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Fire is a complex biophysical variable that has shaped the land surface for over 400 

million years and continues to play important roles in landscape management, 

atmospheric emissions, and ecology. Our understanding of global fire patterns has 

improved dramatically in recent decades, coincident with the rise of systematic 

acquisition and development of global thematic products based on satellite remote 

sensing. Currently, there are several operational algorithms which map burned area, 

relying on coarse spatial resolution sensors with high temporal frequencies to identify 

fire-affected surfaces. While wildfires have been analyzed over large areas at the 

pixel level, object-based methods can provide more detailed attributes about 

individual fires such as fire size, severity, and spread rate. This dissertation evaluates 

burned area products using object-based methods to quantify errors in burn shapes 

and to extract individual fires from existing datasets.  



 

 

First, a wall-to-wall intercomparison of four publicly available burned area products 

highlights differences in the spatial and temporal patterns of burning identified by 

each product. The results of the intercomparison show that the MODIS Collection 6 

MCD64A1 Burned Area product mapped the most burned area out of the four 

products, and all products except the Copernicus Burnt Area product showed 

agreement with regard to temporal burning patterns. In order to determine the fitness 

of the MCD64A1 product for mapping fire shapes, a framework for evaluating the 

shape accuracy of individual fires was developed using existing object-based metrics 

and a novel metric, the “edge error”. The object-based accuracy assessment 

demonstrated that MCD64A1 preserves the fire shape well compared to medium 

resolution data. Based on this result, an algorithm for extracting individual fires from 

MCD64A1 data was developed which improves upon existing algorithms through its 

use of an uncertainty-based approach rather than empirically driven approaches. The 

individual fires extracted by this algorithm were validated against medium resolution 

data in Canada and Alaska using object-based metrics, and the results indicate the 

algorithm provides an improvement over similar datasets. Overall, this dissertation 

demonstrates the capability of coarse resolution burned area products to accurately 

identify individual fire shapes and sizes. Recommendations for future work include 

improving the quality assessment of burned area products and continuing research 

into identifying spatiotemporal patterns in fire size distributions over large areas. 
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Chapter 1 – Introduction 

Background 

Fire is an important land surface process affecting systems at multiple scales. 

At present, wildfires burn an estimated two to four percent of the Earth’s land surface 

every year (Randerson et al., 2012; Giglio et al., 2018; Humber et al., 2019). 

Charcoal records show that fire has played a role in shaping the Earth for hundreds of 

millions of years (Scott and Glasspool, 2006; Pausas and Keeley, 2009). Though 

sometimes viewed through the lens of fire as a landscape disturbance (Turner et al., 

1998), wildfires can be an important part of an ecosystem in equilibrium (Van 

Langevelde et al., 2003) and can act as a control on the extent of vegetation types 

globally (Bond and Keeley, 2005; Bond, Woodward and Midgley, 2005).  

In wildland areas, such as boreal forests, lightning can result in large 

wildfires. In more inhabited parts of the world, humans play a significant role in 

initiating fires and shaping global fire patterns, often with different goals depending 

on the region in question. For thousands of years, humans have used fire as a tool for 

clearing land, managing pests, and pasture management (Bowman et al., 2011).  On 

the other hand, human activity in recent decades has led to an overall decrease in the 

number of fires in and around populated areas due to targeted suppression (for 

example, to protect property) or through indirect suppression through actions such as 

constructing roads or cutting fuel breaks which slow the propagation of fire across the 

surface (Mouillot and Field, 2005; Marlon et al., 2008; Andela et al., 2017). 
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The influences of climate and human variables have not been constant through 

time, owing to shifts in the human population size and location. The Industrial 

Revolution, at the turn of the 19th century, is a logical breakpoint during which rapid 

changes in technological capacity which allowed the human population to increase 

dramatically. It was found that while fire activity over the last millennium can be 

modeled effectively using vegetation and climatological variables, human variables 

were necessary to replicate known fire patterns (Pechony and Shindell, 2010). The 

result, according to the same authors, will be an “unprecedentedly fire-prone 

environment” in the 21st Century. 

While human actions such as sparking ignitions, creating fuel breaks through 

land fragmentation, active fire suppression, and land cover conversion can negate 

some effects of climate on wildfire activity (Syphard et al., 2017), anthropogenic 

climate change is nonetheless expected to affect the frequency, extent, and severity of 

wildfires (Westerling et al., 2006; Flannigan et al., 2009; Abatzoglou and Kolden, 

2011). Furthermore, gasses and particulates released by fire play important roles in 

climate change by altering planetary albedo and increasing the presence of 

greenhouse gases, and potentially creating a feedback loop depending on the location 

(Hansen and Nazarenko, 2004; Pyne, 2007; Pechony and Shindell, 2010; Chen et al., 

2018). 

The complexity of these interactions underscores the importance of 

understanding fire as a dynamic variable through time. This has been recognized in 

the context of climate change by several governing bodies, including at the 

international level, e.g. the Intergovernmental Panel on Climate Change (IPCC, 
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2012). For a long time, there had been recognition that we need better data on the 

frequency, extent, and characteristics of fire, so as to be able to track changing fire 

regimes (Justice and Dowty, 1994) and fire is included among the Essential Climate 

Variables (GCOS, 2019) defined by the World Meteorological Organization (WMO) 

Global Observing System for Climate (GCOS). In response to those needs, the 

international science community has come together to create and coordinate fire 

products from satellite data with global coverage, initially through the International 

Geosphere Biosphere Programme Data and Information System (IGBP-DIS; 

Townshend, 1991) and more recently through the Global Observations of Forest and 

Land Cover Dynamics (GOFC/GOLD) Fire network (Justice et al., 2003) and the 

GEO Global Wildfire Information System (GEO, 2019). At the national level, 

programs such as the Monitoring Trends in Burn Severity project in the United States 

(Eidenshink et al., 2007) and the Canadian Wildland Fire Information System1 

provide records of individual fires with attributes such as the start date, end date, area 

burned, and burn severity. 

Records of fire activity can inform descriptions of a region’s fire regime, 

which often includes information about the size and spread of fires, fire intensity, 

burn severity, fire frequency, and seasonality (Bond and Keeley, 2005). There is no 

standardized definition of fire regime, though several classification schemes have 

been proposed. Characteristics of individual fires can affect the survival of existing 

species, even those which have developed fire-tolerant adaptations (Fuller, 1991; 

Whelan, 1995). For example, Fuller (1991) details that the snowbrush ceanothus, 

 
1 https://cwfis.cfs.nrcan.gc.ca/home 
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which is a fire-dependent species found in chaparral ecosystems, requires a fire 

temperature of 113 degrees Fahrenheit for seeds to germinate, but, above 300 degrees 

Fahrenheit the seeds will not survive – fire intensity is, therefore, a key variable in 

determining the rate at which the snowbrush ceanothus can recolonize the burned 

area. Considering fire size, Whelan (1995) and Turner et al. (1998) note that post-fire 

vegetation succession comes from two sources – the seed banks remaining from 

species which were present during the fire, or re-sprouting and colonization from the 

nearby unburned species. The distance of a given location within the burn to the edge 

of the burn determines the advantage the nearby colonizing species would have, thus 

fires with a high perimeter-to-area ratio could favor colonizing species and vice versa.  

Proximity to fire, at a broader scale, also plays an important role. Fires near 

inhabited areas put lives and property at risk (Bowman et al., 2011), and smoke 

released by fires is a public health hazard (for a thorough review, see Reid et al., 

2016). The ramifications of fires can be far-reaching as well. For example, fires 

occurring in boreal forests and tundra can loft back carbon and soot into the 

atmosphere, which can transport it to higher latitudes where it settles on permafrost, 

thusly accelerating melting and further release of greenhouse gases such as methane 

(Hall et al., 2017). 

Knowing that anthropogenic climate forcing affects fire-related climate 

variables (Abatzoglou and Williams, 2016), establishing baseline datasets of fire 

characteristics is important to understanding how fire patterns are changing at all 

spatial scales. Paleo-fire records have been established in some specific locales for 

periods spanning centuries to millennia using sampling methodologies such as 
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analysis of charcoal records and lake sediment sampling (e.g. Scott and Glasspool, 

2006; Sugihara et al., 2006; Gavin et al., 2007). These records are not generated 

through standardized analysis techniques and are spatially sparse due to the 

considerable effort required to construct timelines of fire for each location (Patterson, 

Edwards and Maguire, 1987; Higuera et al., 2011).  

In recent decades, remote sensing through satellite observations has been a 

valuable source of data for studying land processes in general and has been used as a 

data source for generating fire records. Although the limited length of the satellite 

data archive is a hindrance to establishing long-term fire records, remote sensing 

provides opportunities to systematically observe fires globally. Global fire products 

generated from satellite observations fall into one of two categories: burned area 

products – representing the post-fire affected area as determined by the removal of 

vegetation, exposure of soil and presence of charcoal and ash (Roy, 1999; Roy, 

Boschetti and Smith, 2013) –  or active fire products – representing location and in 

some cases the radiative power of fires burning on the Earth surface at the time of the 

sensor overpass (Justice, Giglio, et al., 2002; Justice et al., 2002; Roy et al., 2008).  

Burned area algorithms evaluate burning as an image classification problem, 

typically identifying burning as the result of a rapid change from a vegetated land 

cover to one of bare soil, ash, and soot (Roy, 1999; Roy, Boschetti and Smith, 2013). 

Some of the resulting products have proven to be useful data sources for emissions 

calculations and for studies at regional to continental scales (e.g. van der Werf et al., 

2006; van der Werf et al., 2017).  
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As a practical matter, wildfires interact with the landscape in a non-uniform 

manner which makes pixel-based classifications (of burned/unburned cells) 

inadequate for many situations. Products such as the MTBS fire perimeters 

(Eidenshink et al., 2007) and the Arctic-Boreal Vulnerability Experiment’s Wildfire 

Date of Burning dataset (Loboda and Hall, 2017) map the extent of burned area 

objects using individual fires as the basic unit rather than pixels. In the case of 

MTBS, the data helps land managers make better-informed decisions, while the 

ABoVE dataset is used to limit the spatial extent of fire progression analysis. 

Ultimately, the final burn scar shape and size are a reflection of the underlying 

conditions of the fire such as fuel type and uniformity, topography, and wind 

(Whelan, 1995).  For example, fires occurring on dry surfaces with low biomass, as in 

savannas, will spread faster and oftentimes be larger. Similarly, fires on a slope will 

propagate upwards at a faster rate due to the fire ladder effect and likewise move 

slower downslope as the pre-drying effects of the fire front are lessened.  

To date, fire attributes have been difficult to quantify for individual fires at the 

global scale. The recently published Fire Atlas (Andela et al., 2018) and FRY 

Database (Laurent et al., 2018) provide data including fire sizes, shape summaries, 

spread rates, and timing be extracting individual fire boundaries from existing global, 

coarse spatial resolution burned area products. These are typically derived based on 

empirical relationships defining the rate at which fires propagate across the landscape 

and can be global or regionally adapted.  

Because fire attributes are derived from existing burned area products, the 

errors in the latter are propagated to the former. The accuracy of global burned area 
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products varies greatly from product to product (Roy and Boschetti, 2009; Chuvieco 

et al., 2018; Humber et al., 2019), making the choice of burned area product non-

trivial both generally and for the purposes of fire information extraction. Beyond the 

choice of burned area product, there is a need to evaluate the accuracy of products 

mapping individual fires at the object level. Establishing the accuracy of burned area 

products has taken many forms such as error matrix calculation based on independent 

reference data (Roy and Boschetti, 2009; Padilla et al, 2014; Padilla et al., 2015), 

comparison with other burned area products (Giglio et al., 2010), and comparison 

with active fire products (Roy et al., 2008; Boschetti et al., 2010). While methods 

such as these assess the accuracy of burned/unburned labels, the accuracy of 

individual pixels is not the only relevant aspect of burning for end users. In fact, 

traditional pixel-based accuracy measures, such as overall accuracy, can appear 

misleading for burned area validation exercises due to the low prevalence of burning 

on the Earth’s surface (Fielding and Bell, 1997).  

An alternative to pixel-based approaches is object-based accuracy assessment. 

While object-based accuracy assessments have been applied to remote sensing-

derived maps before (e.g. Clinton, 2010; Persello and Bruzzone, 2010; Baraldi et al., 

2013; Baraldi et al., 2014), there has been relatively little work on their application to 

burned area detection. Even though assumptions drawn from fire shape already 

influence the selection of parameters in current vegetation models (Chuvieco et al., 

2016), assessments of the accuracy of burn scar shapes are rare and the existing work 

has focused on metrics derived from comparing the extent of overlapping areas rather 
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than directly comparing burn scar shapes (Remmel and Perera, 2002; Nogueira et al., 

2017). 

This dissertation furthers research into determining fire attributes from 

satellite-derived products by systematically analyzing individual wildfires over large 

areas. This requires investigation of the quality of the available burned area products, 

development of a framework for assessing the accuracy of individual burned areas 

through quantification of the shape error, and creation of a new individual fire 

extraction algorithm to identify trends in fire size and location. 

Purpose and Research Objectives 

The overarching goal of this work is to develop an object-based understanding 

of large-area fire patterns which emphasizes the nuance in fire characteristics based 

on satellite observations, with attention given to how well coarse-resolution burned 

area maps preserve the spatial integrity of burn scars compared to higher resolution 

representations. These goals aim to answer the question: can coarse resolution burned 

area products be used to map individual fires and their specific characteristics such as 

size and shape, and how accurately do coarse resolution burned area products 

represent those characteristics? 

To address these issues, this dissertation consists of three main components: 

understanding differences in the currently available burned area products; developing 

a method for evaluating burned area products using an object-based approach; and 

implementing object-based analysis methods to answer questions about patterns of 

burning based on analyzing individual fires. Further details of the three objectives of 

the study are presented below: 



 

9 

 

 

Objective 1: Characterize the spatial and temporal discrepancies between a suite of 

the available global burned area products.  

 

While a proper sampling design can be developed to support a spatially and 

temporally consistent pixel-based validation, the fact remains that only a small 

portion of the Earth’s surface burning can be represented in a photointerpreted 

reference dataset due to practical limitations including the number of samples 

required, cloud cover, and dependence on manual labor. As an alternative approach, 

intercomparison is a technique in which multiple products are compared wall-to-wall 

to determine the relative performance of the products, in the absence of a reference 

dataset (Herold et al., 2008; Pflugmacher et al., 2011).   Direct comparison of 

datasets provides insights into the differences and similarities necessary for 

determining the usefulness of any given product in a specific region.  

 

Objective 2: Develop a framework for evaluating the limitations of satellite-derived 

burned area products regarding burn shape and size, accounting for differences in 

spatial resolution. 

 

The limitations of computing capacity and availability of medium spatial 

resolution (c. 10 – 30 m) satellite data coverage have, until recently, restricted the 

creation of global products to coarse spatial resolution data (c. 250 m – 1 km). 

Traditional pixel-based validation measures such as overall accuracy, omission and 
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commission errors, and relative bias provide estimates of the probability of 

encountering a classification error for a given cell. While useful for assessing 

accuracy over large areas, these metrics are less informative at the individual fire 

scale and therefore are less desirable in an object-oriented framework.  Object-

oriented metrics in the literature have generally focused on comparing overlapping 

areas of mapped and reference data, much like pixel-based methods, but do so at the 

object level (i.e. individual fires) rather than for individual cells or pixels (Bruzzone 

and Persello, 2010; Clinton et al., 2010; Baraldi, Humber and Boschetti, 2013; Yan 

and Roy, 2014). This approach is advantageous because the accuracy of a specific fire 

is generally of more interest to a user than the accuracy of only one cell. But, the 

widely used object-based accuracy metrics – oversegmentation and 

undersegmentation – do not account for errors in the boundaries of mapped burn 

scars. It is, therefore, important to develop a metric for quantifying the error not only 

in the classification itself but in the shape and size of specific fires in order to provide 

a more descriptive set of per-fire accuracy metrics.  

 

Objective 3: Develop a method for extracting individual burn scars from existing 

burned area maps in order to analyze changes in the size distribution of burning 

through space and time. 

 

By examining individual fires over a large area, it is possible to analyze 

attributes of the fire regime which go beyond total area burned, such as the fire size 

distribution. Existing datasets that record individual fires are extracted from burned 
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area products and rely on flood-fill algorithms implementing thresholds representing 

the fire spread rate (Archibald and Roy, 2009; Andela et al., 2018; Laurent et al., 

2018; Oom et al., 2016). These data can be used to map spatial and temporal and 

patterns of fire sizes but suffer from two limitations. First, the existing products are 

validated using pixel- or area-based metrics rather than object-based accuracy metrics 

such as those described in “Objective 2”. Additionally, these products use empirically 

derived thresholds to determine the fire spread rate rather than data-driven or 

physically-based approaches.  

As higher spatial and temporal resolution sensors become more commonly 

used for burned area detection, object-based approaches will be required to assess the 

value of the new generation of burned area maps as tools not only for emissions 

calculations but also for improving conservation and landscape management. The 

metrics and methods proposed in these three objectives will be valuable in assessing 

and interpreting future generations of high resolution fire data.  

Organization of the Study 

The research in this dissertation is presented in four chapters. Chapter 2: 

“Spatial and Temporal Intercomparison of Global Burned Area Products” provides an 

inventory and assessment of the relative performance of four global burned area 

products for a study period spanning 2005 – 2011. In this work, a rigorous framework 

for evaluating the spatial and temporal properties of the burned area products was 

implemented to characterize the amount and timing of burning detected by each 

product. The results of this study highlighted the lack of consensus among burned 

area products, especially at regional scales. Of the evaluated products, the MODIS 
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Collection 6 MCD64A1 product was selected for analysis in the subsequent work 

because it is more temporally consistent with active fire detections and creates fewer 

processing artifacts than the other products examined.  

In Chapter 3: “Assessing the shape accuracy of coarse-resolution burned area 

identifications,” an object-based metric (“Edge Error”) was proposed for quantifying 

errors in the location of burn scar boundaries identified in coarse spatial resolution 

burned area maps compared to high spatial resolution reference data. Additionally, a 

measure of the low-resolution bias (Boschetti et al., 2004) is accounted for via 

calculation of the minimum achievable edge error. The metric was applied to a 

sample of eight case study fires in the western United States and automatically to 165 

fires from the 2016 burning season identified in the Monitoring Trends in Burn 

Severity dataset (Eidenshink et al., 2007).  

Chapter 4: “A MODIS MCD64A1-based Algorithm for Identifying Individual 

Fires in Boreal and Arctic North America” introduces a non-empirical MODIS 

Uncertainty-based Single-fire Extraction algorithm (MUSE), developed for extracting 

individual fires from the MCD64A1 product in order to evaluate the fire size 

distribution in Canada and Alaska from 2002 – 2018 at yearly intervals. The fires 

extracted using the MUSE algorithm were compared to an existing fire events 

database, the Fire Atlas (Andela et al., 2018), using three object-oriented accuracy 

metrics, including the edge error. 

Lastly, Chapter 5: “Discussion and Conclusions,” summarizes the findings of 

the previous chapters and provides context for the findings within the body of work of 

the broader wildfire remote sensing community. Additionally, Chapter 5 highlights 
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ongoing work and future research based on the work presented in Chapters 2 through 

4.  
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Chapter 2 – Spatial and Temporal Intercomparison of Global 

Burned Area Products 

This work was originally published in Michael L. Humber, Luigi Boschetti, Louis Giglio & 

Christopher O. Justice (2019) Spatial and temporal intercomparison of four global burned 

area products, International Journal of Digital Earth, 12:4, 460-484, DOI: 

10.1080/17538947.2018.1433727. It is reproduced here with minor formatting modifications. 

 

Introduction 

The availability of well-calibrated, global remote sensing data since the late 

1990s has enabled the production of a variety of global, multiannual burned area 

products that are now freely available. These products, which are generally derived 

from sensors offering what is, by current standards, coarse spatial resolution (250 m - 

1 km), daily or near-daily temporal resolution, include the SPOT-Vegetation and 

PROBA-V Copernicus Burnt Area products (Tansey et al., 2008), the MODIS burned 

area products MCD45A1 (Roy et al., 2005) and MCD64A1 (Giglio et al., 2009), the 

MERIS Fire CCI products (Alonso-Canas and Chuvieco, 2015), the L3JRC (Tansey 

et al., 2008), GLOBCARBON (Plummer et al., 2006) product, and others (e.g. 

(Mouillot et al., 2014). 

Since the release of the first global burned area data sets, significant 

discrepancies in areal estimates and spatial patterns have been observed (Boschetti et 

al., 2004). Despite the continued development and recent proliferation of such 

products, significant differences persist between them. While the global burned area 

totals for each product show comparatively good agreement, significant discrepancies 

with respect to the location and timing of fire activity are apparent at smaller spatial 

and/or temporal scales. For example, (Alonso-Canas and Chuvieco, 2015) found that 
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the GFED4, MCD45A1, and Fire CCI products identified total global burned area 

within 10% of one another for the years 2006 through 2008, though the analysis did 

not take finer spatial or temporal scales into consideration. (Giglio et al., 2010) 

showed that although five contemporaneous burned area data sets (GFED2, GFED3, 

MCD45A1, L3JRC, and GLOBCARBON) reported similar global annual burned area 

totals, the monthly area burned within fourteen sub-continental regions exhibited 

substantial differences in magnitude and temporal patterns (Giglio et al., 2010). These 

findings suggest that burned area products still have significantly different 

performance in space and time, and support the case for a systematic investigation of 

such differences. 

The standard procedure for the validation of burned area products consists of 

the comparison with independent, co-located reference data generated from two or 

more consecutive Landsat class (10-30 m spatial resolution) images. The independent 

reference data should have minimal error, and should be generated either by visual 

interpretation (Roy, Frost, et al., 2005; Giglio et al., 2009; Roy and Boschetti, 2009) 

or by application of a semiautomatic algorithm followed by visual checking and 

manual refinement (Boschetti et al., 2006; Padilla, Stehman and Chuvieco, 2014; 

Padilla et al., 2015). Such efforts are expensive, time-consuming, and constrained by 

the availability of cloud-free images; for this reason, validation studies have relied on 

a very limited quantity of reference data, typically up to one hundred Landsat image 

pairs for the global validation of a yearly product. A study of six burned area products 

for the year 2008, using 30 m reference data generated from 102 Landsat image pairs, 

found that commission errors of all products were greater than or equal to 42% and 
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omission errors were greater than or equal to 68% (Padilla, Stehman and Chuvieco, 

2014). Similar results were found for the MCD45A1, L3JRC, and GLOBCARBON 

products in southern Africa using 11 Landsat image pairs (Roy and Boschetti, 2009). 

Such validation exercises can provide insight on the performance of burned 

area mapping algorithms over a range of different conditions, but these exercises rely 

on probability sampling methods to select a spatially and temporally random set of 

images in order to preserve the statistical validity of the accuracy estimators (Stehman 

and Czaplewski, 1998; Boschetti, Stehman and Roy, 2016). The limited set of 

reference data, which is typically very small relative to the population being 

estimated, is unlikely to capture all differences between products. In the absence of an 

extensive global, multi-temporal validation dataset involving a much larger number 

of reference data scenes, the intercomparison of products is a necessary step in order 

to characterize the relative performance of each product. Satellite product 

intercomparison is less costly than validation in terms of time and resources 

(Garrigues et al., 2008; D’Odorico et al., 2014) and provides systematic information 

about spatial and temporal patterns of agreement and disagreement. Such information 

can also provide insights as to the reasons for the differences between products 

(Boschetti et al., 2004; Chang and Song, 2009) and has been applied to burned area 

product intercomparisons in the past, e.g. (Sánchez, Heil and Chuvieco, 2014). As 

with map validation exercises, product intercomparison should be repeated as new 

sensors and algorithms become available in order to provide an up-to-date record of 

the relative performance of the data sets to end-users. 
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In this work, we propose a rigorous framework for the spatial and temporal 

comparison of global fire products, and we apply this framework to four available 

operational products: Copernicus Burnt Area, Fire CCI, MODIS MCD45A1, and 

MODIS MCD64A1. The intercomparison explicitly considers both the temporal and 

the spatial dimension of the products, by using a spatial and temporal analysis grid. 

The non-overlapping grid of Thiessen Scene Areas (Gallego, 2005; Kennedy, Yang 

and Cohen, 2010), generated from the Landsat World Reference System (WRS-2) 

scene centroids, is partitioned into monthly time intervals, to provide tri-dimensional 

analysis elements called voxels (a portmanteau word of ‘volume’ and ‘pixels’). The 

amount of burning within each voxel provides an indicator of the total area burned 

while comparison with MODIS active fire observations provides an independent 

indicator of the correctness of the timing of burned patches. The entire 2005-2011 

time period during which all the products are available is considered. 

Through this analysis, we aim to provide users of global burned area data 

useful information about the relative performance of the available products by 

identifying regions where the timing and magnitude of burning detected by the 

products vary. Additionally, the results of this intercomparison may be useful to 

algorithm developers for refining and improving the existing products by examining 

areas where a given product indicates different burning patterns. Finally, the types of 

discrepancies highlighted by this research can inform stratification strategies used in 

future validation efforts to ensure that the appropriate surface phenomena are 

captured by the reference data sets. 
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Data 

The majority of satellite-derived global fire data sets fall into two broad 

categories: burned area products and active fire products (Justice et al., 2002a). 

Among other applications, these products are used for fire management activities (e.g. 

Eidenshink et al., 2007; Davies et al., 2009), national monitoring systems (e.g. 

Boschetti et al., 2008; Leblon, Bourgeau-Chavez and San-Miguel-Ayanz, 2012), 

calculating fire emissions inventories (e.g. Barbosa, Stroppiana and Cardoso, 1999; 

Zhang et al., 2003; van der Werf et al., 2010; Giglio, Randerson and van der Werf, 

2013; Rossi et al., 2016), fire ecology and fire regime assessment (e.g. Archibald et 

al., 2010, 2013) and ecosystem modeling exercises (e.g. Yue et al., 2014, 2015). 

Further discussion of the applications of burned area products can be found in 

(Mouillot et al., 2014). 

Burned area products identify areas that have been affected by fire, detecting 

the change from a vegetated surface to a surface of char, ash, and bare soil (Roy, 

1999). Burned area mapping is essentially a non-permanent land cover change 

detection problem, and a variety of algorithms have been applied, leading to different 

results spatially and temporally. Burned area detection changes dramatically with 

scale due to the presence of mixed pixels (Boschetti, Flasse and Brivio, 2004). As a 

result, methods applied at coarse spatial resolution will not necessarily perform 

effectively at finer spatial resolutions (Hall et al., 2016). Due to the variety of 

approaches implemented in burned area algorithms, there is a large amount of spatial 

variability amongst burned area products (Figures 2.1, 2.2; Table 2.1). 
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Active fire products provide the location of all fires actively burning at the 

satellite overpass time. The short persistence of the signal of active fires means that 

active fire products are very sensitive to the daily dynamics of biomass burning and 

that in situations where the fire front moves quickly, there will be an under-sampling 

of fire dynamics. Based on the physical characteristics of the sensor, the 

characteristics of the fire and the algorithm used for the detection, active fires orders 

of magnitude smaller than the pixel size can be detected: as an example, for the 

MODIS active fire product, fires in temperate deciduous forest covering around 100 

m2 within the 1 km2 pixel have a 90% probability of detection (Giglio et al., 2003). 

Active fire data sets offer a direct indication of fire activity which are generated with 

low levels of commission error (Schroeder et al., 2008); for this reason, data sets such 

as the MODIS active fire product have been used to assess the temporal accuracy of 

burned area products (Boschetti et al., 2010; Giglio et al., 2010). In this study, the 

MODIS Global Monthly Fire Location Product, MCD14ML2, is used to provide an 

independent indication of the presence or absence of fire at given times of year and 

spatial locations. 

Global Burned Area Products 

Brief descriptions of the products selected for analysis are provided in the 

subsequent sections, with a tabular summary in Table 2.1. 

Copernicus Burnt Area Product 

 
2 http://modis-fire.umd.edu/af.html 
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The Copernicus Burnt Area products are generated under the European 

Commission’s Copernicus Global Land Service. The Burnt Area products are 

generated from two sensors and are available as three distinct products. Burned area 

products generated from the SPOT-Vegetation and Proba-V sensors are available 

from the Copernicus Global Land Service at 1 km resolution beginning with April 

1999A recently released 300 m product derived from Proba-V imagery, is available 

for the April 2014 to present. The Copernicus Burnt Area products identify burns by 

detecting sudden changes in a vegetation index. Individual 1 km pixels are grouped 

into 1° cells and flagged as burned if the value of the vegetation index is more than 

two standard deviations below the mean value throughout the historical time series 

for the grid cell (Tansey et al., 2008). The product is distributed in 10° by 10° tiles 

through the Copernicus Global Land Service data access portal3.  

Fire CCI Burned Area Product 

Based on acquisitions from the Medium Resolution Imaging Spectrometer 

(MERIS), on-board the ESA Envisat platform, the Fire CCI product is produced as a 

300 m pixel product and a 0.5° gridded product. Both are distributed in the geographic 

projection, with the pixel product available in six geographic windows4. At the time 

of writing, only the years 2005 to 2011 are publicly available. However, the goals of 

the Fire CCI project are to extend the archive from 2000 to 2017, with a spatial 

resolution of 250 m to 500 m for the pixel product and 0.25° for the gridded product. 

A two-phase algorithm, described in full in (Alonso-Canas and Chuvieco, 2015), is 

 
3 http://land.copernicus.eu/global 
4 https://geogra.uah.es/fire_cci/ 
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used to identify burned areas. First, MODIS active fire locations are used to identify 

seed pixels corresponding to high confidence burned areas. A region growing 

algorithm is then applied using the seed pixels selected in the first phase. These 

phases are applied to MERIS VEGETATION input data, which are distributed in 10° 

by 10° tiles. 

MODIS MCD45A1 Burned Area Product 

The MODIS Collection 5.1 Monthly Burned Area product, MCD45A1, is part 

of the suite of land monitoring products systematically generated from MODIS data 

(Justice, Giglio, et al., 2002; Justice, Townshend, et al., 2002). The product uses 500 

m input data from the MODIS sensors onboard both the Aqua and Terra satellite 

platforms and is available starting from April 2000, with the exception of June 2001 

which was not processed due to a sensor outage (Roy, Jin, et al., 2005). The 

algorithm uses a bidirectional reflectance distribution function (BRDF) model to 

identify burned areas. Following an inversion period of up to 16 days, the observed 

reflectance of MODIS band 2 (841–876 nm) and band 5 (1230–1250 nm) are 

compared to a predicted reflectance value based on the BRDF model inversion. A Z-

score for both bands is computed as a function of the predicted and observed 

reflectance values, which is used to identify potential burned areas (Roy, Frost, et al., 

2005; Roy, Jin, et al., 2005). The product is distributed by the USGS Land Process 

Distributed Active Archive Center (LP DAAC)5. 

MODIS MCD64A1 Burned Area Product 

 
5 https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd45a1 
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The MCD64A1 burned area mapping algorithm combines daily MODIS 

surface reflectance imagery with 1 km MODIS active fire data to map burning on a 

daily basis at 500 m spatial resolution. The algorithm applies dynamic thresholds to 

composite MODIS Terra and Aqua imagery generated from a burn-sensitive spectral 

band index derived from MODIS 1240 nm and 2130 nm Terra and Aqua bands, and a 

measure of temporal variability. Cumulative MODIS 1 km active fire detections are 

used to guide the selection of burned and unburned training samples and to guide the 

specification of prior burned and unburned probabilities (Giglio et al., 2009). The 

MCD64A1 product is also distributed by the USGS LP DAAC6. 

For this study, we used the Collection 5.1 MCD45A1 and Collection 6 

MCD64A1 burned area products. The Collection 6 MCD64A1 product detects 

significantly more burned area than the previous Collection 5.1 MCD45A1 and 

Collection 5.1 MCD64A1 products, with global area burned increasing by 

approximately 18.5% to 24.5% for the former, and by approximately 25% to 28.5% 

for the latter. While the Collection 6 product has superseded the Collection 5.1 

product, both are included to examine the spatial and temporal manifestations of the 

difference in algorithm performance which may have significant impacts on existing 

user applications. 

MODIS MCD14ML Active Fire Product 

We used the MODIS Collection 5 MCD14ML global monthly fire location 

product, which provides the geographic location, date, and additional information for 

 
6 https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd64a1_v006 
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each 1 km fire pixel detected by the Terra and Aqua MODIS sensors on a monthly 

basis. Fires that are actively burning at the time of the satellite overpass (and under 

relatively cloud-free conditions) are detected using the contextual algorithm described 

by (Giglio et al., 2003). The MODIS Active Fire Product has been validated against 

coincident high-resolution ASTER data (Morisette et al., 2005; Csiszar, Morisette 

and Giglio, 2006; Giglio et al., 2008; Schroeder et al., 2008; Giglio, Schroeder and 

Justice, 2016) as well as several other studies (e.g. de Klerk, 2008; Hawbaker et al., 

2008). 

Table 2.1. Overview of burned area products selected for intercomparison (* grid size 

at Equator) 

Producer Product Sensor Grid Size Projection Layer 

European 

Commission 
Copernicus 

Burnt Area 
SPOT-

VGT 
1000 m* 

Geographic “FDOB_DEKAD” 

European Space     

Agency 
Fire CCI MERIS 300 m* 

Geographic 1 (“Date of first 

Detection”) 

NASA MODIS 

Land Science 

Team 

MCD45A1 MODIS 463.3 m Sinusoidal “Burndate” 

NASA MODIS 

Land Science 

Team 

MCD64A1 MODIS 463.3 m Sinusoidal “Burn Date” 

Methods 

Comparison Grid 

Previous works which consider burned area products at yearly and 

subcontinental to global scales suffer from two limitations with regard to scale of 

analysis: generally, the spatial unit for analysis is too large to identify differences in 

the location of burn identifications (e.g. Boschetti et al., 2004), and the temporal unit 

for analysis is too long to capture inconsistencies in the timing of burn identifications 
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(e.g. Giglio et al., 2010). To address these issues, we implement a comparison grid of 

finer resolution both temporally and spatially through the use of the voxels described 

in the proceeding sections. 

Spatial Analysis Grid 

Burning is reported by Thiessen Scene Area (TSA) polygon. The TSA is a 

tessellation of the Landsat World Reference System-2 (WRS-2) acquisition scheme 

which assigns each location on the Earth’s surface to one WRS path/row combination 

(Gallego, 2005; Kennedy, Yang and Cohen, 2010). Overlapping path and row areas 

are therefore eliminated. TSA’s have been used previously as the spatial sampling 

unit for burned area product validation (Padilla, Stehman and Chuvieco, 2014; 

Boschetti, Stehman and Roy, 2016). 

 

Figure 2.1. GFED fire regions with Thiessen Scene Area (TSA) polygons superimposed. 

Results are also aggregated to fourteen large regions, herein referred to as fire 

regions, defined in the Global Fire Emissions Database (GFED) (Giglio et al., 2006; 

van der Werf et al., 2006). These regions are characterized by similarities in their 

climate and fire regime attributes and are suitable for emissions studies (van der Werf 

et al., 2010) and fire activity reporting (Boschetti and Roy, 2008; Giglio et al., 2010; 
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Giglio, Randerson and van der Werf, 2013). The larger scale of the fire regions 

relative to the TSA polygons enables analysis of trends that manifest at the larger 

regional scale (Figure 2.1). 

Temporal Comparison Grid 

Several previous burned area product intercomparisons report burning as a 

yearly total, which has the undesirable effect of obscuring the temporal 

inconsistencies in the products. However, the compositing periods of the selected 

burned area products are dekadal (Copernicus Burnt Area) or monthly (Fire CCI, 

MODIS MCD45A1, MODIS MCD64A1), allowing for a higher temporal resolution 

in this study. By dividing the world into a set of TSA tiles geographically and 

temporally in fixed intervals, a voxel concept is used to assign each burned pixel to a 

TSA polygon in space and time (Boschetti, Stehman and Roy, 2016). Two temporal 

grids are used in this study: a finer monthly grid and a quarterly grid used to highlight 

seasonal patterns. 

Data Preprocessing 

For each burned area product, all burned grid cells are assigned to a 

corresponding TSA voxel based on their spatial location and product’s day of 

burning. For the Fire CCI and Copernicus Burnt Area products, which are distributed 

in the geographic projection, determining the burned area for each TSA polygon in a 

geographic projection requires special consideration for the effect of latitude. To 

compensate for the variation in cell size, the contribution of each cell was adjusted 

using a cosine weighting factor and assuming an Earth radius of 6371 km. 
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The MCD45A1 and MCD64A1 products are generated in the equal-area 

sinusoidal projection, thus the total burned area is simply the number of burned grid 

cells multiplied by the cell area (21.46 ha). These values were recorded for each TSA 

tile in the overlapping product coverage for each month throughout the 2005 to 2011 

study period. 

We elected to process the amount of area burned per TSA polygon in the 

native pixel size, adjusting for the effects of latitude as necessary i.e. for the products 

distributed in the geographic projection. We acknowledge that small errors may be 

introduced along the edges of the polygons, however, this decision reduces the error 

propagated by resampling and projecting the data from its original format. 

For analysis purposes, each TSA polygon is also associated with a fire region 

if its centroid is contained by the region. Each dataset is therefore summarized on a 

per-voxel basis and associated with a fire region as appropriate for the seven-year 

study period. 

Data Analysis 

Burned Area Totals 

The simplest indicator of burned area algorithm performance is the burned 

area total per month and per year. Although summaries of burning are generally not 

sufficient for assessing performance, such summaries are useful for identifying trends 

from year-to-year. The annual burned area totals were calculated globally and for 

each fire region over the seven-year study period on a monthly and yearly basis. 
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Scatterplots 

The relative amount of burning for each product is summarized at a finer 

temporal resolution (monthly and quarterly) by scatterplots of the TSA tiles 

overlapping the fire region. Scatterplots are generated to compare two products at a 

time in four different cases: global yearly burning totals, global monthly burning 

totals, region-specific yearly burning totals, and region-specific monthly burning 

totals. 

A total least squares (TLS) regression is calculated for each scatterplot as well 

as the root mean square error (RMSE). TLS regression models are appropriate for 

product intercomparison because the model assumes no dependency of the variables, 

thus the result of the regression does not depend on the arbitrary choice of axis 

assignment. The slope of the regression line is an indication of the relative burned 

area identification bias of two products. The RMSE of the distribution is used as an 

indicator of the dispersion of the burned area proportions, or the tendency of the 

classifiers to identify the same amount of burned area across voxels. 

Both the TLS regression slope (and offset) and RMSE are necessary to 

determine if there is a bias between products and the degree to which burn detections 

are co-located. Based on the interrogation of the scatter plots, individual Landsat 

scenes can be selected for further investigation, particularly for scenes where one 

product identifies a large amount of burning and the other identifies very little. 

Temporal Heat Maps 

Active fire detections are known to have very low commission errors 

(Schroeder et al., 2008; Giglio, Schroeder and Justice, 2016), hence they are an 
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independent indicator of the presence of fire activity in a given region at a given time, 

and can be used as a qualitative evaluation of the time of burning, independent of the 

intercomparison between burned area products (e.g. Boschetti et al., 2010). MODIS 

active fire counts were aggregated according to the same voxel scheme described 

above; for each month and fire region, a heat map is calculated indicating the burned 

area identified by each product compared to the number of active fire detections. Heat 

maps can be used to identify whether burn detections are temporally coincident with 

active fire detections throughout the entire time series. 

Results 

The results of our intercomparison are presented in the following subsections. Due to 

the scale of this study in terms of the number of products analyzed and the length of 

the time series, it is not possible to reproduce all of the results here. Rather, in 

addition to summary results for the entire study period, we consider 2006 as an 

example year for a more detailed comparison of the products, which provides 

examples of significant fire activity in Eastern Europe and Southeast Asia as well as 

typical fire activity in high-burning regions such as Africa and Australia. The 

systematic processing of the products should yield consistent results from year to 

year. Comparisons between products are made with respect to the MCD64A1 product 

because it is the most recently updated product generated operationally. The results 

for all years are made available in the supplementary materials.  
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Overview 

The total annual burned area detected globally and for each fire region by the 

four global burned area products is reported in Figure 2.4. In every year, the 

Copernicus Burnt Area product detected the least total amount of burned area while 

the Collection 6 MCD64A1 product detected the most. Summary statistics for each 

product are reported in Figure 2.2. 

Overall, MCD64A1 detects the most total burned area throughout the study 

period, exceeding the totals detected by Copernicus, Fire CCI, and MCD45A1 by 

approximately 90%, 25%, and 21%, respectively. Conversely, the Copernicus Burnt 

Area Product detects the least amount of burned area throughout the study period, 

trailing the estimated burned area from Fire CCI, MCD45A1, and MCD64A1 by 

approximately 52%, 56%, and 90%, respectively. The total burned area detected by 

Fire CCI and MCD45A1 is similar (within 2% global burned area), however, this 

does not capture the significant differences in the spatial location of the burn 

identifications. Yearly global burned area totals shown in Figure 2.3 indicate that the 

Fire CCI, MCD45A1, and MCD64A1 products do not demonstrate a robust trend in 

burned area throughout the seven-year study period. On the other hand, the 

Copernicus Burnt Area product detects noticeably less burned area through time. 
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Figure 2.2. Yearly burned area totals (km2) per fire region and globally. Bar plot size is normalized to the 

maximum of the fire region across all products and all years. 

Concerning individual fire regions, the Copernicus Burnt Area product shows 

evident and significant discrepancies from the other products. Specifically, it 

identified significantly less burned area in the regions which contribute most to the 

global burned area total i.e. Southern- and Northern-Hemisphere Africa (SHAF, 

NHAF), while detecting significantly more burned area than the other products in 

zones such as Boreal Asia (BOAS), Boreal North America (BONA), Temperate 

North America (TENA), Europe (EURO) and the Middle East (MIDE) which, 

according to the other three burned area products as well as previous studies, do not 

contribute significantly to global burned area totals. 
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Figure 2.3. Total burned area identified per year by each product. 

The magnitude of these differences is illustrated in Figure 2.4, which 

illustrates, per fire region, the proportion of total burning detected by each product 

normalized to the region’s maximum. Noteworthy outliers for the Fire CCI product 

include Equatorial Asia (EQAS) and Northern Hemisphere South America (NHSA). 

The Copernicus product identifies more burning than the other three products 

combined in four regions: TENA, BONA, EURO, and MIDE. 

 

Figure 2.4. Percent of burned area detected per fire region, normalized to the maximum amount of burned area 

identified by any product in the respective fire region (2005 - 2011). 

While the magnitude of the burning detected is an important indicator of a 

product’s performance, it is equally important to consider the temporal aspect of 

burning. The time of burning is captured in Figure 2.5 and Figure 2.6, which 

compares the burned area detected in a calendar month by the four products to the 
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MCD14ML Active Fire product, which is known to be a good indicator of the timing 

of the burning season. For most fire regions, the Fire CCI, MCD45A1, and 

MCD64A1 products show strong agreement with the temporal pattern of the 

MCD14ML detections. However, the Copernicus Burnt Area product shows temporal 

patterns, unlike the other three products. In particular, regions which show high 

seasonal variability such as Temperate North America (TENA), Central America 

(CEAM), and Europe (EURO) appear to be out of phase, which is to say the burning 

identified by the Copernicus Burnt Area algorithm corresponds to times when there 

are few or no coinciding active fire detections. In regions characterized by strong fire 

signals, such as the Southern Hemisphere Africa (SHAF) and Northern Hemisphere 

Africa (NHAF), there is strong agreement amongst all products with regard to timing, 

however, there are variations in the magnitude of burning. It is also noteworthy that 

for Equatorial Asia (EQAS), a region characterized by extensive cloud cover for 

much of the year, only those algorithms that use active fire detections as an input, 

Fire CCI and MCD64A1, identify any appreciable amount of burning.  
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Figure 2.5. Comparison of the timing of active fire detections with burned area detections (Australia - Europe). 
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Figure 2.6. Comparison of the timing of active fire detections with burned area detections (Middle East - 

Temperate North America). 
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These results demonstrate that the burned area products have large variations 

spatially and temporally, even though similar burned area totals may be reported by 

the different products, as is particularly the case for Fire CCI and MCD45A1.  

The following sub-sections will focus on some specific discrepancies between 

products, highlighting some of the differences in spatial and temporal burning 

patterns. These analyses are focused on 2006, which was chosen due to the presence 

of notable fire activity in Eastern Europe and Southeast Asia, in addition to typical 

fire activity in high-burning regions such as Africa and Australia.  

Fire CCI and MCD64A1 Comparison 

As shown in Figure 2.2, in 2006 the MCD64A1 product detects more burned 

area than the Fire CCI in every fire region except EURO. Globally, MCD64A1 

identified 919,241 km2 burned area more than Fire CCI, though most of this 

difference – about 77% – can be attributed to the four regions which burned the most: 

AUST, CEAS, NHAF, and SHAF. Across all fire regions, the temporal patterns of 

Fire CCI and MCD64A1 are generally in agreement with the MCD14ML Active Fire 

detections (Figure 2.5, Figure 2.6). Interestingly, in some cases, the Fire CCI 

detections appear to identify longer burning periods than the MCD64A1 detections by 

a month for regions which do not experience large amounts of burning such as 

EURO, EQAS, and CEAM, though this is generally not the case in 2006 (Figure 2.5, 

Figure 2.6). 

Regarding the difference in burned area detected per TSA polygon, there are 

some spatial manifestations of the classifier tendencies. The results from 2006 are 

illustrated in Figure 2.7. TSA’s where MCD64A1 identifies greater burned area than 
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Fire CCI are more prevalent, as is to be expected given the tendency of the former to 

identify more area as burned throughout the study period. However, there is spatial 

clustering of occurrences where the Fire CCI product identifies more burned area that 

tends to be consistent from year-to-year.   

 
Figure 2.7. Maximum differenced burned area totals per TSA for 2006 between MCD64A1 and Fire CCI. Each 

cell indicates the greatest difference between concurrent months in the year, with darker blue indicating higher 

Fire CCI totals and darker red indicating higher MCD64A1 totals. 

The four TSA points highlighted in Figure 2.8 represent the four instances 

where the Fire CCI product detects more than 2000 km2 burned area than the 

corresponding MCD64A1 result.  Each belongs to the Eastern Europe burning event 

within Novosibirsk Oblast, Russia described in (Chuvieco et al., 2016), who claim 

that the Fire CCI product correctly detected this burning event while GFED4 (i.e. 

MCD64A1 Collection 5.1) missed the burns in their entirety. Using the spatial and 

temporal comparison grid described previously, we investigate this event to 

determine whether the Collection 6 MCD64A1 product is able to capture this event as 

well as verify the Fire CCI ability to correctly identify the burning episode.  
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Figure 2.8. Scatterplot for Boreal Asia (BOAS) in May 2006 illustrating burned area detected per TSA polygon 

for Fire CCI and MCD64A1. The four circled points represent the largest difference in burned area detected 

between Fire CCI and MCD64A1 and coincide with the burning events described in Chuvieco et al. (2016). 

The corresponding Landsat scenes and coarse-resolution burned area 

detections are shown in Figure 2.9. This evidence corroborates the claim that the Fire 

CCI product identifies the burning episode while MCD64A1 continues to mostly omit 

it in the Collection 6 version of the product. 
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Figure 2.9. Comparison of Eastern Europe burning episode, May 2006. Top: Best available Landsat imagery, 

from left to right - Path 152 Row 21 (Landsat 5, May 12, 2006); Path 151 Row 21 (Landsat 7, June 6, 2006); Path 

150 Row 21 (Landsat 7, May 30, 2006) with SWIR1-NIR-SWIR2 composite. Middle: Fire CCI burned area for 

May 2006. Bottom: MCD64A1 burned area for May 2006. 
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In addition to this, we investigate a particularly heterogeneous area in the 

Northern Hemisphere Africa which is characterized by large differences in the 

reported burned area. By comparing the values from the TSA scatterplot in Figure 

2.10, it is clear that while there is relatively little bias (indicated by the slope of the 

TLS regression) between the estimates from the two products in January 2006 for 

NHAF, there are noteworthy cases where one product detects much more burned area 

than the other. At the fire region scale, these commissions and omissions balance one 

another, causing the TLS regression to show a near one-to-one correspondence, 

indicating low bias in the estimate for the fire region. However, the lack of bias in the 

regression model is not necessarily indicative of agreement between the two products. 

As shown in the same figure, the regression value is similar to that of the MCD45A1 

and MCD64A1 comparison for the same voxel, however, the lower RMSE indicates 

that there is generally better spatial agreement between the products and the 

likelihood of overlap within voxels is greater.  

 

Figure 2.10. Scatterplots for Northern Hemisphere Africa (NHAF) in January 2006 illustrating burned area 

detected per TSA polygon for Fire CCI (left) / MCD45A1 (right) and MCD64A1. Note that while the slope is 

similar, the RMSE is much greater for the CCI plot. 
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From inspection at the native resolution, it is clear that the Fire CCI product 

suffers from the presence of large artifacts that coincide with the edges of processing 

tiles. The artifacts lead to large swaths of burning occurring during a single day of the 

year and dominate the majority of the overlapping TSA, as illustrated in Figure 2.11.  

 
Figure 2.11. Example of artifacts introduced by the region growing procedure in the Fire CCI product. Western 

portion of NHAFR, January 2006. 
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Copernicus Burnt Area and MCD64A1 Comparison 

The Copernicus Burnt Area shows little relationship to the other burned area products 

both spatially and temporally. On a global and annual basis, the product detects the 

least amount of burned area by a significant amount (Figure 2.2) and as previously 

mentioned, generally detected less burned area in successive years throughout the 

study period. In 2006, the Copernicus areal estimates were similar to the other three 

products for CEAS, NHSA, and SHSA while in the remaining ten fire regions the 

Copernicus product detects either more than twice as much burning as the other 

products or less than half of the other products (Figure 2.2).  

 
Figure 2.12. Maximum differenced burned area totals per TSA for 2006, MCD64A1 and Copernicus Burnt Area. 

Each cell indicates the greatest difference between concurrent months in the year, with darker blue indicating 

higher Copernicus Burnt Area totals and darker red indicating higher MCD64A1 totals. 

The timing of these burns also tends not to coincide with MCD14ML 

detections throughout the year, with some extreme cases, such as CEAM, EURO, 

MIDE, and TENA indicating that burning is out of phase with the active fire 

detections, i.e. the burned area product indicates burning when there is no burning 

and vice versa (Figure 2.5, Figure 2.6).  

As shown in Figure 2.12, the Copernicus product identifies small amounts of 

burning in most TSA’s globally. Relative to MCD64A1, this results in lower levels of 
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burning identified in greater burning regions but higher levels of burning identified in 

lesser burning regions. In the high northern latitude regions, BONA and BOAS, the 

Copernicus product detects large amounts of burning in August and September for the 

former region and September for the latter. While both regions still exhibit a small 

degree of burning in August (Giglio, Randerson and van der Werf, 2013), September 

is well beyond the peak of fire activity in these areas. Given the design of the 

algorithm and the timing of the detections, it is possible that the identifications are 

false positives resulting from slight variations in the rapid decrease in NDVI due to 

leaf senescence and abscission.  The spatial extent of the burn classifications in 

eastern Russia can be seen in Figure 2.13 (the areas identified in western CEAS by 

both products is a wheat-producing region where agricultural residue burning is a 

common practice during this time of the year).  
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Figure 2.13. Burned area identifications for Copernicus (top) and MCD64A1 (bottom) in September 2006 for 

BOAS and CEAS, aggregated to 6 km grid cell (maximum value aggregation). 

In Australia, which contributes significantly to global burned area totals, the 

out-of-phase burn identifications shown in Figure 2.5 are corroborated by Figure 2.14 

and Figure 2.15. Noting that the majority of fire activity in AUST occurs between 

August and December, while very little fire activity occurs between January and July 

(Giglio, Randerson and van der Werf, 2013), the small amounts of fire detected in 

June can generally be attributed to commission errors while the extent of burning 

observed in November is much lower for the Copernicus Burnt Area product than the 

MCD64A1 product. With respect to the expected duration of the 2006 fire season, 

MCD64A1 identified approximately 68,448 km2 area burned between January and 
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July and 508,781 km2 area burned between August and December while Copernicus 

identified approximately 124,238 km2 and 81,040 km2, respectively. 

 
Figure 2.14. Scatterplot of burned area per TSA in AUST, June (left) and November (right) 2006.  Copernicus (y-

axis) detects less burning per TSA but, in June, more TSA's with burning. 

 
Figure 2.15. Burned area identifications for Copernicus (top) and MCD64A1 (bottom) in June (left) and 

November (right) 2006 for AUST, aggregation to 6 km grid cell (maximum value). 
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MCD45A1 and MCD64A1 Comparison 

Consistent with other years, for 2006 MCD45A1 detected more burning than 

Copernicus Burnt Area, a similar amount of burning compared to Fire CCI, and less 

burning than MCD64A1. Also like Fire CCI, the timing of the burn detections agrees 

with MCD14ML, though the pattern is slightly more consistent with the active fire 

detections.  

 
Figure 2.16. Maximum differenced burned area totals per TSA for 2006, MCD64A1 and MCD45A1. Each cell 

indicates the greatest difference between concurrent months in the year, with darker blue indicating higher 

MCD45A1 totals and darker red indicating higher MCD64A1 totals. 

In eleven of the fourteen fire regions, MCD45A1 identifies less area as burned 

than MCD64A1, the exceptions being EURO, MIDE, and TENA. The spatial 

distribution of differences between MCD45A1 and MCD64A1 is similar to that of 

Fire CCI and MCD64A1. In 2006, the differences in SHAF are similar in location, 

albeit smaller in magnitude, to the Fire CCI differences (Figure 2.16). This is evident 

in the scatterplots (Figure 2.17), which show that while there are differences in the 

burned area detected per TSA, the RMSE of these errors during the burning season 

tends to be smaller for MCD45A1 and MCD64A1 than for Fire CCI and MCD64A1.  
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Figure 2.17. Example scatterplots of global TSA Burned Area totals for MCD64A1 vs. MCD45A1 (left) and Fire 

CCI (right). While the TLS regression slopes are similar, the RMSE of the global distribution is greater for Fire 

CCI. 

There are instances where MCD45A1 differs greatly from MCD64A1. For the 

2006 focus period, there is a notable presence of burned area detected in the southern 

portion of Western Australia which is detected by MCD45A1 and not MCD64A1. 

This detection in January coincides with the location of wheat in the province and is 

likely due to harvest, not burning. This is supported by Figure 2.18, which shows no 

coinciding active fire detections in the area labeled as burned. This is also evident in 

the scatterplot which shows large amounts of burning detected by MCD45A1 

corresponding no active fire detections. This type of commission error was observed 

again in December 2007 in the same region. 
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Figure 2.18. AUST Jan 2006. (Left) Scatterplot of MCD45A1 Burned Area per TSA vs MCD14ML Active Fire 

count per TSA; note the burned area totals associated with no active fire detections. (Right) Map of MCD45A1 

burn identifications and MCD14ML active fire detections. 

Fires observed in Kalimantan, Indonesia (EQAS) in October 2006 went 

undetected or grossly underestimated by MCD45A1, Fire CCI, and Copernicus Burnt 

Area, likely due to persistent cloud cover in the region resulting from the start of the 

rainy season. Using the voxel scheme, we observe that the majority of the burning 

occurred in only two TSA’s during the burning episode. While MCD64A1 was able 

to some of the burned area, MCD45A1 identified only a few isolated pixels as burned 

(Figure 2.19). This result is in keeping with the results throughout the entire study 

period for the four burned area products tested in this intercomparison, MCD45A1 

classifies the least amount of burning in EQAS every year while MCD64A1 classifies 

the most amount of burning in EQAS for the majority of years.  This pattern is also 

observed in CEAM, which shares similar climate and cloud cover traits with EQAS, 

indicating that the MCD64A1 algorithm is more robust with respect to cloud cover 

than the MCD45A1 algorithm which requires more clear observations during the 

inversion period in order to identify an area as burned.  
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Figure 2.19. October 2006 EQAS fires in southern Kalimantan, Indonesia. MCD45A1 (top) and MCD64A1 

(bottom) detections overlaid on Landsat 5 scenes path/row 118/062 (Oct 29, 2006; right) and 119/062 (Nov 5, 

2006; left) with SWIR1-NIR-SWIR2 composite. 

Discussion and Conclusions 

In this paper, through systematic intercomparison of four global burned area products, 

we have identified spatial and temporal similarities and differences in burned area 

detections between 2005 and 2011. The products - Copernicus Burnt Area, Fire CCI, 

MODIS Collection 5.1 MCD45A1, and MODIS Collection 6 MCD64A1 - are based 

on coarse spatial resolution (~300 m grid cell or larger) and high temporal resolution 
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(3 days or less revisit time) satellite data and are generated globally and 

systematically. The intercomparison procedure exploits a voxel concept to create an 

intercomparison grid, defined spatially by the Landsat Thiessen Scene Areas or 

TSA’s (Gallego, 2005; Kennedy, Yang and Cohen, 2010), and temporally by calendar 

months. On a broader scale, fire regions are also used in order to better compare 

burning patterns under similar conditions (Giglio et al., 2006; van der Werf et al., 

2006). While we focus on specific cases in 2006 for the analysis, all results are 

included in the supplemental material and the conclusions drawn can generally be 

applied to all years throughout the study period.  

Global burning totals show that for each calendar year, MCD64A1 detected 

the most total burned area while Copernicus Burnt Area detected the least total 

burned area. The Fire CCI and MCD45A1 algorithms detected similar amounts of 

burned area each year throughout the study period, consistent with the results 

described by (Alonso-Canas and Chuvieco, 2015). The MODIS Collection 6 

MCD64A1 dataset identifies over twenty-five percent more burning per year than its 

predecessor during the study period. 

While Fire CCI, MCD45A1, and MCD64A1 showed similar patterns in yearly 

global total burned area detected per year, Copernicus Burnt Area detected 

progressively less burned area from 2005 to 2010, with only a slight increase in 2011 

and smaller than the 2010-2011 increase identified by the other classifiers. At the 

time of writing, we are not aware of any systematic drift in the calibration of SPOT-

Vegetation, pointing to a reduced sensitivity of the algorithm over time, possibly due 

to the algorithms use of a running vegetation index-based time series, which 
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introduces eccentricity into the time series as the dataset expands, requiring the 

algorithm to exceed a greater threshold in order to identify a pixel as burned. 

The classifier tendencies diverge at the fire region level. In spite of identifying 

the least burned area globally, Copernicus Burnt Area identifies the most burned area 

in seven of the fourteen fire regions. However, these regions are typically responsible 

for relatively small contributions to the global burned area. For six of the remaining 

seven fire regions, MCD64A1 identified the most burned area over the seven-year 

study period. In persistently cloudy regions such as EQAS and NHSA, the long (16-

day) inversion period required by MCD45A1 often results in burn omissions due to 

insufficient data resulting from cloud cover or aerosol content. In line with 

expectations, Fire CCI and MCD64A1 identify the most burned area in cloudy 

regions due to their reliance on active fire detections as training data samples.  

Comparison with the MCD14ML Active Fire dataset indicates that while the 

burn timing of Fire CCI, MCD45A1, and MCD64A1 is similar to the pattern of active 

fire activity, the Copernicus Burnt Area is apt to detect burned areas outside of the 

normal burning cycle, with extreme examples in temperate climates such as EURO 

and TENA where the Copernicus detections are out of phase with the cycle of active 

fire detections. The consistency of these cycles at the fire region level combined with 

the algorithm’s reliance on vegetation indices suggests that the Copernicus Burnt 

Area detections are related to the natural yearly growth and senescence cycles of the 

vegetation in the respective region. The timing of burning is important when 

considering fire cycles in modeling exercises because the spread of fire is known to 

be constrained by, amongst other factors, fuel (i.e. biomass) availability while the 
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emissions from burning are a factor of the biomass consumed.  Errors in the timing of 

fire detection can have large effects on the biomass emissions estimates due to 

seasonal variations in precipitation and temperature which act as controls on fuel 

availability, combustion type (i.e. smoldering vs. flaming) and combustion 

completeness (Korontzi, Justice and Scholes, 2003; van Leeuwen and van der Werf, 

2011). 

Given that the use of the data sets often occurs at the local, national and 

regional scales (e.g. der Werf et al., 2009; Leblon, Bourgeau-Chavez and San-

Miguel-Ayanz, 2012; Loboda et al., 2012; Rucker and Tiemann, 2012; Rossi et al., 

2016), it is important to generate products that exhibit reliable location, timing, and 

extent of burning. Intercomparison is, therefore, an important and practical tool for 

characterizing the relative performance of global burned area products in this regard 

as it allows for wall-to-wall coverage of the entire time series which is impractical, if 

not impossible to achieve, with current validation practices and protocols. As a result, 

it is able to capture burning events which are acute and anomalous which would 

otherwise be unlikely to appear in a random sample, such as the 2006 examples 

presented for Kalimantan, Indonesia (EQAS, October 2006) and Novosibirsk Oblast, 

Russia (BONA, May 2006).  

Nonetheless, product intercomparison implicitly assumes that, as a whole, the 

products being compared provide a reasonable approximation of the conditions on the 

ground. For example, if all products omit burning in a region then there is no basis for 

investigating that region on a data-driven a posteriori basis. Intercomparison should, 

therefore, be recognized as an important tool in product evaluation that is 
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complementary to, rather than a replacement for, product validation. In this context, 

the recent study by (Boschetti, Stehman and Roy, 2016) provides some guidelines on 

procedures for validation of global burned area products.  

Given the results of this intercomparison, which demonstrates that the four 

burned area products do not achieve a consensus on burn locations or timing, there is 

a clear need for standardization of satellite-derived burned area products and the 

reporting of their accuracies. Developing a comprehensive burned area validation 

data set to assess consistently the accuracy of multiple global products would be an 

important next step towards helping users assess which product is most appropriate 

for their application. In the meantime, users of any burned area product should take 

care to understand the nature of commission and omission errors of the product with 

regard to geographic location, timing of the burning season, and total amount of 

burning.  

Future efforts based on this work and upcoming systematic validation 

exercises such as those described in (Boschetti, Stehman and Roy, 2016) and (Padilla 

et al., 2017) focus on identifying sources of errors in publically available burned area 

products. While it is outside of the scope of the present work, understanding the 

source of these errors can be an important factor in users’ selection of burned area 

products for input to other research efforts. 
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Supplemental material 

The supplemental material provided contains a combination of all scatterplots 

described in this manuscript. The self-describing zip files contain charts for burned 

area aggregated globally and at the fire region level, where the unit for analysis is the 

Thiessen Scene Area (TSA) for the respective time period. Time periods consist of 

yearly, quarterly (Jan-Mar, Apr-Jun, July-Sep, Oct-Dec), and monthly windows. This 

archive is available from the original publisher, Taylor and Francis International 

Journal of Digital Earth, DOI: 10.1080/17538947.2018.1433727 
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Chapter 3 – Assessing the Shape Accuracy of Coarse-resolution 

Burned Area Classifications  

This work has been accepted for publication in IEEE Transactions on Geoscience and 

Remote Sensing: Michael L. Humber, Luigi Boschetti & Louis Giglio (Accepted) Assessing 

the shape accuracy of coarse-resolution burned area identifications, IEEE Transactions on 

Geoscience and Remote Sensing  

Introduction 

Wildfires are an important natural process which have widespread effects on 

human health, property, ecology, land cover, emissions, and more (Bowman et al., 

2009). While the fire activity over the last millennium can be modeled effectively 

using climatological variables until the Industrial Revolution, increased pressure from 

the growing human population around the 1900’s altered global fire patterns via 

anthropogenic suppression and ignitions (Pechony and Shindell, 2010). This change 

is not limited to solely the number of fires and amount of burned area: recent studies 

have shown that fire size, and as a corollary, shape, are influenced by human activity 

as well (Hantson et al., 2015; Hantson, Pueyo and Chuvieco, 2015).  

From a remote sensing perspective, understanding and mapping the burned 

area has received more attention in the past than understanding the size and shape of 

individual fires. In fact, current methods used for identifying individual fires from 

coarse-resolution satellite data requires extracting those fires from existing burned 

area maps (Archibald and Roy, 2009; Archibald et al., 2013; Hantson et al., 2015; 

Hantson, Pueyo and Chuvieco, 2015; Oom et al., 2016; Andela et al., 2018). 

However, the shape and size of individual fires is an important topic with regard to 

ecology and fire succession, landscape management, and determining other fire 
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properties such as the spread rate. As a basic example, the length of the fire front 

impacts the ability of fauna to escape the flames (Whelan, 1995). The post-fire 

succession can be influenced by the shape of the burn as well as by the patchiness of 

the burned area mosaic which can favor certain plant or animal traits by changing the 

amount of fringe habitat and the openness of the canopy (Fuller, 1991; Whelan, 

1995). Fire size is also related to management practices – heterogeneous landscapes 

create fuel breaks which can limit the spread of fire across the surface (Ager, Vaillant 

and Finney, 2010; Moreira et al., 2011). Lastly, in image processing workflows such 

as those presented in (Frantz et al., 2016; Nogueira et al., 2017; Andela et al., 2018), 

individual fires are identified for the purpose of extracting other metrics such as the 

fire spread rate, which are inherently linked to the shape and size of the fire.  

Several programs exist with the goal of providing satellite products to be used 

for operationally monitoring – spatially and temporally – global wildfire activity. 

Such products can be broadly categorized as active fire products (representing 

locations actively burning on the Earth’s surface at the time of the sensor overpass) 

and burned area products (representing the post-fire affected area as determined by 

the removal of vegetation, exposure of soil and presence of charcoal and ashes). Two 

decades of mapping efforts have produced a number of global coarse spatial 

resolution (e.g. 250m to 1km pixel size) burned area products, including MCD45A1, 

MCD64A1, Copernicus Burnt Area, Fire CCI, and others (respectively, Roy et al., 

2005; Tansey et al., 2008; Mouillot et al., 2014; Alonso-Canas and Chuvieco, 2015; 

Giglio et al., 2018). These products have used input from a variety of sensors 

including MODIS, SPOT-VEGETATION, PROBA-V, and MERIS. The extent and 
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timing of burning is an essential parameter in fire emissions calculations performed 

with the conventional bottom-up approach (Seiler and Crutzen, 1980), and the need 

for consistent estimates of greenhouse gas emissions was one of the main drivers of 

the development of global satellite fire monitoring products (Descloitres et al., 2002). 

Quality assessment of coarse-resolution burned area products is needed to 

provide data users with necessary information about the suitability of the products for 

specific applications, and has taken many forms such as intercomparison with other 

coarse-resolution burned area or active fire products (Boschetti et al., 2004; Roy et 

al., 2008; Boschetti et al., 2010; Giglio et al., 2010; Michael L. Humber et al., 2019) 

or comparison with a sample of higher resolution, independently derived reference 

burned area maps (Boschetti et al., 2019; Roy and Boschetti, 2009; Padilla, Stehman 

and Chuvieco, 2014; Padilla et al., 2015). Product validation is an important activity 

outlined by the Committee on Earth Observation Satellites (CEOS) Land Product 

Validation (LPV) Subgroup and involves assessing product accuracy in one of four 

stages, each with increasing statistical rigor. The comparison with independent 

reference burned area maps (commonly termed validation) is conventionally 

conducted using accuracy metrics derived from a confusion matrix – i.e. the matrix 

reporting the co-occurrence of proportion of burned and unburned data in the product 

and in the independent reference data (for a review, see Boschetti, Stehman and Roy, 

2016), or from the regression between proportions of area burned in coarser 

resolution grid cells (Gregoire et al., 2006).  

Arguably because of the great emphasis placed on the use of global burned 

area products for emissions estimation, validation has traditionally described the 
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accuracy and precision of areal estimates at different scales, rather than on the 

accuracy of other aspects of the burned area representation. The accuracy of the 

shapes mapped in a burned area product is currently not considered as part of product 

validation exercises, and neither is the accuracy of derived metrics such as fire size 

distribution, compactness, orientation or speed and orientation of the fire front. There 

is an outstanding need to expand the validation of burned area products to consider 

these characteristics. Several recent studies have aimed to quantify the distribution of 

fire sizes and other characteristics of individual fires, based on existing datasets that 

have not been validated beyond standard areal accuracy (Malamud, Millington and 

Perry, 2005; Hantson et al., 2015; Hantson, Pueyo and Chuvieco, 2015; Andela et al., 

2018). Of those studies, only the results of (Hantson, Pueyo and Chuvieco, 2015) 

were partially validated, limited however to the comparison of the size distribution of 

MODIS-derived burn scars, to the size distribution of a sample of Landsat-derived 

burn scars, without directly comparing individual fires.  

Evaluating properties such as the number of fires, fire size, and fire shape 

requires object-based approaches, rather than area-based approaches. While object-

based accuracy assessments have been previously applied to remotely sensed 

thematic maps (e.g. Bruzzone and Persello, 2010; Clinton et al., 2010; Baraldi, 

Humber and Boschetti, 2013; Yan and Roy, 2014), there has been relatively little 

research on the applications in burned area detection. Early work on object-based 

accuracy assessment of burned area classifications was conducted by (Remmel and 

Perera, 2002), who considered the degree of areal overlap between mapped and 

reference data between individual fire events using AVHRR-derived burned area 
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maps and a wide variety of high-resolution reference data (in addition to the 

confusion matrix). While this work was based on overlapping area and did not 

explicitly take into account the fire boundaries, it does highlight the errors from the 

perspective of the mapped burn, the individual fire event, and the reference data 

which provides an analog to the concepts of “producer’s” and “user’s” accuracy. 

Another recent exception is (Nogueira et al., 2017), who proposed a patch-based 

burned area product accuracy assessment approach, but their method approximates it 

with an ellipsoidal model for the purposes of compatibility with the behavior of more 

advanced vegetation and fire models, such as ORCHIDEE (“Organising Carbon and 

Hydrology In Dynamic Ecosystems”) rather than assessing the actual mapped shape 

of the fire complex (Krinner et al., 2005; Chuvieco et al., 2016).  

In this paper, we provide a novel edge error metric which is used to quantify 

the degree to which coarse-resolution burned area maps retain the shape of burn scars 

identified at medium resolution, in keeping with established protocols for burned area 

product validation. The metric is demonstrated through a comparison of the MODIS 

MCD64A1 Burned Area product, which has a nominal resolution of 500-m (Giglio et 

al., 2018), to the Landsat-based Monitoring Trends in Burn Severity (MTBS) 

products, which have a resolution of 30 m (Eidenshink et al., 2007). A calculation of 

the minimum achievable edge error metric, which accounts for differences in pixel 

size, is detailed in the Methods section along with other object-based metrics from 

literature. The results section presents the performance of the metrics and the paper 

concludes with a discussion of the implications of implementing coarse-resolution 

burned area products for representing individual fire shapes.  
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Data 

MCD64A1 Burned Area Product 

Coarse-resolution sensors such as MODIS provide global coverage with short 

revisit times (e.g. daily). This is advantageous for burned area mapping as the high 

temporal frequency improves the probability of obtaining cloud-free observations and 

can be exploited to more accurately determine the day of burning. On the other hand, 

such sensors are unable to capture fine details in the shape of objects on the ground 

due to their low spatial resolution and, in the case of burned area mapping, the 

minimum fire size which can be reliably mapped is larger than that obtainable by 

medium-resolution counterparts (Giglio, Randerson and van der Werf, 2013). In this 

paper, the latest Collection 6 MODIS MCD64A1 Burned Area product (Boschetti et 

al., 2019; Giglio et al., 2018) was selected because it is operational, global, and 

publicly available. The Collection 6 MCD64A1 product detects the most total burned 

area of any current operational product at coarse spatial resolution (Humber et al., 

2019), including significantly more burned area than the previous Collection 5.1 

MCD45A1 product (Roy et al., 2005, 2008), with yearly global burned area 

increasing by approximately 26% (Giglio et al., 2018). 

The MCD64A1 Burned Area mapping algorithm combines daily MODIS 

surface reflectance imagery with 1-km MODIS active fire data to map burning on a 

daily basis at the MODIS 500-m spatial resolution. The algorithm applies dynamic 

thresholds to composite MODIS Terra and Aqua imagery generated from a burn-

sensitive spectral band index derived from MODIS 1240 nm and 2130 nm Terra and 

Aqua bands, and a measure of temporal variability. Cumulative MODIS 1-km active 
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fire detections are used to guide the selection of burned and unburned training 

samples and to guide the specification of prior burned and unburned probabilities 

(Giglio et al., 2018).  

The MCD64A1 Burned Area product includes several data layers – “Burn 

Date”, “Burn Date Uncertainty”, “QA” (Quality Assurance), and “First Day” / “Last 

Day” (during which burns can be reliably detected) (Giglio et al., 2016).  The product 

is distributed in the MODIS Sinusoidal Equal Area Projection (Wolfe, Roy and 

Vermote, 1998), with a nominal 500-m resolution (the actual resolution is 463.3127 

m). 

Monitoring Trends in Burn Severity (MTBS) 

In previous literature, coarse-resolution (≥ 250-m) satellite-derived burned 

area maps have been assessed or validated using medium (typically ≤ 30 m) 

resolution data such as those provided by Landsat, e.g. (Boschetti et al., 2019; Roy 

and Boschetti, 2009; Boschetti, Stehman and Roy, 2016; Padilla et al., 2017; Giglio et 

al., 2018). There are multiple programs in the United States which map burned area 

across the conterminous United States and Alaska using Landsat data. One of the 

more comprehensive efforts with regard to the total number of fires mapped is the 

Monitoring Trends in Burn Severity (MTBS) (Eidenshink et al., 2007) project, which 

provides wall-to-wall Landsat-based burned area maps for the United States. The 

classification is largely derived from photointerpretation conducted by expert 

interpreters rather than automated methods. 

MTBS commenced in 2005 in support of the Wildland Fire Leadership 

Council (mtbs.gov). Now supported by the USGS, U.S. Forest Service, and the U.S. 
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Department of the Interior, the program aims to map all fires since 1984 which 

exceed 1000 acres (405 ha) or 500 acres (202 ha) in the western and eastern United 

States, respectively. Three basic types of data are available from the MTBS program: 

burned area boundaries, fire occurrences, and burn severity mosaics. Both the burned 

area boundaries and burn severity mosaics provide information about the location and 

spatial extent of fires occurring in the United States and selected territories.  

The burned area boundaries dataset consists of vectors which delineate the 

outermost extent of the burned area patches. The boundaries are derived via 

photointerpretation of Landsat TM, ETM+, and OLI scenes and do not identify 

internal unburned islands within the boundary of the burn (Eidenshink et al., 2007). 

The burn boundaries are used to limit the extent of analysis for the burn severity data, 

which consists of classifications derived from the pixel values indicating the severity 

of burning based on the differenced normalized burn ratio (dNBR).  

For studies in the United States, MTBS data have been used as a reference 

dataset for comparison to other products (Loboda et al., 2011; Boschetti et al., 2015).  

However, studies have demonstrated that MTBS often overestimates the total burned 

area due to the commission of the unburned islands to the burned area total (Sparks et 

al., 2015). This feature is consistent with the intended use of MTBS, which focuses 

on land management rather than burned area estimates (Eidenshink et al., 2007). It is 

noted that due to the ambiguity in the burn severity classification it is impossible to 

reconstruct internal unburned islands in the context of this study. 
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Study Area 

Eight fires in the western United States, occurring between 2005 and 2015, 

were selected as case studies (Fig. 3.1 and Table 3.1). The fires were selected in a 

semi-random fashion from the MTBS dataset, such that the fires represented a variety 

of sizes and locations. No more than one fire was selected for any given state. 

According to the National Land Cover Database (NLCD2011) (Homer et al., 2015), 

the dominant land cover for the Dry Creek Complex, Esmerelda Fire, Cave Creek 

Complex, and Murphy Complex was shrub/scrubland. The South Sarpy Fire and 

Lincoln Canyon Complex were also predominantly in shrub/scrublands, but also 

included grasslands/herbaceous areas. The East Amarillo Complex, the largest fire in 

the study, occurred predominantly in grasslands/herbaceous areas with secondary 

occurrence in shrub/scrublands. Finally, the Rim Fire occurred predominantly in 

evergreen forests with a secondary land cover of shrub/scrublands. In addition to 

these eight fires, 165 fires identified from the 2016 burning season were selected to 

demonstrate the methods over a large sample size.  

Table 3.1. Fires selected for this study, ordered by size (area reported by MTBS). Dominant Land Cover 

determined by the degree of overlap with the National Land Cover Database 2011 (NLCD). 

 

Fire Name State Year Ignition Date Size (ha) Dominant Land 

Covers 

South Sarpy Fire Montana 2015 12-Jul-15 2,017 Shrub/Scrub and 

Grassland/Herbaceous 

Lincoln Canyon Complex New Mexico 2011 2-Aug-11 4,048 Shrub/Scrub and 
Grassland/Herbaceous 

Dry Creek Complex Washington 2009 20-Aug-09 20,170 Shrub/Scrub 

Esmerelda Fire Nevada 2005 15-Jul-05 40,920 Shrub/Scrub 

Rim Fire California 2013 17-Aug-13 104,040 Evergreen Forest and 

Shrub/Scrub 
Cave Creek Complex Arizona 2005 21-Jun-05 108,605 Shrub/Scrub 

Murphy Complex Idaho 2007 21-Jul-07 229,628 Shrub/Scrub 

East Amarillo Complex Texas 2006 12-Mar-06 240,139 Grassland/Herbaceous 

and Shrub/Scrub 
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Figure 3.1. Eight fires selected for this study, depicted in RGB = SWIR2, NIR, Red composite with MTBS 

boundaries (yellow). 

Methods 

Previous work has shown that the accuracy of pixel labels at the regional and 

continental scale does not necessarily indicate accuracy with respect to assigning 

shape boundaries (Baraldi, Humber and Boschetti, 2013). Object-based approaches to 

assessing burned area detection accuracy, wherein the entire shape of a fire are taken 

into consideration rather than simply the individual pixels, are necessary to quantify a 

classifier’s performance at the individual fire scale and enable the accuracy of the fire 
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to be described with regard to shape as well as area. This approach, which should be 

considered complementary to – rather than a replacement for – the commonly 

implemented pixel-based approaches, consists of three key steps: extraction and 

harmonization, metric calculation, and identification of the minimum achievable edge 

error. These steps are described hereafter. 

Extraction and Harmonization 

Individual fires were extracted from their respective datasets using a two-pass 

region (otherwise known as “connected components”) labeling algorithm, such as that 

described in (Shapiro and Stockmann, 2001). First, a binary mask was created from 

the MTBS and MCD64A1 datasets.  The MCD64A1 product is distributed as a 

monthly composite; for this study, in instances where the burning event took place 

over the course of multiple calendar months, the monthly products were composited 

temporally such that the maximum day of burning between two consecutive months 

was retained. Unlike MTBS, the MCD64A1 product does not associate individual 

fires with a fire name. While several algorithms exist for the purpose of extracting 

individual fires from the MODIS Burned Area datasets (e.g. Archibald and Roy, 

2009; Oom et al., 2016), the operation was trivial and conducted manually for the 

relatively simple cases in this study. A binary mask was then created encompassing 

all cells flagged as burned.  

From the binary masks, the locations of edge (that is, the boundary or 

perimeter) cells were extracted by identifying any cell adjacent to an unburned cell, 

based on queen’s case adjacency (otherwise known as 8-adjacency) rules. The 

location of the center of the cell was recorded, rather than the cell corners, and stored 
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in a vector format. The boundaries of the MTBS fires were projected from the native 

Albers Equal Area Projection to the MODIS Sinusoidal projection. For fires observed 

in 2016, MCD64A1-derived fires were then paired with MTBS fires under the 

following conditions: the overlapping area was greater than 10 percent of the MTBS 

and MODIS fire area; the area of the fire was greater than 500 ha; the fire was 

characterized as a “wildfire” by MTBS; and there was no obvious mischaracterization 

resulting from the rudimentary extraction method based on visual inspection.  

Metric Calculation 

Edge Error Computation 

Computer vision algorithms identify the similarity of two image objects 

through the lens of “shape representation” or “shape matching.” Generally, such 

algorithms may be used for database retrieval or image object retrieval (Günsel, 

Recognition and 1998, 1998; Andreou and Sgouros, 2005; Schindler and Suter, 2008; 

Nasreddine, Benzinou and Fablet, 2010). Shape matching algorithms are not typically 

spatially explicit and instead focus on identifying patterns regardless of size or 

orientation (Veltkamp, 2001; Adamek and O’Connor, 2004). These features may be 

useful for identifying broad patterns of shape, but, for object comparison in the 

spatially explicit geographic domain, these may not be desirable attributes as the 

rotation or orientation of a fire scar on the landscape is an intrinsic property of the fire 

itself. Any agreement in burned area shapes along different orientations is, in this 

regard, coincidental.  

An advantage of shape matching in the scope of this study is the ability of the 

algorithms to assess the similarity of object boundaries without the use of a user-
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defined parameter. The discrepancy in boundary locations, or so-called “contour 

dissimilarity”, is calculated by identifying the edges of an object (i.e. the burn edge 

extraction step) then calculating the distance between the edge locations of the 

evaluated object and a reference object. The error for each edge location is calculated 

by advancing through the edge points in order to identify the minimum distance 

between the objects (Adamek and O’Connor, 2004).  

Measures of contour dissimilarity are desirable in this regard because, 

assuming the data are represented in a projected coordinate system, the unit of the 

contour dissimilarity in the geospatial domain is a physically meaningful 

representation of distance. In this work, the contour dissimilarity is calculated based 

on edge errors (EE), where the average edge error represents the expected distance 

between a given evaluated and target object. The proposed edge error metric 

quantifies the degree to which two burn identifications agree upon the location of a 

burn boundary. The method is used to determine the location of every edge pixel in 

an evaluated burn, 𝐵𝑢𝑟𝑛(𝑒𝑣𝑎𝑙), relative to its nearest neighbors belonging to the 

target burn, 𝐵𝑢𝑟𝑛(𝑡𝑔𝑡) (see Figure 3.2). It is assumed that if the boundaries are 

closer together on average, then the representation of the burn shape as a whole is 

more accurate. 
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Figure 3.2. Association of four evaluated edge locations, 𝐵𝑢𝑟𝑛(𝑒𝑣𝑎𝑙𝑖), to two target edge locations, 𝐵𝑢𝑟𝑛(𝑡𝑔𝑡𝑗). 

Note that evaluated edge locations 1 and 4 are associated with the nearest target burn edge location while 

evaluated edge location 3 is associated with the geometric normal of the line segment 𝐵𝑢𝑟𝑛(𝑡𝑔𝑡1), 𝐵𝑢𝑟𝑛(𝑡𝑔𝑡2)  
and in the case of evaluated edge location 2, the geometric normal and nearest neighbor distance are identical. 

In the ideal case, zero edge error represents instances where the burn 

boundaries of the evaluated product are perfectly aligned with the burn boundaries of 

the target product. In practice, this is very unlikely to be the case for an entire burn, 

especially at differing spatial resolutions, due to imperfect co-registration, sub-pixel 

differences in boundary identifications, and differences in methodologies for 

identifying burns in each data set. Note that while the first two issues are related to 

cell size and are not truly errors, the latter is a result of erroneous classifications. It 

follows that smaller edge errors (those approaching zero) therefore represent a higher 

level of agreement and a more accurate classification of the fire boundary while 

increasing edge errors indicate poorer characterization of the fire boundary. 

The (coarse-resolution) MCD64A1 burn boundary is designated as the burn to 

be evaluated, Burn(𝑒𝑣𝑎𝑙), which is compared to the higher resolution MTBS burn 

boundary designated as the target burn, Burn(𝑡𝑔𝑡). The EE is the mean error between 

an evaluated edge location Burn(𝑒𝑣𝑎𝑙) to the minimum of geometric normal of the 

line segment (⊥) connecting the two nearest neighbors (NN) in a target burn, 
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Burn(𝑡𝑔𝑡)𝑁𝑁1 and Burn(𝑡𝑔𝑡)𝑁𝑁2, or the closest of the two NN such that for a 

Burn(𝑒𝑣𝑎𝑙) with n edge locations (Figure 3.2): 

𝐸𝐸 =  ∑
𝐸𝐸𝑖

𝑛

𝑛
𝑖       (1) 

Where  

𝐸𝐸𝑖 = min(𝐸𝐸𝑁𝑁 , 𝐸𝐸𝑁𝑜𝑟𝑚)    (2) 

and 

𝐸𝐸𝑁𝑁 = 𝑑(Burn(𝑒𝑣𝑎𝑙𝑖),  Burn(𝑡𝑔𝑡)𝑁𝑁1)   (3) 

and 

𝐸𝐸𝑁𝑜𝑟𝑚 = 𝑑(Burn(𝑒𝑣𝑎𝑙𝑖) ⊥  [Burn(𝑡𝑔𝑡)𝑁𝑁1,  Burn(𝑡𝑔𝑡)𝑁𝑁2])  (4) 

 

As detailed above, the value of 𝐸𝐸 (1) is the average of all 𝐸𝐸𝑖  (see (2), (3), 

(4)) for a given burn identification. That is, all edge cell locations of the evaluated 

burn are iteratively compared to the nearest edge cell location(s) of the target burn. In 

the event that a Burn(𝑒𝑣𝑎𝑙𝑖) has multiple  Burn(𝑡𝑔𝑡)𝑁𝑁2 (when there is a tie for the 

second nearest neighbor), 𝐸𝐸𝑁𝑜𝑟𝑚 is evaluated for all possible combinations of the 

tied elements, selecting the minimum of the evaluated outcomes. An example 

illustrating the 𝐸𝐸𝑖 vectors for a hypothetical pair of burn shapes is provided in 

Figure 3.3. 
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Figure 3.3. Edge error vectors for two hypothetical burns, in the direction of coarse to high-resolution. The 

“Target Burned Cells” represent the reference dataset at higher resolution, in this instance MTBS. The 

“Evaluated Burn Cells” represent the coarser resolution dataset, i.e. MCD64A1. The 𝐸𝐸𝑖 vectors (arrows) show 

the direction and magnitude of the cell-specific edge error. 

It is noted that while a subset of the edge locations is often sampled in shape 

matching implementations, all edge locations are selected in this methodology in 

order to retain the spatial integrity of the input data. To accommodate the analysis of 

this volume of data, the search for nearest neighbors is made more efficient (with 

respect to time) through the use of K-Dimensional trees (“K-D trees”) (Bentley, 

1975). K-D trees are a form of binary tree which can be used to rapidly reduce 

distance-based query time by dividing space using a hyperplane at each tree node. 

The time complexity for searching a K-D tree is approximated as 𝑂 = 𝑛 log (𝑛) 

where 𝑂 is the maximum number of operations needed to identify the desired value 

and  𝑛 represents the number of elements to be evaluated. For both the evaluated and 
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reference objects, a K-D tree is constructed containing all points identified in the edge 

location extraction step. Each point along the edge of the test object is used to query 

the reference K-D tree to find the two nearest neighbor points determined by the 

minimum Euclidean distance between the edge point and the point under evaluation 

in the K-D tree.  

As the 𝐸𝐸 metric consists of the average distance between analogous points 

along the contours of two burned area identifications, the metric has physical 

significance and does not rely on any free parameter as input. 

Computation of Overlapping Area Metrics 

Many object-based metrics have been proposed in literature which relate the 

accuracy of a given evaluated object to a reference object based on area. Two of the 

more widely implemented indices, oversegmentation, and undersegmentation, can be 

considered analogous to errors of omission and errors of commission, respectively 

(Bruzzone and Persello, 2010; Clinton et al., 2010; Baraldi, Humber and Boschetti, 

2013; Yan and Roy, 2014). Oversegmentation (𝑂𝑆) describes the degree to which an 

algorithm divides an object into too many segments, i.e. omits areas which are within 

the boundaries of the true object, while undersegmentation (𝑈𝑆) describes the degree 

to which an algorithm divides an object into too few segments, i.e. commits areas 

which are outside of the boundaries of the true object (Clinton et al., 2010). Thus, 𝑂𝑆 

(5) defines the relationship between the overlapping area, or intersection, of the target 

object (“𝑥”) and the evaluated object (“𝑦”) to the area of the target object such that: 

𝑂𝑆 = 1 −  
area(𝑥∩𝑦)

area(𝑥)
     (5) 
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Similarly, 𝑈𝑆 (6) defines the relationship between the overlapping area of the 

target object (“𝑥”) and the evaluated object (“𝑦”) to the area of the evaluated object 

such that: 

𝑈𝑆 = 1 − 
area(𝑥∩𝑦)

area(𝑦)
     (6) 

Both metrics were calculated assuming the MTBS burned area as the target 

object and the MCD64A1 burned area as the evaluated object. It is noted that while 

MTBS is designated as the target object (by convention) in this case, the MTBS 

burned cell identifications themselves are un-validated and are expected to 

overestimate the total area burned due to the ambiguity of the “Unburned to Low 

Burn Severity” class. Hereafter, 𝑂𝑆 and 𝑈𝑆 are also referred to as “overlapping area 

metrics” as they relate the area of one object to another. 

Identification of the Minimum Achievable Edge Error 

While the edge error is a measurement of the physical distance between 

comparable edge locations between two burned areas, the metric can only be 

interpreted directly when the burned areas are spatially co-registered and at the same 

spatial resolution. When the observations are presented at different spatial resolutions, 

it is necessary to account for the effects of the difference in spatial resolution in order 

to minimize the effects of random placement of burned cells in the higher resolution 

map compared to the lower resolution map.  

In practice, many arrangements of burned pixels at high-resolution can be 

accurately represented by a coarse-resolution map such that the measured error is a 

consequence of the discrepancy in cell sizes. Figure 3.4 illustrates two cases where a 

coarser resolution pixel accurately and reasonably preserves the shape of an object 
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also represented at a higher resolution. In these cases, errors in the calculation of the 

edge error (𝐸𝐸) are therefore the result of sub-pixel variations in the shape which are 

not expected to be captured by the coarse-resolution product, rather than errors in the 

classification itself. Noteworthy, however, is that Figure 3.4(a) will demonstrate an 

𝐸𝐸 close 0 according to the method described earlier (because all edge cells at the 

higher resolution intersect the nearest neighbor or are located on the line segment 

connecting the two nearest neighbors, even though the areas are different!), while 

Figure 3.4(b) will exhibit a larger 𝐸𝐸, though the value is less than the one-sided 

dimension of the coarse cell.  

 

Figure 3.4. Examples of cross-resolution edge location scenarios. (a) illustrates burn boundaries at both 

resolutions are ideally co-located, while (b) illustrated a scenario in which contains commission and omission 

errors. The distance between edge locations in both cases is the result of only resolution differences. 

Calculation of the Minimum Achievable Edge Error (MAEE) gives context to 

the measurement by providing an estimate of the unavoidable error which results 

from differences in spatial resolution rather than algorithm misclassification. The 

MAEE calculation is a simplified version of the method implemented by (Boschetti, 

Flasse and Brivio, 2004) for calculating the Pareto Boundary. As with the cited work, 
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it is necessary to have only the higher resolution image – the MTBS burned area map 

– and to know the cell size of the coarser resolution product (463.3127 m in the case 

of MCD64A1).  

For each of the eight fires in this study, the MTBS maps were projected and 

resampled to the MODIS Sinusoidal 500-m grid such that the values of the output 

raster are a soft classification representing the proportion of the coarse cell that was 

identified as burned in the original map (values range from 0% to 100%; Figure 3.5). 

Cells with values of 100% represent the core burned area while locations near the 

perimeter of the fire exhibit decreasing burn proportions. The soft classifications were 

then hardened for all whole percent thresholds in the range [1%, 100%], resulting in 

100 possible classifications for each fire. The extraction procedure was repeated on 

the hardened burn proportion maps (Figure 3.6), upon which 𝐸𝐸 was calculated using 

the native resolution MTBS maps and the thresholded (MODIS resolution) MTBS 

proportion maps. Note that in cases where the cell sizes are the same and the datasets 

are spatially co-registered properly, the soft classification will contain only two 

unique values, 0% and 100%, where a threshold of 0% results in an (implausible) 

map where all cells are burned and a threshold of 100% results in the original burned 

area map itself. 
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Figure 3.5. Esmerelda Fire: Original MTBS classification and projection/resampling to MODIS Sinusoidal 500-m 

grid indicating the percent of each cell identified as burned by MTBS. 

 
Figure 3.6. Esmerelda Fire: Edge cell locations for MTBS data at MODIS 500-m resolution using 1%, 50%, and 

100% thresholds. 

The minimum of each 𝐸𝐸 series per fire represents the optimal, or most 

efficient, solution and is retained as the MAEE. Recalling that this number represents 

the amount of expected or unavoidable error due to the random placement of burned 

cells at the higher resolution relative to the coarse-resolution, MAEE is reported along 

with 𝐸𝐸 in order to help distinguish between the errors resulting from incorrect 

classification from the errors resulting from differences in spatial resolution. 

MAEE was calculated for only the eight case study fires. The reason for this is 

twofold: MAEE is unlikely to be relevant to users of the product when presented in 

aggregate, and as a practical matter the calculation of MAEE is computationally 

intensive. 
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Results 

The results of the methodology are presented in the following subsections. 

The MAEE calculation procedures are presented first, as these results are a 

component of the final edge error statistic. Then, the edge error metric results are 

presented, followed by the overlapping area metrics. Edge error and overlapping area 

metrics are presented in aggregate for the 2016 fire season. 

Minimum Achievable Edge Error 

The MAEE calculation was performed for each of the eight case study fires, 

taking into consideration the error from the MTBS at the MODIS 500-m resolution to 

the MTBS native resolution edge. For each fire and threshold for subpixel fraction of 

area burned (1% to 100%) the mean edge error is plotted in Figure 3.7. Generally, the 

mean edge error distribution is concave, which is to say 𝐸𝐸 decreases monotonically 

as the threshold increases until the minimum is reached, at which point the mean edge 

error increases monotonically.   
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Figure 3.7. Minimum achievable edge error thresholds for MODIS resolution edge locations (463.3127 m cells) 

and MTBS native resolution edge locations. Red triangles indicate series minima; gray dashed lines indicate 

MODIS cell size. 
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The minimum mean achievable edge errors were observed using a minimum 

threshold in the range 11% (Murphy Complex and East Amarillo Complex) to 29% 

(South Sarpy Fire). The MAEE ranged between ~120.68 m (South Sarpy Fire) and 

~153.35 m (Murphy Complex), thus in all cases, the minimum mean achievable edge 

error is less than 155 m, or roughly 33% of a MODIS 500-m cell. The range of MAEE 

values and thresholds for each fire underscores the need to calculate the metric on a 

per-fire basis, rather than assuming a single global value. 

Edge Error and Overlapping Area Metrics 

The edge error metric, 𝐸𝐸, is presented for each of the eight case study fires, 

where MTBS at the native resolution was used in all cases (not to be confused with 

the aggregated classifications used for calculation of the MAEE). The results are 

presented in Figure 3.8 and Table 3.2, which show that the 𝐸𝐸 is less than or equal to 

the MODIS cell size (461.3127 m) in 5 out of 8 possible cases and is slightly greater 

than the MODIS cell size in one other case – the South Sarpy Fire (466.34 m). The 

Rim Fire produces arguably the worst result, with 𝐸𝐸 exceeding 776 m or roughly 1.7 

cell-widths. For the 2016 fire season, the 25th, 50th, and 75th EE quantiles were 259.0 

m, 332.9 m, and 442.7 m, respectively. 

Table 3.2. Object-based accuracy metrics for eight fires in the study region. The MAEE is presented parenthesis 

with the EE metric. 

 Edge Error (𝐸𝐸) Overlapping Area Metrics 

Fire Name MCD64A1 to MTBS (m) MTBS ∩ MCD64A1 (ha) OS US 

South Sarpy Fire 466.34 (120.68) 1175.73 0.43 0.07 

Lincoln Canyon Complex 339.62 (122.73) 3305.98 0.19 0.06 

Dry Creek Complex 317.95 (144.5) 17578.31 0.14 0.05 

Esmerelda Fire 355.06 (138.1) 35768.59 0.13 0.03 

Rim Fire 776.01 (138.72) 88126.07 0.16 0.01 

Cave Creek Complex 398.47 (145.22) 92582.20 0.07 0.05 
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Figure 3.8. Mean edge error for MCD64A1 to MTBS. The dashed gray line indicates MODIS cell size. 

The 𝐸𝐸 does not appear to be driven by fire size for the fires in this study, 

indicating that the MCD64A1 detections along the edge of a fire are relatively stable. 

The highest edge accuracy was achieved by the Dry Creek Complex, the third 

smallest fire in the study which burned 20,170 ha according to MTBS. The lowest 

edge accuracy was achieved by the Rim Fire, the fifth-largest fire in the study at 

104,040 ha burned. 

With regard to the Rim Fire, it appears that the burned area is poorly 

characterized by both the MCD64A1 and MTBS products. The former appears to 

omit some areas that were burned, while the latter commits a significant amount of 

Murphy Complex 769.23 (153.35) 201562.97 0.13 0.02 

East Amarillo Complex 433.7 (134.49) 211922.20 0.12 0.05 
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burned area due to the ambiguous “Unburned to Low” burn severity class. This is 

most evident in the northern portion of the fire, depicted in Figure 3.9.  

 

Figure 3.9. Rim Fire edge locations identified by MCD64A1 and MTBS. Significant discrepancies in the 

northernmost part of the image contribute to high EE values. 

A comprehensive listing of the edge error indices for the case study fires is 

provided in Table II, along with the overlapping area metrics. For both the 

oversegmentation, 𝑂𝑆, and undersegmentation, 𝑈𝑆, metrics, the smallest fire in the 

data set, South Sarpy Fire, demonstrated the worst performance. Intuitively, the area-

based metrics are highly susceptible to large swings in the value of the metric for 

smaller sample sizes. On the other hand, two of the larger fires, the Cave Creek 

Complex and Rim Fire, demonstrated the smallest 𝑂𝑆 and 𝑈𝑆 respectively. In the 

case of the Rim Fire, the 𝑈𝑆 metric performed well at the expense of the 𝑂𝑆 metric 

for the reasons described above and illustrated in Figure 3.9. We note that these 
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results are in line with previous findings by (Rodrigues et al., 2019), who determined 

that the levels of oversegmentation and undersegmentation (referred to as 𝑂𝐸𝐸𝐷𝐺𝐸 

and 𝐶𝐸𝐸𝐷𝐺𝐸, respectively) decrease as the average fire size increases for the Brazilian 

Cerrado.  Regarding the 2016 fire season, the 25th, 50th, and 75th quantile OS errors 

were 0.15, 0.25, and 0.39, respectively, and the US errors were 0.04, 0.07, and 0.13, 

respectively. 

Discussion and Conclusion 

Burned area accuracy assessment has historically been limited to the 

traditional pixel-based confusion matrix approaches, which succinctly summarize the 

probability of a pixel having a correct burned or unburned label. These approaches 

are effective for studies related to the total area burned at coarse spatial scales where 

the actual shape of fires may be either obscured due to pixel size or of little 

consequence to the intended use of the data.  

This paper introduces a method for characterizing the accuracy of the shape of 

coarse-resolution burned area detections, by comparing them to higher resolution 

reference burned area maps. A novel edge error metric (𝐸𝐸) indicates the average 

distance between the boundary of individual burned areas as mapped in the coarse-

resolution product and the reference boundary. This metric is accompanied by an 

indication of the minimum achievable edge error which accounts for burning in the 

high-resolution reference map which is smaller than the resolution of the coarse 

product.  

To benchmark the performance of the proposed metric, two conventional 

indices from the object-based image analysis literature were calculated – 
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oversegmentation and undersegmentation. The oversegmentation (𝑂𝑆) and 

undersegmentation (𝑈𝑆) metrics show a general tendency to demonstrate large errors 

for small fires (consistent with Rodrigues et al., 2019) while the edge error does not 

appear to be related to fire size. This is intuitive given the formulation of the metrics - 

𝑂𝑆 and 𝑈𝑆 are indices based on the errors in two-dimensional area, while 𝐸𝐸 is a 

measure of the errors in zero-dimensional (point) edge locations. At the individual 

fire level, the proposed 𝐸𝐸 metric complements, but should not replace, the area-

based indices because the quantities which they evaluate are different. 

The approach was demonstrated by assessing the shape accuracy of the 

MODIS Collection 6 MCD64A1 Burned Area, using as reference data a sample of 

high-resolution fire perimeters provided by the Monitoring Trends in Burn Severity 

(MTBS) project. Our results indicate that for the sample of eight individual fires 

considered in the analysis, the MODIS Collection 6 MCD64A1 Burned Area product 

is able to capture the boundaries of fires identified at the Landsat-scale by MTBS. In 

most cases, the edge error was less than the width of one MODIS 500-m cell and in 

all cases, the error was less than the width of two cells. Considering the sample of 165 

fires that occurred in 2016, the average EE for the selected fires was approximately 

332 m and the EE was less than two pixels in 160 out of 165 cases (97%).  No 

anomalous/unanticipated algorithm behavior was observed when calculating the EE 

of the larger dataset, indicating that our proposed method is operationally stable (a 

primary rationale for assessing the larger test sample).  

It is important to note that the primary purpose of the MTBS dataset is to 

provide information for land managers on burn severity, and it is not designed to be a 
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reference dataset for satellite-based burned area mapping [41], as the dataset is often 

employed. As a result, and due to the labor-intensive procedure used to generate the 

MTBS dataset, the extent of unburned islands within a fire is not mapped. However, 

it is expected that the identification of unburned islands within fires changes 

significantly with scale, e.g. many small unburned islands may exist at the 30 m scale 

which does not manifest as a meaningful signal at coarse-resolutions. This highlights 

implicit assumptions of the 𝐸𝐸 metric that: (i) any boundary – burned or unburned – 

is large enough to be captured by both the test and reference datasets and (ii) for any 

boundary in a given dataset, a corresponding boundary exists in the other. In the 

absence of these conditions, the edge errors increase as a function of the number, size, 

and placement of the unmatched boundaries within the fire extent. The unburned 

islands are discussed in the Appendix, with the 𝐸𝐸 metric applied to photointerpreted 

data to demonstrate the metric conceptually, assuming the aforementioned issues 

have been resolved. 

Due to the cross-resolution calculation of the minimum achievable edge error 

metric, this approach can theoretically be applied to any other combination of burned 

area maps and reference data, including maps and reference data of the same spatial 

resolution. Additionally, given a method for automated extraction of individual fires 

from burned area maps (e.g. Andela et al., 2018), the method can conceivably be 

routinely applied to the global validation of coarse-resolution products, e.g. 

(Boschetti et al., 2019; Padilla, Stehman and Chuvieco, 2014). The edge error metric 

is able to capture information lost in pixel-based accuracy assessment and, for studies 
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focused on shape and topology of burned area perimeters, it is a more representative 

and relevant source of information regarding mapping accuracy. 

In future work, we will apply the edge error metric as well as the other object-

based indices in two research areas. First, we plan to analyze the difference in edge 

errors for fires identified by different classification algorithms to compare, for 

example, the MODIS MCD64A1 Collection 6 500-m burned area product (Giglio et 

al., 2018) and the Fire CCI version 5.1 250-m burned area product which is also 

derived from MODIS (Chuvieco et al., 2018), or the Fire CCI version 4.1 300-m 

burned area product derived from MERIS (Alonso-Canas and Chuvieco, 2015). 

Additionally, given a higher spatial resolution dataset delineating true fire 

boundaries, the edge error metric can be used to refine burn scar extraction 

algorithms. Typically, individual burn scars are identified using flood fill algorithms 

which use a threshold for the maximum number of days between detections in 

neighboring pixels to determine adjacency (e.g. Archibald and Roy, 2009; Archibald 

et al., 2013; Hantson et al., 2015; Hantson, Pueyo and Chuvieco, 2015; Andela et al., 

2018; Laurent et al., 2018), which can lead to under- or over-segmentation if the 

threshold is too large or small, respectively. Edge error, in these cases, could be 

evaluated iteratively with different thresholds to empirically derive a more 

representative regional threshold.  

Appendix 

An implicit assumption in calculating the 𝐸𝐸 metric is that each object 

identified at the coarser resolution has a corresponding object at the finer resolution 

(this assumption is already made when selecting the fires for analysis in the first 
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place). The 𝐸𝐸 can, therefore, be calculated including unburned islands within the 

outer boundary of the burn with no modification, provided this condition is met.  

However, special consideration must be given to unburned islands as several 

studies have demonstrated that the presence of unburned islands observed by 

satellites do not correspond well to in situ measurements taken at a higher spatial 

resolution (Price, Russell-Smith and Edwards, 2003; Russell-Smith et al., 2009). 

Similarly, unburned islands identified at a higher resolution will not necessarily 

correspond to those identified at a coarser resolution, e.g. Landsat vs. MODIS, 

meaning that it is not guaranteed that all unburned islands will be present in both 

datasets. This issue can, in theory, be solved by applying a robust set of rules for 

selecting unburned islands that are present across different resolutions, i.e. accounting 

for the low-resolution bias (Boschetti, Flasse and Brivio, 2004). These rules could be 

based on the size of the unburned island, whether or not the unburned islands overlap 

in both datasets, etc. Determining these specific rules is outside of the scope of this 

work, but it is of interest to the broader fire remote sensing community and deserves 

additional study.  

Two of the case studies were chosen to conceptually demonstrate the 𝐸𝐸 

metric when applied to burn scars containing unburned islands. These fires, the 

Esmerelda Fire and the East Amarillo Complex, were manually photointerpreted to 

append the larger internal unburned islands to the MTBS boundaries (Figure 3.10s). 

The edge of the internal unburned islands and external fire boundaries were then 

compared between the modified MTBS and MCD64A1 fire shapes. The 𝐸𝐸 for the 

Esmerelda Fire was 252.59 m and the East Amarillo Complex was 398.52 m, 
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representing improvements of more than 100 m and 40 m, respectively, when 

compared to the 𝐸𝐸 of the fire boundary alone. This improvement can be attributed to 

the fact that the geometry of the unburned islands for the two burns is less complex 

(often elliptical in shape) than the fire boundary geometry. A caveat to this 

demonstration is that the photointerpretation of the unburned islands purposefully left 

out very small unburned islands – as previously mentioned, conducting this analysis 

at scale requires a robust method for determining the minimum detectable unburned 

island size. 
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Figure 3.10. MCD64A1 and Modified MTBS edge locations including interior unburned islands. Top: Esmerelda 

Fire (Nevada, 2005) has an EE of 252.59. Bottom: East Amarillo Complex (Texas, 2006) has an EE of 398.52. 
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Chapter 4 – A MODIS MCD64A1-based Algorithm for 

Identifying Individual Fires in Boreal and Arctic North America 

Introduction 

Remote sensing of wildfires provides unique opportunities to analyze large-

scale fire patterns taking advantage of consistent, systematic, and frequent 

observations. Past studies have used global coarse resolution burned area datasets to 

describe the fire size distribution over large areas based on satellite observations 

(Archibald and Roy, 2009; Archibald et al., 2013; Hantson et al., 2015; Hantson, 

Pueyo and Chuvieco, 2015; Oom et al., 2016), with recent work providing publicly 

available datasets containing individual fire characteristics (Laurent et al., 2018; 

Andela et al., 2019). Because the burned area products from which individual fires 

are derived have been generated automatically, their biases can generally be 

considered systematic and consistent, in comparison to photointerpretation-based 

methods which, while capable of providing higher accuracy, can vary widely 

depending on the photointerpreter.  

Fire regimes have typically been summarized in terms of area burned, timing 

of burning, and length of fire season, often neglecting the size distribution of 

individual fires, as size measurements have been hard to obtain over large areas. 

Small fires, which contribute very little to total burned area even though much more 

plentiful than large fires (Malamud, Millington and Perry, 2005; Hantson et al., 2015; 

Hantson, Pueyo and Chuvieco, 2015), are often excluded from databases of manually 
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derived fire boundaries due to the inherent mapping difficulties (AICC, no date; 

Natural Resources Canada, no date; Eidenshink et al., 2007). 

At broad scales, large fires are correlated with high fire intensity (Archibald et 

al., 2013). At the same time, it has been shown that higher fire radiative power (FRP) 

drives convection in the atmosphere leading to higher injection heights (Amiridis et 

al., 2010) and that boreal forests have the highest injection heights globally (val 

Martin, Logan and Kahn, 2010). Black carbon and other light-absorbing particles can 

be transported to the Arctic regions from Boreal fires, depending on the FRP and the 

time of year (Stohl et al., 2006; Hall and Loboda, 2017), leading to decreased surface 

albedo and subsequent loss of snow cover and land/sea ice, triggering a positive 

feedback loop. This cycle has been speculated since the mid-2000’s (Hansen and 

Nazarenko, 2004) and attributed to boreal wildfires shortly thereafter (Kim et al., 

2005). Other work also suggests that increased albedo following wildfires leads to a 

net cooling effect regardless of black carbon deposition (Randerson et al., 2006; Chen 

et al., 2018).  

The Global Fire Emissions Database (Giglio et al., 2006; van der Werf et al., 

2006) attributed approximately 2.5 Mha of burned area per year between 2002 and 

2016, or ~0.5% of global burned area (Giglio et al., 2018) to Boreal North America, a 

region defined to include Canada and Alaska. Fires in the region disproportionately 

contributed an estimated average of 5 Tg C per year, or ~2.7 percent of global fire 

emissions, due to high fuel consumption rates and consumption of organic soils (van 

der Werf et al., 2017). 
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Within the North American boreal forest biome, wildfires are characterized by 

long burning duration, high intensity, and large size (Kasischke et al., 2010; French et 

al., 2015), while fires in the tundra tend to be less frequent and smaller than in the 

boreal system (French et al., 2015). Burned area totals are dominated by a small 

number of large fires, particularly in boreal forests where fires < 200ha contribute < 

3.5% of burned area in Canada (Stocks et al., 2002) and < 1% in Alaska (Kasischke 

and Turetsky, 2006). In Canadian and Alaskan boreal forests, large fires not only 

drive the total amount of burned area but also correspond to higher fire intensity, 

increased burn severity and increased soil burning depth leading to higher rates of 

carbon loss (Turetsky et al., 2011). Fire size and shape influence fire succession 

(Fuller, 1991; Whelan, 1995; Turner et al., 1998), soil erosion (Gill and Allan, 2009), 

and landscape composition and fragmentation (Barrett et al., 2011; Lehsten, de Groot 

and Sallaba, 2016).   

Recent studies generally agree that climate change will significantly impact 

wildfire patterns in the northern regions, with higher temperatures expected to result 

in increased fuel drying during the burning season, in turn leading to more intense 

fires with greater fuel consumption (in terms of area burned and combustion 

completeness) occurring at a higher frequency (Balshi et al., 2009; Flannigan et al., 

2009; de Groot, Flannigan and Cantin, 2013; French et al., 2015). Through 

observation of past climate patterns, relevant work has shown that large scale patterns 

in temperature and moisture availability can be predictive of the total burned area 

(Duffy et al., 2005; Balshi et al., 2009). Under these scenarios, fire size is likely to 

increase corresponding to the probability of encountering fire weather conditions 
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during the fire season (Abatzoglou and Kolden, 2011; Barrett et al., 2016). A rigorous 

and consistent method to map individual fires over large areas is therefore needed to 

monitor changes in fire size distribution. 

In this work, we present a method for extracting individual fires from the 

Collection 6 MODIS MCD64A1 Burned Area product (Giglio et al., 2018) in Alaska 

and Canada from March 2002 through February 2019, subdivided into three main 

regions (Figure 4.1) derived from the Terrestrial Ecoregions of the World map (Olson 

et al., 2001): boreal (~508 Mha), tundra (~374 Mha), and other (temperate biomes; 

~218 Mha). We then use object-based approaches to assess the accuracy of the shape 

of individual fires compared to the existing Fire Atlas database (Andela et al., 2019), 

implementing existing high-resolution databases of individual fire boundaries as 

reference data (AICC, no date; Natural Resources Canada, no date; Loboda and Hall, 

2017). The results are then used to analyze patterns of fires larger than 200 ha in 

Canada and Alaska, as identified by the Collection 6 MCD64A1 Burned Area 

product. 
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Figure 4.1. Biomes within the Alaska and Canada study area. 

 

Data and Methods 

Individual Fire Extraction 

Systematic analysis of large area, multi-annual patterns of fire sizes is 

typically based on satellite observations of burned areas. To exploit the consistent, 

systematic data which can be obtained only through satellite observations, all 

available data from the MODIS Collection 6 (C6) MCD64A1 Burned Area product 

archive (Giglio et al., 2018) for March 2002 through February 2019 were used in this 

study (Figure 4.2). This product identifies the most total burned area of any current 

global operational coarse resolution product (Humber et al., 2019; Chuvieco et al., 

2019), although, in Canada and Alaska, the C6 MCD64A1 product identifies 

approximately 6 percent less burned area than its Collection 5.1 predecessor (Giglio 

et al., 2018). A recent validation exercise, in line with the Committee on Earth 
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Observation Satellites (CEOS) Calibration/Validation Stage 3 guidelines (CEOS Land 

Product Validation Subgroup, no date), showed that out of seven biome types, the C6 

product arguably performs best in the boreal forest biome, with omission errors and 

relative bias far lower than any other biome and the third lowest commission error of 

any biome (Boschetti et al., 2019). 

Several approaches have been implemented for extracting individual burns 

from coarse spatial resolution burned area maps. Several of these approaches are 

based on a flood-fill algorithm (Archibald and Roy, 2009) developed for the 

Collection 5 MODIS MCD45A1 burned area algorithm (Roy et al., 2005). The 

approach evaluates adjacent pixels labeled as burned and considers those pixels to be 

from the same event if the day of burning identified for each pixel is less than 8 days 

apart, where 8 days was chosen as the adjacency threshold because it represented the 

temporal accuracy of the MCD45A1 product. Several other works have implemented 

a similar flood-fill algorithm, but have tuned the adjacency threshold empirically or 

heuristically. For example, the Fire Atlas algorithm (Andela et al., 2019) implements 

an adaptive threshold based on fire frequency in a given area. Other works rely on 

empirically derived thresholds, ranging from 2 days (Archibald et al., 2013) to 14 

days (Hantson et al., 2015) with other intermediate thresholds implemented as well 

(Hantson, Pueyo and Chuvieco, 2015; Oom et al., 2016).  

While the location and day of burning (DoB) are reported by most global 

burned area products (Roy et al., 2005; Tansey et al., 2008; Alonso-Canas and 

Chuvieco, 2015; Chuvieco et al., 2018; Giglio et al., 2018), MCD64A1 is unique in 

that the product provides a per-pixel estimate of the temporal uncertainty of the burn 
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detection. The burn date uncertainty represents the period of ambiguity in the spectral 

separability index used to identify burns during which there is insufficient data to 

label a cell as burned or unburned due to aerosol loading, cloud cover, etc. (Giglio et 

al., 2009, 2018). By default, the burn date uncertainty of the MCD64A1 product is set 

to 1 day to compensate for errors resulting from the overpass time of the sensor, i.e. 

the cell burned the day before the burn was detected but after the previous satellite 

overpass. In cases where the cell is obscured for one or more days by aerosols or 

clouds, the uncertainty represents the number of days between clear observations 

because, in reality, the actual day of burning could have occurred on any day within 

the uncertainty window.   

 

 
Figure 4.2. MODIS MCD64A1 burned area detections in Canada and Alaska. Year refers to fire year, from 

March to the following February.  

Using this additional source of information, the MODIS Uncertainty-based 

Single-fire Extraction (MUSE) algorithm was developed and designed to identify 
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individual burns by analyzing the DoB of each mapped cell while considering its 

temporal uncertainty. Like other flood-fill algorithms, the MUSE algorithm searches 

for adjacent cells which are both labeled as burned with the differenced day of 

burning falling below a defined threshold. However, rather than applying a static or 

empirically defined threshold, burned cells are only considered to be connected (8-

connectivity / Queen’s case adjacent) if their possible burn dates overlap, as 

determined by the DoB and the burn date uncertainty. The range of possible dates 

during which the burn could have occurred is established by assuming the identified 

DoB as the median day of the range, ± half of the burn date uncertainty. Additionally, 

to account for the sub-cell fire spread, an additional day is allotted for the fire to 

spread across the ground surface.  

This approach was applied to spatiotemporal mosaics of the C6 MCD64A1 

Burned Area product. The mosaics were created for each fire year for all of Alaska 

and Canada, with the fire year defined as the period between March 1 of a given year 

and the following February 28/29. Past work has shown that fire activity is at a 

minimum both globally and for Canada and Alaska in March (Boschetti and Roy, 

2008; Giglio, Randerson and van der Werf, 2013), therefore “resetting” the fire year 

during March greatly reduces, or ideally eliminates, errors resulting from cells which 

burn twice in the same calendar year. In practice, fire activity in Canada and Alaska is 

very low between October and April – the selection of March is purely academic in 

this regard. 

Isolated pixels and very small groups of cells (five or fewer) were removed 

from the dataset – these clusters of cells fall below the minimum fire size which is 
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confidently mapped by the MCD64A1 algorithm of approximately 120 hectares 

(Giglio et al., 2009). Other works such as (Hantson et al., 2015; Hantson, Pueyo and 

Chuvieco, 2015) also remove these small clusters of cells, while the Fire Atlas 

(Andela et al., 2019) allows for exceptions to the fire growth tracking algorithm in 

cases where the small groups of cells are adjacent to much larger burns. The effects of 

the small cluster removal are minimal in the context of this work, as the downstream 

analysis is limited to only fires larger than 200 ha (> 9 MODIS 500-m cells) by the 

availability of validation data. 

A relevant error existed in the processing of the C6 MCD64A1 product which 

prevented the first or last column of twenty-six tiles from receiving a “burned” label 

due to an overly restrictive contextual relabeling test. This error was corrected for 

August 2018 onward, however, months prior to August 2018 will be corrected in the 

forthcoming MODIS Collection 7. It is expected that fires crossing the boundaries of 

the affected tiles will be artificially segmented in this work, with two tiles affected in 

the study region (h11v02 and h09v04). This issue can lead to artificial splitting of 

burns into multiple segments if the burn lies along the edge of one of these tiles. 

Accuracy Metrics 

While the C6 MCD64A1 product has been extensively validated at the pixel 

level (Boschetti et al., 2019; Chuvieco et al., 2018; Giglio et al., 2018), these 

exercises focused on characterizing the amount of burning over large areas and do not 

address the accuracy of individual burn scars. To characterize the per-fire 

performance of the algorithm, object-based approaches are necessary. Object-based 

accuracy assessments have been previously applied to remotely sensed thematic maps 
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(Clinton et al., 2010; Persello and Bruzzone, 2010; Baraldi, Humber and Boschetti, 

2013; Yan and Roy, 2014), but only a few have addressed burned area maps 

specifically (Humber, Boschetti and Giglio, Accepted; Remmel and Perera, 2002; 

Nogueira et al., 2017).  

The accuracy metrics chosen for this work relate a coarse resolution mapped 

object to a higher resolution reference object. To summarize the degree of areal 

overlap between the two objects, the commonly used oversegmentation (OS) and 

undersegmentation (US) indices were selected (Clinton et al., 2010; Persello and 

Bruzzone, 2010; Baraldi, Humber and Boschetti, 2013; Yan and Roy, 2014; Humber, 

Boschetti and Giglio, Accepted). OS and US indicate the degree to which a reference 

object is divided into too many or too few parts, respectively. In this regard, the OS is 

related to errors of omission while US is related to errors of commission when 

considering the evaluated objects as a binary burned/not-burned classification.  

Thus, OS defines the relationship between the overlapping area of the 

reference burn scar (“x”) and the classified burn scar (“y”) to the area of the reference 

burn scar such that: 

𝑂𝑆 = 1 −  
area(𝑥 ∩ 𝑦)

area(𝑥)
 

Similarly, 𝑈𝑆 defines the relationship between the overlapping area of the 

reference burn scar (“𝑥”) and the classified burn scar (“𝑦”) to the area of the mapped 

burn scar such that: 

𝑈𝑆 = 1 −  
area(𝑥 ∩ 𝑦)

area(𝑦)
 

The overlapping area metrics OS and US are calculated only for the mapped 

fire which most overlaps a given reference fire.  
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Complementary to the overlapping area indices, the edge error (EE) metric 

(Humber, Boschetti and Giglio, Accepted) was calculated to characterize the 

correctness of the burn scar boundaries. The EE is the mean error between an 

evaluated edge location Burn(𝑒𝑣𝑎𝑙) to the minimum of geometric normal of the line 

segment (⊥) connecting the two nearest neighbors (NN) in a target burn, 

Burn(𝑡𝑔𝑡)𝑁𝑁1 and Burn(𝑡𝑔𝑡)𝑁𝑁2, or the closest of the two NN such that for a 

Burn(𝑒𝑣𝑎𝑙) with n edge locations: 

𝐸𝐸 =  ∑
𝐸𝐸𝑖

𝑛

𝑛

𝑖

 

Where  

𝐸𝐸𝑖 = min(𝐸𝐸𝑁𝑁 , 𝐸𝐸𝑁𝑜𝑟𝑚) 

and 

𝐸𝐸𝑁𝑁 = 𝑑(Burn(𝑒𝑣𝑎𝑙𝑖),  Burn(𝑡𝑔𝑡)𝑁𝑁1) 

and 

𝐸𝐸𝑁𝑜𝑟𝑚 = 𝑑(Burn(𝑒𝑣𝑎𝑙𝑖) ⊥  [Burn(𝑡𝑔𝑡)𝑁𝑁1,  Burn(𝑡𝑔𝑡)𝑁𝑁2]) 

 

For each combination of mapped and reference burn scars, EE quantifies the 

difference between the boundary of a mapped burn scar to the edge of a reference 

burn scar which can be directly interpreted as the average distance from any location 

on the mapped burn scar boundary to the true boundary. It should be noted that EE is 

independent of the overlapping area metrics, as it evaluates the burn perimeter rather 

than the overlapping area.  

Reference burn boundaries were selected from the Arctic-Boreal Vulnerability 

Experiment (ABoVE) Wildfire dataset (Loboda and Hall, 2017), which provides a 

large collection of fire scar perimeters mapped at medium spatial resolution (30 m) 
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for fires which occurred between 2001 and 2015. The ABoVE Wildfire dataset was 

compiled as part of the ABoVE Program and includes fire boundaries from the 

Natural Resources Canada’s Canadian National Fire Database (Natural Resources 

Canada, no date) and the Alaska Interagency Coordination Center (AICC, no date). In 

the case of the Canadian National Fire Database, it is noted that “[…] the data 

contained in the CNFDB [Canadian National Fire Database] are not complete nor are 

they without error. Not all fires have been mapped, and data accuracy varies due to 

different mapping techniques. This collection includes only data that has been 

contributed by the agencies. Data completeness and quality vary among agencies and 

between years” (http://cwfis.cfs.nrcan.gc.ca/ha/nfdb). The dataset, therefore, has an 

unknown error rate, presumably favoring errors of omission, which precludes its use 

as a true reference dataset from which robust estimates can be derived. Although the 

ABoVE dataset cannot be considered a complete census of the fire activity, the fire 

perimeters which were identified were assumed to be of high quality and used to 

evaluate the accuracy of the burn scar shapes extracted from MCD64A1.  

The performance of the MUSE algorithm was compared to the Fire Atlas 

(Andela et al., 2019), which to the best of the authors’ knowledge is the only publicly 

available, systematically generated satellite-derived dataset providing individual fire 

characteristics including the fire boundary as of the time of writing. The Fire Atlas 

was also derived from the MCD64A1 product, but identifies individual fires by 

tracking the expansion of the fire from an ignition point using a three-step process 

which identifies ignition points, determines the threshold for fire propagation from 



 

99 

 

pixel-to-pixel, and finally adjusts outliers along the edges of the burn scar (Andela et 

al., 2019). 

Validation and intercomparison of the fire identification algorithm was 

conducted for the period from 2003 to 2015.  This range represents the overlap period 

between the MODIS Burned Area archive used by MUSE (2001 – current), the 

Arctic-Boreal Vulnerability Experiment (ABoVE) Wildfire dataset (2001 – 2015) 

used for validation (Loboda and Hall, 2017), and the Global Fire Atlas dataset (2003 

– 2016) which is used as a benchmark for comparison (Andela et al., 2019). 

Results 

In line with previous studies which have emphasized the relatively small 

contribution of smaller fires to the regional burning totals in North American boreal 

forests (Stocks et al., 2002; Gillett et al., 2004; Kasischke and Turetsky, 2006; 

Girardin and Mudelsee, 2008), the analysis was limited to burns larger than 200 ha. 

Between 2003 and 2015, MUSE identified 11,056 individual fires while the Fire 

Atlas identified 55,187. Due primarily to omissions of small fires in the ABoVE 

dataset and commission errors in MCD64A1, the Fire Atlas intersected 4,218 of the 

ABoVE fires while MUSE intersected 3,464. On average, one ABoVE reference fire 

corresponded to 3.11 MUSE fires and 8.00 Fire Atlas fires. Recalling that both 

products are derived from MCD64A1, this difference in the number of fires identified 

can be attributed to differences in the extraction algorithms. 

The edge error (EE) metric and overlapping area indices (OS and US) were 

calculated using the ABoVE burn scar boundaries as reference data, with the MUSE 

and Fire Atlas boundaries analyzed as the classified data. Due to the extreme spatial 
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distortions in the sinusoidal projection in the circumpolar latitudes, EE was computed 

in the North America Equidistant Conic Projection due to its inherently distance-

based calculation. On the other hand, OS and US were computed in the Sinusoidal 

Projection as they are area-based calculations.  

As shown in Table 4.3 and Figure 4.3, the MUSE fire boundaries in all years 

have an EE of less than 2 times the one-sided dimension of the MODIS 500-m cell 

(463.3127 m). The Fire Atlas EE is below this threshold in all years except 2004. This 

finding is in line with a similar analysis of MCD64A1 undertaken for the Western 

United States (Humber, Boschetti and Giglio, Accepted). In all years except 2015, 

MUSE is an improvement over the Fire Atlas for edge error, which can likely be 

attributed to the Fire Atlas’ tendency to oversegment burns. It should be noted that 

the maximum difference is approximately 180 m, or less than 40% of the MODIS cell 

dimension. 

Table 4.3. Edge Error metrics (in meters) for individual fires extracted from MCD64A1 vs. ABoVE reference fires. 

Fire Atlas - MUSE indicates the difference in median distance from mapped-to-reference boundaries between 

algorithms. 

Year MUSE Fire Atlas Fire Atlas - MUSE 

2003 590.50 614.21 23.70 

2004 835.86 936.70 100.84 

2005 672.24 788.72 116.48 

2006 397.13 452.21 55.07 

2007 570.48 675.00 104.52 

2008 694.69 735.22 40.53 

2009 782.05 820.46 38.41 

2010 579.34 675.94 96.59 

2011 730.37 829.59 99.22 

2012 526.15 531.63 5.47 

2013 571.48 626.80 55.32 

2014 740.17 920.36 180.19 

2015 679.17 661.99 -17.18 
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Figure 4.3. Graph of Edge Error through time for individual fires extracted from MCD64A1 vs. ABoVE reference 

fires. The gray dashed line indicates 1x MODIS cell dimension, the black dashed line indicates 2x MODIS cell 

dimension. 

 Regarding OS and US, there is a stronger tendency to oversegment (versus 

undersegment) for both MUSE and the Fire Atlas. Recalling that OS and US are 

related to omission and commission errors, respectively, these results agree with prior 

pixel-based validation results indicating MCD64A1’s prevalence of omission errors 

(Boschetti et al., 2019). For all years, the median OS and US errors for the MUSE 

boundaries were lower than for the Fire Atlas. For both products and in all years, US 

errors are smaller than OS errors (Table 4.2, Figure 4.4). 

Table 4.4. Oversegmentation (OS) and Undersegmentation (US) errors for individual fires extracted from 

MCD64A1 vs. ABoVE reference fires. Fire Atlas - MUSE indicates the difference in the error metric between 

algorithms. 

 Oversegmentation Undersegmentation 

Year Fire 

Atlas 
MUSE Fire Atlas - 

MUSE 
Fire 

Atlas 
MUSE Fire Atlas - 

MUSE 

2003 0.54 0.52 0.01 0.18 0.16 0.02 

2004 0.65 0.63 0.02 0.14 0.10 0.04 

2005 0.55 0.47 0.08 0.18 0.14 0.04 

2006 0.48 0.40 0.08 0.19 0.17 0.01 

2007 0.58 0.52 0.07 0.18 0.15 0.03 

2008 0.60 0.53 0.07 0.11 0.09 0.02 



 

102 

 

2009 0.64 0.62 0.02 0.16 0.10 0.06 

2010 0.61 0.55 0.07 0.10 0.09 0.01 

2011 0.66 0.61 0.05 0.22 0.12 0.10 

2012 0.53 0.48 0.05 0.14 0.12 0.02 

2013 0.57 0.54 0.03 0.14 0.12 0.03 

2014 0.55 0.50 0.05 0.09 0.07 0.02 

2015 0.59 0.54 0.06 0.25 0.13 0.11 

 

 
Figure 4.4. Graph of Oversegmentation (OS) and Undersegmentation (US) errors through time for individual fires 

extracted from MCD64A1 vs. ABoVE reference fires.  

Qualitatively, MUSE has a tendency to create small, artificial unburned 

islands within the boundary of the burn scar due to the removal of small clusters of 

burned cells which, though spatially adjacent to the surrounding cells, do not overlap 

with the temporal burn date range (Figure 4.5). The Fire Atlas does not remove small 

clusters burned cells and therefore does not demonstrate this behavior. However, 

MUSE appears to better represent the shape of the fire due to its tendency to identify 

larger connected segments.  
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Figure 4.5. The 2007 Anuktavuk Fire. (a) Landsat-7 Path 073 Rows 011-012 composite (June 2008; R=Mid IR, 

G=NIR, B=Red). (b) MUSE overlapping fire segments. (c) Fire Atlas overlapping fire segments. In (b) and (c), 

each color corresponds to an individual extracted fire segment. Note that MCD64A1 underestimates the area of 

the burn, which propagates into the extraction algorithms. 

As an example, the Anuktavuk River Fire (Figure 4.5), which burned over the 

course of three months in 2007 in the north Alaskan tundra and is known from 

previous studies to have burned over 100,000 ha and was the largest and longest 

burning tundra fire on record (Jones et al., 2009; Mack et al., 2011). The main body 

of the burn scar was underestimated by MCD64A1, likely due to issues with the 

MODIS water mask (Giglio et al., 2018), resulting in MUSE identifying the main 

body of the fire as 81,484 ha with an additional smaller attached segment of 515 ha. 

By contrast, the Fire Atlas subdivided the main body of the fire into nine distinct 

segments, the largest of which was approximately 51,792 ha followed by a segment 

of 26,496 ha. This is consistent with results throughout the study area indicating the 

tendency of both fire extraction algorithms to oversegment individual fires into 

multiple fragments, though MUSE creates fewer total fragments.  
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Figure 4.6. The 95th percentile fire size for 1-degree cells, based on the 2002 through 2018 fire years according 

to the MUSE algorithm. 

 

 
Figure 4.7. Size of individual fires throughout any of the 2002 to 2018 fire seasons according to the MUSE 

algorithm. 



 

105 

 

Throughout the study area, the largest fires were generally found in the boreal 

region as expected (Figure 4.6 and Figure 4.7). These fires span the breadth of the 

continent, with concentrations of very large fires (> 100,000 ha) found in central 

Canada (Saskatchewan, Alberta, and Northern Territories), central Quebec, and 

eastern Alaska. Due to the large number of fires in the biome, trends in boreal fires 

drive patterns for all of Alaska and Canada. 

Large (50,000 to 100,000 ha) and very large fires are generally rare in the 

tundra biome, with occasional medium-sized fires (10,000 to 50,000 ha) present 

among an overwhelming majority of small fires (< 10,000 ha). Total burned area in 

the tundra was driven entirely by small and medium sizes fires, with exceptions in 

2007 (the Anaktuvuk River Fire, which burned in northern Alaska) and 2004/5 which 

experienced an abnormal amount of burning along the Canada-Alaska border.  

Discussion and Conclusions 

Fire size and shape are important parameters for characterizing individual fire 

spread which can be correlated with fire intensity, severity, emission rates, and smoke 

plume injection heights (Amiridis et al., 2010; Turetsky et al., 2011; Archibald et al., 

2013). Furthermore, fire size and shape directly influence fire succession (Fuller, 

1991; Whelan, 1995; Turner et al., 1998) and soil erosion (Gill and Allan, 2009). The 

proximity of boreal forests and tundra fires to Arctic permafrost underlies the 

importance of understanding specific fire characteristics in these areas, as black 

carbon from smoke plumes has the potential to be transported to snow and ice-

covered surfaces and consequently impact surface albedo (Hansen and Nazarenko, 

2004; Kim et al., 2005).  
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Coarse spatial resolution satellite-derived products such as MODIS 

MCD64A1 (Giglio et al., 2018) have provided valuable and systematic daily 

observations of fire activity over nearly two decades. In this work, a modified flood-

fill algorithm (MUSE) is implemented for extracting individual fires from the 

MCD64A1 archive based on the temporal uncertainty of the day of burning. The 

results are driven by the availability of clear surface observations rather than 

empirically defined thresholds and therefore make fewer assumptions about the 

spread rate of fires on the surface. An object-based accuracy assessment showed the 

MUSE algorithm provides better representation of individual fire segments than the 

publicly available Fire Atlas (Andela et al., 2019) for almost all metrics and fire years 

when compared to the ABoVE reference dataset (AICC, no date; Natural Resources 

Canada, no date; Loboda and Hall, 2017).  

The results show distinct spatial patterns across Canada and Alaska, with 

concentrations of very large fires in the boreal regions of Alaska as well as central 

and eastern Canada (, ). Recent large and very large fires were also identified in 

British Columbia, which have been documented by the Canadian Government in 

mountain pine beetle affected forests (British Columbia Wildfire Service, 2018). 

While these results should be considered specific to MCD64A1 and require 

confirmation from additional data sources, they indicate that the MUSE algorithm 

provides a plausible description of individual fire sizes over large areas. 

In future work, a pressing need is to evaluate the patterns of individual fire 

shapes and sizes extracted MCD64A1 through comparison with other products such 

as the regionally-tuned Arctic Boreal Burned Area (ABBA) product (Loboda et al., 
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2011) in order to independently confirm the presence of spatial fire size patterns 

observed in this study. Qualitative inspection of the C6 MCD64A1 product indicates 

that the product may suffer from omission errors due to inconsistencies in the water 

mask flags, causing “perforations” in contiguous burned cells. These errors propagate 

into the MUSE algorithm’s workflow and can artificially reduce the size of individual 

fires.  

Additionally, given that the MUSE algorithm is not calibrated to any specific 

region, the algorithm can theoretically be applied globally. This analysis can, 

therefore, be expanded to include the boreal and tundra biomes in Eurasia to better 

understand how wildfire activity affected by changes in climate, and whether any 

such changes are in line with the expectations outlined in previous work that 

predicted increases in fire size, severity, and frequency (Balshi et al., 2009; Flannigan 

et al., 2009; Abatzoglou and Kolden, 2011; Barrett et al., 2011; de Groot, Flannigan 

and Cantin, 2013; French et al., 2015). 
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Chapter 5 – Discussion and Conclusions 

Summary of Findings 

This research undertook the analysis of large-area fire patterns from an object-

based perspective, using individual fires derived from existing earth observations 

datasets as the basic unit of analysis. Improved characterization of individual fire 

attributes is relevant to landscape management, climatological studies, and fire 

ecology. The purpose of the object-based approach is assess satellite-derived fire 

products to provide additional types of fire-related attributes to users (such as 

individual fire size, aggregated size distributions, and fire shapes) and to evaluate the 

efficacy of these derived data points.  

First, an intercomparison of the four publicly available global burned area 

products was conducted to identify the relative strengths and weaknesses of the 

products and to examine their similarities and inconsistencies. Next, a novel edge 

error metric was proposed as part of a framework for analyzing errors in individual 

fire boundaries derived from satellite data. Finally, a fire extraction algorithm was 

developed and used to map fire size patterns in Canada and Alaska at the biome level. 

The performance of the algorithm was evaluated within the previously proposed edge 

error framework against a similar dataset, the Fire Atlas, using publicly available fire 

boundary data. 

The intercomparison of four global burned area products (Chapter 2) consisted 

of wall-to-wall global analysis of the amount of burned area identified by Fire CCI (v 

4.1), Copernicus Burnt Area (SPOT-Vegetation), MODIS Collection 5.1 MCD45A1, 
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and MODIS Collection 6 MCD64A1 for the overlapping observation period of 2005 

to 2011. The Collection 6 MCD64A1 product identified the highest total burned area 

of any product globally, though this varied significantly from region to region. On the 

other hand, the Copernicus Burnt Area product identified the least amount of burned 

area globally, and the algorithm appeared to have a flaw which caused the amount of 

burned area detected to decrease year by year (this was later acknowledged by 

Copernicus, and identified as the reason the product was rescinded7). Furthermore, 

Copernicus identified the least burned area in regions which contribute the most to 

global burned area totals (Africa and Australia), and the most burned area in regions 

which burn relatively little (temperate and boreal regions). MCD45A1 and Fire CCI 

identified the second- and third- most burned area and were the most similar in terms 

of total burned area identified, though MCD45A1 showed better correlation to 

MCD64A1 at the Thiessen Scene Area (Gallego, 2005; Kennedy, Yang and Cohen, 

2010) level than Fire CCI.  

The temporal patterns of burning identified by MCD64A1, MCD45A1, and 

Fire CCI products all corresponded well to the timing of MCD14ML active fire 

detections, which were used as a proxy for fire seasonality. Notably, Fire CCI 

appeared to extend the burning periods by one month for regions with less burning 

relative to MCD64A1. The Copernicus Burnt Area product was notably different 

from the other products and, in many regions of the world, was out of phase with the 

active fire detections, meaning the product identified periods of high amounts of 

 
7 https://land.copernicus.eu/global/content/burnt-area-1km-spotvgt-unavailable 
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burning when there were few active fires and low amounts of burning when there 

were many active fires.  

The results of this investigation varied greatly from region to region, as 

expected, and the intercomparison underscored the need for users of burned area 

products to understand the classification tendencies of each product. This also raised 

the bigger question of distributing satellite-derived products without providing clear 

and useful quality assessment indicators to end-users. Based on this study, the 

MCD64A1 product was selected for use in later objectives due to its temporal fidelity 

and the tendency to identify the most overall burned area. 

It is important to bear in mind that product intercomparison cannot replace 

validation for determining the accuracy of a product in a given location because the 

correctness of the products is not assessed – the majority (or all) products could 

plausibly omit or commit errors in any specific location. To properly assess product 

accuracy, validation is still a necessary exercise. Recent emphasis has been placed on 

improving the process and adoption of burned area validation in order to achieve 

CEOS Cal/Val Stage 3, representing a spatiotemporal accuracy assessment using 

statistically robust sampled reference data, and CEOS Cal/Val Stage 4 which is the 

same as Stage 3 but applied on a continuous basis. Protocols were proposed by 

Padilla et al. (2015, 2017) and Boschetti et al. (2016) and implemented by Boschetti 

et al. (2019) and Chuvieco et al. (2018).  

While these assessments are helpful for obtaining consistent estimates of 

burned area across many fires and at large scales, such pixel-based approaches do not 

necessarily characterize how well individual fires are mapped. In order to better 
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evaluate the accuracy of individual fires, a method was proposed for evaluating 

wildfire classification maps while retaining the spatially explicit properties of the 

burn scar using individual fires as the unit for analysis. The method quantified the 

edge error of burned area classifications and reference maps by calculating the 

average geometric normal of the evaluated burned area boundary along the burn edge 

and the two nearest neighbor samples from the reference burn boundary. 

Additionally, in order to account for the low resolution bias associated with 

comparing coarse and medium resolution classifications, the minimum achievable 

edge error was calculated as the optimized solution which accounts for the amount of 

edge error attributable only to the random placement of high-resolution burned cells 

nested within coarse-resolution cells (i.e. error which cannot be attributed to 

misclassification).  

The edge error metric was demonstrated by comparing 500 m MODIS 

MCD64A1 maps to 30 m Monitoring Trends in Burn Severity (MTBS; Eidenshink et 

al., 2007) maps for 173 wildfires in the United States. Importantly, the edge error did 

not appear to show any pattern related to fire size while other commonly used object-

based metrics (undersegmentation and oversegmentation) tended to report larger 

errors as the size of the fires decreased. This is intuitive because oversegmentation 

and undersegmentation are based on measurements of (2-dimensional) area, while the 

edge error metric measurement is based on (1-dimensional) distances between points. 

The results of the edge error calculations showed that, when accounting for the 

minimum achievable edge error due to differing spatial resolutions, the mean edge 

error of the MCD64A1 product was less than twice the MODIS edge dimension and 
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did not change with fire size. This indicates that while visually and qualitatively the 

MCD64A1 map appears to lack fine detail, quantitatively the product represents fire 

boundaries accurately compared to 10 m reference data.  

 Having determined that MCD64A1 appears capable of retaining the shapes of 

individual fires, the product was then used as input to a new shape extraction 

algorithm named the MODIS Uncertainty-based Single-fire Extraction (MUSE) 

algorithm. The algorithm’s approach is novel in its use of the per-pixel temporal 

uncertainty from the MCD64A1 product to determine the threshold for fire 

propagation across the landscape, whereas other works use empirically defined 

thresholds to accomplish the same goal (Mouillot and Field, 2005; Hantson et al., 

2015; Hantson, Pueyo and Chuvieco, 2015; Oom et al., 2016; Andela et al., 2018).  

 The algorithm was applied in Canada and Alaska and used to observe patterns 

in fire sizes throughout the MODIS era (2002 to present). Individual fires identified 

by the MUSE algorithm were validated using single-fire polygons compiled in the 

Arctic-Boreal Vulnerability Experiment (ABoVE) wildfire dataset (Loboda and Hall, 

2017), derived from the Natural Resources Canada’s Canadian National Fire 

Database (Canada, no date) and the Alaska Interagency Coordination Center (Alaska 

Interagency Coordination Center, no date). When compared to the Fire Atlas database 

(Andela et al., 2018), the performance of the MUSE algorithm was better in nearly all 

years for the edge error, oversegmentation, and undersegmentation metrics. 

Additionally, the MUSE algorithm demonstrated a lower propensity for fragmenting 

individual fires and better captured the main body of fires, while the Fire Atlas tended 

to divide individual fires into several equal-sized objects. 
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 Fires were analyzed at the biome level and split into four categories in line 

with other studies (Kasischke and Turetsky, 2006): small fires (<10,000 ha), medium 

fires (10,000 to 50,000 ha), large fires (50,000 to 100,000 ha), and very large fires 

(>100,000 ha). As expected, the largest fires were typically found in the boreal 

biome. However, the contribution of very large fires to the total amount of burned 

area, as well as the number of very large fires, was shown to have increased since 

2010 according to the MCD64A1 dataset. This observation could support theories 

relating climate change and fire size, i.e. that weather patterns in a given fire season 

are more likely to favor the uninhibited spread of fires across the landscape, leading 

to an increase in size and severity (Abatzoglou and Kolden, 2011), but needs to be 

confirmed through verification with other datasets. Additional large fires were 

observed in British Columbia in recent years, which is consistent with known severe 

fires in mountain pine beetle affected forests (British Columbia Wildfire Service, 

2018).  

Impact and Importance to the Broader Community 

In Chapter 2, the inventory of publicly available burned area products was 

evaluated to determine how well each broadly represented fire patterns around the 

world. This work has been cited by other authors for a variety of purposes, including 

as justification of a burned area product choice (e.g. Andela et al., 2018; McWethy et 

al., 2018), as an overview of burned area products (e.g. Giglio et al., 2018; Eliott et 

al., 2019; Lasko, 2019), as evidence of significant regional differences in burned area 

products (e.g. Brennan et al., 2019; Chuvieco et al., 2019; Forkel et al., 2019), and as 

a framework for similar comparison exercises (e.g. Rodrigues et al., 2019).  
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The intercomparison exercise should be repeated as new burned area products 

become available. This is particularly important in the current era of free and 

inexpensive high-powered computing resources, which has made the production of 

Earth observations datasets attainable for an increasing number of organizations. 

Systems such as Google Earth Engine (Gorelick et al., 2017) have made Earth 

observations data and map classification widely available to expert and non-expert 

users through simple yet powerful programming interfaces. While these advances can 

generally be considered as positive for promoting remote sensing data uptake and 

transparency, arguable the availability of these resources has promoted iterative and 

incremental improvements to datasets rather than stable product releases.  

Under this new iterative product development paradigm, in less than two years 

since the manuscript associated with Chapter 2 was originally published the list of 

publicly available burned area products has changed drastically: The Copernicus 

Programme has released two new PROBA-V-based Burnt Area products (at 1 km and 

300m), deprecated two products (PROBA-V 1 km, SPOT-Vegetation 1 km), and will 

soon release a new version of the 300 m PROBA-V product. The Fire CCI program, 

in addition to the MERIS-based Fire CCI v3.1 and v4.1 products, released the 

MODIS-based Fire CCI v5.0 and 5.1, the AVHRR-based Fire CCI Long Term Beta 

product known as FIRE CCI LT10, and the Fire CCI SFD v1.1 Small Fire Dataset 

based on Sentinel-2. A VIIRS-base analog to MCD64A1 is planned for release in the 

near future, though the product (to be named VNP64A1) is a transition of the 

MCD64A1 burned area product to the VIIRS platform. This list is by no means 

exhaustive, and does not include products developed by other researchers over 
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smaller areas. In the absence of direct product intercomparison, users of burned area 

products are left to make partially informed decisions about products based on 

product specifications or accuracy assessments calculated from sampled data which 

are unlikely to capture anomalous behavior over small regions.  

Chapters 3 and 4 of this dissertation focused on using and evaluating burned 

area maps from an object-based perspective, ultimately for the purpose of observing 

spatial and temporal patterns in fire size. A recent trend, including work in this 

dissertation, involves extracting individual burns from burned area maps for the 

purpose of determining the properties of individual fires which can include geometry 

as well as intensity, spread rate, and other attributes (Andela et al., 2018; Laurent et 

al., 2018). The edge error metric proposed in Chapter 3 provides a method for 

evaluating the derived fire products in a manner that is more in-line with their 

intended use (as descriptors of individual fires) than pixel-based accuracy metrics. 

The accuracy of specific objects is of immediate interest to the community, as these 

properties can be used in global vegetation models (Yue et al., 2014, 2015). 

Additionally, because attributes like fire size and perimeter-to-area ratio are 

correlated with other attributes such as smoke injection height, emission rates, and 

intensity (Amiridis et al., 2010; Turetsky et al., 2011; Archibald et al., 2013), it is 

important to understand how accurately the shape characteristics are represented. 

As proof of the efficacy of the edge error metric, individual fires were 

extracted from the MCD64A1 burned area product and compared to the MTBS 

(Eidenshink et al., 2007) fire boundaries. This demonstration showed that over a 

sample of 173 fires, the edge errors were less than two times the one-sided dimension 
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of the MODIS 500-m pixel, which is a significant finding indicating that, for well-

mapped fires, the errors introduced by differences in spatial resolution are relatively 

small.  

As new sensors such as the European Space Agency’s Sentinel-2 MSI and 

PlanetScope provide increasingly finer spatial resolution observations (10 m and 3 m, 

respectively) with shorter revisit times (5 days and daily, respectively), the capacity to 

observe small fires and fine details of burn scars has improved accordingly. In fact, 

two recent products implement Sentinel-2 MSI and Landsat-8 OLI observations for 

mapping burned area in Africa (Roteta et al., 2019; Roy et al., 2019). Evidence 

presented by those authors suggests that these higher spatial resolution products are 

able to deliver on the promise of better small fire mapping than coarse spatial 

resolution counterparts such as the MODIS-derived products.  

The additional capacity to detect fine-scale features in burn scars makes these 

datasets inherently useful for individual fire mapping. Object-based accuracy 

assessment using metrics such as the edge error proposed in this work are natural 

candidates to evaluate medium and high-resolution fire classifications. Though higher 

resolution sensors like PlanetScope (3 m), Pleiades (0.5 m), WorldView-3 (0.3 m) 

and others lack the shortwave infrared bands conventionally used for mapping 

burning automatically, they certainly provide the spatial resolution necessary to create 

photointerpreted validation datasets which can be used to assess medium spatial 

resolution products (Roy et al., 2019).  

Arguably, a pitfall of the drastic increase in sensor spatial resolutions is the 

loss of the “homogenizing” effect which coarse-resolution sensors have on pixel 
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observations. For burned area mapping, this means incomplete combustion and 

patchiness within fire perimeters is more likely to be observed by the sensor, a 

prevalence of which has been shown to increase with spatial resolution (Price, 

Russell-Smith and Edwards, 2003).  Accurately representing these properties can 

require sub-pixel measure such as the fraction burned and combustion completeness 

(“f.cc”, Roy et al., 2019) rather than discrete burned/unburned labels. 

Chapter 4 provided two contributions to the current body of research. First, a 

novel algorithm for extracting individual fires from the MCD64A1 product was 

introduced.  The MUSE algorithm exploits the temporal uncertainty of MCD64A1 to 

reconstruct a range of plausible burn dates. This represents a methodological 

improvement over previous algorithms because it is driven by data available from the 

burned area product itself, rather than by empirically defined thresholds.  

The algorithm results were used to identify fires in Canada and Alaska, and 

distinct spatial patterns of fire size were observed on a yearly basis. Consistent with 

the results of previous studies, the largest fires were observed in the boreal biome 

(Kasischke et al., 2010; French et al., 2015). Recent large fires in mountain pine 

beetle affected forests in British Columbia were captured by the dataset as well. 

While the analysis provides qualitatively plausible results, the Collection 6 

MCD64A1 product suffers from omission errors in high latitudes due to issues with 

the MODIS water mask. Such omission errors appear to lead to the fragmentation of 

large burns, reducing the overall fire sizes in the near-polar regions. Therefore, it is 

important to confirm the observed fire size patterns using other datasets such as the 

regionally adapted Arctic Boreal Burned Area (ABBA) product (Loboda et al., 2011). 
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A shift in fire sizes in Canada since 2010 was observed in the boreal biome 

and in British Columbia since 2010. This merits additional study and ongoing 

monitoring due to the proximity to vulnerable arctic snow and ice, which can be 

covered in soot from wildfires leading to decreased surface albedo ultimately 

resulting in melting. These results are relevant to current events, as media outlets 

have expressed concern over the severity of the ongoing 2019 fire season in the 

Arctic (Fresco, 2019; Harball, 2019; NASA Earth Observatory, 2019; BBC News, 

2019). Additionally, fire patterns in Canada and Alaska have long been assumed to be 

highly susceptible to changes brought on by climate change (Gillett et al., 2004; M. 

D. Flannigan et al., 2009; M. Flannigan et al., 2009; Abatzoglou and Kolden, 2011; 

de Groot, Flannigan and Cantin, 2013; French et al., 2015).  The dataset generated in 

this work can provide a valuable contribution to evaluating whether these 

assumptions are being realized. 

Directions for Future Work 

Wall-to-wall product intercomparison is a simple but effective activity that 

should be undertaken periodically, ideally as new burned area products become 

available. As previously mentioned, the three programs which produced the maps 

used for intercomparison – NASA, Fire CCI, and Copernicus – have combined to 

release or have impending releases of eight new burned area products in addition to 

the four products which were evaluated. Therefore, there is a pressing need to 

evaluate these new products in order to provide users with up-to-date information 

about product performance and suitability for specific study areas and periods. 
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A disadvantage of direct product intercomparison is that the methods are 

unable to capture product accuracy, meaning validation studies are still necessary. For 

spatially and temporally robust burned area accuracy assessment which requires 

higher resolution reference data, statistical sampling is a practical solution because of 

the effort required to generate high-quality reference data sets and sampling strategies 

have been proposed (Padilla et al., 2015, 2017; Boschetti, Stehman and Roy, 2016).  

These strategies are stratified based on independently derived spatial and temporal 

patterns in fire activity in order to define strata to improve sampling efficiency. 

However, these sampling methods cannot be directly used to validate burn shapes 

because they are not optimized for fire size, which affects the inclusion probabilities 

of individual fires, i.e. a specific big fire is more likely to appear in a random sample 

than a specific small fire. Future work which focuses on statistically rigorous 

sampling of individual fires must take into account fire boundaries which are covered 

by clouds which obscure parts of the fire boundary and fires that are in actively 

spreading at the time of observation.  

Datasets providing the boundaries of individual burns are relatively new, with 

no known products being created in an operational mode. While the MUSE algorithm 

was implemented for Canada and Alaska in Chapter 4, in ongoing work the algorithm 

has already been applied globally for the period spanning March 2002 to February 

2019. The preliminary global results seem qualitatively reasonable and indicate that 

the algorithm may perform effectively outside of the boreal and surrounding regions. 

Future work will focus on improving the MUSE algorithm, most notably by 

improving the handling of small clusters of burned cells which are removed in the 
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current version. Although the product was validated in Canada and Alaska, this is a 

data-rich environment with existing high-quality datasets that are typically not 

available in most of the world. Validating the outputs of the MUSE algorithm for 

much of the world presents a major challenge due to the lack of available reference 

data, though it is debatable whether the shape and area of individual fires has any 

significance in areas with low biomass and high annual burned area such as African 

and Australian savannahs.   

Barriers to further improvements in any thresholded flood-fill based algorithm 

include the lack of calibration and validation data for assessing the product 

performance and a lack of methods for evaluating the accuracy of these products. The 

edge error metric is one of several potential metrics for quantifying the error in the 

burn shapes, but access to reference data remains an issue. Many existing validation 

datasets are not suitable for object-based accuracy assessment because, in accordance 

with the CEOS Cal/Val protocol (Boschetti, Roy and Justice, 2009), they can include 

partial burns since only the burning between two dates is evaluated by a 

photointerpreter. Object-based accuracy assessment requirements are stricter in this 

regard because the entire burn shape must be evaluated, which additionally implies a 

lack of cloud cover (which can be flagged separately in the CEOS protocol). Publicly 

available datasets suitable for use as reference data in fire size analysis are limited to 

the Monitoring Trends in Burn Severity project in the United States (Eidenshink et 

al., 2007) and the ABoVE wildfire dataset for Canada and Alaska (AICC, no date; 

Natural Resources Canada, no date; Loboda and Hall, 2017).  
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Finally, investigation into possible changes in fire regimes focusing on 

individual fire properties is essential as global climate patterns continue to change. 

The fire size analysis can easily be expanded to include other vulnerable ecosystems, 

including the Eurasian Arctic and Boreal regions and the Amazon. The increasing 

length of the archive of fire observations from satellite earth observation should 

reduce the uncertainties in identifying change through time, enabling a better 

understanding of the relationships between fire and other biological, physical, and 

climatological variables.  
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