of 5 m (instead of 10 m, Figure 4). The 5 m 

interval provides more detail on the specific structure of each vegetation type 

compared to the 10 m vertical interval (compare Figure 4 with Figure 25). Standard 

deviation of the PAI profile vegetation metrics are highest for Colonizing forest and 

Mixed forest in the lower strata (< 10 m) (Figure 26). This indicates that on a pixel-

to-pixel scale, the vegetation structure of the lower strata is highly variable for these 

forest types. Standard deviation for canopy height, cover fraction and total LAI is 

lowest in Monodominant forest because of the homogenous nature of the vegetation 

structure in this forest type. Averaging the vegetation metrics for a 3x3 window 

reduces the variation of the structure for most vegetation types apart from Colonizing 

forest. This shows that Colonizing forest can occur with very different vegetation 

structure on a small scale (Figure 27) as the 3x3 window may not consist of solely 

Colonizing forest pixels since Colonizing forest patches are generally small and 

extend only along the forest-edge. The coefficient of variation (CV) does not provide 

any new information on top of the pixel- and neighbor-based mean and standard 

deviation of each metric (Figure 28).  
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Figure 25: Eleven metrics (y-axis) describing characteristics of vegetation structure 
of the five vegetation types (colored), ordered by successional stage. Each boxplot 
is composed of the pixel values within all field plots covered by one specific 
vegetation type. PAI (m2/m2) profile is provided at a 5 m vertical interval. 

 

 

Figure 26: Standard deviation calculated from a 3x3 window around each pixel, 
providing information on the variation of each vegetation metric for each vegetation 
type (ordered by successional stage). 
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Figure 27: Mean of each structural metric calculated from 3x3 window around each 
pixel. Variation in metrics for each class is lower than when using single-pixel 
values. 

 

 

Figure 28: Coefficient of variation of each metric calculated from 3x3 window 
around each pixel. 

  



122 
 

I.3 ALTERNATIVE CLASSIFICATIONS 
Three Random Forest models were explored: using only pixel-based metrics (Figure 

6) using all vegetation metrics (including 3x3 pixel average, standard deviation and 

coefficient of variation, Figure 29a) and a hierarchical model using two-stage 

classification with different sets of metrics to classify savanna and Colonizing forest 

(stage 1 pixel-based) and then the three inner forest types (stage 2 neighbor-based, 

Figure S29b). The extent of Colonizing forest was largely overestimated using the 

neighbor-based model with all metrics (Figure 29a). Colonizing forest is known to 

only exist in thin bands along the savanna/forest boundary (White, 2001; White and 

Abernethy, 1997), but because of its high variation in structure and the high variation 

in average structure at a 3x3 pixel window along the forest edge, more cells were 

classified as Colonizing forest than what should realistically be the case (Figure 29a). 

However, using the average and standard deviation in the overall model helps 

classifying the vegetation types of the continuous forest in a more coherent way, 

showing continuous patches of specific forest types (Figure 29a) instead of isolated 

pixels (Figure 6). A two-stage classification approach may therefore be considered to 

improve the overall classification accuracy by representing the Colonizing forest in 

thinner bands, but dividing the inner forest into larger patches of similar type, 

providing a more realistic distribution of the vegetation types (Figure 29b). However, 

this classification approach is only shown here as a demonstration product because 

the resulting map would require further validation using field data that are yet to be 

collected.  
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Figure 29 Left: (a) Classification of vegetation types with random forest model 
build on all vegetation metrics. Right: (b) Classification of vegetation types using 
two-stage classification. Savanna, Colonizing forest and ‘other forest’ were 
classified using pixel-based vegetation metrics, after which a random forest model 
with all metrics was used to re-classify ‘other forest’ to Monodominant Okoumé, 
Marantaceae forest and Mixed forest. 
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II. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

II.1 DATASET DETAILS 

II.1.1 STUDY SITE DESCRIPTION 

Gabon was chosen as case-study location because of the large availability of field and 

remote sensing datasets collected during the AfriSAR campaign, a joint airborne and 

field campaign between the European Space Agency (ESA) and the National 

Aeronautics and Space Administration (NASA), with collaboration from the 

Gabonese Studies and Space Observations Agency (AGEOS), the German Aerospace 

Center (DLR) and the French Aeronautics Space and Defense Research Lab 

(ONERA), which aimed to collect data for the calibration and evaluation of forest 

structure and biomass retrieval algorithms of future satellite mission (Fatoyinbo et al., 

2017). The four study sites in Gabon are referred to as Lopé, Mondah, Mabounié and 

Rabi (Figure 8). All are within the general classification of tropical terra firme 

broadleaf forest, but have different species compositions and assemblies, disturbance 

history, and management regimes. The plots in this analysis are distributed between 

savanna, successional, degraded and old-growth tropical forest and are situated in 

climate zones with different annual precipitation and temperature (Table 2).  

Lopé National Park is located in central Gabon (Figure 8). The study site is mainly 

comprised of five successional vegetation types: Savanna (Sa), Colonizing forest 

(Cf), Monodominant Okoumé forest (MOf), Young Marantaceaec forest (YMf) and 

Mixed Marantacaee forest (MMf) (White, 2001). The vegetation pattern is thought to 
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originate from the last ice age and today fire is the dominant factor maintaining this 

successional pattern at the forest edges (White and Abernethy, 1997). Twelve stem 

mapped field plots (nine 1 ha and three 0.5 ha) were established in 2016 as part of the 

AfriSAR campaign (Labrière et al., 2018) and the data are available through 

ForestPlots.net (Labrière et al., 2018; Lopez-Gonzalez et al., 2011, 2009). The plots 

are positioned to cover the five vegetation types (3 Sa, 3 Cf, 3 MOf, 2 YMf, and 1 

MMf) and all are coincident with the LVIS lidar data. The Mondah study site is 

located on the Libreville peninsula, 20 km north of the densest urban area in Gabon 

(Figure 8) and characterized by coastal Guineo-Congolian forest dominated by 

Aucoumea klaineana. Mondah has been exploited over the last centuries for different 

resources, such as logging, bush meat, charcoal production and collection of non-

timber forest products for traditional medicine. Deforestation to enable peri-urban 

land use, has increased largely over the last decades, leading to a 40% reduction of 

the forested area on the peninsula in the last 80 years (Walters et al., 2016). The study 

site comprises fifteen 1 ha stem mapped plots, thirteen of these are coincident with 

the LVIS lidar data and used in this study. The Mondah data were also collected 

during the AfriSAR campaign in 2016 and are publicly available through the NASA 

Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) 

(Fatoyinbo et al., 2018). The forest at the third site, Mabounié, is less disturbed than 

the Mondah forest as only part of the site underwent selective logging in the last 

decades (Fatoyinbo et al., 2018). Twelve 1 ha field plots were established in 

Mabounié in 2012 (Fatoyinbo et al., 2018), of which 10 are coincident with LVIS 

lidar data and suitable for this study. Rabi, the fourth study are, was logged for 
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Okoumé roughly 30 years ago and is now an active oil and logging concession 

(Memiaghe et al., 2016). A stem mapped 25 ha permanent forest plot was established 

between 2010 and 2012. The data were collected by the Smithsonian Conservation 

Biology Institute, National Zoological Park, and the Forest Global Earth Observatory 

(ForestGEO), and are available on request through the ForestGEO website2. The plot 

was established to study long-term forest dynamics following the ForestGEO 

standard method including all trees with a stem diameter (DBH) ≥ 1 cm (Anderson-

Teixeira et al., 2015).  

II.1.2 FIELD DATA PROCESSING DETAILS 

Field datasets for Lopé, Mondah and Rabi are comprised of stem mapped data for 

which information on tree species, DBH and tree location are available. In Rabi and 

Mondah trees with DBH ≥ 1 cm were included. In Lopé only trees with DBH ≥ 5 cm. 

In Mabounié DBH and species were recorded for each tree with DBH ≥ 10 cm, and 

each tree was assigned to a 20x20 m subplot within the 1 ha plot. For consistency 

across all study sites only trees with a DBH ≥ 10 cm were included in this study. For 

each plot, the original location was obtained in the field using (mostly handheld) GPS 

instruments. In this study, however, we used optimized plot locations as published by 

(Labrière et al., 2018). They refined plot geolocation by manually translating a stem 

map of largest trees with respect to a 1m-resolution Canopy Height Model (CHM; 

derived from discrete-return airborne lidar acquisitions) until a good agreement was 

found. As a consequence, this optimization should reduce the error component in our 

                                                 
2 https://forestgeo.si.edu/sites/africa/rabi 
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structure-diversity models attributed to geolocation error. Most trees were identified 

to the species level, but in each site, there was a percentage of trees with either 

unknown species and/or genus. Trees of the same genus but unknown species were all 

conservatively assigned to the same species (e.g. Anthocleista sp.), only in Rabi 

unidentified species within genera were distinguished from each other in the field, 

(e.g. Xylopia sp.1 and Xylopia sp.2). In Rabi 91.7% of the trees was identified to 

species-level, 98.4% to genus-level and 1.6% remained unidentified. In Lopé this was 

respectively 99.9%, 99.9% and 0.064%, in Mondah 44.4%, 85.1% and 14.9%, and in 

Mabounié 93.0%, 99.7% and 0.3%. Three of the Mondah plots were then excluded 

from the analysis, as respectively 64%, 42% and 32% of the trees in these plots were 

unidentified. This changed the identification of Mondah trees to 45.6%, 97.6% and 

2.4% respectively and reduced the Mondah dataset to from thirteen to ten plots. The 

availability of stem maps enabled testing of the structure-diversity relation at different 

resolutions. This was necessary because species diversity and plot size are not 

linearly related (species-area curve, described by (MacArthur and Wilson, 1967) and 

no optimal resolution has been identified for the structure-diversity relation. Smaller 

plots were created by subdividing each original plot into smaller squares or rectangles 

to create 5 spatial resolutions: 1, 0.5, 0.25, 0.0625 and 0.04 ha (Figure 9(b)). From the 

25 ha Rabi plot, the thirteen non-adjacent hectares were subsampled and considered 

separate plots for the analysis. The subsampling avoided this study site from 

dominating the models, as the Rabi site consisted of a total sampled area twice as 

large as the other sites (Figure 9(a)). Mabounié data was only used in the analysis at 

the 1 ha and 0.04 ha resolution, due to the absence of stem maps. At each resolution 
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only plots with at least one identified tree were included in the analysis. This resulted 

in respectively 41, 64, 128, 481 and 935 plots for the resolutions 1.0 ha to 0.04 ha.  

Tree species diversity was then quantified for each of the plots at all resolutions using 

two variables: the Shannon diversity (H’) and tree species richness (S) expressed as 

the total number of tree species per area (no. of species/area) (Morris et al., 2014). 

The two metrics we used to describe species diversity (H’ and S) are commonly 

found in the literature, but other metrics, such as the Simpson indices for species 

diversity and species evenness and Fisher’s alpha  are also prevalent (Morris et al., 

2014; Wilsey and Potvin, 2000). We chose species richness as it is an important 

metric in the Aichi biodiversity targets3 and easy to interpret and can be directly used 

to advice biodiversity conservation management. We chose the Shannon’s diversity 

index complementary to species richness as it takes into account the abundance of 

each species. In our study we found that our predictive models for Shannon diversity 

generally demonstrated a slightly better performance (Figure 11; Chapter II.2 Model 

performance). This is to be expected because canopy structure is not likely to be 

largely affected by the presence or absence of one individual of a species (rare species 

occurrence), whereas the species richness number will be directly influenced by the 

occurrence of such rare species.  

  

                                                 
3 https://www.cbd.int 
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II.2 MODEL PERFORMANCE 
Results of model runs for Species richness and Shannon diversity with different sets 

of explanatory variables (set 1-4, Table 3). Results of linear models using 4 different 

sets of variables at 5 spatial scales predicting Shannon diversity H’ (Table 7) and 

Species richness (Table 8). Res indicates resolution (plot size) in m2. RMSD provided 

as a fraction, value to be multiplied by 100 to show RMSD%. Bias refers to intercept 

of linear relation between measured vs. cross-validated predicted richness/diversity, 

consis refers to the slope of this linear relationship. Bias and consis are NA if values 

did not defer significantly from 0 and 1 respectively, indicating no significant bias or 

inconsistency between measured and predicted variables. Last two column provide 

the R2 confidence interval calculated using the CI.Rsq function in the Psychometric 

library in R. Models using the cumulative PAI profile (set 4) generally show a similar 

performance compared to models using the PAVD profile (set 3). However, we chose 

to use set 3 for our applications because of the following two reasons: 1) when an 

‘erroneous’ number occurs anywhere in the PAVD profile (for example this will carry 

over to all subsequent bins of the cumulative PAI profile, and may result in erroneous 

diversity predictions. 2) when the PAI value of the last height bin in which vegetation 

was detected was smaller than the order of 1/1000 this would have resulted in a PAI 

of 0 for the respective bin and also 0 in the cumulative PAI profile. In the PAVD 

profile a value of 0 has a much smaller impact (difference between, e.g., 0.001 or 0), 

whereas in the cumulative profile that difference would be much larger, say 4.661 vs. 

0, leading to erroneous predictions of diversity.  
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Table 7: Results for models predicting Shannon diversity. 

MODEL INFORMATION MODEL PERFORMANCE R2 CONF. 
INTERVAL 

SET 
# 

SET 
NAME 

VARS RES R2 RMSD BIAS CONSIS R2 

MIN 
R2 

MAX 

1 

h10000 height 10000 0.28 0.22 NA NA 0.07 0.50 
h5000 height 5000 0.36 0.27 NA NA 0.18 0.54 
h2500 height 2500 0.43 0.28 NA NA 0.30 0.55 
h625 height 625 0.40 0.31 NA NA 0.33 0.47 
h400 height 400 0.23 0.32 NA NA 0.18 0.27 

2 

hsd10000 height and 
sd height 

10000 0.40 0.21 NA NA 0.19 0.61 

hsd5000 height and 
sd height 

5000 0.51 0.24 NA NA 0.34 0.67 

hsd2500 height and 
sd height 

2500 0.58 0.24 NA NA 0.47 0.69 

hsd625 height and 
sd height 

625 0.45 0.30 NA NA 0.38 0.51 

hsd400 height and 
sd height 

400 0.24 0.31 NA NA 0.19 0.29 

3 

lsum10000 PAVD and 
height  

10000 0.50 0.19 NA NA 0.31 0.70 

lsum5000 PAVD and 
height  

5000 0.63 0.21 NA NA 0.49 0.77 

lsum2500 PAVD and 
height  

2500 0.71 0.20 NA NA 0.63 0.79 

lsum625 PAVD and 
height  

625 0.65 0.24 NA NA 0.60 0.70 

lsum400 PAVD and 
height  

400 0.46 0.27 NA NA 0.41 0.50 

4 

clsum10000 cum. PAI 
and height  

10000 0.47 0.20 NA NA -0.04 0.32 

clsum5000 cum. PAI 
and height  

5000 0.63 0.21 NA NA 0.50 0.77 

clsum2500 cum. PAI 
and height  

2500 0.61 0.23 NA NA 0.51 0.72 

clsum625 cum. PAI 
and height  

625 0.59 0.26 NA NA 0.54 0.65 

clsum400 cum. PAI 
and height  

400 0.45 0.27 NA NA 0.40 0.50 
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Table 8: Results for models predicting species richness 

MODEL INFORMATION MODEL PERFORMANCE R2 CONF. 
INTERVAL 

SET 
# 

SET 
NAME 

VARS RES R2 RMSD BIAS CONSIS R2 

MIN 
R2 

MAX 

1 

h10000 height 10000 0.35 0.4 NA NA 0.14 0.57 
h5000 height 5000 0.41 0.44 NA NA 0.23 0.58 
h2500 height 2500 0.44 0.44 NA NA 0.31 0.56 
h625 height 625 0.31 0.44 NA NA 0.24 0.38 
h400 height 400 0.15 0.43 NA NA 0.11 0.20 

2 

hsd10000 height and 
sd height 

10000 0.40 0.39 NA NA 0.18 0.61 

hsd5000 height and 
sd height 

5000 0.46 0.42 NA NA 0.29 0.63 

hsd2500 height and 
sd height 

2500 0.52 0.40 NA NA 0.40 0.64 

hsd625 height and 
sd height 

625 0.34 0.43 NA NA 0.27 0.41 

hsd400 height and 
sd height 

400 0.16 0.42 1.26 0.86 0.11 0.20 

3 

lsum10000 PAVD 
and height  

10000 0.43 0.41 15.88 0.69 0.22 0.64 

lsum5000 PAVD 
and height  

5000 0.66 0.34 NA NA 0.53 0.78 

lsum2500 PAVD 
and height  

2500 0.71 0.31 NA NA 0.63 0.79 

lsum625 PAVD 
and height  

625 0.60 0.34 NA NA 0.54 0.65 

lsum400 PAVD 
and height  

400 0.38 0.37 NA 0.93 0.33 0.43 

4 

clsum10000 cum. PAI 
and height  

10000 0.46 0.38 NA NA -0.07 0.23 

clsum5000 cum. PAI 
and height  

5000 0.68 0.33 NA NA 0.56 0.80 

clsum2500 cum. PAI 
and height  

2500 0.62 0.36 NA NA 0.52 0.72 

clsum625 cum. PAI 
and height  

625 0.53 0.36 NA NA 0.47 0.59 

clsum400 cum. PAI 
and height  

400 0.37 0.37 NA 0.94 0.32 0.42 
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II.3 COEFFICIENT OF VARIATION 
We calculated the Coefficient of Variation (CV, CV = standard deviation/mean) for 

species richness (S) and two summary canopy structure metrics (Canopy height and 

Total PAI). Figure 30 shows how the CV change across the sampled resolutions. The 

highest CV can be found at the 0.25 ha resolution, indicating that at the 0.25 ha 

resolution the variables are showing the highest dispersion around the mean value. 

Note that for species richness the CV is the same at both 0.25 ha and 0.5 ha 

resolution, but lower at all other resolutions. 

 

Figure 30: Coefficient of Variation for Species richness, Canopy height and total 
PAI across all sampled plot sizes.   
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III. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

III.1 FIELD DATA CHARACTERISTICS 
Here we provide information on the characteristics of each field and accompanying 

lidar dataset.  

lop (Lopé, Gabon) 

The lop field dataset in Gabon was collected as part of the AfriSAR campaign. The 

study site is located in Central Gabon in the northern section of the Lopé National 

Park. The field dataset was collected in 2016 and is published (Labrière et al., 2018). 

The monthly minima and maxima temperature ranges between 20-23 °C and 26-33 

°C, respectively. Mean annual precipitation is ~1440 mm/year. The dataset consists of 

12 field plots, distributed over five vegetation types: Savanna (3), Colonizing forest 

(3), monodominant Okoumé forest (3), young Marantaceae forest (2) and mixed 

Marantaceae forest (1). The three colonizing forest plots are 0.5 ha (100x50 m), all 

other plots are 1.0 ha (100x100 m). Each plot was stem mapped and all trees with 

DBH ≥ 5 cm were recorded. Because of the presence of stem maps all 1.0 ha plots 

were used at all three spatial resolutions in this study, while the 0.5 ha plots were only 

used at the 0.25 and 0.0625 ha resolutions (Labrière et al., 2018). All plots had 

overlapping airborne lidar data collected in 2016 with the LVIS full-waveform lidar 

instrument, with a footprint spacing of ~8 m and a denser sampling in areas with 

overlapping flightlines (Tang et al., 2018).  
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mon (Mondah, Gabon) 

The mon field dataset in Gabon was collected as part of the AfriSAR campaign in 

2016 and this data is publicly accessible through the NASA Distributed Active 

Archive Center (Fatoyinbo et al., 2018). The mean annual temperature in this study 

site is ~25 °C, with a precipitation ranging between 3000-3500 mm. The forests 

across the different field plots have experienced different degrees of disturbance, 

ranging from slightly disturbed to highly disturbed, given their proximity to Gabon’s 

capital Libreville (Walters et al., 2016). The data consists of 15 1 ha field plots, for 

which each tree with DBH ≥ 1 cm was located, identified and measured. Only 12 of 

the field plots had overlapping lidar data, collected in 2016 with the LVIS lidar 

instrument during the AfriSAR campaign (Tang et al., 2018). Of these 12 plots only 9 

had a species identification quality high enough to be included in this study (> 80% of 

the trees identified to the genus level). Given the presence of stem maps, each plot 

could be used at all three spatial resolution by creating subplots and using the tree 

location to assign them to the respective subplots.  

mab (Mabounié, Gabon) 

The mab study site is located in west-central Gabon. This study site has experienced a 

lower degree of forest degradation than the mon study sites. The mean annual 

temperature lays at 25 °C and mean annual precipitation at roughly 2030 mm. Wet 

and dry seasons occur. The study site consists of 12 field plots of 1 ha collected in 

2012. For each of the plots, all trees with DBH ≥ 10 cm were assigned within 20x20 

m subplots and identified to the species level. Each of the plots was coincident with 
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airborne lidar data collected in 2016 with a the LVIS full-waveform lidar instrument, 

(Tang et al., 2018). The plots from this study site were only used at the 1.0 ha plot 

size because the native subplot size which was unsuitable for creating subplots of 

25x25 (0.0626 ha) or 50x50 m (0.25 ha).  

rab (Rabi, Gabon) 

The Rabi study site in Gabon is located in southwestern Gabon. The region 

experiences an annual rainfall of approximately 2300 mm/year and a mean annual 

temperature between 25-28 °C (Labrière et al., 2018). The data was collected through 

a partnership of the Smithsonian Institute and Gabon’s National Center for Scientific 

and Technological Research (CENAREST). All tree measurements were collected 

over a two year time period between June 2010 and June 2012. A 25 ha plot was stem 

mapped and for each tree with DBH ≥ 1 cm, the species, size and location were 

recorded. Due to the presence of the stem map, this study site could be used at all 

spatial resolutions. For the regional scale analysis, we included only the four 1 ha 

plots at each corner of the square 500 x 500 m plot to reduce the mixing of the local 

and regional relationships between canopy structure and tree species richness. The 

lidar data was collected in 2016 with the LVIS full-waveform lidar instrument during 

the AfriSAR campaign (Tang et al., 2018). 

mal (Malebo, DRC) 

The mal dataset was collected in 2011 in the western part of the DRC. The mean 

annual temperature lays around 24.9 °C and the mean annual precipitation is 

measured to be 1587 mm.  The dataset consists of 32 1-ha field plots in which each 
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tree of DBH ≥ 10 cm is located inside a 50x50 m subplot. Therefore, this dataset was 

only used for analyses at the 0.25 and 1.0 ha resolutions. Lidar data was collected in 

2014 coincident with 21 of the plots of which all had a high species identification 

quality and are included in this paper.  

kea (Central Congo Basin, DRC) 

The kea dataset was collected in the UNESCO Man and Biosphere reserve in YGB in 

the Democratic Republic of Congo and published in Kearsley et al. (2013). The 

average annual precipitation is 1762 mm/year with a constant temperature of ~25 °C. 

The forest plots cover different types of forest ranging from moist evergreen 

rainforest, to transition forest to swamp forest. In this study we did not include the 

plots located in swamp forest as this is a terra firme forest analysis only because we 

expect the relationship between canopy structure and tree species richness in such 

ecosystems to be different. Nine 1 ha stem mapped plots for which all trees with a 

DBH ≥ 10 cm were located, identified and measured were included in this analysis. 

The plots were used in the analyses at all three spatial resolutions (Kearsley et al., 

2013). The coincident lidar data was collected in 2014.  

s11 (SFX 2011, Brazil) 

In 2011 a dataset consisting of nine 40 x 40 m field plots was collected in the São 

Félix do Xingu region located in the State of Pará in Brazil4. The region experiences a 

mean annual temperature of 25.1 ̊C and a mean annual precipitation around 1972 mm. 

                                                 
4 
https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/metadata/c141496b
-1fe3-40aa-926b-d2c88903df97 

https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/metadata/c141496b-1fe3-40aa-926b-d2c88903df97
https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/metadata/c141496b-1fe3-40aa-926b-d2c88903df97
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The plots are located in a linear fashion, originally meant to cover areas where 

ICESat waveforms were collected. The type of forest ranges from old-growth forest 

to highly disturbed through (multiple) fire(s) and/or logging. The data collection was 

carried out through the Paisagens Sustentaveis (Sustainable Landscapes) program 

funded through the US Agency for International Development and the US 

Department of State. Each tree with a DBH ≥ 10 cm was measured, identified and 

located within each field plot, allowing this dataset to be used only at the 0.0625 ha 

resolution. Eight of the nine plots were used in this paper, as these met species 

identification quality requirement. The plots are located along a north-south transect. 

The US Forest Service in collaboration with the Brazilian Agricultural Research 

Corporation (Embrapa) collected coincident lidar data over all field plots in 2012 with 

a ALTM 3100 scanner, and a resulting point density of 30.1 points/m2. Both datasets 

are available through the Sustainable Landscapes data portal5. Field identifications 

were done by parataxonomists and in general the identifications were not checked by 

professional botanists nor were voucher specimens taken in most cases. We are 

unable to evaluate the data quality for identifications.  We used them primarily to 

estimate wood density. 

s12 (SFX 2012, Brazil) 

The s12 dataset was a follow-up field data collection on the s11 dataset. This dataset 

has the same characteristics as the s11 dataset, but it was collected in 2012 about 100 

                                                 
5 
https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/metadata/a3bb4f79-
ef32-4b28-8295-2d963a1044e5 

https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/metadata/a3bb4f79-ef32-4b28-8295-2d963a1044e5
https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/metadata/a3bb4f79-ef32-4b28-8295-2d963a1044e5
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km west of the original dataset, but with the same spatial distribution of the field plots 

along ICESat data collection lines6. The dataset consists of 22 field plots of 40x40 m, 

including all trees with a DBH ≥ 10 cm. These plots were also only used at the 0.0625 

ha resolution due to their native plot size. 21 plots were used in the analysis, as there 

was one plot that did not meet the 80% identified to genus-level requirement.  

tam (Tambopata, Peru) 

The tam field dataset was collected in lowland Amazonian rainforest in Peru in 2011. 

The annual rainfall in this region is ~2250 mm/year and the mean annual temperature 

is measured to be 25.4 ̊C. The study site lays at the boundary of a nature reserve were 

sustainable use of forest resources is granted. Data were originally collected across 

seven plots, but one of these was located in a swamp area and not included in this 

study. The plots are 100 x 100 m (1 ha) and each tree with a DBH ≥ 10 cm was 

located, identified and measured. The airborne lidar data was acquired in 2009 with a 

Leica ALS50 II System. This dataset has a point density of 2.1 points/m2 (Boyd et al., 

2013). 

bci (Barro Colorado Island, Panama) 

The 50 ha permanent plot in Barro Colorado Island, Panama, is by far the best studied 

site included in this study. This site is the only one for which analysis on the 

relationship between canopy structure and tree species diversity have been carried out 

previously by other scientists (Wolf et al., 2012). The study site consists of a 500 x 

                                                 
6 
https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/metadata/43b6c844
-fc8d-42c4-9e54-0946b7e101e8 

https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/metadata/43b6c844-fc8d-42c4-9e54-0946b7e101e8
https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/metadata/43b6c844-fc8d-42c4-9e54-0946b7e101e8
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1000 m plot on the Barro Colorado Island with a mean annual precipitation of ~2580 

mm and a mean annual temperature is 26.5 ̊C. The plot was first established in 1980 

and has since been measured every five years. All these data are available through the 

ForestGEO data portal7. In this analysis we used the data form the 2010 survey. Each 

tree with a DBH ≥ 1 cm is marked, located, identified and measured. The data from 

the bci study site were used at all spatial resolutions because of the availability of a 

stem map. The lidar data were collected over BCI in 2015.  

lsv (La Selva, Costa Rica) 

The lsv dataset was collected as part of the CARBONO project at the La Selva 

Research Station in Costa Rica. Mean annual temperature is 25.9 ̊C, mean annual 

precipitation approximately 4035 mm. The study site consists of well-preserved old-

growth tropical forest. The field study project focused on the long-term monitoring of 

tropical rainforest productivity at the landscape scale8. Field data has been collected 

in 18 50 x 100 (0.5 ha) plots for twenty-one consecutive years between 1997 and 

2017. In this study we used the data from the 2009 census as this one was the closest 

in date to the lidar data collection. All trees were identified and stem-mapped and the 

data were used in this study at the 0.25 and 0.0625 ha resolution. The lidar data were 

collected with the LVIS instrument in 2009 coincident with all 18 field plots.  

  

                                                 
7 https://forestgeo.si.edu/sites/neotropics/barro-colorado-island 
8 https://tropicalstudies.org/carbono-project/ 

https://forestgeo.si.edu/sites/neotropics/barro-colorado-island
https://tropicalstudies.org/carbono-project/


141 
 

cha (La Selva 2, Costa Rica) 

The cha dataset was also collected in the same region as the lsv dataset, near the La 

Selva biological station in Costa Rica. The dataset consists of two 0.5 ha plots and 

one 1 ha plot. All trees with a DBH ≥ 5 cm were located, identified and measured. 

The plots were used at three or two spatial resolutions, depending on the size of the 

original plot. The same lidar dataset collected by LVIS in 2009 coincided with these 

field plots.  

rob (Robson Creek, Australia) 

The rob study site is comprised of a 500 x 500 m (25 ha) plot located in Northern 

Queensland, Australia (Bradford et al., 2014). Mean annual temperature is ~20.6 °C. 

The plot is considered a supersite and was established as part of the Terrestrial 

Ecosystem Research Network (TERN). The data are available through the Australian 

Supersite Network portal9. Mean annual precipitation in the region is measured at 

1587 mm (Bradford et al., 2014). All trees with a DBH ≥ 10 cm were located, 

identified and measured, allowing the dataset to be used for the analyses at the 

0.0625, 0.25 and 1.0 ha resolutions. Lidar data were collected with a Riegl VZQ560 

airborne lidar over the study site in 2012 by the AusCover facility of TERN.  

  

                                                 
9 https://supersites.tern.org.au  

https://supersites.tern.org.au/
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dan (Danum Valley, Malaysia) 

The dan dataset comprises a 50 ha (500 x 1000) plot in the Danum Valley 

conservation area in Malaysia. The data is available through the ForestGeo website10. 

Mean annual temperature at the study site is an estimated 25.5 ̊C, mean annual 

precipitation approximately 2307 mm. The plot was established in 2011 and all trees 

of DBH ≥ 10 cm were located, identified and measured. However, the tree species 

identification of this field plot is still ongoing and therefore this plot was not used in 

the local scale analysis even though it comprised a large continuous area but not 

every adjacent 1 ha plot had the required level of species identification (> 80% of the 

trees identified to the genus level). The six corner 1 ha plots and the middle 1 ha plots 

along the long side of the plot were considered for the regional and global analysis. 

Of these six plots, two of them had the required tree species identification quality and 

were included in the regional and global analysis. The lidar data collection was 

funded through the National Environmental Research Council (NERC) and collected 

in 2014 with a Leica ALS50-II lidar system. The lidar dataset had a point density of 

7.3 points/m2. 

sep (Sepilok, Borneo) 

The sep dataset consists of nine 4 ha plots (200 x 200 m) located in the Sepilok Forest 

Reserve north-east of Borneo. The mean annual precipitation in this region is around 

2929 mm and mean annual temperature between 26.7-27.7 °C (DeWalt et al., 2006). 

                                                 
10 https://forestgeo.si.edu/sites/asia/danum-valley 

https://forestgeo.si.edu/sites/asia/danum-valley
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These field data were collected in 2014. From each original 4 ha field plot, one 1 ha 

plot (or one 0.25 ha plot, depending on the resolution of the analysis) was selected at 

random during the Monte Carlo simulations to avoid the confusion of the local and 

regional variation in canopy structure and tree species diversity. The dan lidar dataset 

covered seven of the nine field plots. These seven were included in the analysis in this 

paper.  

Data processing 

The data processing resulted in a variable number of plots at each resolution for each 

dataset. These numbers are represented in Table 9.  

Table 9: Number of plots included at each spatial resolution for each dataset with a 
percentage of trees identified up to genus level > 80%.  

Country Project 
name 

No.  native 
plots 

Total area 
(ha) 

# of 1.0 ha 
plots 

# of 0.25 ha 
plots 

# of 0.0625 
ha plots 

Oceania 
Australia rob 1 25 25/4 100/16 400/64 

South-East Asia 
Malaysia dan 1 50 2 8 36 
Borneo sep 9 36 36 144 - 

Africa 
DRC mal 21 21 21 62 - 
DRC  kea 19 19 9 35 140 
Gabon rab 1 25 25/4 100/16 399/64 
Gabon lop 11 9.5 8 37 140 
Gabon mon 10 10 9 29 93 
Gabon mab 10 10 10 - - 

South America 
Peru tam 6 6 6 24 96 
Brazil s11 9 1.44 - - 8 
Brazil s12 19 4.8 - - 22 

Central America 
Costa Rica lsv 12 6 - 36 144 
Costa Rica cha 3 1.5 1 8 32 
Panama bci 1 50 50 179 726 
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Simulated GEDI waveforms were created from each airborne lidar dataset using the 

GEDI waveform simulator (Hancock et al., 2019). The simulator takes discrete return 

airborne laser scanning data, or LVIS lidar waveforms, and makes them look like 

GEDI waveforms. The waveforms were processed using the gediMetric software, 

which extracts metrics of interest from the simulated waveforms. In this study we 

used the rhReal98 metric to reflect canopy height, and the hiLAI profile for represent 

the PAI profile as this method provides a profile is most similar to profiles derived 

from the LVIS waveforms verified and used in (Marselis et al., 2019, 2018). 
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III.2 LOCAL MODEL PERFORMANCE DETAILS  
Example plots of observed vs. predicted tree species richness are provided here to 

illustrate the meaning of a low R2 values accompanied by low RSE%. This model 

performance indicates that the species richness predictions (y-axis) are around the 

mean observed in the superplot (x-axis), but there is little sensitivity to the local 

variation in tree species richness within the plot (Figure 31). 

 

Figure 31: Predicted vs. Measured species richness from local scale predictions in rab 
(top row), rob (middle row) and bci (bottom row). 
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III.3 ECOLOGICAL AND STRUCTURAL DISTANCE  
We computed the ecological distance between each of the plots in relation to the 

spatial distance between these plots. We used the method proposed by Bray-Curtis to 

calculate this distance (Faith et al., 1987). This method takes a table with the species 

in the columns, the plots in the rows and the number of each species in each plot as 

content and computes a measure of similarity between the compositions expressed as 

the semi-variance ranging between 0-1. The relationships are shown for each study 

site at the 0.25 ha resolution (or 0.16 ha in case the 0.25 ha plots were not available) 

in (Figure 32 to Figure 46). 

 
Figure 32: Ecological distance vs. spatial distance in lsv (Costa Rica) 
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Figure 33: Ecological distance vs. spatial distance in cha (Costa Rica) 

 
Figure 34: Ecological distance vs. spatial distance in bci (Panama) 
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Figure 35: Ecological distance vs. spatial distance in rab (Gabon) 

 
Figure 36: Ecological distance vs. spatial distance in rob (Australia) 
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Figure 37: Ecological distance vs. spatial distance in dan (Malaysia) 

 
Figure 38: Ecological distance vs. spatial distance in sep (Borneo) 
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Figure 39: Ecological distance vs. spatial distance in s11 (Brazil) 

 
Figure 40: Ecological distance vs. spatial distance in s12 (Brazil) 
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Figure 41: Ecological distance vs. spatial distance in tam (Peru) 

 
Figure 42: Ecological distance vs. spatial distance in lop (Gabon) 
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Figure 43: Ecological distance vs. spatial distance in mon (Gabon) 

 
Figure 44: Ecological distance vs. spatial distance in mab (Gabon) 
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Figure 45: Ecological distance vs. spatial distance in mal (DRC) 

 
Figure 46: Ecological distance vs. spatial distance in kea (DRC) 
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III.4 DETAILED GLOBAL MODELING RESULTS 
Examples of the observed vs. predicted plots from the global analysis are shown in 

(Figure 47). The plots illustrate that the tam plot in Peru (orange dot) is a major 

outlier in the global predictions at 1 ha resolution. At the 0.0625 ha resolution this 

study site is no longer an outlier as observed values of species richness are now less 

extreme and within the range of values of the other datasets.  

 

Figure 47: Examples of observed vs. predicted tree species richness using cross-
validated global models from one random Monte-Carlo simulation at each of the 
three spatial resolutions. Colors of points coincide with colors in Figure 15. 
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