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Developing high-performance signal processing applications requires not only effi-

cient signal processing algorithms but also effective software design methods that can take

full advantage of the available processing resources. An increasingly important type of

hardware platform for high-performance signal processing is a multicore central process-

ing unit (CPU) combined with a graphics processing unit (GPU) accelerator. Efficiently

coordinating computations on both the host (CPU) and device (GPU), and managing host-

device data transfers are critical to utilizing CPU-GPU platforms effectively. However,

system designers find such coordination challenging, given the complexity of modern sig-

nal processing applications and the stringent constraints under which they must operate.

Dataflow models of computation provide a useful framework for addressing this

challenge. In such a modeling approach, signal processing applications are represented

as directed graphs that can be viewed intuitively as high-level signal flow diagrams. The

formal high-level abstraction provided by dataflow principles provides a useful foundation



to investigate model-based analysis and optimization for new challenges in the design and

implementation of signal processing systems.

This thesis presents a new model-based design methodology and an evolution of

three novel design tools. These contributions provide an automated design flow for high

performance signal processing. The design flow takes high-level dataflow representations

as input and systematically derives optimized implementations on CPU-GPU platforms.

The proposed design flow and associated design methodology are inspired by a

previously-developed application programming interface (API) called the Hybrid Task

Graph Scheduler (HTGS). HTGS was developed for implementing scalable workflows

for high-performance computing applications on compute nodes that have large numbers

of processing cores, and that may be equipped with multiple GPUs. However, HTGS

has a limitation due to its relatively loose use of dataflow techniques (or other forms of

model-based design), which results in a significant designer effort being required to apply

the provided APIs effectively.

The main contributions of the thesis are summarized as follows:

(1) Development of a companion tool to HTGS that is called the HTGS Model-

based Engine (HMBE). HMBE introduces novel capabilities to automatically analyze ap-

plication dataflow graphs and generate efficient schedules for these graphs through hybrid

compile-time and runtime analysis. The systematic model-based approaches provided by

HMBE enable the automation of complex tasks that must be performed manually when

using HTGS alone. We have demonstrated the effectiveness of HMBE and the associated

model-based design methodology through extensive experiments involving two case stud-

ies: an image stitching application for large scale microscopy images and a background



subtraction application for multispectral video streams.

(2) Integration of HMBE with HTGS to develop a new design tool for the design and

implementation of high-performance signal processing systems. This tool, called HMBE-

Integrated-HTGS (HI-HTGS), provides novel capabilities for model-based system design,

memory management, and scheduling targeted to multicore platforms. HMBE takes as

input a single- or multi-dimensional dataflow model of the given signal processing appli-

cation. The tool then expands the dataflow model into an expanded representation that ex-

poses more parallelism and provides significantly more detail on the interactions between

different application tasks (dataflow actors). This expanded representation is derived by

HI-HTGS at compile-time and provided as input to the HI-HTGS runtime system. The

runtime system in turn applies the expanded representation to guide dynamic scheduling

decisions throughout system execution.

(3) Extension of HMBE to the class of CPU-GPU platforms motivated above. We

call this new model-based design tool the CPU-GPU Model-Based Engine (CGMBE).

CGMBE uses an unfolded dataflow graph representation of the application along with

thread-pool-based executors, which are optimized for efficient operation on the targeted

CPU-GPU platform. This approach automates complex aspects of the design and imple-

mentation process for signal processing system designers while maximizing the utiliza-

tion of computational power, reducing the memory footprint for both the CPU and GPU,

and facilitating experimentation for tuning performance-oriented designs.
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Chapter 1: Introduction

Modern platforms for signal processing are often equipped with multicore central

processing units (CPUs) and massively parallel graphics processing units (GPUs). These

platforms are useful for a wide variety of high-performance signal processing applica-

tions because such a hybrid CPU-GPU architecture can potentially exploit large degrees

of parallelism to address challenging performance requirements. However, developing

performance-oriented applications that simultaneously satisfy the following three require-

ments is difficult:

1. Effective in exploiting the computational capabilities of the targeted hardware sys-

tem (e.g., CPU cores and GPUs).

2. Understandable from a performance perspective.

3. Relatively easy to implement and platform-portable.

Conventional techniques, based on statement- or function-level parallelism tech-

niques, are not adequate for an application to take full advantage of modern signal pro-

cessing platforms. Applications often contain parallelism that spans multiple loops and

function calls; exploiting this parallelism can be critical for obtaining performance within

these applications. Furthermore, these approaches are difficult for system designers to

1



understand and implement with high efficiency. They require designers to develop a spe-

cialized design for each combination of application and platform, and make it difficult

to systematically leverage previous design experience when developing new implementa-

tions.

1.1 Motivation of Model-Based Design

When using modern multicore CPUs, an application’s threading model plays an

important role in determining whether computational resources can be used efficiently by

the application. Spawning too many threads does not necessarily improve overall per-

formance because the overhead of spawning, destroying, and context switching between

threads can consume significant system resources. On the other hand, if the number of

threads is too small, the application cannot utilize all available CPU cores. Moreover,

multi-threading leads to potential problems associated with data races. Although design-

ers can use locks and mutexes to guarantee mutually exclusive access to data, excessive

use of such mechanisms can significantly degrade performance.

Just as a single thread cannot take full advantage of a multicore CPU, a single

GPU kernel typically does not consume all the computational capacity of a powerful

GPU device. For NVIDIA GPUs, system designers can use CUDA streams to execute

multiple kernels concurrently; a CUDA stream is analogous to an OpenCL command

queue. However, using CUDA streams incorrectly may lead to increased overhead due to

device synchronization which pause all executing kernels on the GPU device. An example

of a common operation that leads to device synchronization is GPU memory allocation.

2



In addition to coordinating CPU threads and GPU kernels, memory management

is another important challenge in efficient CPU-GPU software implementations. Most

CPU-GPU platforms have separate address spaces for device and host memory. To launch

a kernel on the GPU, the system has to first ensure the data is available in device memory

or copy it from host to device memory.

This need for transferring data between host and device memory raises a number

of issues. First, although overlapping data motion with computation usually yields higher

performance when compared to performing these steps sequentially, developing efficient

schedules that incorporate such overlapped communication is challenging. Second, dy-

namically allocating GPU memory when needed triggers device synchronization and, as

such, reduce GPU performance. Moreover, device memory is limited in size when com-

pared to the much larger amounts of memory available in hosts. As such, it is not feasible

to move all data to device memory at once when processing large data sets. In conven-

tional CPU-GPU design flows, the designer is responsible for dividing a large data set

into small batches that fit in device memory, organizing the transfer of these batches to

the device, and overlapping the transfers with kernel executions.

The CUDA parallel programming platform and application programming interface

(API) supports unified memory so data can be automatically moved between host and

device memory. This feature can simplify program development. However, in analogy

to virtual memory, it must be used with care because it does not nullify the cost of data

transfers and designers must remain aware of these costs. A designer who wants to de-

velop an efficient system must still exert a significant effort to solve the related problems

of scheduling tasks on CPU cores and GPUs, and coordinating data movement for tasks

3



that require host-device communication.

The (Hybrid Task Graph Scheduler) (HTGS) is a recently introduced software tool

that addresses the challenges of integrated scheduling and memory management for im-

plementing scalable workflows for high-performance computing applications on com-

pute nodes with high core counts and multiple GPUs [1]. HTGS includes novel ab-

stractions, application programming interfaces (APIs), and runtime system components

to facilitate the development and iterative optimization of scalable, high-performance,

and performance-portable CPU-GPU implementations. It uses an explicit task graph rep-

resentation of the application and delivers similar performance as manually developed

systems while simplifying the code substantially and reusing existing compute kernels.

However, HTGS has two shortcomings. It requires a developer to manually design mem-

ory management strategies (known as memory release rules in HTGS) and provides no

theoretical guarantees as to the safe execution of tasks.

To address the problems described above, it is critical to view signal processing

applications at a higher abstraction level that formally captures characteristics of global

execution patterns. Dataflow models of computation provide such abstractions and are

useful for many kinds of analyses and optimization objectives in design and implementa-

tion of signal processing systems [2, 3].

In this form of dataflow, the designer describes an application using a graph struc-

ture, where graph vertices represent computational modules (actors) and edges represent

FIFO (First In First Out) queues for communication between computations. In general,

the actors can be of arbitrary complexity, ranging from primitive operations to individual

kernels to functions that invoke multiple kernels.
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Fig. 1.1 illustrates differences between task graph models and dataflow models. The

numbers next to the actor ports in Fig. 1.1(b) indicate the number of data values (tokens)

that are produced or consumed on the associated output or input edges, respectively. For

example, Actor D consumes 3 tokens and produces 1 token on each invocation. The

emphasis on characterizing such production and consumption rates (in terms of tokens per

actor invocation) is a distinguishing characteristic of signal-processing-oriented dataflow

models of computation compared to tasks graph representations.

Additionally, different from the task graph model, where the topology is a directed

acyclic graph (DAG) and all tasks execute at the same rate (in terms of invocations per

graph iteration), a dataflow model allows the designer to model feedback paths as cy-

cles in the graph, and allows actors to execute at different rates. This latter capability is

important, for example, when modeling multirate signal processing systems. For more

background on dataflow based modeling and design for signal processing systems, we

refer the reader to Bhattacharyya et al. [3].

In this research, we address new challenges and constraints involved in the design

and implementation of high performance signal processing systems using dataflow mod-

els. We outline the contributions of this thesis in the next section.

1.2 Contribution

In this thesis, we address important challenges in mapping signal processing ap-

plications into efficient implementations on hybrid CPU-GPU platforms. Our approach

applies a model-based design methodology and introduces novel methods for dataflow-

5



3

1

Actor 
A

Actor 
B

Actor 
C

Actor 
D

1

2

3

2

4

1 2

1

(b) Dataflow Graph Model

Task A

Task B

Task C

Task D

(a) Task Graph Model

Figure 1.1: An illustration of differences between task graph models and dataflow models.

based analysis and optimization.

Fig. 1.2 shows a typical workflow of a dataflow-model-based design methodology.

We develop a model-based design tool that automates the complicated and error-prone

steps of exploring and exploiting parallelism for signal processing applications. To make

it easier for designers to implement applications efficiently and understand performance

bottlenecks, we have developed a novel dynamic scheduler in our design tool. By a

dynamic scheduler, we mean a runtime subsystem that dynamically assigns actors to pro-

cessing resources and determines the ordering of actors. The dynamic scheduler applies

compile-time analysis of the dataflow model, and uses the results of this analysis to adapt

scheduling decisions at runtime based on variations in actor execution times and inter-

processor communication performance that are not statically predictable. The dynamic

scheduler operates efficiently on hardware that supports a large degree of concurrency.

Additionally, it generates task-level profiling results with minimal runtime overhead.
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These profiling results help to provide insights about performance to system designers,

which in turn aids in their process of iterative performance optimization.

To demonstrate the design methods and tools developed in this research, we employ

case studies in the domain of high performance image processing. This is a domain that

is of increasing relevance due to advances in areas such as computer vision and machine

learning on visual data. We envision that the core contributions of the thesis can be

adapted naturally to other signal processing domains. Exploring such adaptations is an

interesting direction for future work.

The contributions of the thesis are presented in three main parts. First, we develop

the HTGS Model-Based Engine (HMBE) scheduler as a separate tool that links dataflow

based modeling and scheduling with the software component (actor) library of HTGS.

Then we present a new version of HTGS in which HMBE is integrated seamlessly within

HTGS rather than applied as a separate companion tool. We demonstrate that this new

version provides significant further advantages compared to the previous, loosely-coupled

integration of HMBE and HTGS. To distinguish it from the original HTGS and HMBE

tools, we refer to the new integrated toolset as HMBE-Integrated-HTGS (HI-HTGS).

Finally, we introduce the CPU-GPU Model-Based Engine (CGMBE), which builds on

HMBE to extend the class of targeted systems to multicore CPU platforms that are com-

bined with GPU accelerators.

We provide brief introductions to HMBE, HI-HTGS, and CGMBE in Sections

1.2.1, 1.2.2, and 1.2.3, respectively.
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Figure 1.2: A typical workflow for a model-based, signal processing design methodology.
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1.2.1 HTGS Model-Based Engine

To automate the powerful but complex steps in the HTGS framework, we first

present a companion tool to HTGS, which we refer to as the HTGS Model-Based En-

gine (HMBE). The objective in the design of HMBE is to integrate the advanced de-

sign optimization techniques provided in HTGS with model-based approaches founded

on dataflow principles. HMBE further raises the abstraction level of the graphical rep-

resentations in HTGS-based workflows so that the graphs are formulated in terms of

dataflow principles. HMBE thereby enables dataflow-based analysis and optimization

techniques to be integrated with implementations using HTGS. The class of analysis and

optimization techniques enabled by HMBE includes those associated with the schedul-

ing of tasks and communication operations, which is a critical aspect of dataflow-based

design processes for signal and information processing [4].

Modern multicore architectures require the use of threads to achieve high perfor-

mance. However, threads provide a highly non-deterministic model of computation [5].

This non-determinism interferes with the application of conventional static or self-timed

multiprocessor scheduling techniques for static dataflow models, such as Synchronous

DataFlow (SDF) and Windowed SDF [6, 7], that rely on predictable execution of and in-

teraction between execution subsystems [4]. Furthermore, when the predictability in the

underlying execution model decreases, as in thread-based models, the assumptions made

during static or self-timed scheduling are increasingly inaccurate and the efficiency of the

resulting implementations suffers. This trend motivates the use of dynamic scheduling in

HMBE.
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It is important to have a high-level representation of the application model at

compile-time to enable advanced analysis and optimization. It is equally important to

have an expanded global representation of the application’s execution state at runtime.

The application model is feature-rich and flexible, while the execution state representa-

tion should be simple and efficient so as to reduce runtime overhead. To achieve these

requirements, HMBE uses an automated conversion to bridge the gap between an expres-

sive application model and a lightweight runtime model.

The HMBE scheduler provides lock-free and race-condition-free exploitation of

parallelism without requiring programmer experience in parallel programming. To reduce

the runtime overhead of the dynamic scheduler, HMBE performs most graph transforma-

tions and analysis at compile-time and exports an expanded model, which is efficient

for the scheduler to process at runtime. HMBE integrates a modified form of ready list

scheduling with an expanded representation of the input dataflow model that exposes par-

allelism effectively. The process of producing a multithreaded executable from the given

input dataflow model is fully automated through the scheduling and code generation fea-

tures incorporated in HMBE.

In Section 4.2.1, we show that HMBE yields comparable performance as HTGS.

HMBE achieves this comparable level of performance while greatly reducing programmer

effort through automation of scheduling and memory management processes. We also

experiment with HMBE on a background subtraction application for multispectral video

streams to demonstrate that HMBE can effectively exploit parallelism in applications that

have large amounts of sequential execution constraints.

Details of the HTGS Model-Based Engine are presented in Chapter 4.
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1.2.2 HMBE-Integrated HTGS

HTGS significantly reduces the complexity of implementing scalable and high-

performance multicore applications through a task-graph based application representa-

tion [1], and novel provisions for integrating optimizations for high-performance multi-

core processing and memory management within this representation. Using HTGS effec-

tively requires iterative performance tuning, which in turn requires significant designer

effort to derive efficient schedules and manage memory usage patterns.

First, we develop the HMBE-based scheduler as a separate tool that links dataflow

based modeling and scheduling with the software component (actor) library of HTGS.

Then we present a new version of HTGS in which HMBE is integrated seamlessly within

HTGS rather than applied as a separate companion tool. We demonstrate that this new

version provides significant further advantages compared to the previous, loosely-coupled

integration of HMBE and HTGS. To distinguish it from the original HTGS and HMBE

tools, we refer to the new integrated toolset as HMBE-Integrated-HTGS (HI-HTGS).

HI-HTGS automates major parts of the HTGS-based design process using the model-

based design methodology from HMBE, along with new developments that integrate

HMBE tightly as a subsystem within HTGS. Our development of HI-HTGS includes

three major advances. First, we resolve the semantic mismatch between the schedulers of

HTGS and HMBE through a hierarchical scheduling approach in which a global sched-

uler interacts with multiple local schedulers to automatically optimize overall memory

usage and execution time. Second, we replace the application modeling interface with

one that is based on the Dataflow Interchange Format (DIF) Language [8]. Third, we
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migrate most of the setup-time and runtime analysis to compile-time, which results in a

significantly more efficient, lightweight runtime system.

We demonstrate the effectiveness of HI-HTGS through a case study involving an

image stitching application for large scale microscopy.

Details of HMBE-Integrated HTGS are presented in Chapter 5.

1.2.3 CPU-GPU Model-Based Engine

The contributions of the CPU-GPU Model-Based Engine (CGMBE) build upon our

development of HMBE and HI-HTGS. HMBE builds, in turn, on advances introduced in

HTGS and provides novel models and methods that provide a principled approach, based

on the Windowed Synchronous Dataflow (WSDF) model of dataflow systems [7]. WSDF

is applied in HMBE to guarantee the absence of deadlocks and race conditions, and to

automate some steps that HTGS had relegated to developers [9]. However, HMBE is

restricted to target platforms that consist only of CPU cores; it does not provide support

for GPU-accelerated platforms.

In Chapter 6, we introduce a new model-based design tool, the CPU-GPU Model-

Based Engine (CGMBE), for image processing system design. CGMBE extends HMBE

to target multicore CPU platforms with single-GPU acceleration. In view of the signifi-

cant challenges discussed earlier in this chapter for CPU-GPU implementation, CGMBE

incorporates major new models and methods compared to the first-version tool, HMBE.

CGMBE replaces the HMBE runtime engine with an executor pattern [10] to achieve the

separation of concerns between (1) the management of the global state of computation
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of the dataflow graph, including the selection of ready tasks that can be executed asyn-

chronously, and (2) the coordination of compute resources and task execution based on

the availability of resources and the priority of tasks.

CGMBE allows a designer to specify applications using a flexible model of compu-

tation that integrates the Synchronous Dataflow (SDF) model [6] with an extensible class

of bounded-memory patterns that allows pre-defined forms of dynamic dataflow behavior.

CGMBE provides important theoretical guarantees—in particular, determinate, deadlock-

free, race-free and bounded memory execution—for implementations that are developed

using the tool. Furthermore, CGMBE incorporates a novel hybrid compile-time/runtime

scheduling strategy for the efficient scheduling of dataflow graphs that may incorporate

both SDF and dynamic dataflow subsystems.

Through an automated process, CGMBE performs most of its exploration of par-

allelism at compile-time, and caches results of its compile-time analysis for use by the

runtime system. The runtime system executes asynchronously and overlaps data motion

with computations to maximize the utilization of all compute resources. Additionally,

CGMBE provides efficient profiling capabilities with very low runtime overhead. This

low profiling overhead allows developers to readily gain insight into the performance bot-

tlenecks of an application, such as the most time-consuming task. They can then iterate

over their system-level design by moving tasks between the CPU and GPU or changing

the structure of their application’s model. They can also be more targeted when working

with algorithm designers to improve specific kernel implementations.

Details of the CPU-GPU Model-Based Engine are presented in Chapter 6.
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1.3 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces related

software tools and background on signal-processing-oriented dataflow models. In Chap-

ter 3, we present dataflow modeling techniques that are used extensively in this research.

The next three chapters present the main contributions of this thesis: Chapter 4 presents

the HTGS Model-Based Engine (HMBE), Chapter 5 presents HMBE-Integrated-HTGS

(HI-HTGS), and Chapter 6 presents the CPU-GPU Model-Based Engine (CGMBE). Fi-

nally, in Chapter 7, we summarize the thesis and discuss directions for future work.
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Chapter 2: Background

The efficient development of applications on CPU-GPU platforms has been widely

studied from various aspects, which include developing programming APIs, presenting

static or dynamic schedulers, and proposing formal models for applications or hardware

platforms. A taxonomy of task-based parallel programming methods has recently been

proposed in Thoman et al. [11]. This taxonomy is useful for classifying task-based en-

vironments. By analogy with this taxonomy, we classify parallel programming environ-

ments from the aspect of formal modeling, where the functional organization of compo-

nents have a model-based definition, existing approaches can be categorized into task-

based systems, such as StarPU and OmpSs [12, 13], and workflow-based systems, such

as Pegasus [14].

2.1 Task-based and Workflow-based Systems

These task-based systems do not address the problem in its entirety, especially in

the context of real-time image processing systems, where predictable, real-time opera-

tion on continuous image streams is of major importance. For example, StarPU allows

developers to provide alternative CPU and GPU implementations for a kernel, where the

alternative implementations will be invoked automatically or explicitly. However, StarPU
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expects developers to manage memory for both the CPU and GPU, and does not provide

a runtime representation of the application. Without access to a model-based runtime

representation, it is difficult for StarPU to optimize application execution automatically

at runtime, and developers have to manually ensure that their StarPU-based applications

are free from deadlocks or data-race conditions.

A second example of a task-based system is OmpSs. OmpSs uses a traditionally

supported, directive-based approach to running heterogeneous task kernels on GPU or

FPGA devices by extending OpenMP with new directives [13]. To use OmpSs, one has

to use the Mercurium compiler and the Nanos++ runtime [15]. OmpSs provides some

support for reducing the complexity of application mapping via user-specified directives

(e.g., automated memory allocation and data motion). Nevertheless, OmpSs requires de-

velopers to shoulder most of the burden of developing parallel software systems, including

designing memory access patterns, reducing memory usage, and avoiding data-races and

deadlocks.

Legion [16] is another task-based system for CPU-GPU platforms. Legion uses a

data-centric programming model for distributed heterogeneous architectures. The Legion

system requires developers to explicitly define static data properties for tasks and then

uses this information to manage data movement operations. However, in cases involving

dynamic or data-dependent task execution, where data dependencies are undefined until

runtime, there is insufficient information about dataflow properties to enable Legion to

extract parallelism effectively.

Other task-based approaches include PaRSEC, PLASMA and NLAFET [17–19].

PaRSEC is an event-driven system whose runtime can perform dynamic, opportunis-
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tic scheduling decisions. PaRSEC represents an algorithm as a Directed Acyclic Graph

(DAG) and its front-end compiler performs dataflow analysis from source code and pro-

duces a parameterized task graph. However, PaRSEC’s task graph model is less expres-

sive than a full-fledged dataflow model. PaRSEC’s model is limited to DAGs and assumes

single token rates for task invocation whereas a full-fledged dataflow model allows cycles

and more flexible First-In-First-Out (FIFO) rates. PLASMA can be viewed as a redesign

of LAPACK [20] and ScaLAPACK [21]. PLASMA relies on tiling algorithms to pro-

vide fine granularity parallelism [22]. Parallel Numerical Linear Algebra for Extreme

Scale Systems, also called NLAFET, which seeks to develop numerical algorithms and

software libraries that take advantage of Exascale systems [23]. Their basic approach is

to develop parallel algorithms that are architecture-aware and avoid communication and

synchronization, and that explore advanced scheduling strategies and runtime systems.

However, NLAFET primarily targets linear algebra software and it is not clear how their

approach can be used in applications that are not centered on a small number of linear

algebra operations.

Workflow-based systems such as Pegasus are designed to automate computational

workflows at the level of the grid and to provide traceability of results [24]. These work-

flow systems invoke independent applications and are not designed to deliver performance

within a single application that will run on a powerful node with many CPU cores and

possibly multiple GPUs.

Compared to task-based tools, the model-based design methodologies presented in

this thesis utilize dataflow methods to operate at a higher abstraction level, and exploit

parallelism beyond what is derived from data dependencies among tasks. As such, these
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methodologies can yield more thorough optimization. Rather than scheduling multiple

applications on a grid of nodes as considered in related workflow approaches, this research

focuses on efficiently scheduling a single application on a single powerful node to increase

application performance and reduce execution time. This latter design scenario is typical

in application domains of embedded signal processing.

2.2 Dataflow-based Systems

Dataflow graph approaches allow the designer to model applications at a higher

abstraction level than that of conventional programming environments and enable auto-

mated parallelism exploration and optimizations in a top-down manner (e.g., see [2, 3]).

Various tools have been developed for modeling signal and information processing ap-

plications in terms of dataflow graphs, and automatically generating hardware or soft-

ware implementations from the model-based representations. Examples of such tools

include CAL/Orcc [25, 26], PREESM [27], Halide [28], the Multi-Dataflow Composer

(MDC) [29], HTGS (introduced in Chapter 1), and the Dataflow Interchange Format

(DIF) [30].

CAL/Orcc and PREESM provide user-friendly graphical interfaces to enable visual

editing of dataflow graphs. These tools also provide code generation capabilities. DIF

features a textual language that supports a wide range of dataflow models. It is also ac-

companied by a library of analysis and code generation tools that operate on supported

models within the tool. Halide is a programming language for image processing that em-

ploys dataflow modeling techniques and incorporates features for decoupling algorithm
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representations from execution strategies. It represents an implementation as an algorithm

and a schedule. The Halide compiler uses both representations to generate optimized ma-

chine code. Halide allows a developer to experiment with different schedules to achieve

better performance.

HTGS introduces new methods for integrating optimized memory management

with the design of task graphs and the implementation of high-performance multithreaded

applications [1]. The carefully formulated APIs of HTGS enable the construction of

code that is highly optimized for complex high-performance platforms, while also pro-

viding scalability and ease of performance tuning across different types of platforms. A

limitation of HTGS is its relatively loose use of dataflow techniques (or other forms of

model-based design), which results in a significant designer effort being required to apply

the provided APIs effectively. Although the methods developed in this thesis are driven

by developing complementary capabilities to HTGS, their formulation in terms of for-

mal dataflow principles, such as Synchronous Dataflow (SDF), Windowed Synchronous

Dataflow (WSDF), Acyclic Precedence Expansion Graphs (APEGs), and unfolded Ho-

mogeneous Synchronous Dataflow (Unfolded HSDF) makes them readily adaptable to

other environments. Details on the use of SDF, WSDF, APEG, and unfolded HSDF rep-

resentations in our model-based design methodology are presented in Chapters 4 and 6.

2.3 Scheduling Models

In this thesis, we go beyond the developments of HTGS by raising the level of ab-

straction further and casting design optimization problems targeted by HTGS in terms
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of dataflow principles. This results in a novel approach to dynamic scheduling for het-

erogeneous platforms that use expanded dataflow graph representations of applications

(i.e., APEGs) at runtime to guide scheduling decisions. These expanded representations

expose parallelism in greater detail when compared to more compact dataflow represen-

tations that are typically used by designers [6]. Our work also provides a basis for relat-

ing the advances in HTGS to systematic dataflow-based design methods and automation

techniques. Furthermore, the contributions of this thesis have significant potential for

adaptation to other environments.

Lee and Ha develop a taxonomy for scheduling models based on whether certain

scheduling tasks are performed at compile time or runtime [31]. These models provide a

range of trade-offs between predictability and flexibility, and include self-timed, static-

assignment, fully-static, and dynamic models. The concept of “assignment” in these

models is that of assigning computational tasks to processors. Among these models,

the self-timed and static assignment models have natural adaptations to the thread-based

implementation context targeted in this thesis. In these adaptations, which we refer to as

the adapted self-timed and adapted static assignment models, the assignment of tasks to

threads (rather than to processors) is performed at compile-time. In adapted self-timed

scheduling, the ordering of tasks that share the same thread is performed at compile time,

while in adapted static assignment scheduling, this ordering is performed at run time.

Kwok and Ahmad [32] provide an extensive survey of static scheduling approaches,

which fix the mapping from actors to processors and their invocation orders at compile

time. An example of such an approach is Heterogeneous Earliest-Finish-Time (HEFT) [33],

which aims at statically scheduling task graphs onto heterogeneous platforms. Such ap-
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proaches can be used to schedule dataflow-based application models that conform to

SDF semantics (see Section 6.1). However, to target platforms that provide massive

concurrency, such as modern CPU-GPU-hybrid heterogeneous platforms, it is useful for

schedulers to incorporate dynamic scheduling capabilities. This is due to the highly non-

deterministic characteristics of execution models associated with CPU threads and GPU

streams.

In HMBE, we apply a scheduling model that lies between adapted static assign-

ment and adapted self-timed scheduling in terms of the trade-off between predictability

and flexibility. We refer to this model as the Single Actor, Dynamic Invocation (SADI)

assignment. In a SADI assignment, a given thread is dedicated at compile time to a single

actor, while the set of actor firings that executes through that thread is determined dynam-

ically. We elaborate more on the SADI scheduling model and its application to HMBE in

Chapter 4. Intuitively, we prefer SADI to adapted self-timed scheduling because the lack

of predictability in the thread-based model of computation (see Chapter 1) makes adapted

self-timed schedules too rigid in our context.

Additionally, HMBE is generalized to incorporate support for actors that have in-

ternal states. These actors are represented in an expanded intermediate representation

with dependence edges that connect successive firings of the actors. Two case studies are

discussed to help demonstrate the ability of HMBE to handle applications with diverse

characteristics. The first case study, presented in Section 4.2.1, involves a large-scale

image stitching application, which is data-intensive and has complicated data dependen-

cies. The second case study, presented in Section 4.2.2, involves a background subtraction

application for multispectral video streams. The background subtraction application ex-
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hibits a significant amount of sequential scheduling dependencies and many actors in this

application have internal states.

HI-HTGS uses HMBE to automate the design process of HTGS’s local sched-

ulers, which are also referred to as bookkeeper rules in HTGS. HI-HTGS embeds the

results of HMBE-based analysis in a generalized bookkeeper rule, which automatically

resolves data dependencies for adjacent HTGS tasks. HI-HTGS also utilizes a hierarchi-

cal scheduling approach, where local schedulers resolve data dependencies and a global

scheduler coordinates execution across the local schedulers. Details of the hierarchical

scheduling approach used in HI-HTGS are presented in Section 5.3.

CGMBE further extends the capabilities of HMBE. More specifically, the novelty

in CGMBE is its inclusion of a unique combination of models and methods that are use-

ful for mapping complex image processing applications onto CPU-GPU platforms. First,

CGMBE incorporates a dynamic scheduler (part of its runtime system), which efficiently

utilizes both the CPU and GPU without statically binding tasks to threads or cores. Sec-

ond, CGMBE provides the ability to support dynamic dataflow application behavior by

systematically integrating well-behaved (bounded memory) patterns of dynamic behavior.

Third, CGMBE separates the management of the execution state of the dataflow model

and the coordination of computation resources. This separation gives the system designer

a simple API to implement dataflow-based image processing systems, while providing

flexibility if the designer wants to customize the execution.

Moreover, while HMBE and HI-HTGS are targeted to multicore platforms, CGMBE

targets the more general class of platforms that consist of a multicore platform together

with a GPU accelerator.
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Chapter 3: Modeling

In this chapter, we introduce the modeling techniques used in HMBE and CGMBE

respectively. Material in this chapter was published in partial, preliminary form in Wu et

al. [9, 34].

HMBE maintains two dataflow-based models of an application: (1) a compact

representation, the application graph, which may incorporate multirate dataflow seman-

tics, and (2) an expanded single-rate representation, which exposes more explicitly the

dataflow relationships and parallelism among individual actor firings within an applica-

tion. The expanded representation is based on multirate-to-single-rate expansion concepts

introduced by Lee and Messerschmitt in the context of the synchronous dataflow (SDF)

model of computation [6]. We refer to the expanded representation as the Acyclic Prece-

dence Expansion Graph (APEG).

The application graph is the system designer’s entry point to the HMBE system,

whereas the APEG is an intermediate representation that is derived from the application

graph and used by the HMBE runtime system to guide dynamic scheduling decisions.

HMBE generates the APEG automatically as part of the compilation process.

The core scheduling techniques used in HMBE can be applied to any dataflow

model of computation which (a) has a well-defined concept of a graph iteration, and
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(b) can represent the dependencies statically among individual firings through an APEG

representation. In this context, the APEG representation X of an application graph G is

a second graph in which individual actor firings (within an iteration of G) correspond to

vertices in X and an edge connects vertices v1 to v2 in X if and only if x1 produces data

consumed by x2 in the same graph iteration. Here, x1 and x2 are the actors in G associated

with the firings v1 and v2, respectively.

If the underlying dataflow model is sufficiently predictable, then we can construct

expanded representations by adapting the SDF-based APEG construction mechanisms

introduced by Lee and Messerschmitt [6]. Such adaptations have been demonstrated,

for example, with the multidimensional synchronous dataflow, and cyclo-static dataflow

models of computation [35,36]. HMBE uses APEGs for dynamic scheduling via SADI at

runtime in contrast with conventional methods that apply APEGs to scheduling problems

that are focused on static scheduling techniques.

HMBE adapts Keinert’s Windowed Synchronous DataFlow (WSDF) model [7] and

uses it as the foundation for application graph modeling. A main advantage of WSDF is

that it efficiently models the sliding-window behavior of an application. This is directly

applicable to high-performance image processing, an application area of particular inter-

est to the HTGS and HMBE projects. At the same time, WSDF belongs to the class of

models for which APEGs can be derived and is, therefore, compatible with the central

assumption for application modeling in HMBE.

The adaptations that we incorporate in WSDF are relatively minor and stem from

our focus on applications that process very large-scale individual images, rather than

streams of images. These adaptations include the following aspects.
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• The adapted WSDF model simplifies the multi-dimensional balance equations be-

cause the model is not used to represent streaming applications.

• The adapted model focuses on coordinating image tokens generated from each step

of the sliding window, while the original WSDF model has more complicated but

powerful parameters for modeling sliding window behavior on image pixels.

Because the methods developed in this thesis are applicable to any form of dataflow

that supports the derivation of APEGs, neither these adaptations to WSDF nor the use of

WSDF itself are limiting factors of our work. For details on WSDF, we refer the reader to

Keinert [7]. Because the adaptations to WSDF that we employ in HMBE are minor, we

do not distinguish in the remainder of this thesis between the original WSDF model and

our adapted form of WSDF.

Fig. 3.1 is a concrete example of the WSDF model used in this thesis, This model

contains three actors and two edges. Because the actor SRC is a source actor, it has a frame

size associated with it; this frame size is fsrc = (3,4). The SRC actor reads tokens from a

file, using a 3×4 grid, as shown in Fig. 3.1.a. It then produces tokens on edge e1 as a grid

of tokens; this is illustrated in Fig. 3.1.b. For edge e1, the window size is c1 =(1,2), which

means that each window encompasses 1 row and 2 columns. The dashed arrows indicate

the direction of window movement from one actor firing to the next. For example, since

d1 = (1,1), the window moves right 1 token a time until it reaches the right boundary of

the grid after 3 movements. Then the window moves to the beginning of the second row.

Similar edge attribute notations are used on edge e2. Because actor A is invoked three

times per row, the token grid on edge e2 has size 3×3.
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Figure 3.1: A demonstration of the adapted WSDF model used in this thesis.

Fig. 3.2 illustrates the design flow for HMBE-based development of high-perfor-

mance image processing applications. In this design flow, an implementation for a given

problem description is first developed in terms of WSDF semantics. This implementation

has two parts: the application model, which describes the dataflow graph, and the actor

library, which provides detailed functionality for the individual actors in the graph. In

the current version of HMBE, the application model is specified using protocol buffers,

which provide methods and tools for representing, reading, and writing serialized data

structures [37], and the actors are implemented in C++ following interfacing conventions

similar to those in HTGS [1]. The protocol buffer aspect of the prototype is represented

by the blocks labeled Prototxt Format and Protobuf Library, which are defined as part of

the protocol buffer toolset [37].

The application model is stored internally within HMBE as a WSDF graph (a

WSDF Object) and the graph is converted automatically by HMBE into an APEG rep-

resentation. The WSDF and APEG graph data structures and the analysis techniques in

HMBE that operate on them build on the Boost Graph Library [38, 39]. The executable
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HMBE Scheduler

Multithreaded Implmentation

Figure 3.2: An illustration of the design flow for HMBE-based development of high-
performance image processing applications.
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for the multithreaded implementation (the bottom-most block in Fig. 3.2) is constructed

by linking the actor library and HMBE scheduler. This executable embeds the APEG that

is constructed at compile time so that the HMBE scheduler can access it to guide dynamic

scheduling decisions.
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Chapter 4: Scheduling

In this chapter, we present the HTGS Model-Based Engine (HMBE), which is a

novel tool for the design and implementation of dataflow-based signal processing applica-

tions on multi-core architectures. HMBE provides complementary capabilities to HTGS,

which was introduced in Chapter 1. HMBE integrates model-based design approaches,

founded on dataflow principles, with advanced design optimization techniques provided

in HTGS. This integration contributes to the following goals.

• Making the application of HTGS more systematic and less time consuming,

• Incorporating additional dataflow-based optimization capabilities with HTGS opti-

mizations, and

• Automating significant parts of the HTGS-based design process using a principled

approach.

This chapter describes the design of HMBE with an emphasis on the novel dy-

namic scheduling techniques that are developed as part of the tool. We demonstrate

the utility of HMBE through two case studies: an image stitching application for large-

scale microscopy images and a background subtraction application for multispectral video

streams.
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Material in this chapter was published in partial, preliminary form in Wu et al. [9,

34].

4.1 HMBE Scheduler

In this section, we present the SADI scheduling technique used in HMBE and which

we refer to as the HMBE scheduler. In this development, we denote the input dataflow

application graph by Gapp, the associated APEG by Gapeg, and the number of processor

cores in the target platform as NC. Furthermore, we refer to actors (vertices) in Gapeg as

firings. Given a dataflow graph G = (V,E), the set of actors V in G is actors(G) and the

set of edges E is edges(E).

In discussing the HMBE scheduler, it is useful to distinguish between three differ-

ent stages of dataflow graph implementation and execution. The first stage, compile-time,

refers to the steps involved in mapping the dataflow-based application model into an ex-

ecutable program P. The second stage, setup-time, refers to the steps involved in initial-

izing the execution of the compiled dataflow graph. This includes all operations between

τP and τ f , where τP denotes the time at which Program P begins execution, and τ f de-

notes the time when the first actor firing f begins execution. The third stage, referred to

as runtime, encompasses all operations that are executed during the given execution of P

from τ f onward.
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4.1.1 Allocation of Threads

The HMBE scheduler is a SADI scheduler that operates on a set of threads that is al-

located at setup-time. This allocation is performed at setup-time rather than compile-time

because (1) it allows the developer to control the degree of concurrency for each task and

(2) threads of the application process exist only when the application starts running. One

of the allocated threads, called the control thread, encapsulates the dynamic scheduling

functionality, and the other threads, called worker threads, carry out execution of firings

from Gapeg under the direction of the control thread.

At setup time, each actor A ∈ actors(G) is allocated a set of worker threads S(A).

Each thread t ∈ S(A) is dedicated to executing firings of A throughout the execution of

Gapp. Thus, each worker thread t has a unique actor α(t)∈ actors(Gapp) that it is assigned

to. For each actor A, the number (thread count) of threads NT(A) (i.e., the cardinality of

S(A)) can be specified by the system designer before executing an HMBE-based imple-

mentation. If NT(A) is not specified by the designer, it is configured using the default

setting NT(A) = NC. The construction of the sets {S(A) | A ∈ actors(G)} is deferred to

setup-time to allow the designer to configure NT(A) differently for different executions of

the application graph (e.g., as part of an iterative design space exploration and optimiza-

tion process).

At any given time during execution, a thread is in one of two states, which we

refer to as the dormant and active states. A dormant thread is blocked until it receives a

specific type of message from another thread which then transitions the dormant thread to

its active state. When a thread becomes blocked, its associated processor core is released

31



so that the core can execute other threads.

A worker thread w that is dormant becomes active when it receives an activation

message from the control thread. Upon receiving such an activation message, the thread

proceeds to execute a single firing of α(w). Once this firing is complete, the worker thread

sends a completion message to the control thread, becomes dormant again, and waits for

its next activation message from the control thread.

The control thread becomes dormant when the number of active threads reaches a

threshold, which we refer to as the Worker Thread Capacity (WTC) of the given HMBE

scheduler configuration. WTC is a scheduler parameter that can be varied, in general, at

runtime although our current implementation assumes that WTC’s value is determined at

setup-time and remains fixed throughout the execution of Gapp. Investigation of config-

uring WTC at runtime is an interesting direction for future work. Section 4.1.3 presents

further details about WTC. When the control thread is dormant, it remains in its dormant

state until it receives a completion message from a worker thread. At that point, the num-

ber of active threads is known to have decreased below WTC, so the control thread can

transition to its active state.

When the system begins execution, the control thread is initialized to be in its active

state while all worker threads are initialized to be in their dormant states.

4.1.2 Dynamic Activation of Threads

Through its model-based approach, including the use of WSDF application model-

ing and an APEG-based intermediate representation, the HMBE scheduler provides lock-
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free and race-condition-free exploitation of parallelism. This approach helps to mitigate

some of the unpredictability of the underlying thread-based execution model. However,

the unpredictability in thread execution times and thread-to-core assignment remains. The

SADI scheduling approach in HMBE is designed to dynamically adapt the assignment of

actors to threads and to dynamically activate threads to optimize performance in the pres-

ence of such uncertainty.

The HMBE scheduler uses a modified form of ready list scheduling, a form of

scheduling which maintains a list of the tasks with sufficient data available to execute [4,

40]. When a processing resource becomes available, the scheduler selects a task from

the ready list based on a greedy criterion and assigns the task to the processing resource.

Different greedy criteria, such as a critical path metric (e.g., refer to Sriram [4]), can be

incorporated into HMBE to select the next firing for execution from the ready list. When

task θ completes execution, the scheduler updates the ready list to include tasks that have

become ready (have sufficient input data) as a result of the completion of θ .

In the current version of HMBE, as described above, a task is determined to be ready

if it has sufficient data. The availability of sufficient empty space in output buffers is not

included in the criterion for actor “readiness”. This is because HMBE uses dynamic mem-

ory allocation to expand buffer sizes on demand. Furthermore, dataflow graphs in HMBE

are executed with pre-specified finite numbers of iterations. This prevents problems due

to unbounded accumulation of tokens within buffers. HMBE is readily adaptable to in-

corporate checking for empty buffer space and processing of graphs without predefined

iteration count limits. This is a useful direction for further work on HMBE.

HMBE modifies ready-list scheduling to maintain a separate ready list L(A) for each
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WSDF actor A. At any given time during execution, L(A) contains the set of firings of

A (APEG vertices associated with A) whose precedent firings have completed execution.

Here, a precedent firing of an APEG vertex v1 is a vertex v2 such that there is an APEG

edge directed from v2 to v1.

By using separate “actor-level” ready lists in HMBE, different criteria can be used

to select the next WSDF actor for execution or the next firing of the selected actor (in

case the firings are independent). In the current version of HMBE, we use a pair of

simple selection criteria that use the inverse of the critical path (lower critical path values

receive higher priority) and the shortest distance from the APEG vertex that represents the

first actor firing during execution. We refer to these criteria as Inverse Critical Path (ICP)

and Shortest APEG Distance (SAD), respectively. The ICP and SAD criteria are used to

select the next actor and next firing, respectively. These heuristic criteria are chosen in

an effort to reduce the lifetime of intermediate data throughout graph execution. Such

lifetime reduction is important when memory management is a dominant concern, as in

the targeted class of large-scale data-intensive image processing applications. Deeper

investigation into alternative ready-list selection criteria in HMBE is a useful direction

for future work.

The HMBE scheduler examines only the APEG’s execution boundary (i.e., the set

of ready actors) at any given scheduling iteration. As a result, dynamic processing of

the APEG is quite efficient even when the overall graph is very large. Furthermore, dy-

namic use of the ready list eliminates the need for synchronization operations by worker

threads, which can lead to significant reduction in contention for shared communication

and memory resources. The control thread has exclusive access to the ready list so no

34



lock is needed to implement the list.

4.1.3 Scheduler Operation

The HMBE scheduler maps each WSDF actor onto a group of dedicated threads,

as described in Section 4.1.1. The scheduler may activate more threads at a given time

than NC, the number of CPU cores. To help avoid excessive contention among active

threads, HMBE limits the number of active threads at any given time to WTC, a param-

eter introduced in Section 4.1.1. More specifically, WTC is determined at setup time as

(WTC = (1+ ε)×NC), where ε is a positive real-valued parameter that a designer can

specify when launching an HMBE-based application. We envision that ε will typically be

in the range of 0 to 0.5 and we provide a default setting of ε = 0.2 in case ε is not explic-

itly configured by the designer. As ε is increased, an increasing number of active threads

is allowed to coexist. Excessively large values of ε lead to large amounts of contention

and context switching among active threads, and degrade performance. Optimization of

ε is intended to be part of the iterative performance tuning process that is supported by

the HMBE framework.

Fig. 4.1 illustrates the operation of control and worker threads. The two boxes,

Read Message and Poll Messages, indicate blocking operations (see Section 4.1.1). As

such, processing on a thread will not continue until these operations complete. When

a worker thread becomes blocked by the Read Message operation, the core running the

thread is released to allow a new actor firing to execute on it. After spawning an initial set

of worker threads at setup-time, the control thread enters the loop shown in Fig. 4.1(a).
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Worker threads operate based on the loop shown in Fig. 4.1(b).

Assign Tasks

Write Messages Poll Messages

Update Ready List

Read Message

Extract Firing Index Invoke Task

Write Message

activation message completion message

(a) Control Thread

(b) Worker Thread

APEG

Figure 4.1: Operation of threads under the HMBE scheduler.

4.1.4 Limitations

A limitation of the current HMBE framework is that the default setting NT(A) = NC

is in general inefficient for actors that provide limited amounts of data parallelism, such

as actors whose firings must be serialized because they maintain internal state. This limi-

tation does not affect the experiments that we describe in Section 4.2.1 because the actors

in these case studies provide relatively large amounts of data parallelism. Extending the

HMBE scheduler to optimize the default configuration NT(A) of an actor A based on

analysis of Gapeg is a useful direction for future work.
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4.2 Experiments

4.2.1 Image Stitching

In this section, we evaluate the proposed HMBE framework with an image stitching

application for large scale microscopy images [1]. Modern microscopes use a motorized

stage to image a plate that is larger than a microscope’s field of view and acquire a grid

of overlapping images (“tiles”). Image stitching software then integrates these tiles into a

single image mosaic for the plate under study. This process iterates over adjacent pairs of

tiles and applies the dataflow graph shown in Fig. 4.2 to each adjacent pair.

4.2.1.1 Application Model

Fig. 4.2 shows the workflow for processing a given pair of adjacent tiles in a

dataflow style. It first computes the Fast Fourier Transform (FFT) of each tile and then

applies the Phase Correlation Image Alignment Method (PCIAM) [41] to the results of

these FFT computations. The “CCF” block in the figure computes the Cross Correlation

Factors (CCFs) of the PCIAM result, and extracts the maximum intensity point from the

derived CCFs.

FFTi

FFTj

PCIAM CCFs

SRCi

SRCj

SNK

Figure 4.2: Workflow for processing an adjacent pair of tiles.
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Fig. 4.3 depicts the WSDF model that we use to develop the image stitching appli-

cation in HMBE. This model has two separate branches for processing tile pairs that are

horizontally and vertically adjacent. The parameters {ci} and {di} shown in the figure are

inherited from WSDF. Intuitively, each ci represents the dimensions of a sliding window

associated with the communication of tokens across the given edge and each di represents

how the sliding window associated with an edge is translated from one window instance

to the next in the associated image grid. We refer to the parameters ci and di as the WSDF

window size and window stride parameters, respectively. For more details on the window

size and window stride parameters, we refer the reader to Keinert et al. [7].

SRC FFT

PCIAM1

PCIAM2

CCF1

CCF2

SNK1

e1

e2

e3

e4

e5

e6

e7
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SNK2

𝑑) = 𝑑" = ⋯ = 𝑑+ = 1, 1
𝑐) = 𝑐, = 𝑐- = 𝑐. = 𝑐/ = 1, 1

e8

e9

𝑐0 = 2, 1

𝑐+ = 1, 2

Horizontal neighbors

Vertical neighbors

Figure 4.3: WSDF model of the image stitching application.

For our image stitching application, efficient memory management is critical. Each

image tile is approximately 3 MB in size and its corresponding FFT result is nearly 12

MB in size. Thus, the total memory requirement of each image tile is about 15 MB. The

input dataset, obtained from a real imaging microscope, is a 42×59 grid of 2478 tiles. If

memory is not released while processing tiles, then the tiles and their transforms occupy

nearly 37 GB of memory; this exceeds the capacity of many commercial platforms and
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certainly most embedded signal processing devices. Indeed, one of the difficulties in using

HTGS is configuring the appropriate rules in the task graph for releasing memory [1].

In contrast, HMBE uses a systematic and automated approach for memory manage-

ment. This is achieved through the APEG-driven, ready list scheduling approach along

with the ICP and SAD selection criteria defined in Section 4.1. Additionally, the con-

figurability of the HMBE framework allows the designer to efficiently experiment with

alternative selection criteria. For example, such experimentation can allow the designer

to configure trade-offs between execution time and memory consumption that are most

closely suited to the constraints of the given application and platform. Further study of

alternative metrics to guide ready list scheduling in HMBE is a useful direction for future

work.

4.2.1.2 Results

To demonstrate the scalability of the HMBE framework, we experimented with five

platforms ranging from a high-end computing configuration to an embedded configuration

based on a Raspberry Pi device. These platforms are summarized in Table 4.1. On all of

the platforms, we used pthreads to implement threads through the interface provided by

the C++ standard library.

We used the implementation generated by the HMBE framework to process a 42×

59 grid of image tiles. For comparison, we applied the same dataset to a sequential

implementation of image stitching and two different configurations of HTGS.

The two configurations of HTGS differ in that one activates the memory pool option
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Platform CPU Cores RAM
Read

(MB/s)

High-end w/s 2x 2.4 GHz Intel E5-2640v4 40 512 GB DDR4 518.56

Medium w/s 3.4 GHz Intel i7-2600K 8 16 GB DDR3 116.31

MacBook Pro 2.7 GHz Intel i5-5257U 4 8 GB DDR3 1335.93

Old Desktop 2.8 GHz Intel Pentium D 2 2 GB DDR1 68.52

Raspberry Pi3 B 1.2 GHz ARMv7 rev 4 4 1 GB LPDDR2 21.37

Table 4.1: Configurations of the platforms used in our experiments.

of HTGS, while the other does not use this option. In this context, a memory pool is a

fixed-size block of pre-allocated memory that HTGS manages internally rather than using

external libraries for dynamically allocating memory on a system heap. The memory pool

option in HTGS is designed to efficiently prevent fragmentation in memory and reduce the

number of memory allocation operations that need to be carried out at runtime. In contrast

to HTGS, HMBE does not provide a memory pool option. Integration of a memory pool

into HMBE is a useful direction for future work.

Experimental results on execution time and peak memory usage are summarized in

Table 4.2. The first and second columns in the table show the execution time in seconds

and the peak memory usage in MB. For HTGS with the memory pool option disabled, we

were only able to measure runtime (15.06 s) on the high-end workstation. This is because

on the other platform configurations, the application could not execute to completion

due to exhaustion of memory resources. The execution times and peak memory usages

reported in Table 4.2 are averaged over 10 runs each with the 10th and 90th percentiles

removed.

The results summarized in Table 4.2 demonstrate that for the Intel-based configu-
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Platform
Sequential

Implementation HMBE
HTGS w/100 Tile

Memory Pool

High-end w/s 182.40 s, 411 MB 15.03 s, 1234 MB 13.65 s, 1043 MB

Medium w/s 586.07 s, 412 MB 51.84 s, 756 MB 50.23 s, 960 MB

MacBook Pro 256.75 s, 380 MB 108.57 s, 544 MB 104.06 s, 896 MB

Old Desktop 863.60 s, 410 MB 406.30 s, 571 MB 398.28 s, 870 MB

Raspberry Pi3 B 2789.1 s, 378 MB 1025.4 s, 568 MB 1679.2 s, 857 MB

Table 4.2: Average execution time and peak memory usage comparison.

rations, HMBE achieves processing speeds that are close to that of HTGS while (a) pro-

viding a more systematic approach for exploiting parallelism and (b) automating complex

steps that are needed for effectively exploiting such parallelism. In particular, generating

and applying the APEG is fully automated within HMBE. Additionally, HMBE achieves

peak memory usage levels that are sometimes significantly better than those measured for

HTGS. HMBE also achieves significantly better execution time performance compared to

HTGS on the Raspberry Pi platform. We expect that this is due to the limited amount of

memory available on the Raspberry Pi, the larger memory utilization of HTGS compared

to HMBE, and the resulting performance penalty due to HTGS’s use of virtual memory.

After reducing the value of the memory pool size parameter in HTGS on the Rasp-

berry Pi Platform, HTGS performed with an execution time that is approximately 300

seconds faster than the result shown in Table 4.2. This performance improvement high-

lights the need for fine tuning of parameters in HTGS in order to obtain performance. In

contrast, HMBE obviates the need for such tuning.
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4.2.2 Background Subtraction

In this section, we evaluate the HMBE framework on an application for the back-

ground subtraction of multispectral video streams [42]. This application significantly dif-

fers from the image stitching application (see Section 4.2.1) and helps to demonstrate the

generality of the models and methods introduced in this thesis. Unlike image stitching,

which involves complex data dependencies and abundant task-level parallelism, the back-

ground subtraction application has simpler data dependencies and involves a significant

amount of sequential processing between tasks.

Multispectral imaging uses up to 10 distinct spectral bands and, as such, provides

increased spectral discrimination compared to conventional imaging methods. For addi-

tional background on multispectral imaging, we refer the reader to Coffey [43]. The spe-

cific multispectral image processing application that we investigate in this section is the

background subtraction application presented in LDspectral [42], a tool for multispectral

image processing that is built on top of the Lightweight Dataflow (LD) environment [30].

In our experiments, we ported a background subtraction application developed as

part of LDspectral to the HMBE framework and evaluated the efficiency of the new im-

plementation. Based on the original application design in LDspectral, the process of

background subtraction on a given multispectral image (video stream frame) involves

performing background subtraction for each band separately and combining the results in

a pixel-by-pixel fashion. More specifically, the output value v(p) for a given pixel p is de-

rived by taking a weighted sum of the corresponding pixel values b1(p),b2(p), . . . ,bm(p),

where each bi(p) is the result for pixel p of the background subtraction process that is ap-
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plied to band i of the input image. For details on how the weights for this combination

operation are derived, we refer the reader to Li et al. [42].

In our experiments, we applied the multispectral video dataset published by

Benezeth et al. [44]. Each video frame in this dataset has seven bands. Background sub-

traction accuracy is assessed by comparing the results compared to ground truth results

that are provided as part of the dataset.

4.2.2.1 Application Model

Fig. 4.4 shows the application model of the background subtraction application for

multispectral video streams developed in LDspectral [42]. The application model is de-

signed to execute multispectral background subtraction over a sequence of image frames,

compute statistics on background subtraction accuracy, output the accuracy results, and

also output other diagnostic information to aid in understanding the performance of the

overall system design. Thus, in the context of our experiments, the “application” applies

background subtraction to a given video sequence and evaluates the resulting accuracy

compared to existing ground truth results that are available for the video sequence.

The model shown in Fig. 4.4 includes seven source actors, labeled source 1–7. Each

source actor reads pixel values associated with a separate spectral band from an input file

associated with the band. The source actors then produce tokens that encapsulate the pixel

values read from the respective input files.

The actors labeled bgsub 1–7 perform single-band background subtraction on spec-

tral bands 1–7, respectively. The results from the background subtraction actors are pro-
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Figure 4.4: Application model of the background subtraction application for multispectral
video streams.

cessed sequentially by the actors labeled combine 1–6. Each combine actor performs a

weighted addition of two images using pre-defined weights that are optimized through a

training process in LDspectral. The weight-combined result goes through a foreground

filter, which is designed to remove noise from the combined foreground mask. Each pixel

in the output of the foreground filter is a gray-scale value with higher values correspond-

ing to higher likelihood of being a foreground pixel. The output of the foreground filter is

written to disk for diagnostic purposes by the filter sink actor. It is also converted into a

binary image, with each pixel labeled as foreground or background, by the binary actor;

the binary actor uses a pre-defined threshold in this conversion.

The accuracy of the background subtraction result is then evaluated by comparing

the result to the ground truth that corresponds to the input image. The accuracy actor has

access to a database of ground truth images, as well as the order in which the input images

are presented to the system (through the source actors). This actor evaluates the accuracy
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of the background subtraction operation for the current image, combines this result with

an accuracy value that has been averaged across all input frames processed previously and

then outputs, for diagnostic purposes, the new average accuracy value while taking into

account the result for the current frame. For more details on the accuracy evaluation, we

refer the reader to Li et al. [42]. The accuracy actor produces a token that encapsulates a

pointer to the binary image that is input to the actor. The result sink actor uses this pointer

to write the image to an output file.

All the actors in Fig. 4.4 include one or more calls to functions from OpenCV, an

open source library for computer vision (CV) [45]. Furthermore, some of these actors

maintain internal state, which prevents different firings of the same actor from executing

in parallel. Internal state can be modeled in dataflow graphs as self-loops (edges that have

the same source and sink actors) [46]. For clarity, we omit these self-loop edges from

the drawing in Fig. 4.4. For example, each background subtraction actor uses an internal

state that is associated with the actor’s use of Gaussian mixture model techniques [44].

The accuracy actor also uses state to compute summary statistics across the entire video

stream on which the application is executed.

By examining Fig. 4.4, it is apparent that actors combine 1–6 must execute sequen-

tially. This is a different form of serialization when compared to the one imposed by the

presence of state in the background subtraction actors and the accuracy actor. In par-

ticular, the background subtraction and accuracy actors exhibit inter-firing serialization

(different firings of the same actor must execute sequentially), whereas the combine ac-

tors exhibit inter-actor serialization (different actors must execute sequentially). These

different forms of serialization constrain the exploitation of parallelism. However, we
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demonstrate that using HMBE we are able to achieve significant speedup despite these

constraints.
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Figure 4.5: Dataflow model of the background subtraction application for multispectral
video streams.

4.2.2.2 HMBE-based Model

Fig. 4.5 illustrates our modified dataflow model, which we apply as input to HMBE

for our experiments. When porting the application model of Fig. 4.4 to HMBE, we mod-

ified the design so it conforms to the WSDF-based semantics of HMBE and it achieves

more efficient inter-thread communication within the scheduler/worker framework of the

HMBE runtime system. The modifications did not change the functionality (input/output

behavior) of the application. They were made only to adapt the application for correct

and efficient operation within HMBE. In the remainder of this section, we refer to the

dataflow graph shown in Fig. 4.5 as the HMBE application model.

In the HMBE application model, the eight shaded actors of Fig. 4.5 have internal
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state and, as such, exhibit inter-firing serialization. As discussed previously, this means

that parallelism can be exploited across these actors for a given video frame, but cannot

be exploited across different firings of the same actor (i.e., across successive frames).

Furthermore, the HMBE application replaces the six combine actors from Fig. 4.4 with a

single actor called combine all in order to reduce the amount of message passing between

the scheduler and workers. This modification does not reduce parallelism because the

combine actors execute sequentially due to their data dependencies.

The HMBE application also decomposes the accuracy actor of Fig. 4.4 into three

actors: (1) the statistics actor maintains statistics about background subtraction accuracy

based on the results produced by the compare actor; (2) the truth actor reads the ground

truth image (corresponding to the current input image) from disk; (3) the compare actor

compares each pixel of the binary image (produced by the binary actor) with the corre-

sponding pixel of the ground truth image. Based on these comparisons, the compare actor

determines (1) the number of pixels n1 that are classified as foreground in the binary im-

age, (2) the number of pixels n2 that are foreground in the ground truth image, and (3) the

number of pixels n3 that are classified correctly in the binary image. The statistics actor

then uses the values n1,n2,n3 to update its record of accuracy statistics.

Decomposing the original accuracy actor into three separate actors reduces the

amount of sequential processing and exposes more parallelism. Specifically, the statistics

actor involves sequential operation, but is lightweight (low complexity). On the other

hand, the compare and truth actors not only enable inter-firing parallelism, but also allow

overlapped execution of computational tasks and disk IO tasks.

The HMBE application model is a WSDF model with one dimension and no overlap
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between the sliding windows of the model. As such, the window size and stride param-

eters are trivially set to 1 pixel each. More precisely, for each edge ei in the dataflow

graph, the dimension vector of the sliding window is ci = (1,1), and the stride vector is

di = (1,1).

4.2.2.3 APEG Representation

A significant challenge in accelerating this application is exploiting task-level par-

allelism under the sequential processing constraints that are imposed by the actors that

maintain an internal state across invocations. These sequential processing constraints are

modeled naturally within the dataflow model through self-loop edges, as described in Sec-

tion 4.2.2.1. When the APEG is constructed, these self-loop edges result in APEG edges

between successive firings of the associated actor (each actor in the HMBE application

model that has a self-loop edge).

Fig. 4.6 shows the APEG that is generated by HMBE for the dataflow model of

Fig. 4.5 with an unfolding factor of 3. In our context, the unfolding factor gives the num-

ber of dataflow graph iterations (video frames) for which the APEG is constructed. This

value of 3 is chosen as a simple (small-scale) example for illustration purposes. Larger un-

folding factors for the APEG expose more inter-iteration (inter-frame) parallelism at the

expense of larger design-time and runtime storage costs. This trade-off can be optimized

as part of the iterative experimentation process that is supported by HMBE. Developing

algorithms within HMBE to optimize the unfolding factor automatically is an interesting

direction for future work.
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Figure 4.6: The APEG that is generated for the HMBE application model with an unfold-
ing factor of 3.
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4.2.2.4 Results

In our experiments with the Multispectral Background Subtraction (MBS) applica-

tion, we used the three different computing platforms listed in Table 4.3. The first two

platforms represent desktop configurations; the third is a widely used embedded comput-

ing platform.

Platform CPU Cores RAM
Read

(MB/s)

Medium w/s 3.4 GHz Intel i7-2600K 8 16 GB DDR3 116.31

Entry-Level Server 3.3 GHz Intel Pentium G4400 2 4 GB DDR4 200.44

Raspberry Pi3 B 1.2 GHz ARMv7 rev 4 4 1 GB LPDDR2 21.37

Table 4.3: Platforms used in our experiments on the MBS application.

The input data for our MBS experiments is a sequence of 172 multispectral video

frames obtained from the dataset of Benezeth et al. [44]. These frames are stored in

(172×7) distinct files with a separate file per spectral band for each frame. Each source

actor, source 1–7, reads the video frames associated with its corresponding band. This

experiment compares three implementations for each of the platforms of Table 4.3: Se-

quential, Intra-Firing, and HMBE. These three implementations use the same OpenCV

kernels, but have different parallelization and scheduling strategies. The OpenCV library

supports intra-firing parallelism by enabling multithreading within kernels.

1. Sequential sets all OpenCV kernels to single-thread execution. It uses a static

scheduler based on the LIDE (LIghtweight Dataflow Environment) package [30].

2. Intra-Firing invokes actors sequentially using the same static scheduler as Sequen-

tial, but exploits the intra-firing parallelism within actors by enabling multithread-
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ing in OpenCV kernels.

3. HMBE exploits both inter-actor and inter-firing parallelism. It explicitly sets the

OpenCV kernels to single-threaded execution to avoid any interference with schedul-

ing decisions made by the HMBE scheduler.

Table 4.4 summarizes the execution time and memory usage of each implementation on

the three platforms.

Sequential
Intra-firing
Parallelism HMBE

Platform
Time

(s)
RAM
(MB)

Time
(s)

RAM
(MB)

Time
(s)

RAM
(MB)

Medium w/s 11.50±0.14 143 5.22±0.07 144 3.32±0.02 266

Entry-Level Server 9.55±0.01 146 6.80±0.05 148 5.29±0.02 187

Raspberry Pi3 B 117.61±1.18 143 85.64±0.10 142 34.11±1.49 221

Table 4.4: Execution time & standard deviation, and peak memory usage comparison.

The results above show that, on the eight-core workstation, HMBE is nearly 70%

and 36% faster than Sequential and Intra-Firing, respectively. HMBE also keeps the peak

memory usage at quite a low level.

This experiment clearly demonstrates the ability of HMBE to exploit coarse grain

parallelism (inter-actor and inter-firing parallelism) for a complex application graph. It

also allows us to observe that intra-firing parallelism, embodied by the Intra-Firing im-

plementation, cannot produce enough parallelism to saturate all CPU cores. In addition

to limiting parallelism, frequently spawning and joining threads (from inside individual

firings) poses considerable overhead to the runtime system as well.

More generally, this experiment highlights (1) the importance of considering paral-
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lelism within an application as a whole instead of just within compute kernels in order to

maximize performance and (2) the effectiveness of using HMBE to exploit precisely this

whole-application parallelism.

4.3 Summary

In this chapter, we have introduced the HTGS Model-Based Engine (HMBE) for

design optimization of multicore signal processing systems. HMBE incorporates the win-

dowed synchronous dataflow (WSDF) model of computation and novel dynamic schedul-

ing techniques that map application tasks onto threads using an expanded representation

of the WSDF model to guide the mapping process. We have demonstrated the utility of

HMBE in deriving efficient implementations across a diverse range of platforms and for

two significantly different practical applications. Several useful directions for future work

have been motivated from this first-version development of HMBE, including runtime

configuration of the worker thread capacity, more extensive investigation of alternative

ready-list selection criteria, integration of a memory pool into HMBE, optimization of

unfolding factors within HMBE, and extension of HMBE to work with other forms of

dataflow in addition to WSDF.
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Chapter 5: Design Flow

In this chapter, we develop a design methodology and associated design tool support

for systematically integrating the model-based methodology of HMBE into the HTGS

runtime system. A key component of the tool is a new approach to hierarchical dataflow

scheduling that integrates a global scheduler and multiple local schedulers. The local

schedulers are lightweight modules that work independently. The global scheduler in-

teracts with the local schedulers to minimize overall memory usage and execution time.

The proposed design tool, called HMBE-Integrated-HTGS (HI-HTGS), is demonstrated

through a case study involving an image stitching application for large-scale microscopy

images.

Material in this chapter was published in partial, preliminary form in Wu et al. [47].

5.1 Related Work

HI-HTGS places a special emphasis on high-performance multicore implementa-

tion, and integrated optimization of memory management and task scheduling using a

single actor, dynamic invocation (SADI) scheduling model [9]. HI-HTGS combines the

abstract dataflow graph analysis features of DIF with the APIs of HTGS, which enable

construction, integration, and iterative optimization of high-performance software com-
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ponents and task graphs. While DIF focuses on high level dataflow analysis in which the

detailed functionality of individual graph components (actors) is abstracted, HTGS pro-

vides extensive infrastructure for creating fully functional, high-performance task graph

implementations. Thus, the features of DIF and HTGS are highly complementary, and

their integration through HI-HTGS provides new capabilities for automated, model-based

analysis, implementation, and optimization of multicore signal and information process-

ing systems.

Like HMBE, HI-HTGS applies an adapted version of Keinert’s windowed syn-

chronous dataflow (WSDF) model of computation [7]. WSDF is well suited as a model of

computation for smart vision system design due to its provisions for representing image

processing functionality. In WSDF, dataflow tokens can be placed in correspondence with

multidimensional windows of data. These windows are restricted in WSDF to have con-

stant dimensions. The degree of overlap between the windows can be configured through

the sampling matrices parameter.

We incorporate minor adaptations to WSDF in the model of computation that we

use in HI-HTGS. First, since the sampling matrix is a diagonal matrix, its representation

can be simplified to be a vector. We apply this simplification in the adapted form of

WSDF that we apply. Also, our adapted form of WSDF eliminates use of the effective

token size parameter; instead, we assume that the basic unit of token production is a single

token (as in conventional forms of dataflow).

We employ WSDF semantics in HI-HTGS due to the orientation of HI-HTGS

toward high-performance image processing and other areas of multidimensional signal

processing. However, the scheduling techniques presented in this proposal can read-
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ily be adapted to other forms of dataflow, such as synchronous dataflow, cyclo-static

dataflow, and multidimensional synchronous dataflow, from which a certain type of ex-

panded dataflow representation, called an acyclic precedence expansion graph (APEG)

(or simply “acyclic precedence graph”) [48], can be derived. In Section 5.2, we discuss

the APEG representation in more detail.

5.2 Workflow

HI-HTGS is a design tool that enables high-performance image processing on mul-

ticore platforms. The tool is composed of two main parts: (a) the DIF-based analysis en-

gine (analysis engine), which performs compile-time analysis for the application dataflow

graph, and (b) the HTGS-based runtime system (runtime system), which applies the ana-

lysis engine and provides optimized multithreaded execution and memory management

for the application. Fig. 5.1 illustrates the workflow associated with HI-HTGS.

To transfer dataflow graph analysis results from the analysis engine to the HTGS-

based runtime system, and allow the HTGS-based runtime system to apply these results

efficiently, we have developed a compact data exchange protocol using the Google Pro-

tobuf library [37]. Our protocol, called the HI-HTGS exchange protocol, ensures that the

analysis engine and HTGS-based runtime system communicate reliably and efficiently

even though they are developed in different languages (Java and C++, respectively). Due

to the more compact binary format of the HI-HTGS exchange protocol compared to the

XML or JSON formats, data can be exported and imported with lower runtime overhead

and with smaller storage cost. These features are important in HI-HTGS since a relatively

55



HTGS-based Runtime Subsystem

HMBE Local Scheduler

DIF-based Analysis Engine

HMBE Global 
Scheduler

APEG RuleAPEG Rule

WSDF Graph 
in DIF Parser

WSDF 
Graph 
Model

APEG 
Model Analysis Export

G
lobal A

PEG
 D

ata 

Local APEG 
Data

Task Graph 
in C++

Consistent

ITasksITasksITasks

HMBE Source 
Traverser

HTGS-based 
Implementation

HMBE Sink 
Notifier

BookkeepersBookkeepersBookkeepers HMBE Rules 

Figure 5.1: Workflow associated with HI-HTGS.

large amount of data is exchanged between the two parts of the tool, including the APEG

representations that are constructed by the analysis engine.

As described in Section 5.1, HI-HTGS incorporates an adapted form of WSDF as

the system designer’s entry point to the tool. The WSDF-based application model (appli-

cation graph) is written in the DIF Language, as shown in the top left corner of Fig. 5.1.

Given a textual representation of the WSDF model in DIF, the analysis engine parses

the representation and produces a graphical internal representation within the analysis

engine. This internal representation is then expanded into an equivalent APEG represen-

tation using minor adaptations to WSDF of standard techniques for multirate to single

rate synchronous dataflow (SDF) conversion [48].

To ensure functional correctness, the WSDF graph representation must be kept con-

sistent with the C++ task graph representation that is developed by the designer in HTGS.

This consistency requirement is represented in Fig. 5.1 by the two arrows labeled “consis-
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tent”. Consistency between the two parallel representations can be assessed as an integral

part of the design process through component and subsystem-level testing that verifies

functional equivalence. Well-known processes for automated execution of test suites can

allow such testing to be integrated efficiently into the design process. Various authors

have discussed this matter; we cite the work of Hamill as representative of this body of

work [49].

Intuitively, HTGS and DIF provide complementary programming formats for ap-

plications in HI-HTGS. Software components in HTGS, called tasks, specify detailed

intra-task functionality that is integrated with mechanisms for high-performance task ex-

ecution. On the other hand, the WSDF actors specified in DIF expose formal properties

associated with interactions among tasks. In general, the mapping between HTGS tasks

and WSDF actors can be one-to-many, one-to-one, or many-to-one depending on the ap-

plication and the designer’s approach to model-based representation. The programming

approach in HI-HTGS shifts programmer effort to that of task programming and model-

based design (WSDF-based design in the current version of HI-HTGS), and alleviates the

burden of inter-task scheduling and memory management. The result is a more produc-

tive and reliable form of design through the higher level of abstraction provided by the

coupled task- and actor-based specification format.

The APEG represents the firings within a single iteration of a periodic schedule for

the WSDF-based application graph. Each vertex v in the APEG has an associated actor

actor(v) in the application graph, and represents a distinct firing of actor(v) within a

periodic schedule. Thus, each actor in the WSDF graph is mapped to a set of one or more

vertices in the APEG. The APEG is useful as an internal scheduling representation in part
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because it exposes parallelism and inter-actor communication at the level of application

firings [4]. HI-HTGS uses only APEG information without reference to any specific

periodic schedule. Instead, the schedule evolves dynamically under the control of the

runtime system.

After construction of the APEG, the analysis engine performs various forms of

analysis that are used to annotate the APEG vertices. These annotations are used by the

runtime system when the application executes. After finishing its compile-time analysis

on the APEG, the analysis engine attaches its analysis results as attributes of the APEG

vertices, and exports the annotated APEG as binary data using the HI-HTGS exchange

protocol. This binary data is then read by the runtime system at the beginning of execution

when the application graph is launched.

HI-HTGS augments HTGS with a novel hierarchical scheduling approach to bridge

the semantic mismatch between the original HTGS framework and the HMBE scheduler.

In our context, the problem of bridging the semantic mismatch is related in large part to

the concept of task graph bookkeepers in HTGS [1]. Bookkeepers are task graph com-

ponents that are specialized to maintain state. They are especially useful for efficiently

managing communication among tasks that have complicated data dependency relation-

ships.

While HTGS bookkeepers provide a modular abstraction for specifying powerful

methods to optimize memory management and interprocessor communication, the design

of bookkeepers is in general a complex task requiring considerable expertise, and effort.

The hierarchical scheduling approach developed within HI-HTGS includes features to

automate the design, implementation, and integration of HTGS bookkeepers.
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To enable more powerful global optimization in HI-HTGS, we have developed a

hierarchical dataflow scheduling approach that integrates a global scheduler and multiple

local schedulers. The HMBE global scheduler maintains the global execution state of the

underlying dataflow model. It retrieves information from the local schedulers periodically

and uses this information to dynamically configure the execution priorities of the actors

with the objective of optimizing thread contention.

In summary, HI-HTGS allows the system designer to work at a high level of abstrac-

tion and automates challenging and time consuming tasks that are required to optimize

use of HTGS. Additionally, the models and methods employed in the analysis engine for

HI-HTGS are based on WSDF semantics and APEG representations. They can be adapted

readily to other design processes and tools that are compatible with these models.

5.3 Hierarchical Scheduling

In this section, we present the hierarchical scheduling approach that is employed in

HI-HTGS. In this development, we refer to the input dataflow model as the application

graph Gm = (Vm,Em), where Vm is the set of actors and Em is the set of edges. We denote

the APEG representation of Gm as Ga = (Va,Ea). As described in Section 5.2, each vertex

va ∈ Va is expanded from an actor actor(va) ∈ Vm of the application graph. We refer to

vertex va ∈ Va as an invocation of its associated application graph actor actor(va). At

compile time, the analysis engine automatically derives Ga from Gm, derives information

for optimized scheduling from Ga, and then exports this scheduling information along

with the APEG to the runtime system using the HI-HTGS exchange protocol.
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5.3.1 Local Schedulers for Bookkeepers

Hierarchical scheduling in HI-HTGS is designed to automate and systematically in-

tegrate two aspects of HTGS-based implementations that are especially time consuming

and error prone. The first aspect is related to a specific type of HTGS task graph com-

ponent called a bookkeeper. HTGS bookkeepers help to resolve data dependencies and

coordinate buffer management between communicating tasks [1]. Each bookkeeper b is

associated with a set Q(b) of HTGS tasks that communicate with one another. A book-

keeper b is designed by specifying rules that coordinate the production and consumption

of data by the tasks in Q(b). While bookkeepers enable separation of concerns between

efficient memory management and task implementation, the design of bookkeepers is

time consuming and requires significant programmer expertise.

In HI-HTGS, the implementation of bookkeepers is automated through the use of

relevant information from the APEG. In particular, each bookkeeper is implemented in

HI-HTGS by a local scheduler. An HI-HTGS local scheduler is a scheduling subsystem

within the runtime system that uses local APEG information — that is, graph informa-

tion that is related only to tasks in Q(b). A local scheduler associated with bookkeeper

implementation uses this graph information to dynamically manage data production and

consumption, and optimize memory management associated with communication among

tasks in Q(b).
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5.3.2 Local Schedulers for Source Actors

The second aspect of HTGS-based implementations that is automated in HI-HTGS

through hierarchical scheduling is the process of determining how input data in multidi-

mensional data streams is traversed to supply input to sequences of task executions. The

traversal order can have a significant impact on performance. The enforcement of efficient

traversal orders is performed automatically by local schedulers that are associated with

source actors in the WSDF model (actors that model the interface between the system in-

puts and the task graph). These local schedulers are called source traversers. The source

traversers developed in the current version of HI-HTGS assume that dataflow graph input

is read from files.

In HI-HTGS, the problem of optimizing the traversal order for a source actor σ is

modeled as the problem of determining the order in which the APEG vertices associated

with σ are executed. This APEG vertex execution order (AVEO) is determined statically in

HI-HTGS and enforced at runtime through information that is exported from the analysis

engine to the runtime system.

The AVEO is computed using the undirected version U of the APEG — that is, the

undirected graph that results from ignoring the direction of the edges in the APEG. The

computation starts by deriving a starting vertex vs in U that is associated with σ . The

starting vertex is taken as an APEG vertex that has minimum out-degree from among all

vertices associated with σ . If multiple vertices have minimum out-degree, then one of

these is selected arbitrarily.

From the starting vertex, shortest paths in U are computed to all other vertices
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associated with σ . The path length used in this context is simply the number of vertices

visited in a given path. After this process is complete, we have a path length p(v) for

every APEG vertex associated with σ . The vertices associated with σ are then ordered for

execution by nondecreasing order of p(v) with ties broken arbitrarily. The local scheduler

associated with σ enforces the p(v)-sorted ordering at runtime.

Intuitively, all steps of our AVEO derivation heuristic are designed to minimize the

lifetime of data and improve data locality as the graph is executed, which are identical to

the objectives of the HTGS bookkeepers.

5.3.3 Source Traverser Example

Fig. 5.2 illustrates with a simple example the derivation of the execution order for

a source traverser. Fig. 5.2(a) shows an example of a WSDF-based application graph

that contains a source actor A. Here, each pi represents the two-dimensional production

rate associated with the ith edge, and similarly, each ci represents the consumption rate.

Each di specifies the movement of a sliding window on each edge from one invocation

of the edge’s sink actor to the next. For more details on the multidimensional production

rates, consumption rates, and sliding window parameters associated with WSDF edges,

we refer the reader to Keinert et al. [7].

In WSDF, the APEG in general depends on the dimensions of each frame of input

data on which the application graph operates. Fig. 5.2(b) shows the APEG that results

from the application graph of Fig. 5.2(a) with a frame size of 3×3 tokens. Here, squares

represent APEG vertices and dashed arrows correspond to APEG edges. The vertices are
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Figure 5.2: A simple example that illustrates derivation of the execution order for a source
traverser in HI-HTGS.
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laid out in the figure according to the two-dimensional index spaces associated with the

corresponding WSDF actors [7]. For example, the APEG vertex in the second row and

third column for actor A corresponds to invocation (2,3) of the actor. The number inside

each square in Fig. 5.2(b) gives the shortest path length between the corresponding APEG

vertex and an invocation associated with the source actor A.

To determine the schedule for the source traverser associated with A, we sort the

APEG vertices associated with A in nondecreasing order of their shortest path lengths. A

schedule that results from such a sorting operation is illustrated in Fig. 5.2(c). The dashed

path illustrated in the figure shows the order in which invocations are dispatched starting

with invocation (1,1) and ending with invocation (3,3).

5.3.4 Hierarchical Scheduling Architecture

In HI-HTGS, a given application graph Gm is scheduled using a set λ =L1,L2, . . . ,Lr

of local schedulers, which are in one-to-one correspondence with the bookkeepers in the

associated HTGS graph and the source actors in Gm. The actors Vm in Gm are partitioned

into (r + 1) disjoint sets α(L1),α(L2), . . .α(Lr), I, where each α(Li) represents the set

of actors associated with local scheduler Li, and I represents the (possibly empty) set of

actors that are not associated with any local scheduler. In this context, we refer to I as the

set of independent actors.

A global scheduler coordinates execution across the local schedulers along with

their associated actors, and the independent actors. In our current implementation of HI-

HTGS, we use a purely data-driven global scheduling strategy where actor invocations
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Figure 5.3: An illustration of interactions among the global scheduler, local schedulers,
and independent tasks in HI-HTGS.

are dispatched for execution as soon as they have sufficient data and (if applicable) their

local schedulers select them for execution. Investigation of more sophisticated global

scheduling strategies in HI-HTGS is an interesting direction for future work.

Fig. 5.3 illustrates interactions among the global scheduler, local schedulers, and

independent tasks in HI-HTGS. Each local scheduler Li and each source actor in Gm is

assigned a separate thread in the targeted multicore architecture. Each actor that is not a

source actor is assigned Nc threads, where Nc is the number of processor cores. The total

number of threads for Gm can therefore be expressed as r+Ns+Nc×(Nm−Ns), where Nm

and Ns represent the total number of actors in Gm and the number of source actors in Gm,

respectively. During runtime, an actor invocation executes when it has been dispatched

and one of the threads allocated to the actor is available to execute the invocation.

5.3.5 Operation of Hierarchical Schedulers

At setup time, the system launches two kinds of threads: worker threads and sched-

uler threads. For each actor, a set of worker threads is allocated for it. For each actor

that is not a source actor, the number of worker threads allocated for it is equal to the
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platform-supported concurrency Nc. On the other hand, only one worker thread is al-

located for each source actor. This is because source actors in HI-HTGS correspond to

file-reading interfaces, and for such functionality, we anticipate that I/O access speed is

the dominant concern. From our empirical analysis, using multiple threads for source

actors typically does not help to improve performance.

Fig. 5.4 illustrates the operation of the hierarchical scheduler employed in HI-

HTGS. To keep the scheduler lightweight and avoid busy waiting, the local schedulers

and the global scheduler are all designed to have two states each — a dormant state, and

an active state. The shaded boxes in Fig. 5.4 indicate blocking operations.

Initially, all local schedulers are in the dormant state as there is no data waiting to

be processed. They are blocked at the component within Fig. 5.4 that is labeled Blocked

Reading Token. When input data becomes available to an actor from a predecessor task,

the corresponding local scheduler becomes active. At this point, the local scheduler at-

tempts to read a control message from the global scheduler in a nonblocking manner. That

is, the local scheduler processes an incoming control message if one is available; other-

wise, if no control message is available at the current time, the local scheduler continues

its operation.

The local scheduler then performs the following steps.

1. Sends a completion message to the global scheduler to indicate the completion of

the predecessor task that produced the newly-read token.

2. Updates the execution state in the local APEG associated with A, where A is the

actor associated with the local scheduler.
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3. Determines whether the next firing of A has sufficient data based on the newly-

received input data.

4. Appends this next firing at the end of a queue, called the pending firing queue of

the local scheduler.

Depending on the control policy in the local scheduler, the scheduler may then hold

all task references in the queue or dequeue some subset of the task references and dispatch

the associated tasks.

The global scheduler is blocked by the poll message operation. The scheduler be-

comes active when a completion message is sent to it from one of the local schedulers.

Upon becoming active, the global scheduler updates the global state of the global APEG

and sends one or more new control messages if necessary. The control messages are used

to change the control policies of the local schedulers, thereby providing a lightweight

means for dynamic reconfiguration of scheduling strategies.

The hierarchical scheduler maintains a buffer in each local scheduler to store tokens

until a sufficient set of tokens has accumulated to enable the next actor firing associated

with the scheduler. The local scheduler associated with an actor A is equipped with one

or more counters that keep track of the numbers of tokens that have been received from

the predecessor(s) of A, but that have not yet been consumed by A. Using these counters,

along with the firing rules of the actor, the local scheduler can determine (in Step 3 above)

whether or not the next firing of A has become enabled.
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Figure 5.5: WSDF model of the image stitching application.

5.4 Case Study

In this section, we experimentally study the performance of HI-HTGS on the same

image stitching application for large-scale microscopy that was presented in Section 4.2.1.

The HTGS task graph that we use to implement the image stitching application is

shown in Fig. 4.2. The task graph iteratively loads adjacent pairs of tiles, computes their

fast Fourier transforms (FFTs), applies the phase correlation image alignment method

(PCIAM) [41] to the FFT results, and then extracts translation parameters from the results

of the PCIAM operations.

This application is data intensive, as we have explained in Section 4.2.1. Due to

this data intensive nature, if intermediate results are not released in a timely manner, the

application can quickly run out of physical memory on the targeted computing platform.

To implement the image stitching application using HI-HTGS, we model the appli-

cation as a WSDF graph and specify this graphical model using the DIF Language. Our

WSDF model of the application is illustrated in Fig. 5.5.

We experimented with the HTGS- and HI-HTGS-based implementations of the im-

69



age stitching application on three different platforms, including a mid-range workstation,

a low cost laptop computer and an outdated desktop computer. These platforms, summa-

rized in Table 5.1, are selected to help demonstrate the scalability of HI-HTGS, as well

as the applicability of HI-HTGS to diverse targets.

Platform CPU Cores RAM
Read

(MB/s)

Medium w/s 3.4 GHz Intel i7-2600K 8 16 GB DDR3 116.31

MacBook Pro 2.7 GHz Intel i5-5257U 4 8 GB DDR3 1335.93

Old Desktop 2.8 GHz Intel Pentium D 2 2 GB DDR1 68.52

Table 5.1: The platforms that we used in our experiments.

Our experimental results involving execution time comparison are summarized in

Table 5.2. Here, we compare the measured execution times among our HTGS-, HMBE-,

and HI-HTGS-based implementations of the image stitching application. The HMBE-

based implementation is derived by automatically generating the APEG using a C++ ex-

tension of HTGS, and manually integrating the APEG with the HMBE scheduler, which

is external to HTGS. Like the process of configuring bookkeepers in HTGS, this process

of manually integrating the APEG is time consuming and error prone. Both of these

tasks, bookkeeper configuration and APEG-to-scheduler integration, are fully automated

in HI-HTGS. Thus, HI-HTGS greatly simplifies and accelerates the process of deriving

implementations that are equipped with the powerful performance optimization features

of HTGS. From the results shown in Table 5.2, we see that these improvements are deliv-

ered while maintaining performance levels that are similar to HMBE and HTGS.

To help assess the improvement in software development and maintenance cost

provided by HI-HTGS, we compared the source code size of our HI-HTGS based imple-
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Platform
Sequential

Implementation HMBE HTGS HI-HTGS

Medium w/s 586.07 s 50.51 s 49.01 s 48.94 s

MacBook Pro 256.75 s 108.57 s 104.06 s 103.86 s

Old Desktop 863.60 s 406.30 s 398.28 s 397.33 s

Table 5.2: Comparison of execution time (mean over 10 runs).

mentation of image stitching with that of the original HTGS based implementation. We

measured the source code size as the lines of code in all relevant source files. In these

measurements, we considered all of the application-specific source code used for appli-

cation setup, scheduling, and memory management—that is, all source code excluding

code that is part of the general HTGS and HI-HTGS frameworks, and outside of the task

(kernel) implementations, which can be reused across different applications. The results

of these measurements are summarized in Table 5.3, which shows a reduction in source

code size of 63 % achieved by HI-HTGS.

Tool C++ code DIF code Total code Improvement

HTGS 909 0 909 —

HI-HTGS 273 64 337 63 %

Table 5.3: Comparison of source code size.

5.5 Summary

In this chapter, we have presented the software tool, HI-HTGS, for design and im-

plementation of multicore image processing systems. This tool consists of two main parts:

the DIF-based analysis engine, which applies the Dataflow Interchange Format (DIF)

Package, and the HTGS-based runtime system, which builds on the Hybrid Task Graph
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Scheduler (HTGS). The tool allows system designers to incorporate powerful techniques

for performance optimization and memory management while specifying applications at

a high level of abstraction and using significant levels of automation. Our experiments

demonstrate the ability of our new design tool to provide this high level of abstraction and

automation while generating efficient implementations on a diverse set of platforms.
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Chapter 6: CPU-GPU Model-Based Engine

Graphics processing units (GPUs) are of increasing interest in a wide variety of

high performance image processing applications. Processing large images in real-time

requires effective image processing algorithms as well as efficient software design and

implementation to take full advantage of all CPU cores and GPU resources on state of the

art CPU/GPU platforms. In this chapter, we extend the capability of HMBE to heteroge-

neous platforms and develop a new runtime environment based on the executor pattern.

This work results in a third model-based design tool, the CPU-GPU Model-Based Engine

(CGMBE), which automates and optimizes critical design decisions involved in high-

performance image processing implementation on CPU-GPU platforms. CGMBE con-

tains a compile-time analyzer and a runtime scheduler. CGMBE allows data-dependent,

dynamic dataflow behavior in the application model and automates the process of schedul-

ing dataflow tasks (actors) and coordinating CPU-GPU data transfers in an integrated

manner.

6.1 Application Modeling

In this section, we discuss the modeling techniques used in CGMBE to represent

image processing applications. In Sections 6.2 and 6.3, we discuss how we analyze the
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resulting models, schedule tasks and data transfers, and synthesize efficient software for

CPU-GPU platforms. Then we demonstrate the effectiveness of CGMBE through a data-

intensive, computation-intensive application found in the domain of hyperspectral image

processing in Section 6.4.

6.1.1 Application Graph

The application graph is a dataflow model of a signal processing application be-

ing developed using CGMBE. In this model, vertices stand for actors (tasks) while edges

represent data dependencies and data flows, and correspond to FIFO queues. Actor (task)

invocations consume data values (tokens) from the actor’s input edges, invoke the com-

putation associated with the task, and produce tokens on the actor’s output edges. In

CGMBE, the application model is specified by the system designer using the Dataflow

Interchange Format (DIF) language, a textual language for specifying signal processing

oriented dataflow graphs [30]. The application graph is developed based on Single-Rate

Synchronous DataFlow (SRSDF) semantics, a special case of the synchronous dataflow

(SDF) model [6]. SDF and closely-related models, such as SRSDF, are widely used in the

design and implementation of signal processing systems (see Bhattacharyya et al. [3]).

In SRSDF, as in SDF, actors consume and produce constant numbers of tokens on

their input and output ports respectively. The number of tokens produced per invocation

of an actor on a given output edge must be constant across all invocations of the actor.

Similarly, the number of tokens consumed from any given input port must be constant.

These numbers of tokens, produced or consumed, are referred to as the production and
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consumption rates, respectively, of the associated edge e; they are denoted as prd(e) and

cns(e). In SRSDF, we impose the additional constraint that prd(e) = cns(e) for all edges

e.

Systematic methods can convert general SDF representations into functionally

equivalent SRSDF representations [6]. By using such transformations, it is possible to

apply CGMBE to general SDF graphs. The equivalent SRSDF representations in general

expose parallelism more explicitly at the expense of potentially higher graph complexity

(i.e., larger numbers of actors and edges).

An important property of SDF and SRSDF representations is that they can be sched-

uled to execute in bounded memory regardless of how many times the graphs are it-

erated [3, 6]. This property is important for reliable operation when applications are de-

ployed to process data streams that are very large or of indefinite length. Such deployment

scenarios are common in the signal processing domain and a major motivation for our use

of SRSDF as the core model of computation for application graph design in CGMBE.

6.1.2 Well-behaved Patterns of Dynamic Behavior

Many signal processing applications conform mostly to the constant production and

consumption rate restriction of SRSDF with the exception of deviations that are localized

to specific subgraphs within the dataflow representations. When such a localized subgraph

can be encapsulated hierarchically as an SRSDF actor and the token populations of the

edges inside the subgraph remain constant across firings of the hierarchical actor, we

refer to the subgraph as a Globally Static, Locally Dynamic (GSLD) pattern of dataflow
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behavior. The requirement that the token populations inside the subgraph remain constant

is useful to ensure that there is no unbounded accumulation of data inside the subgraph

even though its interface is SRSDF. We provide an example to demonstrate a GSLD

pattern concretely in Section 6.1.3.

While we apply GSLD patterns in the context of SRSDF encapsulations, the con-

cept can naturally be extended to cases where the dynamic subgraphs are encapsulated

within hierarchical SDF representations. This use of GSLD patterns and their application

to bounded memory scheduling in CGMBE is inspired by prior work on well-behaved

dataflow graphs [50] and quasi-static scheduling of Boolean dataflow (BDF) graphs [51].

These prior works applied similar concepts to exploit higher-level predictability for cer-

tain kinds of “well-behaved” dataflow subgraphs that incorporate limited amounts of

dataflow behavior at lower levels of abstraction. These prior works used GSLD-related

concepts for the purpose of bounded memory verification and single-processor schedul-

ing. In this work, we apply the concepts in the context of application modeling for map-

ping onto heterogeneous CPU-GPU platforms.

6.1.3 GSLD Pattern Example

Fig. 6.1 shows an example of a GSLD pattern, which corresponds to a dynamic

dataflow if-then-else construct for conditional, data-dependent execution between two

actors.

In this graph, nodes A–F represent homogeneous SDF actors, SRSDF actors that

each produce or consume a single token per firing on each actor port. The Fork actor, also
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Figure 6.1: An example of a GSLD pattern.

a homogeneous SDF actor, corresponds to a simple broadcast operation. At each firing,

it consumes one token on its input port, and copies the consumed data value into separate

tokens that are produced on its two output ports.

The Switch and Select actors each exhibit dynamic dataflow behavior on two of

their ports. They are called Boolean dataflow actors because the dynamic production or

consumption of data is controlled by Boolean-valued tokens, called control tokens, that

are consumed from designated control ports of the actors [51]. The control ports of these

actors are labeled by the symbol “c” in Fig. 6.1.

At each firing, the Switch actor consumes a single token from its control port, and a

single token (data token) from its other input port, and produces a copy of the data token

on one of its two output ports depending on the value v of the control token consumed in
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the same firing. If v = true then the data token is copied onto the output edge connected

to the port labeled t; otherwise, it is copied onto the output edge connected to the port

labeled f .

Similarly, the Select actor consumes a single control token from its control port c,

and consumes a single token from one of its two other input ports, but not from the other.

These two other input ports, labeled t and f , are referred to as the data input ports of the

Select actor, and the tokens that are consumed on these ports are referred to as data tokens.

On each firing, the Select actor consumes one data token from its t port if the consumed

control token is true-valued, and otherwise, it consumes one data token from its f port.

The consumed data token is then copied to produce a single token on the actor’s output

port.

From these definitions of the Switch and Select actors, we see that the dashed edges

in Fig. 6.1 correspond to edges for which the production and consumption rates are not

both constant. For example, the production rate for each output edge of the Switch actor

is 0 or 1 depending on the value of the control token.

The actors Switch, Select, Fork, A, and B in Fig. 6.1 constitute an example of a

GSLD pattern, which we refer to as the conditional pattern. This pattern can be encap-

sulated within a hierarchical SRSDF actor H as shown in Fig. 6.2. A single firing of H

includes a single execution each of the Fork, Switch, and Select actors, and also a single

execution of A or B, depending on the value of the token consumed on the control input

(labeled “c” in Fig. 6.2) to H. Ports x and y on actor H corresponds to ports d on actors

Switch and Select in the encapsulated subgraph respectively.

If the firing of H is defined in this manner, it is easily seen that H will consume
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Figure 6.2: Hierarchical representation of the GSLD pattern shown in Fig. 6.1.

a single token on each input port, and produce a single token on its output port, and

therefore, that it is an SRSDF actor. Furthermore, it can be verified that regardless of

which “branch” is executed (A or B), the token population remains unchanged for each

of the six edges that are encapsulated by H. In particular, each of these edges starts and

ends each firing of H with a token population of zero since any token produced on any of

the edges is consumed within the same firing of H (i.e., within the same iteration of the

encapsulated subgraph).

6.1.4 Actor Types in CGMBE

In summary, the application modeling approach of CGMBE utilizes SRSDF mod-

eling at the highest level of abstraction. Each SRSDF actor in the application graph is

either a library actor or a hierarchical actor. A library actor corresponds to a computa-
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tional function that is developed using C++ and/or CUDA, and available through actor

libraries associated with the tool and the application that is being developed. On the other

hand, a hierarchical actor in CGMBE is a GSLD pattern whose constituent actors are li-

brary actors. At present, CGMBE supports only one level of hierarchical nesting within

an application graph. Extensions to handle recursive nesting of GSLDs is an interesting

direction for future work.

The CGMBE tool provides an actor library that consists of a small, extensible set of

actors that are relevant across a variety of applications. Additionally, an application de-

veloper can implement application-specific actors to integrate into a CGMBE application

model for a CPU-GPU-targeted signal processing system under development.

As described above, a library actor in CGMBE can be developed using C++,

CUDA, or both. Library actors with C++-only implementations are constrained to be

mapped to the CPU, while those with CUDA-only implementations are constrained to the

GPU. These types of actors are referred to as single-implementation actors, while actors

with both C++ and CUDA implementations are referred to as dual-implementation actors.

Dual-implementation actors can be mapped to either the CPU or GPU.

For dual-implementation actors in the application graph, the designer can specify

the mapping information to enforce whether each actor should be executed on the CPU

or the GPU. If such information is not provided by the designer, then CGMBE can use

profiling information of actor execution times and inter-processor communication costs to

automatically determine which devices the actors should be mapped onto. The automated

mapping approach applies the HEFT algorithm with mapping results fixed beforehand

for single-implementation actors, and for dual-implementation actors that have designer-
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specified mappings. From the result produced by HEFT, the CGMBE automated mapping

approach extracts the mapping information, while discarding the task ordering informa-

tion.

CGMBE provides integrated optimization of scheduling, inter-processor communi-

cation, and memory management based on mapping information that is provided implic-

itly in the library (for single-implementation actors), provided explicitly by the designer

(for dual-implementation actors with designer-specified mappings), and derived automat-

ically (for any remaining actors). The optimized scheduling, communication, and mem-

ory management approaches employed in CGMBE are discussed further in Sections 6.2

and 6.3.

6.2 Design Flow

CGMBE automates the implementation process for mapping high-performance sig-

nal processing applications onto heterogeneous CPU-GPU platforms in a reliable and

scalable way. It allows the designer to model the application dataflow (inter-kernel in-

teractions) at a higher level of abstraction and to implement computational kernels inde-

pendently of each other using platform-oriented programming languages, such as C++

and CUDA. CGMBE frees the designer from complicated and error-prone scheduling is-

sues using an automated scheduling approach that jointly optimizes execution time, data

transfers, and memory requirements.

Fig. 6.3 illustrates the design flow utilized in CGMBE. The signal processing sys-

tem designer specifies the application flowgraph to be developed using the SRSDF model,
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where (as described in Section 6.1) each SRSDF actor corresponds either to a function in

an actor library or to a GSLD pattern.

Fig. 6.3 shows developer inputs as rounded rectangles, components of the CGMBE

tool as straight rectangles, intermediate results produced by CGMBE as ovals, and the

resulting implementation as a hexagon.

6.2.1 Unfolded SRSDF Graph

The Analysis Engine converts the input application model (SRSDF model G and

GSLD patterns) into an expanded form called the Unfolded SRSDF Model, which ex-

poses parallelism between graph iterations. Generating the new graph can be viewed as

unrolling J iterations of the application graph G to yield a new SRSDF graph, the un-

folded graph. The resulting graph represents J consecutive iterations of G and exposes

parallelism across multiple graph iterations in addition to the intra-iteration parallelism

that is already exposed in G. The designer specifies the unfolding factor J as a parameter

to the Analysis Engine, as shown in Fig. 6.3.

Dependencies between graph iterations are generally caused by delays (initial to-

kens) associated with graph edges [6], including self-loop edges, which represent actor

states. A self-loop edge in a dataflow graph is simply one that has the same source and

sink actor. The unfolded graph simply consists of J copies of the application graph when

there are no delays on any edge.

The unfolded graph is stored in memory for use by the CGMBE runtime system

(the Runtime Engine), which allocates a separate dataflow buffer for each edge in the un-
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folded graph. As such, the unfolding factor J needs to be selected carefully to effectively

expose inter-iteration parallelism without requiring excessive memory consumption. Op-

timal selection of the unfolding factor involves complex relationships among the appli-

cation graph, target platform, and scheduling strategy. In Section 6.4, we illustrate how

performance varies for different values of J in an application case study that we use in

our experimentation with CGMBE.

Rather than automating the selection of J, CGMBE uses J as an optional input, as

illustrated in Fig. 6.3, with a default value of J = 1. CGMBE automates the derivation

of implementations for a given application graph together with arbitrary values of J. As

such, the designer can efficiently experiment with different values of J using CGMBE to

determine an unfolding factor that best matches the optimization constraints and objec-

tives of the system being developed.

Fig. 6.4 illustrates construction of the unfolded graph U from an SRSDF graph G

with an unfolding factor of J = 2. Parts (a) and (b) of Fig. 6.4 show G and U , respec-

tively. Each actor X in G is expanded in U into J actors X1,X2, . . . ,XJ , where each Xi

is associated with the same library component(s) or GSLD pattern as the corresponding

application graph actor X . The “D” symbol on edge (B,C) represents a single unit of

delay. Because of this delay, each invocation of actor C consumes a token produced in

the previous application graph iteration by actor B. The dashed edge (B2,C1) represents

a dependence between two successive iterations of U .
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6.2.2 Scheduling Parameters

In addition to the unfolded graph described in Section 6.2.1, the Analysis Engine

determines values for various scheduling parameters that are associated with each actor in

the unfolded graph U and used for efficient dynamic scheduling by the CGMBE Runtime

Engine.

The CGMBE dynamic scheduler is implemented using checks on input data avail-

ability (fireability) to determine if an actor should be invoked. The fireability condition

for a given actor Zi in the unfolded graph is formulated in terms of a count δ (Zi) of the

number of input edges on which data must arrive before Zi can execute. This count is

referred to as the pending token count of Zi. When δ (Zi) = 0, the actor Zi can fire. Ad-
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ditionally, firing of Zi can be disabled by setting δ (Zi) = −1. Such disabling is used

by the CGMBE Runtime Engine to implement the dynamic scheduling logic associated

with GSLD patterns. For example, for the conditional pattern illustrated in Section 6.1.3,

the dynamic scheduler assigns δ (Ai) =−1 or δ (Bi) =−1 depending on the value of the

corresponding control token value.

Updating a pending token count relies on update rules that are selected by the Anal-

ysis Engine. In particular, when an actor Zi in U fires, the dynamic scheduler executes the

update rules for all successors of Zi in U . If an actor in U is not part of a GSLD pattern,

then the actor’s pending token count is initialized to its in-degree (number of input edges);

its update rule is to decrement the pending token counts of its successors.

On the other hand, update rules associated with patterns are based on the semantics

of the pattern. More specifically, the local dynamic dataflow properties of GSLD patterns

are implemented in CGMBE through their implementation as δ -update rules for the actors

that are part of the patterns. To add a new pattern type to the library of GSLD patterns

recognized by CGMBE, the design tool developer or application designer must therefore

provide a set of update rules that can be used to implement the pattern.

This association of update rules with GSLD pattern types provides a concrete and

modular approach to extend CGMBE with new GSLD patterns that can be used in ap-

plication models. It also constrains the patterns that can be supported in CGMBE: the

patterns must satisfy the constraints associated with GSLD patterns in Section 6.1.2; they

must also have local scheduling behaviors that are amenable to implementations based on

suitably formulated update rules.

For the conditional GSLD pattern type defined in Section 6.1.3, the update rule
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for the Switch actor sets the pending token count value of one of its successors to −1,

as described above. Additionally, the pending token count value of the Select actor is

initialized to 2 rather than to its in-degree value, which is 3. This allows the Select actor

to fire when the single data token arrives on one of its data inputs and the control token

is present. The update rule of the Switch actor ensures that on any given firing of the

enclosing GSLD pattern, only one data token will arrive at an input of the Select actor.

In Fig. 6.3, the scheduling parameters generated by the Analysis Engine, includ-

ing the update rules for the actors, are represented by the Scheduling Parameters block.

Update rules are already pre-defined for different actor and pattern types. The role of

the Analysis Engine in this context is to simply package the appropriate analysis rules

together with the corresponding graph vertices so they can be retrieved efficiently at

execution-time. Other Scheduling Parameter settings generated by the Analysis Engine

include the initial value of δ (Ai) for each actor Ai in the unfolded graph. The pending

token count of each Ai is reset to this initial value at every new iteration of the unfolded

graph.

6.2.3 Analysis Results Exporter

The results produced by the Analysis Engine together with implicitly- and explicitly-

specified actor mapping information (see Section 6.1.4) are exported for use by the CGMBE

Runtime Engine in binary form. We refer to this binary output as the generated applica-

tion graph data. This exporting functionality is represented in Fig. 6.3 by the Analysis

Results Exporter block.
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The application graph data generated is stored in a compact binary form using a data

exchange protocol based on the Google Protobuf library [37]. In addition to facilitating

compact storage, this protocol provides reliable and efficient communication between

the CGMBE Analysis Engine and Runtime Engine. Moreover, in contrast with human-

readable data serialization formats such as the XML or JSON formats, the binary format

used in CGMBE can be imported and exported with lower execution-time overhead.

6.2.4 Executable Generation

To generate the executable associated with a given application graph, unfolding

factor, and explicit actor mapping, CGMBE uses back-end compilers for the target

platform—the CPU- and GPU-targeted C++ and CUDA compilers—to compile and link

the Runtime Engine together with the generated application graph data and the functions

for all of the library actors that are used in the application graph. This phase of executable

generation is represented by the Back-end Compilers and Executable blocks in Fig. 6.3.

The CGMBE Runtime Engine uses the generated application graph data to con-

figure just-in-time scheduling, and dynamically optimize host & device utilizations as

well as memory management on both host & device. Furthermore, the Runtime Engine

uses the generated data to efficiently access relevant information about the global execu-

tion state of the heterogeneous computing system. This information allows the dynamic

scheduler to optimize execution more effectively. Section 6.3 provides more details on

the Runtime Engine and its associated dynamic scheduler.
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6.2.5 Limitations

Two current limitations of CGMBE are that it only supports utilizing a single GPU,

and all firings of the same actor are constrained to execute on the same device (CPU or

GPU). When targeting multiple GPUs, it may be especially useful to allow different sub-

sets of firings for the same actor to execute on different devices—in particular, on different

GPUs. Studying efficient algorithms to partition actor firings in this more flexible way,

and to support multiple GPUs are useful directions for future work in extending CGMBE.

6.3 Runtime Engine

Before discussing components of CGMBE, we distinguish among three phases of

system development and execution: compile-time, setup-time, and execution-time. In

CGMBE, compile-time tasks include analyzing the application graph using the Analysis

Engine, and exporting derived scheduler parameters and the unfolded graph in a binary

form that can be loaded efficiently by the Runtime Engine. Setup-time tasks include

loading the Generated Application Graph Data (see Fig. 6.3) into memory, initializing

components of the Runtime Engine, and initializing system resources. The initialization

processes include allocating memory pools, spawning thread pools, and spawning GPU

stream pools.

Execution-time starts when the Runtime Engine fires an actor from the unfolded

graph for the first time. Execution-time continues for a fixed number of application graph

iterations when the number of application graph iterations, J, is specified by the developer.

Alternatively, execution-time continues until the application terminates through external
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control when the application is invoked on one or more input streams whose lengths are

not known a priori. During execution, the Runtime Engine interprets the nath firing of

an SRSDF actor A as the nuth firing in the kth iteration of the unfolded graph, where

k = bna/Jc, nu = (na (mod J)) + 1, J is the unfolding factor, and indexing for firing

counts and graph iterations start at 1.

In total, the CGMBE dynamic scheduler iterates through the unfolded graph dN/Je

times, where N is the total number of application graph iterations executed, and J is the

unfolding factor. The last iteration through the unfolded graph is a partial one if N is not

evenly divisible by J.

In the remainder of this section, we present the design of the CGMBE Runtime

Engine in a bottom-up fashion, with discussions about its executors, dynamic scheduler,

and overall architecture, respectively.

6.3.1 Executors

The CGMBE Runtime Engine includes a single controller thread, which executes

on the CPU, and three subsystems, called executors, which provide an interface between

the controller thread and pools of threads on the CPU and GPU. More specifically, an

executor allows the controller thread to submit actor firings through a thread-safe queue

to executors so they run asynchronously. An executor allows the controller thread to

hide the details of when and where (i.e., on which CPU thread or GPU stream) to run

a submitted firing. In this manner, an executor decouples dataflow scheduling from the

management of CPU threads and GPU streams.
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Each CGMBE executor has a separate thread pool associated with it. These thread

pools contain fixed numbers of threads that are spawned at setup-time, and destroyed

only when the application completes execution. Throughout an application’s execution-

time, an executor assigns submitted firings to idle threads. This use of thread pools has

three major advantages: thread pools avoid the execution time overhead due to spawning

and deallocation of threads; they allow the maximum number of active threads to be

controlled by the Runtime Engine, which in turn helps to avoid performance degradation

caused by excessive inter-thread contention; and they allow actor invocations to execute

asynchronously and reduce idle CPU cycles that are spent on waiting for synchronization

conditions.

CGMBE employs three executors: I/O, CPU, and GPU. Each executor has an inde-

pendent thread pool and receives firing requests from a separate queue, called the firing

request queue, which is a Single Producer Multiple Consumer (SPMC) queue, where

the producer is the controller thread and the consumers are workers in the thread pool.

CGMBE provides two types of firing request queues, one is an ordinary thread-safe queue

and the other is a thread-safe priority queue. By default, CGMBE uses a simple queue

without priority. It also gives the designer the flexibility to control firing request orders

by using different types of priority functions in conjunction with the firing request queue.

When a priority function is used with the priority request queue, we refer to the queue

as a priority firing request queue. An executor processes requests from its firing request

queue using idle threads in its thread pool. When all threads are busy, an executor will

delay processing a request until a thread becomes idle.

When a firing finishes execution, the associated executor writes a “firing complete”
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message into a queue called the notification queue, which is a thread-safe Multiple Pro-

ducer Single Consumer (MPSC) queue shared by all executors in the Runtime Engine.

Messages in the notification queues are consumed by the controller thread. Upon writing

a firing complete message to the notification queue, an executor releases the associated

thread so it can be used by a subsequent request from the executor’s firing request queue.

This design ensures that the actor kernel designer (algorithm developer) can focus on

image processing algorithm design rather than worrying about the difficulties of parallel

programming, as described in Chapter 1. Thus, algorithm developers can focus on im-

proving the quality of their kernels, while CGMBE takes care of optimizing the efficiency

of schedules for executing those kernels on the targeted CPU-GPU platform.

CGMBE provides three different executors because I/O, CPU, and GPU tasks use

significantly different sets of system resources on a heterogeneous platform. I/O tasks

involve functionality such as reading from or writing to a hard disk, and sending or re-

ceiving data on a network. The performance bottlenecks of such tasks are related to the

bandwidth of the disk or network. The effective bandwidth is shared among all of the

threads, which plateaus the execution time and means that giving more threads or com-

putational resources to such tasks does not necessarily improve a system’s performance.

For example, if multiple threads read data from a hard disk concurrently, the overall disk

read speed may be slower than letting a single thread read data sequentially. Therefore, if

the I/O Executor is combined with the CPU Executor, threads occupied by I/O tasks will

not be able to efficiently utilize the computational resources allocated for those threads.
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Figure 6.5: Workflow of CGMBE Scheduler.

6.3.2 CGMBE Scheduler

Fig. 6.5 provides an overview of the dynamic scheduler in CGMBE, which we

refer to as the CGMBE Scheduler. The CGMBE Scheduler corresponds to the controller

thread, introduced in Section 6.3.1, of the Runtime Engine. At setup-time, the CGMBE

Scheduler loads binary data (generated application graph data) pertaining to the unfolded

graph U and initializes the pending token counts for all actors in U based on initialization

information provided in the generated application graph data. The pending token count

data is maintained at runtime in an integer array that is indexed by unique-integer actor

IDs; these IDs are associated with the actors in U at compile time.

The pending token count array together with the graph connectivity information in

the generated application graph data allow the CGMBE Scheduler to efficiently extract

93



ready actors, which are actors in U that have zero-valued pending token counts. As de-

scribed in Section 6.2.2, ready actors have sufficient data on their inputs to be fired. They

are dispatched as they are identified by the CGMBE Scheduler to their corresponding ex-

ecutors. The mapping from actors to executors occurs at compile time and is based on

information available in the actor libraries. This mapping information is stored as part of

the generated application graph data.

The actions of polling messages from the notification queue, updating the pending

token count array and dispatching ready firings all happen within a single thread, namely

the controller thread of the Runtime Engine. Since reading and writing of the pending

token count array are performed in the same thread, there is no potential for data races

between these operations.

The processes of updating the pending token count array and dispatching firings to

the firing request queues are non-blocking. If the Notification Queue is empty when it is

polled by the CGMBE Scheduler, the controller thread blocks until at least one message

arrives in the Notification Queue. Otherwise, if the queue is non-empty, the controller

thread iteratively dequeues and processes messages, one by one, as long as the queue

is non-empty. The processing of a message in this context involves, as illustrated in

Fig. 6.5, executing update rules for the successor actors associated with the completed

firing, which in turn results in updates to the pending token count array. Each successor

is then examined to determine if it is fireable as a result of these updates and, when it is,

a firing request is dispatched to invoke the successor using the appropriate executor.
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6.3.3 Top-Level Workflow

Fig. 6.6 shows the overall workflow of the Runtime Engine. Previous sections have

already presented several aspects of this workflow: Section 6.3.2 discussed the interac-

tions among the CGMBE Scheduler, Generated Application Graph Data, Pending Token

Count Array, Notification Queue, and the three firing request queues; Section 6.3.1 pre-

sented the interactions between each firing request queue and its corresponding executor.

This section completes the workflow’s description by discussing the interactions involv-

ing the Data Manager, GPU Stream Pool, and GPU Memory Pool.

The Data Manager provides a unified location to manage all application specific

data, which is composed of two components: (1) a read-only component that contains

variables that will be read by different actor invocations, such as configuration parameters;

(2) a lock-free component that manages memory for dataflow edges in the unfolded graph.

The Data Manager provides a simple, efficient, and reliable interface for actors to acquire
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and release buffers to read from and write to.

The GPU Executor has an independent CPU thread pool for launching GPU kernels

on the device. It also interacts with a GPU Stream Pool and GPU Memory Pool. The GPU

Executor is designed differently from the other two executors to manage GPU streams and

handle device-specific memory interfacing requirements. The GPU Stream Pool contains

multiple CUDA streams with each stream ensuring that tasks assigned to it are executed

on the GPU in a given order. The GPU Executor relies on the CUDA scheduler to launch

CUDA kernels on streams. Multiple CUDA streams can execute concurrently on the same

device whereas the kernels within a given stream execute sequentially. The GPU Memory

Pool encapsulates blocks of device memory that are allocated during setup-time and that

can be reused among GPU tasks during execution-time with low overhead. The GPU

Memory Pool is used to avoid device synchronization caused by dynamically allocating

memory during execution-time.

Two possible concerns for the CGMBE scheduler are the overhead and scalability

of the controller thread as the number of concurrent worker threads becomes large; this is

a serious concern as multicore CPUs with 64 cores and 128 hardware threads have been

announced and these numbers are trending higher [52].

The controller thread has low overhead for two reasons. First, it operates on a small

subset of the graph, the execution boundary of the unfolded SRSDF graph; its workload is

proportional to the number of invocations that have not yet completed their execution but

whose predecessors have all completed. Second, there are only a few simple operations

per actor invocation and firing of a complete message as a result of using the cached

compile-time analysis. This minimal constant overhead is negligible when compared to
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the cost of complicated image processing kernels.

Furthermore, the controller thread enables dynamic scheduling, which compares

very favorably to static scheduling; the resulting performance improvements far exceed

the overhead of the controller thread. According to our measurements in Table 6.3, it

is common for the standard deviation of actor execution times to exceed 10 %, which

makes it difficult for static schedules to compete with low-overhead dynamic scheduling,

as enabled by the controller thread.

In the class of high-performance signal processing applications targeted by CGMBE,

most computations involve actors of significant complexity. Typical actors include filter-

ing operations or domain transformations on single- or multi-dimensional signals. The

dataflow modeling foundation of CGMBE is well-matched to this class of image process-

ing applications (e.g., see Bhattacharyya et al. [3]). Since the typical actor complexity

is significant and the CGMBE controller thread involves only lightweight operations, as

described above, the controller thread introduces minimal overhead in overall system ex-

ecution.

6.4 Experiments

In this section, we evaluate the effectiveness of CGMBE through a data- and

computation-intensive application from the domain of hyperspectral image processing.

This application is Vertex Component Analysis (VCA) for linear unmixing for hyper-

spectral images [53].
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6.4.1 Hyperspectral Imaging and Vertex Component Analysis

Hyperspectral image processing is used in a variety of applications, with extracting

information from remote sensing being one of the most common applications. Photo-

graphic images typically have 3 or 4 color channels per pixel: Red, Green, and Blue

(RGB) channels, and possibly an additional “alpha” channel. In contrast, hyperspectral

images typically contain hundreds of channels. These additional channels provide much

greater spectral resolution and enable much more powerful forms of knowledge extrac-

tion, such as classification of different types of objects or materials. However, this in-

creased spectral content makes hyperspectral image processing much more data-intensive

and computationally challenging when compared to conventional image processing tasks.

Linear unmixing of hyperspectral images is used to identify different types of sub-

stances present in captured image scenes and to determine the abundances of the sub-

stances identified. The method is designed to exploit differences in reflectance spectra

between different substances. Many linear unmixing algorithms have been proposed in

the literature. These include the Pixel Purity Index (PPI) [54], N-FINDR [55], Inde-

pendent Component Analysis (ICA ) [56], and Vertex Component Analysis (VCA) [53].

Many researchers have worked on improving hyperspectral linear unmixing algorithms in

terms of considerations such as unmixing accuracy, computational complexity, and avail-

able parallelism. In the experiments that we develop in this section, we apply CGMBE

to the well-known VCA algorithm, which is an unsupervised linear unmixing algorithm

that has been demonstrated to have similar or better accuracy than alternative algorithms,

while having lower computational complexity [53].
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6.4.2 Baseline Sequential Implementation

As a starting point for our experimentation with the VCA application, we obtained

an open source MATLAB-based reference implementation [57]. By referring to this

MATLAB-based version, we developed a C++-based sequential implementation, which

we refer to as the Sequential Version of VCA in the remainder of this section. The Se-

quential Version uses the Eigen library [58], a C++ library for linear algebra.

Fig. 6.7 illustrates the workflow of the Sequential Version. The application is de-

signed to process hyperspectral images stored in HDF5 format [59]; HDF5 is built for

storing and organizing large amounts of data and for efficient I/O processing. We refer

to the vertices in Fig. 6.7 as tasks instead of as actors since the Sequential Version is not

designed to adhere strictly to dataflow semantics.

The computation proceeds as follows. The Source task produces the directory path

for the next HDF5-format image I to be accessed by the Read task. This latter task then

loads the entire data for I into host memory from disk. The Convert task converts the

raw image data to a matrix data type in Eigen; we denote this converted data by R. The

Zero Mean task computes the average value of each spectral band and stores its results

in a vector Rm. This task also shifts the pixel values in each band so that each row has

zero mean; the result after these shifting operations is denoted by R0. The Orth task takes

matrices as input and outputs the results of orthogonalizing these matrices. The SVD

task computes the Singular Value Decompositions (SVDs) of the orthogonal matrices

computed by the Orth actors.

The task graph in Fig. 6.7 includes a data-dependent branching operation, repre-
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sented by the task labeled SNR < SNRth. This branching operation is based on the result

of the Compute SNR task, which computes the signal-to-noise ratio (SNR) of its input

image. If the SNR is less than a predefined threshold, then the branch with the Projective

Projection task is selected. Otherwise, the branch with the Subspace Projection task is

selected. The selected branch will produce an ordered pair (Rp,y), where both Rp and y

are two-dimensional matrices. These two matrices are then processed by the Estimation

task, which applies an iterative algorithm to generate the estimated substance types and

abundances for the input image I.

We profiled the Sequential Version and determined that the Orth task is the most

computationally intensive task, which operates on R and R0. This result makes sense

because the R and R0 images are relatively large compared to other intermediate results.

For example, the hyperspectral images used in our experiments consist of 224 bands with

each band having 128× 128 = 16384 pixels. For this input image size, the R and R0

matrices each have dimensions 224× 16384 and, as such, each contain over 3.6 million

pixels. Deeper analysis of the Orth task shows that most of its time is spent on matrix

multiplication. This motivates us to migrate the matrix multiplication operations from the

CPU to the GPU for acceleration of the VCA application.

6.4.3 CGMBE Application Model

Fig. 6.8 shows the dataflow-based application model that we developed to imple-

ment and experiment with the VCA application using CGMBE.

The formal model of the VCA application in CGMBE uses three Fork actors to
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represent data broadcasting functionality among subsets of actors. The CGMBE Analysis

Engine and Data Manager have special provisions to “optimize away” Fork actors given

that the Fork functionality is commonly needed in signal processing applications to dupli-

cate data that will be used in multiple different actors in dataflow semantics. In particular,

Fork actors are implemented by simply having all receiving actors share a common buffer

so that there is no need for data duplication. This is a specialized application to Fork

actors of the concept of passive component implementation for dataflow graphs [60].

In the application model, the subgraph enclosed within the dashed borders in

Fig. 6.8 corresponds to an application-specific GSLD pattern that has been incorporated

into the CGMBE-based VCA system design. From the “outside”, this pattern behaves as

an SRSDF actor and update rules for the pattern can be readily derived by extending the

update rule formulations for the conditional pattern example discussed in Section 6.1.3.

We omit the details of these rules here for brevity.

6.4.4 Experimental Setup

To evaluate the effectiveness of the CGMBE-based system design for the VCA ap-

plication, we performed extensive experiments with the design using two different CPU-

GPU platforms and a variety of software configurations on each platform. We generated

a synthetic dataset of 200 hyperspectral images using a randomized image generation

model [53]. Each generated image has 224 bands of 128× 128 pixels; 98 of the 200

images have an SNR below the threshold and use the “Projective” threshold, while the

remaining 102 images have an SNR above the threshold and use a “Subspace Projec-
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Platform CPU NVIDIA GPU RAM

Desktop PC AMD Ryzen 1700X
8 cores, 3.4 GHz

GTX 1060
6 GB

16 GB DDR4
3000 MHz

High-end w/s 2x Intel E5-2699 v4
44 cores, 2.2 GHz

GTX 1080 Ti
11 GB

512 GB DDR4
2400 MHz

Table 6.1: Heterogeneous platforms used in our experiments.

tion”. We use the same randomly-generated dataset for all experiments reported in this

section to guarantee that the computational workloads are the same for all experiments.

To validate functional correctness, we compared the output produced by the Sequential

Version and the CGMBE-based implementation to the open-source MATLAB reference

code [57].

As motivated in Section 6.4.2, we mapped the Orth actor to the GPU and all other

actors to the CPU. These mapping decisions were given to CGMBE through the Explicit

Actor Mapping and Implicit Actor Mapping components shown in Fig. 6.3. Additionally,

we compared this mapping with the automated actor-to-device mapping generated from

the HEFT algorithm in the Analysis Engine (see Section 6.1.4). Our implementation

of HEFT in the Analysis Engine utilizes profiling results for actor execution times and

communication costs that are exported from the lightweight CGMBE task profiler.

Table 6.1 summarizes the heterogeneous platforms that we used. The operating

systems on the platforms are different versions of Linux (Desktop PC: Ubuntu 18.04,

High-end workstation: RedHat 7.6).
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6.4.5 Measurements

Table 6.2 summarizes experimental results on execution time and peak memory

usage for CGMBE, HTGS, and the Sequential Version; these results are averaged over

100 runs. The results show that HTGS and CGMBE significantly boost application per-

formance on the targeted platforms. However, CGMBE outperforms HTGS by ≈9 % in

execution time, while also using less host memory. The HTGS-based implementation is

already very effective because it uses all CPU cores and takes full advantage of the GPU

given no other bottlenecks. The memory usage of HTGS might be further reduced by a

more experienced user through attaching additional memory pools to tasks. We anticipate

that the better performance of CGMBE can be attributed to the more efficient scheduler in

CGMBE. HTGS spawns more threads than the platform can effectively utilize and leaves

thread scheduling to the operating system. By contrast, CGMBE employs thread pools

and actively controls the schedule using its dynamic scheduler so there is less thread con-

tention in the CGMBE Runtime Engine at the cost of work stealing within thread pool.

The memory utilization difference between the HTGS and CGMBE versions can be at-

tributed to the use of dynamic memory allocation by the two implementations. HTGS

limits memory utilization by controlling the degree of parallelism in each task and the

size of memory pool attached to some tasks. By contrast, CGMBE controls memory ex-

plicitly using a Data Manager, which limits the maximum number of tokens (data items)

in the system.

For the experimental results reported in Table 6.2, we used the OpenBLAS-based

back-end for the Eigen library. To set the thread count TOB for OpenBLAS when used with
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Platform Sequential HTGS CGMBE

Desktop PC 21.09±0.13 s 2.93±0.03 s 2.63±0.03 s
82 MB 6873 MB 1842 MB

High-end w/s 34.76±0.22 s 2.68±0.07 s 2.47±0.08 s
80 MB 8891 MB 4966 MB

Table 6.2: Execution time (mean & standard deviation over 100 runs) and peak CPU
memory usage comparison.

HTGS and CGMBE, we evaluated the VCA application system for TOB = 1,2, . . . ,16, and

determined that TOB = 1 leads to the best system-level performance. Therefore, we fixed

TOB = 1 in our reported experiments with HTGS and CGMBE. For the Sequential Version

results, we used the best evaluated OpenBLAS thread configuration for each platform. For

example, when testing the execution time for the Sequential Version on the desktop PC,

we set TOB = 7. The difference between the optimal thread counts for the Sequential Ver-

sion versus the HTGS and CGMBE versions demonstrates that intra-actor parallelism is

not sufficient to fully exploit the targeted heterogeneous platforms for the VCA applica-

tion because intra-actor parallelism in the Sequential Version cause much more explicit

synchronization among threads, which wastes more CPU cycles, than HTGS or CGMBE.

One additional note, the Sequential Version is slower on the high-end workstation than on

the Desktop PC because the workstation’s CPU consists of lower frequency cores than its

Desktop PC counterpart.

Next, we experimented with different values of the unfolding factor J using CGMBE.

Fig. 6.9 shows measured results on the variation of execution time and memory usage on

the high-end workstation for different values of J. The solid and dashed curves corre-

spond to execution time and memory usage respectively. As the unfolding factor gets
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Figure 6.9: Execution time and memory usage (mean & standard deviation over 10 runs)
versus unfolding factor for the VCA application on the high-end workstation.

larger from its default value J = 1, the execution time exhibits significant improvement

until saturating at around J = 30. We anticipate that after this point of saturation, the sys-

tem bottleneck is no longer computational power, but rather memory bandwidth. We also

find that the memory usage increases almost linearly as J increases due to larger memory

costs for storing the unfolded graph and its associated buffers. These results demonstrate

the utility of CGMBE in supporting experimentation to explore trade-offs between mem-

ory cost and throughput associated with the important system design parameter J. Gener-

ating trade-off curves, such as those shown in Fig. 6.9, is straightforward using CGMBE

since the process of generating an implementation for a given value of J is fully auto-

mated once the mapping is determined. Similar automation can be applied to experiment

with trade-offs across different mappings for fixed J.
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Both CGMBE and HTGS require platform-specific configurations. However, the

configuration for CGMBE is simpler than its HTGS counterpart as the designer only

needs to provide the unfolding factor, thread pool sizes for the CPU, I/O and GPU execu-

tors, and mapping of actors between the host and device. Additionally, the high degree of

automation in CGMBE allows the designer to experiment with trade-offs among these set-

tings through a highly automated and optimized process. In contrast, HTGS requires the

designer to determine the number of threads N(T ) allocated for each CPU-targeted task

T based on factors such as its computational intensity and the target platform. This is in

addition to requiring a designer-specified mapping of actors to the host or device. The set

of all combinations {N(T1),N(T2), . . . ,N(Tn)} for a task graph containing n CPU-targeted

tasks T1,T2, . . . ,Tn grows very rapidly with n and the complexity of the target platform.

As such, the selection of these values can be a highly complex and time-consuming task.

Furthermore, when porting an HTGS-based application from one platform to another, or

when experimenting with a different actor mapping, the values of the N(Ti)s may need to

be modified again.

On the other hand, a limitation of CGMBE compared to HTGS is that its program-

ming model is restricted to SRSDF with optional use of GSLD patterns. However, the

developments and results presented in this chapter about CGMBE can help to inform

specialized models of computation and optimization techniques that may be useful for

adaptation into future versions of HTGS. This is an interesting direction for future work.

Static scheduling approaches, such as HEFT, that apply constant-valued estimates

of single-threaded actor execution times may be highly inefficient for implementing the

VCA application on multithreaded runtime environments. We anticipate that this incom-
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patibility arises for two reasons. First, from our experiments with the VCA application,

the execution time of a single-threaded actor implementation may be significantly less

(e.g., more 50 % less for some actors) than the execution time of a multithreaded imple-

mentation of the same actor. In such cases, the overhead of multithreaded processing

dominates any potential performance enhancement due to concurrent execution of multi-

ple actor firings. Second, the standard deviation of execution times is more than 10 %.

To provide more concrete insight into these points, Table 6.3 shows profile data for

actor execution times derived from CGMBE on the Desktop PC platform. For the single-

threading environment in Table 6.3, the thread pool of the corresponding executor only

has a single worker thread. In contrast, actors in the multi-threading environment run in

the executor with a thread pool of size 16, which represents the maximum CPU-supported

concurrency for the target platform.

The results in Table 6.3 demonstrate how the actor profiles can help the designer

understand which actors are the most computationally intensive and dominate the comput-

ing time. Such profiling results are useful in deciding which actors the designer should

focus on when performing actor-level optimization. However, due to the large amount

of variation for actor execution times among different thread-based computing environ-

ments, static scheduling algorithms that are based on profiled execution times may be

highly inefficient in such environments.

CGMBE provides a lightweight tracing tool that provides users with information

about the detailed working status of all CPU threads, GPU streams and IO devices. The

performance information provided is related to abstractions in the dataflow graph so as to

give the designer higher-level insight into relevant performance issues. The data is pro-
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Actor
Name

Single-threading
Environment

Multi-threading
Environment

source 0.01±0.00 ms 0.01±0.00 ms

Read 3.35±0.48 ms 7.50±1.61 ms

Convert 4.36±0.84 ms 11.12±3.58 ms

Zero mean 6.09±0.46 ms 15.55±3.85 ms

Orth R0 31.70±0.55 ms 76.08±6.92 ms

SVD R0 29.75±1.47 ms 62.55±5.05 ms

Orth R 31.50±0.52 ms 75.08±9.31 ms

SVD R 2.24±0.43 ms 4.90±0.96 ms

Projective 4.09±0.43 ms 10.15±2.40 ms

Subspace 28.05±1.38 ms 65.15±9.26 ms

Estimation 0.01±0.00 ms 0.02±0.16 ms

Sink 0.01±0.00 ms 0.01±0.00 ms

Table 6.3: Profiles of actor execution times (mean & standard deviation over 100 runs) in
different threading environments.

vided across the entire duration of application execution. For example, the information

exposed from the tracing tool includes the times at which each actor invocation starts and

ends, when a computing resource is idle, and which set of resources presents a perfor-

mance bottleneck at any given time.

Fig. 6.10 presents information derived from the CGMBE tracing tool for the VCA

application. The illustration of the performance data is constructed by first exporting the

output of the tracing tool from CGMBE as a JSON file in Trace Event Format. The JSON

file is then provided as input to Chrome Tracing [61,62] to generate the illustration shown

in Fig. 6.10.

For example, from Fig. 6.10 we can see that I/O speed is the performance bottleneck

during the first 100 ms of execution. Then CPU resources are mostly occupied by actor
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Figure 6.10: An illustration of information derived from the CGMBE tracing tool.

invocations related to the zero mean and SVD actors. CPU computing capacity is the

bottleneck during the time interval from 100 ms to 150 ms after the start of execution.

Finally, GPU streams are fully utilized starting from around the 150 ms point.

In contrast to traditional performance analysis tools, such as GNU gprof [63], which

collects data for each function call and introduces considerably higher execution time

overhead, the tracing tool in CGMBE uses a lightweight approach that simply records

the time before and after each task invocation in the executor, and only computes and

exports the tracing results at the end the application execution. Additionally, the CGMBE

tracing tool gathers detailed information about execution status for I/O and computation

resources throughout the entire execution process, and provides a high-level (actor-level)

view of the execution process.

Next, we experimented with different software configurations on the Desktop PC.
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Table 6.4 summarizes execution times and memory usage levels. All results shown in

Table 6.4 use the same computation kernels for the CPU and GPU and their differences

are attributed to differences in the scheduling approaches that are employed. All of the

average execution times and standard deviations are computed from 100 runs.

We first compare two sequential implementations. The CPU-GPU Sequential im-

plementation requires approximately the same execution time as the CPU Only Sequen-

tial implementation. This is because the CPU-GPU Sequential implementation does not

overlap computations between the CPU and GPU, nor does it overlap computation with

data motion. Although HEFT is a static scheduling algorithm, the HEFT implementation

evaluated in Table 6.4 still has better performance than the two sequential implementa-

tions. However, because the HEFT scheduling algorithm does not exploit parallelism

across different application graph iterations, and its schedule cannot be adapted dynami-

cally based on execution-time variations, the speedup achieved by HEFT is very limited

in our experiments.

In Table 6.4, CGMBE Basic refers to a version of CGMBE that utilizes both CPU

and GPU devices, but does not include profiling or priority firing request queue features.

On the other hand, the last three rows of the table correspond to versions of CGMBE that

augment CGMBE Basic with priority firing request queues, where the queues are config-

ured with three different priority functions. CGMBE with Profiling augments CGMBE

Basic with profiling, and without use of priority firing request queues.

Because CGMBE Basic can overlap computation between different devices, and

also overlap computation with data motion, the difference in execution time due to use

of the GPU is much more significant than that in the sequential implementations. Specif-
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ically, CGMBE Basic is over 25 % faster than the CPU Only CGMBE implementation.

Furthermore, the task-level profiling capability of CGMBE is so lightweight that the run-

time overhead of the CGMBE with Profiling version is only about 0.3 % of the execution

time of CGMBE Basic for the VCA application.

CGMBE with Profiling augments CGMBE Basic with profiling capabilities that

collect actor-level execution data throughout application execution, and display values

for average actor execution times after application execution has completed. CGMBE

with Profiling is provided as an option that allows designers to derive useful information

about actor-level performance.

In the last three rows of Table 6.4, we utilized the priority firing request queue

in CGMBE and compared the performance resulting from different priority functions.

There is no significant difference in execution time among the three implementations rep-

resented in these last three rows. We anticipate that this is because the CGMBE Runtime

Engine is able to keep all worker threads busy for this application regardless of how the

tasks are ordered in the firing request queue. Here, the HEFT heuristic gives the firing

order extracted from the conventional HEFT algorithm; “CP” stands for the Critical Path

heuristic, where actors with larger critical path lengths are executed earlier; and “ICP”

stands for the Inverse Critical Path heuristic, where actors with smaller critical path val-

ues are executed earlier. Comparing the results for HEFT, CP, and ICP with the result of

CGMBE Basic, we find that the use of priority firing request queues does not add signif-

icant overhead to the system. Second, the ICP Heuristic uses less memory than the other

CGMBE implementations; we anticipate that this is because it allows CGMBE to release

memory earlier compared to the CP and HEFT heuristics. However, CGMBE with ICP
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Configuration Execution Time Memory Usage

CPU Only Sequential 21.09±0.13 s 82 MB

CPU-GPU Sequential 21.08±0.25 s 82 MB

HEFT 15.33±0.04 s 664 MB

CPU Only CGMBE 3.53±0.02 s 1478 MB

CGMBE Basic 2.63±0.03 s 1842 MB

CGMBE with Profiling 2.64±0.03 s 1855 MB

CGMBE with HEFT Heuristic 2.64±0.03 s 1838 MB

CGMBE with CP Heuristic 2.63±0.02 s 1859 MB

CGMBE with ICP Heuristic 2.68±0.03 s 1799 MB

Table 6.4: Execution time (mean & standard deviation over 100 runs) and memory usage
for different software configurations.

Heuristic runs a little slower than the other two CGMBE implementations with priority

firing request queues.

From the results summarized in Table 6.4, we find that the trade-off between execu-

tion time and memory usage is favorable for CGMBE Basic. Thus, we select CGMBE Ba-

sic as the default configuration in the overall CGMBE design tool. However, the CGMBE

tool makes it easy for the designer to select among the other options listed in Table 6.4,

and also to incorporate and experiment with new priority functions for coordinating pri-

ority firing request queues.

If the hyperspectral images that we experimented with are input to CGMBE Basic

as a video stream, then the system can process this stream at approximately 75 frames per

second. This demonstrates efficient, real-time processing of hyperspectral image data on

a low cost, off-the-shelf computing platform. Moreover, the VCA application is mapped

by CGMBE into this real-time implementation using a systematic and highly automated
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process.

6.5 Conclusion

In this chapter, we have presented CGMBE, a new design tool for model-based

design and implementation of real-time image processing applications targeted to hetero-

geneous CPU-GPU platforms. We introduced in detail the application modeling methods

and design flow employed in CGMBE, and presented details on the CGMBE Runtime

Engine, which applies dynamic scheduling techniques to optimize system performance.

We demonstrated the effectiveness of CGMBE through experiments involving a complex

data-intensive application for hyperspectral image processing and a variety of CPU-GPU

platforms and software configurations. Interesting directions for future work include ex-

tending CGMBE to support multiple GPUs, developing hierarchical controller strategies

within the Runtime Engine to support multi-node image processing environments, devel-

oping support for nesting of globally static locally dynamic patterns, and adapting relevant

methods from CGMBE into HTGS.
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Chapter 7: Conclusion and Future Work

In this chapter, we first summarize the contribution of the thesis. We then explore

interesting directions for future work.

7.1 Conclusion

In this thesis, we have introduced the HMBE scheduler, the HI-HTGS design tool

and the CPU-GPU Model-based Engine. In this section, we summarize the key contribu-

tions resulting from our investigation into each of these tools.

First, we introduced a novel model-based dataflow scheduler, the HTGS Model-

Based Engine (HMBE), for design optimization of signal processing applications on mul-

ticore platforms. HMBE models applications using an adapted form of the windowed

synchronous dataflow (WSDF) model of computation, and schedules these application

models onto the given multicore platform in a lock-free and race-condition-free manner.

HMBE provides an automated design process that does not require the designer to have

detailed knowledge of parallel programming.

In HMBE, we also separated the runtime model, called the acyclic precedence

expansion graph (APEG) representation, from the high-level WSDF-based application

model. This separation allows the designer to work with a more compact and intuitive
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model based on WSDF semantics, while the runtime engine operates on a more detailed

model that supports efficient, automated dynamic scheduling analysis. The process of

converting from the designer-oriented WSDF model to the runtime-oriented APEG model

is fully automated.

We demonstrated the effectiveness of HMBE using two distinct application case

studies: (1) a large-scale image stitching application, which is data- and compute-intensive

and has abundant data parallelism along with complicated data dependencies, and (2) a

background subtraction application, which contains actors with internal states and many

sequential operations. In both sets of experiments, our results showed that the HMBE

scheduler effectively utilized the available CPU resources and significantly boosted ap-

plication performance.

Second, we developed HMBE-Integrated-HTGS (HI-HTGS), a software tool that

implements and optimizes multicore signal processing systems using the runtime system

of HTGS. In this work, we integrated the model-based design capability of HMBE with

the application programming interface (API) of HTGS. HI-HTGS utilizes the powerful

optimization techniques developed in the HMBE analysis engine and automates the com-

plicated steps involved in design and implementation of bookkeeper rules for HTGS.

We resolved the mismatches between the execution environments of HMBE and

HTGS though a novel hierarchical scheduler architecture. The hierarchical scheduler is

composed of a group of local schedulers and a single global scheduler. We compared the

execution time performance and program size (lines of code) between HI-HTGS-based

and HTGS-based implementations of the same application. The comparison was per-

formed using a case study involving a data- and computation-intensive image stitching
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application. The experimental results demonstrated that the HI-HTGS version achieved

similar performance as the HTGS version on a diverse set of hardware platforms. How-

ever, the HI-HTGS version required substantially fewer lines of code compared to the

HTGS version, and could therefore be developed and maintained more efficiently.

Finally, we developed the CPU-GPU Model-Based Engine (CGMBE), which pro-

vides several important enhancements that go beyond the capabilities of both HMBE and

HI-HTGS:

• CGMBE extends the supported class of target architectures from multicore plat-

forms to hybrid CPU-GPU platforms.

• CGMBE generalizes the runtime APEG representation to the form of an unfolded

single-rate synchronous dataflow (SRSDF) model, and replaces the HMBE runtime

engine with an executor pattern, which provides greater flexibility and efficiency

compared to the HMBE runtime engine.

• CGMBE generalizes the application modeling framework to include globally-static,

locally-dynamic patterns (GSLD) patterns.

• CGMBE automates the tedious step of coordinating data motion between host

(CPU) memory and device (GPU) memory by automatically inserting memory copy

actors between adjacent actors that are mapped to different computation devices.

• The executor pattern introduced in CGMBE frees designers from making difficult

choices involving the number of CPU threads or GPU streams to be assigned to

each dataflow actor. This aspect of CGMBE makes it possible to extend CGMBE
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to more complicated computation platforms in a modular fashion by deriving and

plugging in new executors.

• CGMBE includes a useful tool for tracing execution time performance and relating

the extracted performance information to the high-level, model-based application

representation. This tracing tool is useful to designers in iterating on designs and

tuning performance, and results in minimal execution time overhead for the instru-

mented implementations.

We demonstrated the utility of CGMBE through extensive experiments involving

a Vertex Component Analysis (VCA) application for linear unmixing for hyper-spectral

images. The experimental results demonstrated that CGMBE achieves significant im-

provements in both execution time and memory usage.

7.2 Future Work

In this section, we explore directions for future work from four aspects: (1) extend-

ing the supported application modeling methods to enable greater system-level modeling

flexibility; (2) extending the supported back-end executor to support a more diverse va-

riety of hardware platforms; (3) developing automated task partitioning capabilities for

platforms with multiple, possibly distributed CPU-GPU combinations; and (4) enabling

work stealing between different executors to enhance dynamic load balancing across com-

putation resources.

Fig. 7.1 illustrates the architecture of the CGMBE framework with mature compo-

nents represented as grey blocks and components for future work represented as white
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Figure 7.1: An illustration of future work to extend the CGMBE framework.
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blocks.

7.2.1 Hardware Platforms

Currently supported devices in the CGMBE framework include CPUs, GPUs, and

I/O devices. Each of these three categories of devices corresponds to a distinct executor

type in CGMBE. Additional categories of hardware platforms and devices can be sup-

ported in CGMBE by developing corresponding new types of executors if the new type

of component is not well-supported by any of the existing executor types. In addition

to identifying an existing executor type or defining a new type, research is also in gen-

eral needed to implement and optimize support for the new component type within the

selected type of executor.

The library of supported executors in CGMBE is grouped into different classes of

executors. Different executor types having the class share the same interface but may have

different implementations. For example, there is currently one CPU executor type in the

CGMBE framework, which is the Uniform Memory Access (UMA) model CPU executor.

An interesting direction for future research is to add an executor type for a Nonuniform

Memory Access (NUMA) model, which is useful to improve performance on platforms

in which multiple CPU sockets do not uniformly share the available memory [64]. In

this case, we envision that the UMA CPU executor and NUMA executor would provide

different implementations of the CPU executor class.

The addition of a new executor type in this way involves implementing the new

executor as a first step, and then as a more complex step, examining how different aspects
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of the design tool components within CGMBE can be extended to optimize the integrated

use of the new executor type.

In addition to the NUMA CPU executor type, other examples of useful new execu-

tor types to investigate are an FPGA executor (probably through the definition of a new

executor class), and a Network I/O executor (probably as a new implementation of the

existing I/O executor class).

7.2.2 Task Partitioning

A current limitation of the GPU executor in the CGMBE framework is that it only

supports a single GPU device. To use multiple GPUs in CGMBE, the designer must man-

ually partition GPU-targeted actors in the application model across the different GPUs

and instantiate a separate executor for each GPU. This approach has a number of draw-

backs. First, it may be very difficult for designers to derive efficient partitioning solutions

by hand, especially when the complexity of the application graph becomes high. Second,

designers are constrained by CGMBE to mapping each GPU-targeted actor to a single

GPU. Different firings of the same actor cannot be spread across different GPUs. As a

result, when the number of GPU-targeted actors is less than the number of available GPU

devices, it is impossible to make full use of the GPUs. Third, the need for hand-developed

partitioning of GPU-actors makes it time consuming and error-prone to retarget designs

across different platforms.

This motivates investigating new methods in the CGMBE analyzer for automated

partitioning of actors across multiple GPUs, and for allowing different firings of a given
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actor to be distributed across multiple GPUs. The partitioning approach could operate

on the intermediate representation, the unfolded SRSDF model, in the CGMBE analyzer.

Many partitioning techniques have been developed for dataflow graphs and task graphs.

Examples of this body of work are Bhattacharyya et al. [3], Shen et al. [65], and Wang et

al. [66]. However, the models and design flow of CGMBE result in novel constraints un-

der which partitioning solutions must operate, as well as novel capabilities in the compile-

time and run-time engine that can be exploited. As such, maximizing the effectiveness of

task partitioning for CGMBE is an interesting direction for further investigation.

7.2.3 Work Stealing

In the experiments involving the VCA application presented in Section 6.4, we

found that the performance bottleneck of the CGMBE-based, CPU-GPU implementation

was alternating back and forth between the CPU- and GPU-targeted subsystems. CPU

and GPU workloads that remain more balanced throughout application execution can in

general lead to significant improvements in performance. However, due to uncertainties

in actor execution times and interprocessor communication times for the targeted class of

platforms, it is in general not possible to keep execution times balanced through purely

compile-time analysis.

Therefore, another interesting direction for future work is to investigate runtime

load balancing mechanisms for executors in CGMBE. One promising approach in this

direction is the application of work stealing concepts [67] among different executor types

and executor classes to perform runtime load balancing between different types of de-
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vices, including CPUs and GPUs. Maintaining data locality is a major challenge when

applying work stealing techniques to CGMBE. The locality-guided work stealing algo-

rithm introduced in [68] provides an interesting starting point for addressing this problem.
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