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Understanding the instabilities leading to the laminar-to-turbulent transition

of a hypersonic boundary layer is a key challenge remaining for the design of efficient

hypersonic vehicles. In the present study, experiments are performed in three differ-

ent facilities at freestream Mach numbers between 6 and 14 to characterize instabil-

ity mechanisms leading to transition on a 7◦ half-angle slender cone. Second-mode

instability waves are visualized using a high-speed schlieren setup with the camera

frame rate and spatial resolution optimized to allow individual disturbances to be

tracked. In order to facilitate quantitative time-resolved measurements, a method

of calibrating the schlieren system and novel image-processing algorithms have been

developed. Good agreement is observed between the schlieren measurements, sur-

face pressure measurements, and parabolized stability equation computations of

the second-mode most-amplified frequencies and N factors. The high-frequency-

resolution schlieren signals enable a bispectral analysis that reveals phase locking of



higher harmonic content leading to nonlinear wave development. Individual distur-

bances are characterized using the schlieren wall-normal information not available

from surface measurements.

Experiments are also performed to investigate the effect of nose-tip blunt-

ness. For moderate to large bluntness nose tips, second-mode instability waves are

no longer visible, and elongated structures associated with nonmodal growth ap-

pear in the visualizations. The nonmodal features exhibit strong content between

the boundary-layer and entropy-layer edges and are steeply inclined downstream.

Simultaneously acquired surface pressure measurements reveal high-frequency pres-

sure oscillations typical of second-mode instability waves associated with the trailing

edge of the nonmodal features.



AN EXPERIMENTAL INVESTIGATION OF HYPERSONIC
BOUNDARY-LAYER TRANSITION ON SHARP AND BLUNT

SLENDER CONES

by

Richard Edward Kennedy

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Stuart Laurence, Chair/Advisor
Professor James Baeder
Professor Christopher Cadou
Professor Johan Larsson, Dean’s Representative
Professor Kenneth Yu



c© Copyright by
Richard Edward Kennedy

2019





Acknowledgments

I would first like to thank my advisor, Professor Stuart Laurence, for giving

me the opportunity to work on an exciting and fulfilling research project. I am

grateful for his unwavering support, guidance, and extreme patience, which have

been invaluable to my development as a researcher. I would also like to thank

Professors Christopher Cadou, Johan Larsson, James Baeder, and Kenneth Yu for

serving on my committee.

I was very fortunate to collaborate with multiple research groups, and the

success of this work hinged on support from many people within the greater hyper-

sonics community. Dr. Eric Marineau served as a mentor and subject-matter expert

during the experimental campaigns at AEDC Tunnel 9, which would not have been

a success without the help of Mike Smith, who patiently taught me the minutia of

the optics hardware. The collaboration with Drs. Joe Jewell, Matt Borg, and Roger

Kimmel was critical to the success of multiple experimental campaigns at the Air

Force Research Lab.

I am grateful for both the technical and personal support afforded to me by

my labmates from the High-Speed Aerodynamics and Propulsion Lab at UMD. I am

equally indebted to my friends and colleagues at Caltech and École Polytechnique.
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Chapter 1: Introduction

1.1 Motivation

Significant technological progress combined with political pressures has led to

a renewed interest in hypersonics in the past decade. One of the highest priority

interests coming from the US Department of Defense is the development of a ma-

neuverable air-breathing hypersonic vehicle. By its nature, an air-breathing vehicle

must cruise at low enough altitudes to sustain efficient combustion, introducing chal-

lenges associated with the higher density gas in this regime compared to the upper

atmosphere. Among the most impacted flow properties are drag, skin friction, and

notably, the increased heat transfer associated with laminar-to-turbulent transition

of the boundary layer on the vehicle surface.

At hypersonic Mach numbers (generally Mach 5 or greater), the transition-to-

turbulence of the boundary layer results in an increase of heat transfer of up to five

times or greater which, combined with the desired flight duration of tens of minutes,

leads to much higher thermal loading. The heat transfer and thermal management

therefore become critical design criteria for vehicles operating in this regime. At

present, this is dealt with by sizing the thermal protection system over the entire

vehicle to meet the safety factors required for turbulent boundary-layer heating rates

1



at the expense of adding a substantial amount of mass and reducing operational

efficiency. This requirement is necessary largely due to the lack of a reliable method

for predicting the transition location. Understanding the underlying physics of the

transition process, particularly the growth of instabilities within the boundary layer

that ultimately lead to transition, is thus critical for the design and development of

efficient hypersonic flight vehicles.

1.2 Review of Hypersonic Boundary-Layer Transition Previous Work

The study of laminar-to-turbulent transition dates back to the seminal works

of Lord Rayleigh and Osborne Reynolds in the late 1800s, the former developing the

theoretical framework around the instability of jets and the latter experimentally

recording the behavior of water flow at different flow rates in pipes. Transition in

a bounded flow was examined by Tollmien (1929) and Schlichting, who described

viscous waves that formed when a disturbance entered the flow and grew to finite

amplitudes that, if large enough, would lead to the breakdown to turbulence. The

first experimental measurement of these now-termed Tollmien-Schlichting or T-S

waves came from Schubauer and Skramstad (1948) who, using hot-wire anemometry,

measured harmonic oscillations in a laminar boundary-layer on a flat plate at zero

angle of attack in low-speed flow.

Early progress in boundary-layer stability theory relied on a normal-mode

approach that considers the asymptotic behavior of disturbances. The analysis

begins with decomposing the flow quantities into a basic flow plus an infinitesimal
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disturbance. The equations are further simplified by treating the boundary layer

as a parallel flow, i.e., the streamlines are everywhere parallel to each other and

parallel to any bounding surface. Strictly speaking, growing boundary layers are

not parallel flow, but it has been shown that, to leading asymptotic approximation,

the parallel-flow assumption is valid (Reshotko, 1976). By formulating the problem

this way, the equations admit disturbances of the form

Q′(x, t) = q(y)exp[iα(x cosψ + z sinψ − ct)], (1.1)

where α is the wavenumber, ψ is the plane wave propagation angle with respect to x,

and c is the phase velocity of the disturbance. The computed eigenvalues determine

which, if any, disturbances are unstable, and the basic flow is subsequently labeled

stable or unstable depending on whether the disturbances grow or decay in time.

Mack (1975) developed a theoretical framework based on the normal-mode

approach for hypersonic boundary-layer stability, defining the “second-mode” in-

stability, the dominant higher-frequency mode present for sharp, slender bodies

at zero angle of attack when the edge Mach number is sufficiently large. Figure

1.1 presents the first-(T-S waves) and second-mode-instability spatial amplification

rates as functions of boundary-layer-edge Mach number. Federov and Tumin (2011)

note that Mack’s definition of the second mode is inconsistent with conventional

usage of the term normal modes; nonetheless, this nomenclature has remained in

use in the community and is employed in this thesis. In contrast to T-S waves,

the second-mode instability is acoustic in nature, primarily characterized by fluctu-
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ations in density, and the second-mode waves possessing the highest amplification

rates are two-dimensional. Mack’s theory predicted the most-amplified second-mode

frequency to be proportional to 1/δ where δ is the local boundary-layer thickness.

A number of experimental studies including those from Demetriades (1960, 1977),

Kendall (1975), and Stetson and Kimmel (1992) confirmed the existence and be-

havior of the high-frequency second mode. Following these, parametric studies by

Stetson (1983) and Stetson and Kimmel (1992) measured the effects of nose-tip

bluntness, angle of attack, wall temperature, freestream unit Reynolds number, and

Mach number on hypersonic boundary-layer stability. More recently, Federov (2011)

presented a comprehensive overview focusing on the character of second-mode waves

developing on slender bodies at zero incidence and the role of boundary-layer re-

ceptivity on initiating disturbances on the path to amplification and breakdown to

turbulence. A more in-depth examination of individual studies most relevant to this

thesis are presented in the following introduction sections.

1.2.1 Instability Measurement Technique Review

Works from Reshotko (1976), Pate (1971), Schneider (2001) and others, have

demonstrated that freestream conditions affect transition location; thus, measure-

ments of the second-mode instability waves themselves rather than mean transition-

location measurements are required for computational validation. The original mea-

surements of Kendall (1975), Demetriades (1960, 1977), and Stetson et al. (1983)

were all made using hot-wire anemometry. The technique worked well in resolv-
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Figure 1.1: “Effect of Mach number on the maximum spatial amplification rate of
first and second-mode waves... Insulated wall, wind-tunnel temperatures,” Mack
(1975).

ing the second-mode fundamental frequency content, but required a specific type

of testing facility; namely, the facility needed to be capable of running sufficiently

long to allow the probe to be traversed over the test time, and the hot-wires could

not be used to make measurements in shock tunnels due to the harsh conditions.

Demetriades (1977), in line with the results of Mack, measured the frequency of the

instability as f ∝KUE/(2δ) where UE is the boundary-layer edge velocity, K is a

constant of proportionality typically in the range 0.6 – 1.0, and δ is the boundary-

layer thickness.

Recent works have relied on commercially available PCB piezo-electric pressure

sensors that can be mounted on the model surface and have a manufacturer-quoted

resonant frequency of over 1 MHz. In practice, Ort and Dosch (2019) showed the
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mounting method and internal dynamics have significant influence on the sensitivity

and frequency response at and above 300 kHz. Fujii et al. (2011), Wagner et al.

(2013), Marineau et al. (2014, 2017, 2019), and Casper et al. (2014), among others,

successfully used these sensors to measure second-mode instability wave frequencies

and growth rates. Fast-response atomic layer thermopile heat-flux gauges developed

by Roediger et al. (2009) have been used to measure second-mode frequencies and

growth rates, and are the subject of ongoing research and development focused on

reducing the sensor footprint to eliminate spatial filtering effects.

Due to the two-dimensional structure and relatively high-frequencies of second-

mode waves, optical techniques are well suited for nonintrusive measurements of

these disturbances on a slender cone geometry. Potter and Whitfield (1965) recorded

the first schlieren images of second-mode instability waves; these appeared as rope-

like structures developing in laminar boundary layers. Sample schlieren images are

shown in figure 1.2. Recent progress in high-speed electronics, particularly cameras,

has led to a renewed interest in using optical techniques for quantitative boundary-

layer measurements. The first studies using these techniques implemented a focusing

schlieren setup described by Weinstein (1993). VanDercreek et al. (2010) used this

system to visualize non-time-resolved images of second-mode waves in the boundary

layer of a 7◦ half-angle slender cone at Mach 10 and employed a related deflectometry

setup to measure instability-wave frequencies that showed good agreement with

those from a pressure sensor at the same streamwise location. Hofferth et al. (2013)

used a similar focused-schlieren-deflectometry technique to measure second-mode

waves in a low-disturbance freestream environment. A high signal-to-noise ratio
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Figure 1.2: Schlieren images of a second-mode wavepacket developing on a cone at
Mach 6 (Laurence et al., 2016) (top) and Mach 14 (Kennedy et al., 2017) (bottom).
The white line in the bottom image indicates the boundary-layer thickness.

and bandwidth of up to 1 MHz allowed them to measure higher harmonics of the

fundamental instability and identify nonlinear origins using a bispectral analysis,

but the measurements were limited to one streamwise location per experiment due

to the use of a single fiber-optic cable and photodiode system.

Laurence et al. (2012) recognized that, by recording schlieren images at suffi-

ciently high frame rates, they could track individual instability features within the

boundary layer and use image-processing techniques to compute properties including

the dominant wave frequencies. Following their initial work, Laurence et al. (2014,

2016) built upon the technique by using a pulse-burst laser to record image pairs of

second-mode waves with the camera set to a lower frame rate but higher spatial res-

olution. From these visualizations, they were able to calculate propagation speeds,

spatial frequency content, and structure angles for second-mode disturbances. The

two-dimensional schlieren images have the added advantage of allowing information

extraction at different heights in the boundary layer. Similar visualization exper-

iments were performed by Casper et al. (2016) and Grossir et al. (2014). While

these schlieren techniques are reasonably easy to implement, one drawback is that

most schlieren systems lack a calibration and require integrating the density-gradient

disturbance information to acquire the density disturbance. As an alternative, re-
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searchers have begun using focused laser differential interferometry (FLDI). The

FLDI system provides a direct measurement of density disturbance, and was used

by Parziale (2013) and Parziale et al. (2015) to obtain quantitative measurements

of instability amplification rates in the T5 hypervelocity shock tunnel at Caltech.

Again, however, the technique has limited spatial measurement density and requires

a highly precise installation.

1.2.2 Studies on Second-Mode Wave Development

A significant number of stability experiments in blow-down facilities using

hot-wire anemometry were performed shortly after the discovery of higher tran-

sition modes by Mack. Stetson and Kimmel (1992) combined much of the data

and provided a comprehensive overview of the key findings. In all the experiments

performed at Mach numbers greater than 5, large-amplitude density fluctuations

dominated the transition process and, in line with the theory, instability frequen-

cies were highly tuned to the boundary-layer thickness, decreasing with increasing

streamwise location. As shown in figure 1.3, Stetson et al. (1983) observed the

most-amplified disturbances had a wavelength of roughly twice the boundary-layer

thickness and fluctuation energy was primarily contained within the upper half of

the waves. Among the key unexpected findings of the experiments included the iden-

tification of a higher harmonic peak in the frequency spectra that was not predicted

by the linear stability theory. The harmonic had a frequency of approximately twice

the fundamental, and appeared at streamwise locations where the fundamental en-
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ergy content had been significantly amplified. Kimmel and Kendall (1991) explored

this phenomenon further, performing a bispectral analysis that showed the genera-

tion of harmonics to be closely linked to nonlinear wave propagation. Amplification

rates computed from the hot-wire measurements agreed well with the linear-stability

results in the regime where the nonlinear interactions were not present, but began

to deviate shortly after their appearance. Their findings spurred further investiga-

tions including those of Chokani (2005), Bountin et al. (2008), and Hofferth et al.

(2013), who explored the phenomenon using a variety of measurement techniques in

a Mach-6 freestream. In all cases, nonlinear interactions were shown to play a large

role in wave growth near the onset of transition, and provided valuable information

on energy distribution within the wave. The work of Hofferth et al. (2013) was

notable in that, by using a high-bandwidth deflectometry technique, they resolved

higher harmonic interactions at 3f0 and 4f0, frequency content that was previously

unidentifiable due to measurement limitations. Kimmel et al. (1996) further eluci-

dated the wave structure by computing the coherence between spanwise displaced

hot-wire measurements to reveal the waves had a limited spanwise extent of less

than roughly 4δ and decreased with increasing unit Reynolds number.

More recently, Marineau et al. (2019) combined and analyzed data from a se-

ries of experiments on a similar 7◦ half-angle slender, sharp-nose cone geometry in

freestreams of Mach 5 – 14. Using wave amplitudes measured by high-speed PCB

pressure sensors in 11 different facilities, they showed that second-mode growth rates

can be predicted using parabolized stability equations, specifically using computa-

tions from the STABL software suite. When scaled using the parameters defined
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Figure 1.3: Hot wire measurements (Stetson et al., 1983) of fluctuation spectra (left)
and fluctuation wavelength (right).

in Stetson et al. (1983), the slope of the maximum integrated amplification rates

(N factors) measured by the PCB sensors collapsed onto the growth rate predicted

by the PSE solutions. Transition N factors achieved by the waves were shown to

increase with increasing unit Reynolds number at each Mach number. Marineau

et al. (2019) further showed the initial disturbance amplitude, A0, to scale inversely

to the unit Reynolds number, relating the freestream conditions to the onset of

wave development. Experimental confirmation of transition N factors changing as

a function of freestream condition was particularly notable as it proved that the use

of a single transition N factor as a transition location predictor is inaccurate.

The implementation of new measurement systems discussed in §1.2.1 has also

led researchers to focus on characterizing individual disturbances. Experiments by

Casper et al. (2014) at Mach 6 examined the pressure footprints of individual nat-
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ural and artificially generated disturbances that grew into second-mode instability

wavepackets. Nonlinear growth was observed in the wavepackets, and breakdown

was observed to begin at the core of the waves where the amplitudes were the

largest. High-frequency pressure fluctuations remained present around the core

throughout the process. The two-dimensionality of the waves holds throughout

the initial growth stages before substantial nonlinear growth and breakdown of the

core causes significant three-dimensionality to appear. DNS by Sivasubramanian

and Fasel (2014) supported these experimental findings by showing the wavepackets

have a two-dimensional pressure footprint that becomes increasingly curved at the

edges during the nonlinear growth stages.

Laurence et al. (2016) used their non-intrusive schlieren measurement tech-

niques to characterize individual waves at different stages of development in a Mach

6 and Mach-8 reflected-shock wind tunnel, specifically focusing on using wall-normal

information available in the schlieren image data. Wavepacket wall-normal energy

distributions revealed the fundamental frequency energy to have a single peak distri-

bution at y/δ= 0.7 – 0.75 and develop a second peak near the boundary-layer edge.

The structure angles showed the waves begin pointed upstream before rapidly folding

over as they reach the boundary-layer edge, resulting in an overall sickle-like shape.

In addition to exploring disturbances in low-enthalpy conditions (h0≈ 3.3 MJ/kg),

Laurence et al. (2016) performed experiments at higher enthalpy (h0≈ 11.9 MJ/kg).

The notable difference in the high-enthalpy case was large-amplitude disturbance

energy located at the wall, and was attributed to a change in the density eigen-

function due to the highly-cooled wall. Parziale et al. (2015), who also recorded
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measurements in a high-enthalpy reflected-shock tunnel, noted a similar peak at the

wall. Using their FLDI system, they also measured second-mode frequencies and,

in line with Laurence et al. (2016), observed the normalized frequencies to be lower

than those measured by Demetriades (1977) and Stetson (1983) in cold-flow facilities

but in line with the results of Bitter and Shepherd (2015) based on wall-temperature

ratio and edge Mach number.

1.2.3 Impact of Nose-Tip Bluntness

Although nose bluntness is recognized to have a dramatic impact on stabil-

ity, a fairly limited amount of experimental data exist describing the high-frequency

instabilities that develop over blunt geometry cases. This is primarily due to the dif-

ficulty in generating the freestream conditions capable of causing natural laminar-to-

turbulent transition on a blunt geometry, combined with the complex measurement

environment. Stetson (1983) performed a number of experiments using surface-

mounted thermocouples and pressure sensors to measure the mean transition loca-

tion on a 8◦ half-angle cone at zero incidence in a Mach-6 freestream. The cone

model used an interchangeable nose tip to test model configurations with nose-tip

radii ranging from nominally sharp to 15 mm. The experimental results showed

that, as the nose-tip radius is increased, the onset of transition shifts downstream.

However, at sufficiently high nose-tip bluntnesses, this trend reverses and the tran-

sition location moves upstream with increasing nose-tip bluntness, a process termed

transition reversal. Jewell and Kimmel (2016) analyzed the experimental results of
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Figure 1.4: “Nose-tip bluntness normalized by swallowing length vs the transition
location ratio”, Jewell and Kimmel (2016) showing data from Stetson (1983). XTB

and XTS
are the streamwise coordinate of transition for the blunt and sharp-nose

cones, respectively, and XSW is the computed entropy-layer swallowing length.

Stetson (1983) using the STABL computational fluid dynamics code package (see

§4.3). They confirmed the movement of the transition front as shown in figure

1.4, and showed that increasing the nose-tip bluntness and entropy-layer swallow-

ing length results in a monotonic decrease in the N factors associated with the

second-mode instability. Oblique modes were shown to not be responsible for the

transition-reversal behavior, and thus, the reversal is not explained by linear stabil-

ity theory. Experimental measurements using high-speed pressure transducers by

Marineau et al. (2014) showed a similar suppression of second-mode growth for cases

where the entropy-layer swallowing length was downstream of the transition onset

location.

Due to the failure of the normal-mode stability theory to predict the exper-
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imentally observed behavior, researchers turned to nonmodal stability theory as a

potential path for modeling the instability mechanisms. As described by Schmid

(2007), nonmodal stability theory considers the full evolution operator (i.e. the

response behavior of the governing equations to input variables) allowing the short-

term disturbance evolution to be captured. This is in contrast to the normal-mode

analysis which, by construct, assumes the disturbances have an exponential time

and space dependence and only captures their asymptotic behavior. By making

no a priori selection of a time horizon or perturbation shape, the full disturbance

behavior can be modeled, including large transient disturbance amplification caused

by the superposition of decaying nonorthogonal eigenvectors. These large amplifi-

cation transients can often dominate the flow dynamics, even when the basic flow

is asymptotically stable. Since the disturbance evolution does not assume an ex-

ponential form, lower spatial amplification rates are typically observed for features

experiencing nonmodal amplification when compared to the exponentially growing

second-mode waves. Additionally, use of the full equations also allows for finite

amplitude disturbances, including freestream noise, to be accounted for using ex-

ternal forcing terms, whereas only infinitesimal disturbances are admitted in the

normal-mode analysis.

To better understand the growth mechanisms present in the blunt-nose geome-

tries, Paredes et al. (2019a) computationally investigated nonmodal-growth mech-

anisms as a possible cause of the transition-reversal phenomenon. Stationary dis-

turbances initiated within the nose-tip vicinity were found to undergo nonmodal

amplification that increased with increasing nose-tip bluntness. These nonmodal-
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Figure 1.5: Schlieren image of nonmodal features (Grossir et al., 2014).

growth features were significantly amplified while first-mode, second-mode, and

entropy-layer modal instability amplification was minimal. Paredes et al. (2019b)

showed that, unlike second-mode waves that appear as rope-like structures within

the boundary layer, planar and oblique nonmodal-growth features are expected to

experience a peak in disturbance magnitude outside the boundary-layer edge. LIF-

based schlieren images captured of the boundary layer over a 7◦ half-angle cone with

a 4.75 mm radius nose tip in a Mach-11.8 freestream by Grossir et al. (2014), shown

in figure 1.5, captured elongated structures that have content extending out beyond

the boundary-layer edge, in qualitative agreement with the computations of Paredes

et al. (2019a); however, their visualization system did not have sufficient temporal

resolution to capture individual features as they evolved.

1.3 Scope of Current Work

The aim of the present study is to characterize the disturbances associated

with boundary-layer transition on a slender body in hypersonic freestreams. Data

are collected in three facilities—AEDC Tunnel 9, the AFRL Mach-6 Ludwieg Tube,

and the AFRL Mach-6 High-Reynolds-Number wind tunnel—to compare the insta-
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bility development in different freestream conditions. A particular highlight is a

comprehensive set of experiments performed in AEDC Tunnel 9 at Mach 14, since

extremely limited measurements were previously available above Mach 10. A 7◦

half-angle cone geometry with interchangeable sharp and blunt nose tips is used as

the test geometry. In an effort to extend current measurement capabilities, we de-

velop a unique calibrated high-speed schlieren imaging system and image-processing

routines to reconstruct time-resolved signals. Particular focus is placed on using the

visualizations to compute quantitative characteristics including second-mode-wave

N factors and nonlinear interactions involving high-frequency harmonic content.

Surface pressure measurements and schlieren visualizations are simultaneously ac-

quired to characterize individual instability features. The work is intended to be a

resource for future stability and transition work, and to provide experimental data

for computational validation.

In chapter 2 the facilities and test articles are described. In chapter 3, a

calibrated schlieren system is presented and characterized. Novel image-processing

techniques used to reconstruct time-resolved signals from the schlieren images and

post-processing techniques relevant to the unique calibrated schlieren signals are

examined in chapter 4. In chapter 5, results from each experimental campaign

using the sharp-nose geometry are presented, including both time-averaged and

individual disturbance behavior. In chapter 6, we present results acquired using

model configurations with a range of finite-radius nose tips. Finally, in chapter 7,

we present the major conclusions and the project is summarized.
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Chapter 2: Facility and Model

2.1 Facilities

Experiments in the present study were conducted in three facilities: Arnold

Engineering Development Complex Hypervelocity Tunnel 9, the Air Force Research

Laboratory Mach-6 Ludwieg Tube at Wright-Patterson Air Force Base, and the Air

Force Research Laboratory Mach-6 High-Reynolds-Number wind tunnel at Wright-

Patterson Air Force Base. Data were collected in multiple facilities to examine

boundary-layer transition at a variety of Mach numbers and unit Reynolds numbers

that no single facility could produce. The following sections present the basic work-

ing principles of each facility and draw attention to their unique capabilities in the

context of the present investigation.

2.1.1 AEDC Tunnel 9

AEDC Tunnel 9 is a national-scale blowdown hypersonic wind tunnel located

in White Oak, MD. The facility is primarily used for test and evaluation studies.

Tunnel 9 is capable of testing at freestream Mach numbers of 7, 8, 10, 14, and 18

with freestream unit Reynolds numbers ranging from 0.177×106 to 158.8×106 per
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meter. The test section has a diameter of 1.5 meters and possesses a system capable

of pitching the model at rates of up to 80 degrees per second, allowing the model to

experience a large range of flow configurations during a single test. A schematic of

the facility is seen in figure 2.1.

Prior to a run, the vacuum sphere, nozzle, and test section are pumped down

to a pressure of less than 140 Pa. Nitrogen in vertical gas heaters is compressed and

heated to the pressure and temperature required to produce the desired freestream

condition. The high and low pressure sides are isolated by a pair of metal diaphragms

upstream of the throat. Once the desired reservoir conditions are reached, the

diaphragms are burst, causing the test gas to expand into the test cell. During the

run time, the stagnation conditions are maintained by pumping cold nitrogen into

the heater. Due to the amount of time required to evacuate the 30.5-m diameter

vacuum sphere and evaluate the facility between runs, the number of experiments

per day is limited to between one and two. Additional information on the facility

can be found in Marren and Lafferty (1998).

For the data presented in this study, one experiment was performed with

the Mach-10 nozzle installed and five experiments were performed with the Mach-

14 nozzle. Unit Reynolds numbers were varied from 1.74×106 to 12.10×106 per

meter by adjusting the reservoir pressure. All runs were performed with stagnation

enthalpies of 2 MJ/kg or less. Steady-flow test times range from 0.6 seconds to 3

seconds for the highest to lowest unit-Reynolds-number cases, respectively. Small

variations in flow variables can occur over the course of the test time. The extent of

this variation is generally less than 2% for the freestream velocity and is accounted
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Figure 2.1: Schematic of AEDC Tunnel 9 (Marren and Lafferty, 1998).

for in the measurement acquisition.

2.1.2 AFRL Mach-6 Ludwieg Tube

The Air Force Research Laboratory Mach-6 Ludwieg Tube (LT) is an impulse

facility recently constructed by the Aerospace Systems Directorate of the Air Force

Research Laboratory in Dayton, OH. It is primarily a research facility designed to

provide hands-on access for engineers to conduct basic research in fluid dynamics,

instrumentation development and related disciplines. The 0.762-meter diameter

nozzle exit generates a free jet that enters a test chamber of approximately 1.27

meters in diameter. The facility is capable of testing at freestream unit Reynolds

numbers up to 34.4×106 per meter, with a steady-flow test time of approximately

100 ms and a turn-around time of 12 minutes. Air is used as the test gas. A

schematic of the facility is shown in figure 2.2.
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The driver and driven sections are separated by a fast-acting valve with the

option to use a diaphragm for testing low stagnation pressure conditions. For all the

experiments in the current study, actuation was achieved using the fast valve. Prior

to an experiment, the test section is pumped to a vacuum and the driver section is

filled with air heated to 500 K at pressures between 689 kPa and 4 MPa. Once the

gas on the driver side reaches the desired conditions, the fast-acting valve is opened,

causing an expansion wave train to move upstream in the driver tube. Conditions

are constant after the passage of the expansion wave, providing a period of steady

stagnation conditions until the wave train reflects from the most upstream end of

the driver tube and returns to the region of the nozzle contraction. The stagnation

pressure is sufficiently high after the first expansion wave passage to result in an

additional period of uniform flow succeeding the initial test period. Figure 2.3

shows the pressure in the driver tube measured during a fast-valve run. About

80 ms of quasi-steady pressure is obtained after the valve-opening transient, and the

pressure during this time is reasonably flat, with a drop of about 0.2%. Additional

information on tunnel operations and specifications can be found in Kimmel et al.

(2017).

In the current investigation, freestream unit Reynolds numbers are set between

4.90×106 and 22.71×106 per meter for individual runs by adjusting the reservoir

pressure between 689 kPa and 3.48 MPa. The freestream Mach number is 6.14, and

the freestream temperature and velocity are 54 K and 901 – 904 m/s for all exper-

iments. The reservoir conditions are measured directly and freestream conditions

are computed as described in Kimmel et al. (2017).
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Figure 2.2: Rendering of the AFRL Mach-6 Ludwieg Tube (Kimmel et al., 2017).

Figure 2.3: Stagnation pressure measured in the driver section during a run in the
AFRL LT (Kimmel et al., 2017).
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2.1.3 AFRL Mach-6 High-Reynolds-Number Wind Tunnel

The Air Force Research Laboratory Mach-6 High-Reynolds-Number wind tun-

nel is a blowdown facility that operates at a reservoir temperature of 611 K and a

reservoir pressure range of 4.83 to 14.48 MPa, corresponding to unit Reynolds num-

bers of 30.7×106 to 92.1×106 per meter. A free-jet test core of approximately 25.4 cm

is produced by a contoured axisymmetric nozzle with a physical exit diameter of

31.2 cm (Stetson, 1983). The freestream Mach number, temperature, and velocity

are 5.9, 76.7 K, and 1038 m/s, respectively. The air supply allows for run times of

100 s at the maximum reservoir pressure of 14.48 MPa.

The sequence of operation begins with high-pressure air generated by com-

pressors and held in a bottle field being released into the heater vessel. Prior to

the initiation of a test, the model is retracted into the bottom of the test cabin.

When the heater reaches the desired run stagnation pressure, a valve is opened and

flow is established in the wind tunnel. After establishment of steady freestream

conditions, the model is injected into the test region and data are recorded. Prior

to termination of the test, the model is retracted into the bottom of the test cabin.

Injection and retraction times are each approximately two seconds. Additional in-

formation on the facility can be found in Fiore and Law (1975). In the present

study, data are presented for four experiments performed at reservoir pressures of

4.87 MPa – 8.96 MPa.
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2.2 Test Article

A 7◦ half-angle slender cone is used as the test article for all the experiments in

the present investigation. The model geometry was chosen because of its canonical

nature and the wealth of experimental and numerical data available for comparison.

Two different cone models are used: one for the Tunnel 9 campaign and one for the

AFRL campaigns. Significant instrumentation was added to the AFRL cone between

the earlier High-Reynolds-Number facility experimental campaign and the Ludwieg

Tube campaign. Additionally, the AFRL cone is equipped with interchangeable

nose tips of varying bluntness.

2.2.1 Tunnel 9 Model

The Tunnel 9 test article is a 1.550 m long, 7◦ half-angle slender cone with

a sharp nose tip. Figure 2.4 shows the model installed in the test section. The

cone was constructed in three sections with base diameters of 0.127 m, 0.254 m, and

0.381 m. The cone is equipped with a variety of flush-mounted surface sensors for

measuring boundary-layer instabilities. Fast-response pressure measurements were

made using PCB model 132-A31 piezo-electric transducers. Pressure taps provided

mean static measurements of the surface pressure, while temperature sensitive paint

and thermocouples provided mean heat-transfer measurements from which transi-

tion locations were determined. Figure 2.5 shows a flattened view of the surface

instrumentation layout. All the data presented in the current study were collected

from the windward side, 180◦-meridian ray, denoted “N”, unless noted otherwise.
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Figure 2.4: Cone model installed in Tunnel 9 test section.

Additionally, for the Mach-14 tests, a spanwise array comprising five PCB sensors

circumferentially spaced 6.4 mm apart was installed at the downstream location

s= 0.775 m. The high-frequency pressure fluctuations measured by the PCB sen-

sors are recorded with a HBM Genesis 16t high-speed data system that acquired

14-bit data at 10 MHz. Additional information on the data acquisition and reduction

equipment used at Tunnel 9 can be found in Marineau et al. (2017).
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2.2.2 AFRL Model

The AFRL test article is a 7◦ half-angle, slender cone with an interchange-

able nose section. With the sharp nose installed, the cone length is 414 mm (16.3

inches). Five nose tips of different radii ranging from nominally sharp to 5.08 mm

were tested and, for consistency, the surface coordinate s used hereinafter refers

to the streamwise distance measured from the tip of the sharp-nose configuration.

For the High-Reynolds-Number facility experiments, which were chronologically the

first set of experiments to occur, the surface instrumentation was limited to coaxial

thermocouples capable of measuring mean heat flux. All the data presented in the

current study were acquired with the cone installed at zero incidence (±0.5◦) to the

freestream.

Prior to the Ludwieg Tube experiments in March 2018, the cone was instru-

mented with 8 PCB model 132A and 132B piezo-electric pressure sensors for mea-

suring high-frequency (>11 kHz) pressure fluctuations. As shown in figure 2.6, six

of the PCB sensors lie along a single streamwise ray corresponding to the schlieren

plane of visualization. The two additional PCB sensors are placed adjacent to the

sensor located at s= 316 mm and offset in the circumferential direction by 5.715 mm

on either side relative to this plane. The three-sensor-wide array allows for mea-

surements of the spanwise extent of pressure disturbances. Prior to the start of all

experiments, the model was at room temperature.
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Figure 2.6: AFRL LT cone instrumentation layout. The red dots indicate PCB
sensors.
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Chapter 3: High-Speed Schlieren Measurement Technique

3.1 Experimental Setup

A conventional Z-type schlieren system, similar to the one shown in figure 3.1,

was used to produce the visualizations for each experimental campaign. Illumination

was provided by a Cavilux HF pulsed-diode laser that emitted pulses of 20 – 50 ns

duration at 810 nm, released from a 1.5 mm diameter fiber-optic cable. The Cavilux

HF provides low-coherence light, making it a highly suitable light source for high-

speed imaging. Mirrors were used to collimate the light to pass through the test

section and refocus the light on the other side, and a knife-edge cutoff placed parallel

to the facility floor was used to visualize the density gradients approximately normal

to the cone surface. A Phantom v2512 high-speed camera mounted parallel to the

cone surface recorded the visualizations, with the exception of the Tunnel 9 Mach-10

images which were recorded with a Phantom v710. Two methods were used to focus

the test section image plane into the camera. For the Tunnel 9 experiments where

the boundary-layer thickness was 5 – 7 mm, a standard Nikon lens was mounted on

the front of the camera. For both AFRL campaigns, in which the boundary layer

was significantly thinner, a free-standing biconvex lens with a 1 – 2 m focal length

(depending on the required magnification) was used to focus the image into the
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camera. The camera frame rate was typically set to be slightly above one half of

the fundamental frequency of the second-mode disturbances as predicted by the

PSE calculations; this was determined to be an adequate tradeoff between having

sufficient pixel density in the boundary layer, the total field of view, and capturing

the evolution of a wavepacket in time. The magnification was set to capture 10 – 15

pixels across the boundary-layer thickness. Special attention was taken to modify

the viewing location with the test conditions in order to visualize the behavior

of the waves within the boundary layer from initial onset through to breakdown

to turbulence. Further details on the specifications for each experimental setup is

provided in §5. For the Tunnel 9 Mach-14 experiments, the setup had the additional

constraint that the cone was pitching over the steady test time. To capture the cone

in the field of view over the pitch sequence, the vertical extent of the viewing area

was increased at the expense of magnification. When possible, the entire set of

visualizations captured for a given experimental condition was saved; this resulted

in 25,000 – 50,000 images from each AFRL LT experiment and 100,000+ images for

each of the Tunnel 9 and AFRL High-Reynolds-Number facility experiments.

3.2 Schlieren Calibration

3.2.1 Introduction

A calibration of the schlieren system was performed prior to each experiment

to enable quantitative measurements. Calibration of the system is required due to

the nonlinear schlieren response of the light rays generated by the circular light
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Figure 3.1: Schematic of schlieren setup installed in wind tunnel.

source. A number of studies including those of Elsinga et al. (2004) and Hargather

and Settles (2012) have been dedicated to developing calibrated schlieren techniques,

with the most promising techniques being rainbow schlieren, Schardin’s calibrated

schlieren technique using a weak lens, and background-oriented schlieren (BOS).

In the rainbow schlieren technique, quantification of light refraction is achieved

through the use of a color cutoff filter in place of a knife edge. The color filter causes

the light to take on the hue of the location on the filter it passes through, generating

the mapping from color to light-ray refraction angle. A color camera is then used to

capture the images. In the calibrated schlieren technique, a weak lens with a known

density gradient is placed in the field of view of a standard schlieren setup to provide

a calibration of light deflection angle to a grayscale pixel intensity. The technique

can be used on any standard schlieren setup since it requires no modification of the
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schlieren components. Background-oriented schlieren is distinct from the previous

two techniques. A random dot background pattern is placed behind the test section;

a camera is then focused onto the pattern and records a flow-off image. Once

flow begins and density disturbances appear, the pattern displacement due to the

refractive-index spatial distribution in the flow is computed using a cross-correlation

and used to derive the location and magnitude of the disturbances.

While reasonably good results have been achieved in the literature using each

method in a bench-top setting, it is important to consider the limitations of each

technique in a hypersonic wind tunnel. First, the high-speed Phantom camera avail-

able for each experimental campaign is monochromatic, eliminating the possibility

of using rainbow schlieren. We also consider the need for flexible and fast installation

in multiple facilities. The BOS system requires correctly sized pattern dots in order

to avoid spatially filtering features; too small and the dots will not move a full pixel

between frames; too large and the dots will compress but not translate. This would

require multiple grids per experimental campaign as the length scale of features in

the boundary layer are a strong function of the freestream conditions. Additionally,

Elsinga et al. (2004) encountered post-processing difficulty when using BOS in a

wind tunnel as the background pattern, mounted to the far window, experienced

movement due to tunnel vibration, which increased the signal noise. Given these

constraints, along with the ease and speed of implementation of the lens calibration

technique, the latter was chosen for the current studies. Finally, we note that if the

light is emitted from a rectangular source, such as the LED used by Laurence et al.

(2014), calibration is not required as the schlieren response should be linear. Use of
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an LED in the current system, however, is impractical due to limitations on pulse

frequency and duty cycle.

3.2.2 Calibration Process

Following the calibration method of Hargather and Settles (2012), a weak lens

was placed within the schlieren field of view prior to each experiment and used as

the calibration object. The lens is plano-convex with a focal length of either 5 m or

10 m and a diameter of 25.4 mm. The calibration process works as follows. First,

the calibration lens is placed within the schlieren system field of view. Depending

on the radial location where the parallel light rays pass through the lens, they will

be refracted by an angle ranging from zero at the center of the lens to a maximum

εR at the lens radius. For a weak lens, i.e. r � f , the relationship between r and ε

is defined as

r

f
= tan ε ≈ ε. (3.1)

For a two-dimensional field (as provided by the non-focused schlieren system), the

deflection angle ε can then be related to the density gradient as

εy =
1

n

∫ ∂n

∂y
dl =

L

n∞

∂n

∂y
=
κL

n∞

∂ρ

∂y
, (3.2)

where L is the integrated light-path length,

n = κρ+ 1, (3.3)

ρ is the density of the test gas, and κ is the Gladstone-Dale constant. The light ray

deflection angle, εy can be related to f and r as

32



εy = ε− ε0 =
1

f
(r − r0). (3.4)

Next, the schlieren image of the lens is used to generate a unique mapping of

grayscale values to the r coordinate. Figure 3.2 shows a schlieren visualization

with the weak lens in the field of view. A pixel-intensity gradient is present across

the lens face due to the known lens density-gradient profile. Pixel intensities are

extracted for each row across the lens face and the results from several pixel columns

are averaged together to smooth any imperfections present in the optics. This pro-

cess is repeated with the lens in several different locations within the field of view

to account for any non-uniformity in the flow-off schlieren background intensity.

The optical center of the lens is defined based on the mean schlieren background

intensity, and the vertical coordinate of the center of the lens is set to r0 (see §3.2.3

for more details regarding the definition of the lens center). Finally, a fourth-order

polynomial is fit to the pixel intensity versus vertical location data points to gen-

erate the mapping function. The right plot in figure 3.2 shows the pixel intensities

and polynomial fit.

3.2.3 Sensitivity Analysis

Experiments were performed to characterize the weak calibration lens and

quantify the effect of alignment of the lens within the schlieren system on the re-

sulting calibration. Limited setup time and space within hypersonic wind tunnels

often leads to sub-optimal data-acquisition conditions and motivates the importance
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Figure 3.2: Schlieren image of calibration lens (left). Example calibration curve
generated from the lens at 3 different locations in the schlieren field of view (right).
The dashed line indicates the maximum pixel intensity of the 12-bit image.

of understanding the limitations of the lens calibration method. We begin by consid-

ering the subtle but important definition of the center of the calibration lens. Two

definitions exist: the geometric center and the optical center. The geometric center

of the lens is defined as the point equidistant from every point on the lens edge,

whereas the optical center is defined as the location on the lens face where the pixel

intensity is equal to the schlieren background intensity (here, 92% of the background

intensity is used due to the absorption of the NBK-7 lens for 810 nm light). In theory,

the geometric center of the lens and optical center of the lens should align. How-

ever, due to manufacturing tolerances for lenses with extremely large focal length

to diameter ratios, the optical center is typically offset from the geometric center

by approximately 0.1% of f , which for the 10 m-lens case corresponds to a distance

of 10 mm, or slightly less than half the diameter of the lens. Figure 3.3 illustrates

the effect of rotating the lens about the axis parallel to the schlieren system. The

optical center and pixel-intensity gradient region shifts vertically depending on the
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rotation angle, indicating that the optical center is offset from the geometric center.

In figure 3.3, we observe the curve fit generated from the upper left and lower left

images of the lens. Although the optical center is shown to shift vertically between

these two orientations, when r0 is set to the background image intensity, the curves

align to within the experimental measurement error. From this observation it is

concluded that the misalignment does not significantly impact the calibration curve

and the calibration technique is minimally affected so long as the calibration image

is captured with the lens oriented to have close agreement between the geometric

and optical centers. Experiments using a 5-m focal length, 25.4 mm-diameter lens

yielded similar behavior; however, a smaller movement of the optical center with

respect to the geometric center was observed as a result of the manufacturing error

being a percentage of the focal length. The offset between the geometric and opti-

cal center was also confirmed for both lenses using laser differential interferometer

measurements.

Variations in the sensitivity of the schlieren system are most easily observed

using the calibration lens by increasing the laser light source pulse width while

maintaining a constant schlieren background intensity by increased knife-edge cutoff.

Since the sensitivity of the schlieren system is proportional to the amount of light

cut off by the knife edge (i.e. s=f/A where f is the mirror focal length and A is the

area of the light not cut off), the system with the longest pulse width at a constant

background should be the most sensitive. The increased sensitivity causes the pixel

gradient to occur over a smaller vertical region anchored around the optical center

of the lens, as the same density gradient will cause a larger change in pixel intensity.
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Figure 3.3: Schlieren images of the calibration lens at a rotation angle of 0◦, 90◦,
180◦, and 270◦ (top: top left, top right, bottom left, bottom right). Calibration
curves generated from the 0◦ and 180◦ images (bottom). The dashed line indicates
the maximum pixel intensity of the 12-bit image.
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Figure 3.4: Calibration curves for different sensitivity schlieren setups. The dashed
line indicates the maximum intensity of the 12-bit image.

Figure 3.4 shows calibration curves generated for three different sensitivity schlieren

configurations. Steeper calibration curve slopes indicate a more sensitive schlieren

setup.

In addition to characterizing the lens, experiments were conducted to quantify

the effect of misalignment of the lens within the schlieren system. The first series of

experiments examined misalignment along the schlieren optical axis. The calibration

lens was placed in the 0◦ orientation shown in the top left of figure 3.3 and rotated in

5 degree increments to a maximum 10◦ misalignment between the lens and schlieren

optical axis. The calibration curves generated for each configuration are shown in

the top plot of figure 3.5 and very little difference is observed between the calibration

curves for each configuration. Given the consistency in the curves, a slight offset

in the relative tilt angle of the lens that may be expected due to human error is

concluded to have minimal impact on the calibration.
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We now consider the translation of the lens along the schlieren optical axis.

During the calibration procedure, it is preferred to place the lens in the center of the

test section in sharp focus, yet often this proves challenging given the combination

of limited test section access and strict run procedures. To explore the implications

of the lens being slightly out of focus, calibration curves are generated from images

of the lens placed at the sharp focus and located at 0.3048 m and 0.6096 m towards

the camera. The curves are presented in the lower plot of figure 3.5. Excellent

agreement is observed between the curves below a pixel count of 3000, while a

difference of approximately 10% is observed for the highest intensities. Therefore,

slight error may be present in calibrating the brightest features, but in general the

schlieren sensitivity is set such that the dynamic range does not exceed 80 – 90%

of the entire measurement range. We therefore conclude that the effect of the lens

being slightly out of focus is minimal.
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Figure 3.5: Calibration curves generated from images with the lens oriented at
angles offset from the schlieren optical axis (top). Calibration curves generated
with the lens translated along the schlieren optical axis (bottom). Positive distance
is towards the camera side of the schlieren setup. The dashed line indicates the
maximum intensity of the 12-bit image.
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Chapter 4: Analysis

In this chapter, the pixel-intensity time-reconstruction technique is described,

and the post-processing routines applied to the experimental data collected for each

campaign are outlined. Definitions of the most important second-mode measure-

ments are provided in the context of the unique high-speed schlieren data.

4.1 Pixel Intensity Time Reconstruction

The calibrated schlieren technique that was employed throughout this work

measures disturbance intensity over a finite spatial interval at a specified instant

in time, rather than a time series at a specific location. In order to facilitate a

time-averaged analysis, time-resolved pixel-intensity signals at specific locations are

reconstructed using the spatial data available in the schlieren images. The recon-

struction technique relies on the periodicity of the second-mode disturbances, a con-

stant wavepacket propagation speed, and a camera frame rate equal to roughly one-

half of the fundamental second-mode frequency or greater. The high camera frame

rates relative to the fundamental second-mode frequencies ensures that individual

disturbance features are captured in multiple frames and do not evolve significantly

between sequential visualizations. The reconstruction procedure is summarized in
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figure 4.1. Consider the pixel intensity at a specific location (x0, y0) in two consec-

utive images, at times t1 and t2 = t1 + δt. The intensity values are known exactly at

times t1 and t2, but it is desired to reconstruct the intermediate values. If we assume

the flow structures to be frozen and propagating horizontally at a speed Uprop (for

which we will use the average wavepacket propagation speed - see §5), then we have

two possibilities available for these intermediate values: the pixel intensities between

x0−Upropδt and x0 in the first image, and those between x0 and x0 +Upropδt in the

second (figure 4.1, middle plot). Since the first interval will be more appropriate for

times close to t1 and the second for times close to t2, we take a linearly weighted

average of the two, with the resulting composite signal matching exactly the known

points at t1 and t2 (figure 4.1, bottom plot). In general, Upropδt will not correspond

to an integer number of pixels, and thus interpolation will be required in generating

this composite signal. By repeating for all image pairs of interest, a reconstructed

temporal signal is obtained with an effective sampling frequency of feff =Uprop/δx,

where δx is the visualized distance between neighboring pixels. In the experimental

results of the present study, feff ranges from 3 –10 MHz.

The reconstruction is applied to produce time-resolved pixel-intensity signals

at 60 – 100 evenly spaced streamwise locations in the field of view. The streamwise

density of reconstruction locations is chosen as a tradeoff between computational

time and information addition; while signals can be reconstructed at every stream-

wise pixel, in practice the inter-pixel distance is not large enough to observe a

significant change in wave frequency or amplitude. In the wall-normal direction, the

signals are reconstructed at the location corresponding to the largest disturbance
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Figure 4.1: Enhanced schlieren images at times t1 and t2 (top); the white lines
indicate the row of pixel intensities plotted in the middle plot. Schematic showing
pixel intensities corresponding to the same segment of a wavepacket at times t1
and t2 = t1 + δt (middle); direction of arrow indicates increasing time t. Linear
weighting of signals (-4-, t1 signal; -©-, t2 signal; —, weighted signal) to generate
reconstructed signal (bottom).
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amplitude. In general, this location does not lie directly in the center of a pixel, and

thus interpolation is used to generate the signal at the fixed y/δ location, taking

into account the boundary-layer height downstream. Typically, 3000 – 8000 schlieren

visualizations are used to generate the time-reconstructed signals, as this provides

an adequate signal record length for computing frequency spectra.

4.2 Experimental Data Processing

Processing the schlieren visualization data begins with applying the techniques

outlined in §4.1. In order to facilitate the pixel-intensity time reconstruction, it is

necessary to first calculate the wavepacket propagation speeds for each individual

experimental condition. Wavepacket propagation speeds are calculated using the

correlation techniques described in Laurence et al. (2016). Because of the enor-

mous number of images gathered per data set, the images are first processed by a

feature-detection algorithm that identifies the presence and, if applicable, location

of a wavepacket (Shumway and Laurence, 2015). The images are then bandpass

filtered around the second-mode fundamental wavelength, and a cross-correlation is

applied to image pairs throughout the sequence. Propagation speeds are computed

from 7000 – 10,000 wavepackets and the error is typically 3 – 5% of up based on the

95% confidence interval. Computing propagation speeds of harmonic content yields

similar results. Figure 4.2 shows a histogram of computed wavepacket propagation

speeds from the AFRL LT run 30. Results for individual experiments are presented

in their respective section of §5.
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Figure 4.2: Histogram of computed wavepacket propagation speeds. The dashed
lines indicate 2σ.

Once the propagation speeds are computed, the calibration and time recon-

struction techniques can be applied. As described in §4.1, the signals are recon-

structed at the wall-normal location of maximum disturbance intensity at 60–100

locations in the streamwise direction, where the number of streamwise locations

is dictated by the image size. Spectra are computed from the time signals using

Welch’s method with 50% overlapping Hann or Blackman windows; the window

size in each case is dictated by the length of the individual signal. The PCB sen-

sor signals are processed in a similar fashion. Figure 4.3 shows a comparison of

the power spectral density computed from the PCB and reconstructed schlieren

signals at the same streamwise location collected from the Tunnel 9 Mach-14 run

4119. Good agreement is observed in the location and width of the fundamental

and harmonic peaks at approximately 120 and 240 kHz. The power associated with

the reconstructed signal at the lower end of the frequency spectrum is significantly
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Figure 4.3: Power spectrum computed from PCB and schlieren signal at the same
downstream location for Tunnel 9 Run 4119.

larger in the schlieren PSD, likely due to large wavelength structures from the nozzle

wall in the visualization path. This increased power at frequencies less than 50 kHz

is observed in all the schlieren spectra.

We note that, as described in §4.1, the reconstructed composite signal is gener-

ated by linearly interpolating between the signals of two images. This interpolation

process alters the frequency-domain signature of the signal, specifically introduc-

ing narrow-band high-power regions that are clearly visible at frequencies of integer

multiples of approximately the camera acquisition rate. In figure 4.4, we show the

power spectra computed from a reconstructed signal. In general, their narrow band-

width keeps the spikes from influencing any information extracted from the signal

power spectra. However, in order to eliminate any influence of these artifacts, a

band-stop filter is applied to the reconstructed signals in post-processing to remove

the spikes.
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Figure 4.4: PSD computed from reconstructed signal with no band-stop filter ap-
plied.

4.2.1 Second-Mode Frequencies and N Factors Definition

Using the computed spectra, a quadratic function is fitted to the second-mode

most-amplified frequency peak and used to identify the most-amplified second-mode

fundamental frequency, f0, and its amplitude. Following Stetson et al. (1983), the

dimensionless frequency is defined as

F =
2πf

u∞Re/m
, (4.1)

and the stability Reynolds number is defined as

R =
√
Res, (4.2)

where Re is the Reynolds number based on the freestream conditions, and s is the

cone surface coordinate. Maximum second-mode N factors are computed as
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N(f, si) =
1

2
ln(PSD(f, si)) + c, (4.3)

where PSD(f , si) is defined as the peak power of the most-amplified second-mode

frequency at streamwise location si, and c is the intercept identified by vertically

shifting the schlieren measurements to match the PSE results. Vertically shifting

the schlieren N factors by a value c is required as the most upstream measurement

location of the schlieren visualizations is downstream of the second-mode neutral

point. Although the schlieren data successfully measure the relative growth of the

wave amplitudes, without anchoring to the PSE results, the absolute value of the

N factors is meaningless. Comparison of growth rates between two downstream

locations is made possible by assuming the change in boundary-layer height is negli-

gible between the measurement locations. As mentioned in §1.2, growing boundary

layers are not strictly parallel, but the assumption is valid to leading asymptotic

approximation and is thus commonly employed. Applying this assumption, the

ratios of the density and density gradient disturbance amplitudes are equal, i.e.,

ρ
′
(s2)/ρ

′
(s1) = ρ

′
y(s2)/ρ

′
y(s1), where prime denotes disturbance and subscript y de-

notes the derivative with respect to y. In the linear-growth regime, pressure and

density are expected to scale proportionally; this relationship was demonstrated by

Chang et al. (1997) who, using PSE-Chem, showed the disturbance growth rate cal-

culated from the total kinetic energy of the disturbance to be equal to the growth

rate calculated from other flow variables. Computing the slope of the linear portion

of the schlieren N -factor curve is performed using a weighted least-squares method,
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weighing the data points proportionally to the wave amplitudes.

As the second-mode most-amplified frequencies have been shown to scale with

1/δ, f0 decreases with increasing streamwise location. The definition of N factor

presented in equation 4.3 implicitly assumes (incorrectly) that the disturbance initial

amplitudes, A0, are constant across the range of second-mode frequencies. Figure

4.5 from Duan et al. (2019) shows freestream pitot-pressure fluctuations acquired

in multiple facilities. The data suggest that the freestream disturbance spectrum

relevant to second-mode-dominated boundary-layer transition may be modeled with

a constant-slope model of Φ ∼ f−3.5. In the most-impacted measurements of the

present work (i.e., conditions with the largest range of observed second-mode fre-

quencies), this results in ∆N ≈ 0.4. While not negligible, this change in N factor

falls within the range of the experimental error and no correction is made for the

initial disturbance amplitudes over the fairly narrow range of f0 for each experiment.

Equation 4.3 can also be used to compute N factors as a function of both frequency

and streamwise location, allowing the shift in frequency and growth of higher har-

monics to be observed. Due to the difference in initial amplitudes discussed above,

the absolute value of harmonic N factors should not be considered, but relative

growth of the same frequency bands remains meaningful. Further quantification of

the error present in the frequency and amplitude calculations is found in §5.4.
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Figure 4.5: “Power spectral density of freestream pitot-pressure fluctuations mea-
sured in multiple high-speed facilities,” (Duan et al., 2019).

4.2.2 Bispectral Analysis

The measurement resolution of the time-reconstructed schlieren signals, at

roughly an order of magnitude greater than the second-mode most-amplified fre-

quencies, reveals higher harmonics in the signals and allows for higher-order spec-

tral techniques to be implemented in an effort to characterize their origins. The

development of nonlinear interactions in second-mode waves has previously been

investigated using a bispectral analysis. Using this method, Kimmel and Kendall

(1991) identified nonlinear interactions responsible for the generation of a first har-

monic at a frequency of approximately twice the second-mode fundamental 1. Simi-

1The use of first harmonic to represent a frequency of 2f0, second harmonic for 3f0, and so on,

is the commonly used nomenclature in the high-speed boundary-layer transition literature and will

be used in the present work.
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lar analyses by Chokani (2005) and Hofferth et al. (2013) revealed these interactions

to be present in second-mode waves developing in a quiet-flow Mach-6 freestream

as well. In addition to interactions leading to the first harmonic, Bountin et al.

(2008) observed subharmonic resonance with detuning and potential interactions

with disturbances in the first-mode frequency range.

The most commonly used technique to quantify these nonlinear interactions is

to compute the signal bicoherence. The bicoherence, b2, is defined as a normalized

bispectrum. The bispectrum, a third-order cumulant spectrum, measures the extent

of statistical dependencies of three spectral components by examining the phase

coherence, if any, between them. Using the normalization formulated by Kim and

Powers (1979), the b2 value is bounded between 0 and 1, indicating no phase coupling

and full phase coupling, respectively. In practice, noise inherent to the experimental

measurements reduces the maximum b2 values to less than 1. For a continuous

signal, the bicoherence is defined as

b2(f1, f2) =
|E[X(f1)X(f2)X∗(f1 + f2)]|2

E[|X(f1)X(f2)|2]E[|X(f1 + f2)|2]
, (4.4)

where E is the expectation operator, X(f) is the Fourier transform of a segment

of the time-series record, and ∗ indicates the complex conjugate. The discrete bico-

herence for M signals of length L, is computed using the discrete Fourier transform

as

b2(f1, f2) =
| 1
M

∑M
i=1X(f1)(i)X(f2)(i)X∗(f1 + f2)(i)|2[

1
M

∑M
i=1 |X(f1)(i)X(f2)(i)|2

][
1
M

∑M
i=1 |X(f1 + f2)(i)|2

] . (4.5)

As described by Kimmel and Kendall (1991), the choice of record length, L, can
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have a large effect on the measured b2 values, as added noise can cause the rela-

tive phase of components to drift during long record lengths, artificially lowering

the measured bicoherence. Choosing the record length becomes a tradeoff between

frequency resolution and keeping the record length short enough to avoid the de-

coupling influence of the noise. Analysis performed on the current data showed

changing record lengths up to a maximum of 256 points for the AEDC Tunnel 9

and AFRL LT data and 512 points for the AFRL HRN data to have no impact on

the computed b2 values. A record length of 256 and 512 points was thus used to

compute the bicoherence for the Tunnel 9 and AFRL LT data and the AFRL HRN

data, respectively.

Symmetries inherent to equation 4.5 result in all the unique interactions ly-

ing between two triangular regions. Interactions between (0, 0), (fN/2, fN/2), and

(fN , 0), where fN is the Nyquist frequency, are sum interactions, and those between

(0, 0), (fN , 0), and (fN , –fN) are difference interactions. Figure 4.6 shows a sample

bicoherence plot where phase locking of fundamental frequency content at f0 leads

to growth of a first harmonic at 2f0. Using the nomenclature of Chokani (2005),

interactions are presented as f1 + f2 → (f1 + f2), where → denotes “generates by

phase-locked interaction”. A strong sum interaction observed at f0 + f0 → 2f0, for

example, indicates a disturbance at f0 reinforcing itself and transferring energy to

the first harmonic at 2f0. The difference interaction 2f0 – f0 → f0 shows energy

exchange between content at the fundamental frequency and the first harmonic. In

§5, the bicoherence is presented at specific experimental conditions where nonlinear

wave growth is observed.
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Figure 4.6: Sample bicoherence plot from AFRL LT Run 9. The solid lines indicate
planes of symmetry.

4.3 PSE-Chem

Computational analysis is performed using the STABL software suite described

by Johnson et al. (1998), Johnson (2000), Johnson and Candler (2005) and im-

plemented in Jewell (2014) and Wagnild et al. (2010). First, the mean flow over

the cone at zero incidence is computed by means of the reacting, axisymmetric

Navier-Stokes equations with a structured grid, using a version of the NASA Data

Parallel-Line Relaxation (DPLR) code (Wright et al., 1998). This flow solver em-

ploys a second-order-accurate finite-volume formulation. Although the computation

includes chemistry, the impact of chemical reactions is negligible, as the local max-

imum temperature remains sufficiently low for all the experiments. Sutherland’s

law is used to calculate viscosity. Grids for each configuration were generated using

STABL’s built-in grid generator, and mean flow solutions were examined to ensure
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that a sufficient number of points were placed in the boundary layer for each stag-

nation pressure. The wall-normal span of the grid increases down the length of

the cone, allowing for the shock to be fully contained within the grid for all cases

tested. The grid is clustered at the wall as well as at the nose in order to capture

the gradients in these locations. The stability analyses for the zero-incidence cone

are then performed using the PSE-Chem solver, which is also part of the STABL

software suite. PSE-Chem solves the reacting, two-dimensional, axisymmetric, lin-

ear parabolized stability equations to predict the amplification of disturbances as

they interact with the boundary layer. As the temperatures remain sufficiently low,

chemistry and molecular vibration effects are omitted. The N factor is computed

using the disturbance kinetic energy as

N =
∫ s

s0
σds, (4.6)

E =
∫

Ω
ρ
(
|û|2 + |v̂|2 + |ŵ|2

)
dV, (4.7)

σ = −Im(α) +
1

2E

dE

ds
, (4.8)

where E is the disturbance kinetic energy, σ is the growth rate, and α is the stream-

wise wave number.

For the Tunnel 9 angle of attack data, the mean flow solutions are computed

using US3D, an implicit unstructured finite-volume solver developed at the Univer-

sity of Minnesota. The stability analyses are conducted using the STABL-3D LST

53



code. The use of the LST code instead of the PSE-Chem results in slightly lower

predicted growth rates due to the inability to account for the changing height of the

boundary layer.

For all the computational results, following Marineau et al. (2017), a linear

function is used to fit the maximum N factor versus stability Reynolds number

results, and a function of the form f = g/Rh, where g and h are constants, is used

to fit the most-amplified second-mode frequency versus stability Reynolds number

results for comparison to the experimental measurements. Additionally, for the

blunt-nose experiments performed in the AFRL LT, estimates of the entropy-layer

swallowing length, XSW defined by Rotta (1966), are computed using a procedure

based on Stetson (1983) to provide an empirically-based estimate of the extent of

the entropy-layer influence.
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Chapter 5: Sharp-Nose Results

In this chapter, the experimental data collected with sharp-nose cones in each

facility are explored. Results from each experimental campaign are presented and

compared in an effort to quantify the effect of facility characteristics and freestream

conditions on second-mode instability-wave development.

5.1 AEDC Tunnel 9 Experiments1

5.1.1 Test Conditions

Data are presented for six experiments performed in AEDC Tunnel 9. Five

of the experiments were performed with the Mach-14 nozzle installed and one was

performed at Mach 10. A description of the freestream and reservoir conditions is

presented in table 5.1. During the steady test time of the tunnel, the model was

either held at zero incidence or initially held at zero incidence for several hundred

milliseconds and then pitched continuously up to 10◦. In the cases where the cone

pitched, the relevant test times are reduced to 0.15 – 0.3 seconds at zero incidence,

depending on the conditions (the shortest test time for the highest unit Reynolds

number). The time period over which the model is considered to be at a specified

1This material is adapted from Kennedy et al. (2017, 2018a,b)
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T9 Run # M∞ Re∞/m p0 h0 p∞ ρ∞ T∞ u∞ AoA
[1/m×106] [MPa] [MJ/kg] [Pa] [g/m3] [K] [m/s] [deg]

4123 13.35 1.74 14.2 1.74 40.9 3.02 45.7 1841 0
4120 13.49 2.57 20.7 1.76 59.0 4.39 45.3 1852 0–10
4119 13.69 3.62 30.2 1.79 82.0 6.14 45.3 1867 0–10
4118 14.00 7.19 72.7 1.80 174.1 12.3 47.8 1838 0–10
4117 14.40 12.10 124.6 2.00 263.1 19.4 45.7 1974 0–10
4017 9.44 1.96 72.7 1.80 174.1 12.3 47.8 1321 0

Table 5.1: Reservoir (subscript 0) and computed freestream (subscript ∞) condi-
tions for the Tunnel 9 experiments. AoA refers to the model angle of attack.

T9 Run # Resolution Frame Rate Scale Location Wave Behavior
[pixels] [f.p.s] [pixels/mm] s [m]

4123 1152× 176 121,739 3.11 0.73 – 1.04 Linear Growth
4120 1024× 368 65,016 1.61 0.73 – 1.22 Linear to Nonlinear Growth
4119 1024× 320 72,041 1.61 0.73 – 1.22 Linear Growth to Breakdown
4118 1024× 288 42,000 1.61 0.73 – 1.22 Nonlinear Growth to Breakdown
4117 – – – – –
4017 1280× 128 76,009 2.55 1.27 – 1.55 Linear Growth to Breakdown

Table 5.2: Camera parameters used for the different experimental conditions.

nonzero angle of attack is defined as the time when the model is within ± 0.1◦ of

the specified angle (i.e., 1◦ corresponds to the model at 0.9◦ – 1.1◦ angle of attack).

Visualizations from the Mach-14 experiments were collected using the calibrated

high-speed schlieren system, while the Mach-10 data were acquired during an earlier

experimental campaign prior to the development of the current high-speed schlieren

setup. No visualization data were recorded for run 4117 as the boundary layer

was fully turbulent by the most upstream location of the test section windows, but

PCB data upstream of the transition location were recorded. Table 5.2 provides

information on the schlieren visualization setup, and sample schlieren visualizations

are seen in figure 5.1.
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Figure 5.1: Enhanced image sequence showing the propagation and development of a
second-mode wavepacket for run 4120. The white markers indicate the approximate
extent of a wavepacket in the first image and have been translated downstream in
subsequent images using the mean wavepacket propagation speed.

T9 Run # up [m/s] 95% confidence [m/s] up/ue Wavepackets Analyzed

4123 1637 85 0.90 7742
4120 1671 56 0.92 10000
4119 1706 60 0.93 8906
4017 1170 72 0.89 3265

Table 5.3: Wavepacket propagation speeds.

5.1.2 Time-Averaged Results

5.1.2.1 Zero Incidence

We begin by examining the mean wavepacket propagation speeds for each

condition, computed using the techniques of §4.2. Table 5.3 shows the calculated

speeds. The Taylor-Maccoll solution is used to compute the flow velocity at the

cone surface and, assuming this surface velocity to correspond to the boundary-

layer edge velocity ue, up/ue = 0.89 – 0.93 for these experiments. These values are

slightly higher than those reported by Laurence et al. (2016), but lower than those

reported in the hot-wire measurements of Stetson and Kimmel (1992).
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The high-speed schlieren setup described in §3.1 was used to collect the data for

the Mach-14 experiments. Time-averaged measurements are made using the time-

signal reconstructed from 5000 – 8000 images in the steady-flow period for runs 4123,

4120, and 4119. The temporal reconstruction is not applied to the run 4118 data as

the waves are at a very late stage of development and beginning to breakdown to

turbulence as they enter the field of view.

The maximum N factors calculated from the schlieren signals, PCB measure-

ments, and PSE solutions are plotted versus stability Reynolds number in figure 5.2.

The PCB measurements are plotted for each ray of sensors on the cone. In general,

the slopes of the PSE, PCB, and schlieren curves agree well, with the slope of the

schlieren measurements within 10% of the PSE results until saturation is reached.

A significant amount of scatter is present in the PCB measurements, and we note

that the schlieren measurements are approximately 20 times more spatially dense.

As shown in the middle and bottom plots, N factors calculated from the schlieren

signals saturate at larger R values than their PCB counterparts, resulting in greater

transition N factors (good agreement is seen for the regions of linear growth at lower

unit Reynolds numbers). Only the most downstream locations are included for run

4123 (top plot) as the upstream second-mode waves were too weak to provide an

adequate signal.

Figure 5.3 shows the development of the second-mode disturbances as a func-

tion of frequency and streamwise location. The N factors generated from the PCB

sensor data are calculated similarly with interpolation between the (rather sparse)

sensor locations. For run 4120, the N factors calculated from the schlieren signals
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Figure 5.2: N factors calculated for the most-amplified second-mode frequencies for
run 4123 (top), run 4120 (middle), and run 4119 (bottom). The filled symbols are
schlieren measurements and the open symbols are PCB measurements. Markers are
shown for every fifth schlieren data point.
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match well with those calculated from the PCB signals in the linear-growth regime.

As anticipated, the fundamental frequency band broadens for the schlieren N fac-

tors with increasing streamwise distance. Growth of a first harmonic occurs in the

same frequency range in both the schlieren and PCB measurements. At any given

streamwise location, the ratio between the N factors at f0 and the first harmonic

tends to be larger for the schlieren signal (i.e. the harmonic is relatively weaker).

In the lower part of figure 5.3 we show the streamwise development of the N

factors at the higher unit-Reynolds-number run 4119. A clear discrepancy exists

between the development of the schlieren and PCB N factors. The disturbance

at f0 saturates at approximately s= 0.8 m in the PCB measurements, while satu-

ration in the schlieren measurements occurs between s= 1.1 m and s= 1.2 m (also

seen in figure 5.2). Similar behavior is seen for the first harmonic. However, the

measured frequencies of both the fundamental disturbance and the first harmonic

agree well between the two measurement techniques. The difference in N factor

saturation location may be linked to several causes. First, nonlinear growth close

to saturation may not be uniform across the boundary-layer thickness, causing the

PCB measurements made at the surface of the cone to differ from the schlieren

measurements made off the model’s surface. The integration effect inherent to the

schlieren system may also play a role; as the breakdown process begins and features

become increasingly three-dimensional, the schlieren signal will become unable to

resolve them accurately. The assumption of negligible change in boundary-layer

height may begin to break down in this region as well. Finally, the PCB sensors

record pressure fluctuations while the schlieren signals measure density gradients,
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Figure 5.3: N factors as a function of frequency and streamwise location: run 4120
(top); run 4119 (bottom); calculated from schlieren visualizations (left); calculated
from PCB measurements (right). Data above 250 kHz are omitted from the top-
right plot due to noise in the PCB sensors. Red dots indicate streamwise locations
of PCB sensors.

two measurements whose relationship is not clearly defined in the nonlinear-growth

regime.

In figure 5.4 we show the bicoherence calculated from time-resolved density-

gradient signals at two streamwise locations for runs 4120 and 4119 (no nonlinear

interactions were present for run 4123). The bicoherence values were calculated us-

ing Hann windows of 256 points in length with 50% overlap. Focusing first on run

4120, at the upstream location (s = 0.78 m) strong sum and difference interactions

are seen between higher harmonics up to 3f0. Additionally, interactions exist at
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f0 + 0→f0 and 2f0 + 0→2f0 indicating that the power spectrum is being filled. The

bicoherence reaches a peak value of 0.37 – 0.41 in the f0+f0→2f0 interaction and

remains at this level until decreasing at approximately s= 1.09 m. Further down-

stream, (s= 1.14 m, top right) additional interactions are present, including sum

and difference interactions between third and fourth harmonics (4f0 and 5f0). The

contours have also broadened in bifrequency space, indicating that the fundamental

frequency disturbance and its harmonics are coupling with their sidebands.

We now turn our attention to run 4119 (lower plots, figure 5.4). At the

upstream measurement location (s = 0.81 m), a strong sum interaction exists at

f0+f0→ 2f0 and 2f0+f0→ 3f0, indicating disturbances at f0 coupling to generate a

harmonic at 2f0, and interaction of the harmonic content at 2f0 with disturbances

at f0 to generate a second harmonic at 3f0. A weak interaction also exists between

3f0+f0→ 4f0 and 2f0+2f0→ 4f0 indicating slight amplification of a third harmonic.

Difference interactions (lower-right quadrant) are also present between each of the

higher harmonics. The interactions present at this upstream location are similar to

those observed for the downstream measurement location of run 4120. In general,

bicoherence is maximum at the most upstream measurement location for run 4119

with peak values of 0.25 – 0.3 and decreases continuously downstream. For example,

at s = 0.88 m (bottom right) bicoherence values for all interactions have decreased

compared to s = 0.81 m, and interactions involving a third harmonic have disap-

peared. No significant quadratic coupling is present by s = 1.15 m (not shown),

where growth of the disturbances has saturated and the boundary layer is on the

verge of breaking down; at this point the interactions are either no longer quadratic
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Figure 5.4: Bicoherence b2 values calculated for run 4120 (top row) and run 4119
(bottom row) at locations: s= 0.78 m, R= 1399 (top left); s= 1.14 m, R= 1692 (top
right); s= 0.81 m, R= 1705 (bottom left); s= 0.88 m, R= 1782 (bottom right). The
black lines indicate planes of symmetry. The frequencies are represented by the
fundamental disturbance frequency at the given streamwise location.

or the remaining fluctuations are random.

By examining the bicoherence plots shown in figure 5.4 in conjunction with the

N factors shown in figures 5.2 and 5.3, we see that strong nonlinear interactions are

present when the fundamental disturbance is still being amplified within the linear

regime. The strongest nonlinear interaction generating the first harmonic appears to

precede the highest values of N factor for the harmonic content, and the strength of

the nonlinear interaction generating the first harmonic appears to be closely linked

to the amplification rate (the slope of the N -factor curves) of the first harmonic. For
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run 4120, the first harmonic is strongly amplified from the most upstream location

until approximately s= 1.05 m, from which point the amplification rate decreases;

this decrease in amplification rate coincides with a decrease in bicoherence values.

Similarly, for run 4119, the N factor of the first harmonic increases over the entire

measurement range, while both the amplification rate of the first harmonic and the

bicoherence value describing that interaction are decreasing. Consistent with these

observations, we also note that for run 4119, the first harmonic reaches a maximum

N factor at a streamwise location where no significant nonlinear interactions are

present. In addition, nonlinear interactions involving higher harmonics (3f0, 4f0,

5f0) appear in the bicoherence plots while having little to no discernible power in

the spectra.

5.1.2.2 Angle of Attack

The most comprehensive measurements of second-mode instability waves de-

veloping within the boundary layer of a sharp slender cone at angle of attack were

performed by Stetson et al. (1985) and Marineau et al. (2014, 2017). Stetson et al.

(1985) acquired hot-wire data at 2 and 4 degrees angle of attack in a Mach-8

freestream. Other than the anticipated shift in most-amplified frequencies due to

the change in boundary-layer thickness and second-mode disturbance growth being

delayed to higher local Reynolds numbers on the windward meridian, no significant

changes in the stability characteristics of second-mode waves within the boundary

layer, including the amplification rate, were observed. Marineau et al. (2014) used
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PCB pressure sensors to acquire data in a Mach-10 freestream. They observed the

same trend of backward movement of the transition front with increasing angle of

attack on the windward meridian and attributed this behavior to the reduced ini-

tial amplitudes of the higher second-mode wave frequencies (from the freestream

disturbance levels).

In the present study, the reconstruction was applied to produce time-resolved

pixel-intensity signals with the model at 1, 2, and 3 degrees angle of attack for runs

4120 and 4119. All visualizations viewed the windward side of the cone (ray “N”

in figure 2.5), and for the following analysis, angle of attack refers exclusively to

the windward meridian. For the cone at angles of attack greater than 3 degrees,

the boundary layer became too thin to extract reliable quantitative data from the

schlieren measurements. Since the model pitched continuously, the definition for a

specified angle of attack as ±0.1◦ results in 500 – 800 images available for the recon-

struction per angle of attack. The definition of angle was chosen as a tradeoff be-

tween error introduced from the cone continuously pitching and having a sufficiently

long time series to compute frequency spectra. Computed wavepacket propagation

speeds were found to lie in the same range observed for the zero-incidence waves.

Sample visualizations are presented in figure 5.5.

The dimensionless most-amplified second-mode frequencies at 1, 2, and 3 de-

grees angle of attack are presented in figure 5.6. Good agreement is observed between

the schlieren and PCB measurements and the LST results. A significant increase

in frequency is observed with increasing angle of attack due to the decrease in

boundary-layer thickness. Maximum N factors computed at 1 and 2 degrees angle
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Figure 5.5: Enhanced image sequences showing the propagation and development of
second-mode wavepackets on the windward side of the model at 2◦ angle of attack.
Run 4120, every fifth image shown, ∆t= 76.9µs (top). Run 4119, every fourth image
shown, ∆t= 55.5µs (bottom). In the upper part of each image, the shock from the
cone nose tip is visible. The white markers indicate the approximate extent of a
wavepacket in the first image and have been translated downstream in subsequent
images using the mean wavepacket propagation speed.
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of attack are presented in figure 5.7. No N factors are presented from the 3 degree

angle of attack data as the boundary-layer is too thin (<6 pixels) to extract mean-

ingful quantitative data. Several trends emerge from the data. First, similar to the

zero incidence results, for a given angle of attack the transition N factor increases

with increasing unit Reynolds number and, as mentioned in §4.2, this is believed

to be a result of the freestream tunnel noise. Second, the LST-computed N -factor

slope increases approximately 10% per degree increase in angle of attack, although

this trend is not clearly confirmed by the experimental data. Table 5.4 provides a

comparison between the schlieren-measured and LST-computed slopes at different

angles of attack. In general, the schlieren slopes are within 10% of the LST, but

no clear trend emerges with angle of attack. The previous hot-wire measurements

at Mach 8 by Stetson et al. (1985) observed no major change of amplification rate

with angle of attack, but their measurements again had high experimental scatter

compared to the changes in amplification rates observed in the current LST results.

Large scatter exists in the PCB measurements of the current dataset as well. While

a slight increase in growth rate with angle of attack as indicated by LST results

is possible, experimental noise eliminates the ability to confirm this trend in the

experimentally obtained maximum N factors. Finally, we note that for a fixed unit

Reynolds number, the transition N factor increases slightly with an increase in angle

of attack.
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Figure 5.6: Dimensionless most-amplified second-mode frequencies at 1◦ AoA (top),
2◦ AoA (middle), and 3◦ AoA (bottom).
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Figure 5.7: Maximum N factors at 1◦ AoA (top) and 2◦ AoA (bottom).

AoA [deg] STABL Schlieren % Difference

0 3.1E-3 3.4E-3 + 9.7
1 3.5E-3 4.0E-3 + 11.4
2 3.9E-3 3.4E-3 – 12.8
3 4.3E-3 NA NA

Table 5.4: N -factor slopes (dN/dR) in the linear-growth regime at different angles
of attack.
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5.1.3 Individual Wavepacket Development

We now turn our attention to the development of individual second-mode

wavepackets. The calibrated high-speed schlieren system used in the current study

is particularly well suited to individual wavepacket analysis given the high temporal

and spatial image resolution as well as even temporal spacing. Observations of the

wall-normal development of individual wavepackets are made possible by the ability

of the schlieren system to record data off the surface of the cone. The high frame

rates allow 20 – 40 sequential images to be captured for an individual wavepacket as

it propagates across the field of view.

No single wavepacket is captured undergoing all stages of development within

the visualization region at a single unit-Reynolds-number condition; however, gen-

eral wavepacket development appears consistent across different conditions and an-

gles of attack. Approximately 100 wavepackets per experimental condition with the

cone at zero incidence were analyzed, and the wavepackets most representative of

the mean behavior are presented. The following discussion focuses extensively on

the visualizations recorded from runs 4120 and 4119 which, as demonstrated by the

time-averaged results, contain waves from each stage of development.

In examining each case, the wall-normal coordinate is normalized by the lo-

cal boundary-layer thickness computed using the schlieren visualizations. This is

computed following the process outlined in Laurence et al. (2016). First, the post-

shock surface conditions are computed using the inviscid Taylor-Maccoll solution

and assumed to correspond to the edge conditions. These conditions are then used
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to compute a similarity solution based on the Illingworth Transform and to identify

the density-gradient profile at the downstream location of interest for a cone ge-

ometry. A numerical integration is performed across the line of sight to correct for

the integration effect of the schlieren measurement system. The simulated profile

is then compared to the experimentally measured intensity values from an average

flow-on image and, if necessary, the theoretical value is stretched to match the ex-

perimental value. In most cases, the boundary-layer measured thickness matched

the theoretical prediction within 10% resulting in a stretching factor of 1 – 1.10.

5.1.3.1 Wavepacket Appearance

We begin by considering the wavepacket appearance. Figure 5.1 shows a

wavepacket from run 4120 in its earliest stages of development. The waves initially

take on a slanted appearance with a fairly constant inclination and are contained

within the visual edge of the laminar boundary layer. In the linear-growth stage, the

disturbance density gradients appear largest in the middle to upper portion of the

waves, appearing similar to those seen in the low-enthalpy results reported by Lau-

rence et al. (2016) and Casper et al. (2016) for a transitioning hypersonic boundary

layer at lower freestream Mach numbers. As the waves propagate downstream they

begin to take on a bent, curved-over shape. The peaks of the waves start to extend

beyond the visual edge of the boundary layer and begin to fold over back towards

the surface of the cone. Additionally, dark regions appear in the central portion of

the wavepacket beneath the folded wave crests.
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Figure 5.8: Enhanced image sequence showing the propagation and development of
second-mode wavepackets from run 4119. The white markers indicate the approxi-
mate extent of a wavepacket in the first image and have been translated downstream
in subsequent images using the mean wavepacket propagation speed.

The run 4119 waves retain this visual structure throughout the stages pre-

sented in figure 5.8, during which they are growing nonlinearly. Similar visual

structure is observed for the nonlinear Mach-10 waves shown in figure 5.9. As the

waves saturate in amplitude and begin to break down, the schlieren technique begins

to lose its effectiveness as the wave structure in no longer uniform in the spanwise

direction (Casper et al., 2014; Sivasubramanian and Fasel, 2014). Nonetheless, sev-

eral observations can be made: first, waves that do persist to the far downstream

portion of the intermittent region take on the appearance of a single connected peri-

odic structure. Second, the visual onset of breakdown coincides with higher density

content appearing across the vertical extent of the waves, until the structures take

on a fully chaotic appearance indicative of complete breakdown to turbulence.

Bandpass-filtered versions of the images shown in figures 5.8 and 5.9, are

presented in figures 5.10 and 5.11 to elucidate how different frequency content is

distributed throughout the wave structure. Higher harmonic content lies in the
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Figure 5.9: Enhanced image sequence showing the propagation and development
of second-mode wavepackets from the Mach-10 freestream run 4017. The white
markers indicate the approximate extent of a wavepacket in the first image and
have been translated downstream in subsequent images using the mean wavepacket
propagation speed.

Figure 5.10: Figure 5.8 top image bandpass filtered around f0 (top), 2f0 (middle),
and 3f0 (bottom).

Figure 5.11: Figure 5.9 top image bandpass filtered around f0 (top), 2f0 (middle),
and 3f0 (bottom).
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center of the wave at the same wall-normal location as the strongest fundamental

content. The shape of the harmonic content generally resembles the fundamental

content, with slightly lower minimum and maximum angles due to the location of

the content in the center portion of the waves. We note that at the top of the

waves near the edge of the boundary layer, fundamental frequency content appears

to extend into the freestream at an inclination of ≈ 80◦ to the cone surface. This

appears visually similar to the behavior anticipated for the case of the supersonic

mode when the second mode synchronizes with the slow acoustic spectrum, resulting

in the radiation of noise in the form of acoustic energy out of the boundary layer.

Despite this mode being more commonly associated with cold-wall flows, Knisely

and Zhong (2019) showed it to be theoretically possible in hot-wall flows (such as

those examined here). For the current conditions, computational results provided

by Bitter (private communication, November 2016) showed that the content at the

boundary-layer edge is due to the shape of the density eigenfunction and not acoustic

energy radiating into the freestream.

5.1.3.2 Wall-Normal Energy Distribution

In order to better understand the energy distribution throughout the waves at

different stages of development, wall-normal power spectra are computed from the

density-gradient signals generated from the individual waves. Time-reconstructed

pixel-intensity signals are generated at wall-normal heights corresponding to the

center of a pixel, with the length of the signal limited to a single wavepacket. The
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calibration described in §3.2.3 is applied, and the power spectrum of the signal for

each wall-normal height is computed and plotted.

The top left plot of figure 5.12 shows the spectra for the early developmental

stage wavepacket in the top image of figure 5.1. The fundamental frequency distur-

bance power is primarily isolated to a single peak located at y/δ = 0.7 – 0.9, and

power appears in a first harmonic (frequency ≈ 2f0) at the same y/δ location. As the

wavepacket propagates downstream it enters a more mature stage of development,

with the harmonics growing slightly and a fundamental energy peak appearing at

the outer edge of the wavepacket at y/δ = 1.1 – 1.2. Rapid growth of the outer peak

is observed, resulting in a distinct two-peak profile associated with the fundamen-

tal frequency content. This two-peak profile is a characteristic observed in most

of the mature waves analyzed, and was reported in the wall-normal energy profiles

observed by Laurence et al. (2016) and Grossir et al. (2014) in a Mach-8 and Mach-

10 freestream, respectively. Contrary to Laurence et al. (2016) and Parziale et al.

(2015), however, no fundamental energy peak is present at the wall for any of the

wavepackets analyzed in this study.

Progressing to the run 4119 wavepacket profiles shown in figure 5.13, the ma-

ture waves share the same two-peak fundamental frequency profile. Strong harmonic

content is present at 2f0, and at the R= 1782 station, weak harmonic content is

present at 3f0 and 4f0. The waves retain this profile throughout the nonlinear

growth stage until, as they approach the onset of transition, the wave amplitudes

begin to decrease. By the last distribution shown in the bottom plot of figure 5.13,

significant attenuation of the fundamental frequency content is observed and the
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only higher harmonic content present is a weak first harmonic at 2f0.

The second-mode waves in the Mach-10 freestream run 4017 are notable for

their harmonic content. The boundary layer is highly intermittent and the wavepack-

ets appear in the latest stages of development. No calibration was performed for the

Mach-10 schlieren setup; thus, it is important to note that the relative strength of

the wall-normal PSD peaks only serve as a qualitative point of comparison. Figure

5.14 shows the wall-normal development of the wavepacket shown in figure 5.9. The

two-peak profile is again present for the fundamental energy at f0 = 70 kHz and a

strong first harmonic is present at 2f0 with additional weaker content at 3f0. No

demonstrable change in energy distribution occurs over the field of view or when

compared to the Mach-14 waves, and the peaks at each frequency decrease in am-

plitude until the wavepacket breaks down to full turbulence.

Next, we consider the inclination of the structures in the s – y plane at differ-

ent stages of development. The fundamental structure angle is calculated by first

bandpass filtering the signal reconstructed at each wall-normal location around the

fundamental frequency of the second-mode disturbance. Cross-correlation coeffi-

cients for vertically separated signals are computed for various displacements, and

the displacement corresponding to the highest valued coefficients is used to find the

value of θ.

In figure 5.15 we show the computed angles for the wavepackets shown in fig-

ures 5.1, 5.8, and 5.9. In the earliest stage of development, (top plot, R= 1567) the

fundamental structures begin by bending away from the wall, reaching a maximum

inclination angle of approximately 140 – 150 degrees at y/δ= 0.2 – 0.3. The struc-
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Figure 5.12: Wall-normal spectra for the run 4120 waves shown in figure 5.1 at
R= 1567 (top left), R= 1621 (top right), and R= 1660 (bottom).
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Figure 5.13: Wall-normal spectra for the run 4119 waves shown in figure 5.8 at
R= 1782 (top left), R= 1862 (top right), and R= 1990 (bottom).

tures then slowly bend back towards the wall at a fairly constant rate until reaching

a minimum angle of 18 degrees between y/δ= 1.0 – 1.1. As the wavepackets enter

more mature stages of development (R= 1621 and 1660), the structures, after bend-

ing away from the wall, bend more rapidly towards the wall before a small hump

appears at y/δ= 0.75 – 0.80. The hump reaches a maximum angle of approximately

60 degrees for the wavepacket at R= 1621. The appearance of this feature coin-

cides with the onset of the development of the fundamental-energy two-peak profile

present in the wall-normal power spectra, indicating that the structure tilts away

from the surface of the cone in the wall-normal region between the two strongest

regions of density gradient. This stability Reynolds number also roughly coincides

with the location of deviation from the linear-growth regime in the time-averaged
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Figure 5.14: Wall-normal spectra for the run 4017 waves shown in figure 5.9 at
R= 1613 (top left), R= 1652 (top right), and R= 1676 (bottom).

maximum N factors shown in figure 5.2. Moving further away from the cone surface,

the structure rapidly begins to bend back towards the wall and reaches a minimum

angle of 14 – 16◦ by y/δ= 1.0.

Moving on to the middle plot of figure 5.15, we observe a similar overall shape

for the fundamental structures of run 4119 with a slightly larger maximum angle of

150 – 160◦ at y/δ= 0.2 – 0.4, and a slightly smaller minimum angle in the range of

8 – 10◦ at y/δ= 0.95 – 1.05. Absent from any of the run 4119 wavepacket angles is

the small hump at y/δ = 0.8, despite the double-peak profile in the wall-normal dis-

tributions. Finally, the bottom plot of figure 5.15 shows the fundamental structure

angles for the Mach-10 run-4017 wavepackets. The structures are similarly shaped

to the other late-stage packets at Mach 14, exhibiting a maximum angle of 140 – 160◦

79



Figure 5.15: Fundamental structure angles for run 4120 (top), run 4119 (middle),
and run 4017 (bottom).
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at y/δ ≈ 0.3 and a minimum angle of 10 – 13◦ at y/δ ≈ 1.0.

In general, when harmonic content is present within a wavepacket, it is con-

centrated in the middle to upper portion of the wave, as demonstrated by the wall-

normal energy distributions and bandpass-filtered images. The harmonic content

also appears roughly centered in spanwise extent; this is clearly observed in the

wavepacket in the left side of the filtered images shown in figure 5.10. The harmonic

structures tend to take on the shape of the fundamental structures within the range

of y/δ= 0.5 – 1.2, but they do not tend to reach the same maximum or minimum

structure angles of the fundamental features. Typically, the minimum value for the

harmonic structure angles is 20 – 30◦.

5.1.3.3 Spanwise Pressure Traces

A non-uniform timing offset between the visualizations and the pressure traces

eliminated the ability to make simultaneous observations on individual wavepacket

development using both measurement techniques for the Tunnel 9 dataset. However,

the pressure data can still provide information on the mean wavepacket circumfer-

ential extent. Figures 5.16 and 5.17 show pressure traces for representative second-

mode wavepackets recorded by the spanwise PCB sensor array for runs 4119 and

4118 (the waves of runs 4123 and 4120 were too weak to analyze). The traces are

presented in spatial streamwise coordinates by converting the pressure time signals

using the mean wavepacket propagation speed. Both unfiltered traces and traces

filtered around f0± 10 kHz are presented; traces filtered around 2f0± 10 kHz are
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also presented for run 4119.

Two methods are used to compute the wave extent. In the first, the coherence

of the spanwise signals is computed for the fundamental and first-harmonic frequen-

cies defined at the streamwise location of the spanwise array. Figure 5.18 shows the

coherence values plotted as a function of circumferential separation for run 4119.

Defining the feature width based on a coherence limit of 0.2, the circumferential

scale is 2δ – 2.5δ for the fundamental frequency content and approximately 1.4δ for

the first harmonic content. Too much intermittency is present in run 4118 to provide

meaningful results, with the coherence level being everywhere below 0.2 between the

nearest circumferentially offset sensors. The second method is implemented as fol-

lows. Pressure traces of individual waves are first identified and filtered around the

frequencies of interest. A Gaussian is then fitted to the spanwise sensor traces at the

streamwise location corresponding to the center of the pressure footprint. A cutoff

criterion related to the maximum value of the Gaussian peak can then be used to

define the feature width. The arbitrary nature of the cutoff criterion makes the abso-

lute value of the feature widths measured by this method quantitatively meaningless;

however, qualitative comparisons can be made for different unit-Reynolds-number

conditions. Using a criterion of the full width at half maximum of the Gaussian fit,

the normalized width (ξ/δ) of the higher unit-Reynolds-number run 4118 wave fun-

damental frequency content is approximately 30% less than the waves of run 4119.

Overall, the results from both methods agree with previous hot-wire measurements

of Kimmel et al. (1996) who reported second-mode circumferential scales to be 4δ

or less and decrease with increasing unit Reynolds number. Additionally, because
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Figure 5.16: Run 4119 spanwise pressure distributions (with t converted to s through
the mean propagation speed) of the unfiltered signals (top), signals filtered around
f0± 10 kHz (middle), and signals filtered around 2f0± 10 kHz (bottom). The red
dots indicate the locations of the PCB sensors.

the second method computes the circumferential extent of individual waves and not

the coherence of the entire time series, it can be concluded that the reduction in

wave span with increasing unit Reynolds number is indeed a property of the waves

and not a result of increased intermittency of the boundary layer.
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Figure 5.17: Run 4118 spanwise pressure distributions (with t converted to s through
the mean propagation speed) of the unfiltered signals (top) and signals filtered
around f0± 10 kHz (bottom). The red dots indicate the locations of the PCB sen-
sors.

Figure 5.18: Spanwise pressure signal coherence computed for run 4119.
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LT Run # M∞ Re∞/m ρ∞ T∞ u∞
[1/m×106] [g/m3] [K] [m/s]

17 6.14 4.90 18.9 54 903
9 6.14 7.11 27.4 54 904
30 6.14 9.31 35.8 54 903

Table 5.5: Computed freestream (subscript ∞) conditions for the AFRL LT sharp-
cone experiments.

5.2 AFRL Ludwieg Tube Experiments2

5.2.1 Test Conditions

Data are presented for three experiments performed with the sharp-nose model

configuration in the AFRL Ludwieg Tube. For all experiments, the cone model was

installed at zero incidence (±0.5◦) to the freestream. The stagnation temperature

is 450 K, resulting in a stagnation enthalpy of 0.46 MJ/kg; prior to the start of all

experiments, the model is at room temperature resulting in a wall-to-stagnation

temperature ratio of approximately 0.6. Additional information on the freestream

conditions can be found in table 5.5. As previously described in §2.1.2, the Ludwieg

Tube produces two 100-ms duration steady-flow test times. Data are collected and

analyzed for the second of these two steady-flow periods and visualizations are gen-

erated using the calibrated high-speed schlieren system. Configuration details for

the schlieren system are provided in table 5.6

2This material is adapted from Jagde et al. (2019)
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LT Run # Resolution Frame Rate Scale Location Wave Behavior
[pixels] [f.p.s] [pixels/mm] s [mm]

17 1280× 176 172,131 11.5 257 – 363 Linear Growth
9 1280× 368 172,131 11.2 253 – 367 Linear to Nonlinear Growth
30 1280× 320 234,636 6.9 185 – 369 Linear Growth to Breakdown

Table 5.6: Camera parameters used for different experimental conditions.

LT Run # up [m/s] 95% confidence [m/s] up/ue Wavepackets Analyzed

17 787 28 0.95 8906
9 778 53 0.94 10,000
30 804 36 0.97 7742

Table 5.7: Wavepacket propagation speeds.

5.2.2 Time-Averaged Results

Mean wavepacket propagation speeds are again computed using the same

cross-correlation techniques applied to the Mach-14 dataset, and the calculated re-

sults are presented in table 5.7. The wave phase speeds are between 0.94ue – 0.97ue.

The speeds are slightly higher than those computed at Mach 14, but still within a

reasonably expected range based on previous literature.

Vibration of the tunnel induced by the startup of the flow, combined with

incomplete isolation of the schlieren optics from the facility floor, caused the knife

edge to move during the steady-flow test period; in turn, this caused a darkening

and brightening of the background intensity that was sinusoidal in time. Since the

camera frame rate was significantly higher than the vibration frequency of approx-

imately 20 Hz, the background intensity change is minimal between images. To

account for this in the signal reconstruction, the image where the background in-

tensity is the same as the flow-off conditions is identified and frames are identified
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Figure 5.19: Dimensionless most-amplified second-mode frequencies.

on either side of this image for which the background is within ±5% of the flow-off

background intensity. These images are then used to generate the reconstruction,

providing 3 sets of approximately 2000 – 3000 useful images per experiment.

Figure 5.19 presents the dimensionless most-amplified second-mode frequen-

cies for each unit-Reynolds-number condition along with the PSE results. Good

agreement is observed between the frequencies measured using the schlieren visual-

izations and PCB sensors. Across the measurement region, the PSE computations

give a 5% overprediction; considering the constant offset, this may be the result of

a slight misalignment of the cone from zero incidence. Maximum N factors com-

puted for these frequencies are presented in figure 5.20. The slope of the weighted

least-squares linear fit of the schlieren-computed max N factors in the second-mode

linear-growth regime is dN/dR= 5.05× 10−3, approximately 10% higher than the

slope of dN/dR= 4.65× 10−3 computed from the PSE. In agreement with the pre-
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Figure 5.20: Maximum N factors.

dictions of Mack (1975), the slope is approximately 60% higher than that measured

for the Tunnel 9 Mach-14 experiments, indicating a higher growth rate for the lower

freestream Mach number. In addition to the linear growth for all conditions, non-

linear growth and saturation is observed for the run 30 and run 9 waves. Deviation

from the linear-growth regime and saturation occurs at a lower stability Reynolds

number for the run 9 waves; this is consistent with the Mach-14 results and predic-

tions of Marineau et al. (2019).

N factors as a function of frequency and stability Reynolds number computed

from the reconstructed schlieren signals are presented in figure 5.21. In dimensional

terms, the most-amplified second-mode frequencies lie in the range 165 – 310 kHz.

For the two higher unit-Reynolds-number conditions, higher harmonic content is

present at a frequency of approximately twice the fundamental second-mode fre-

quency, but in neither case is a second harmonic visible. The initially weak first-
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harmonic content is amplified with increasing streamwise location, particularly once

the waves enter the nonlinear-growth stage. No comparison to PCB data is avail-

able as the higher frequencies are outside of the range over which the sensors provide

reliable data.

The nonlinear interactions leading to the harmonics visible in figure 5.21 are

presented in the bicoherence plots of figure 5.22. Beginning with run 9, quadratic

phase locking is observed in interactions at f0 + f0→ 2f0 as well as 2f0 – f0→ f0.

The interactions are initially weak, with b2 values of 0.069 and 0.11, respectively.

Moving from the upstream station to the downstream station, the two interactions

become stronger, increasing to 0.092 and 0.14, and widen in bifrequency space.

Consistent with the Mach-14 results, the interactions precede the maximum N -

factor saturation and presence of harmonic power in figure 5.21. In the lower plots of

figure 5.22, showing the bicoherence computed for run 30, the f0 + f0→ 2f0 and 2f0 –

f0→ f0 interactions are present, along with interactions involving a second harmonic

at 2f0 + f0→ 3f0, 3f0 – f0→ 2f0, and 3f0 – 2f0→ f0. The interactions observed for

run 30 have significantly higher bicoherence values than those of run 9, reaching

a maximum b2 value of 0.34 for the 2f0 – f0→ f0 interaction at R= 1551. Further

downstream, the power of the phase-locked interactions decreases until the boundary

layer becomes fully turbulent.
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Figure 5.21: N factors as a function of frequency and R for run 17 (top), run 9
(middle), and run 30 (bottom). The dashed line indicates the PSE fit and the black
diamonds indicate PCB measurements of f0.
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Figure 5.22: Bicoherence b2 values calculated for run 9 (top) at R= 1390 (top left)
and R= 1475 (top right), and for run 30 (bottom) at R= 1484 (bottom left) and
R= 1551 (bottom right). The black lines indicate planes of symmetry. The fre-
quencies are represented by the fundamental disturbance frequency at the given
streamwise location.
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5.2.3 Individual Wavepacket Development

5.2.3.1 Wavepacket Appearance

Sample images from runs 9 and 30 are presented in figures 5.23 and 5.24.

Images from run 17 are omitted as the waves are extremely weak for extracting

meaningful insights by visual inspection. In figure 5.23, the waves appear slanted

and become curved by the most downstream location. Overall, the visual structure is

similar to the earlier stage waves observed in the Tunnel 9 data. The run 30 waves

shown in figure 5.24 take on a more highly curved appearance as is anticipated

since this more mature stage coincides with the nonlinear-wave growth identified in

the time-averaged measurements. The weak harmonic content seen in the filtered

images of figure 5.25 again is concentrated about the center of the waves both in

the wall-normal and streamwise coordinate.

5.2.3.2 Wall-Normal Energy Distribution

The following analysis focuses on the run 30 waves as they span the largest

number of developmental stages. In its earliest stage of development, shown in figure

5.26 (top left), the wavepacket contains fundamental frequency content at 270 kHz

concentrated between y/δ= 0.8 – 1.1δ. The fundamental content is significantly am-

plified by the next downstream station (top right), where we observe the appearance

of the distinct double-peak profile. By t0 + 42.6µs, the fundamental distribution has

distinct peaks at 0.88δ and 1.08δ, and weak first harmonic content in the 520 kHz
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Figure 5.23: Enhanced image sequence showing the propagation and development
of a wavepacket from run 9. The vertical white lines indicate the approximate
extent of the wavepacket in the first image and have been translated downstream in
subsequent images using the mean propagation speed. The top image corresponds
to time t0, with subsequent images separated by ∆t= 23.2µs.

Figure 5.24: Enhanced image sequence showing the propagation and development
of a wavepacket from run 30. The vertical white lines indicate the approximate
extent of the wavepacket in the first image and have been translated downstream in
subsequent images using the mean propagation speed. The top image corresponds
to time t0, with subsequent images occurring at times t0 + 21.3µs, t0 + 42.6µs, and
t0 + 106.5µs.
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Figure 5.25: Figure 5.24 image captured at time t0 + 42.6µs filtered around f0 (top)
and 2f0 (bottom).

range becomes visible at the same wall-normal locations. Progressing further down-

stream (not shown), the fundamental and harmonic peaks decrease in power until

no distinct peaks remain and the wavepacket is on the verge of full breakdown to

turbulence. The observations are qualitatively consistent with the findings presented

for mature second-mode wavepackets developing in a Mach-14 freestream; again, no

near wall peak is observed in any of the present wavepackets.

The computed fundamental structure angles for the wavepacket shown in figure

5.24 are presented in the lower right plot of figure 5.26. The overall structure

of the waves is similar to those at Mach 10 and 14, with the exception of the

angle magnitudes in the near-wall region. Initially, the waves are bent towards the

freestream with the maximum lying between y/δ= 0.2 – 0.4, but the waves reach a

maximum angle of roughly 120◦ in contrast to the maximum 140◦ – 160◦ observed

for the higher Mach number conditions. Minimum angles lie in the range 8 – 16◦ at

y/δ= 0.82 – 1.0.
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Figure 5.26: Run 30 wall-normal spectra for the waves shown in figure 5.24 computed
at times: t0, R= 1484 (top left); t0 + 21.3µs, R= 1532 (top right); t0 + 42.6µs,
R= 1578 (bottom left). Fundamental structure angles (bottom right).
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5.2.3.3 Spanwise Pressure Traces

The spanwise extent of the second-mode waves can be examined using the PCB

sensor spanwise array composed of three PCB132B sensors located at s= 316 mm

and centered on the ray of streamwise sensors. For each experiment, the coherence

as a function of frequency is computed between each of the sensors in the array

over the steady-flow period, generating coherence measurements for circumferential

separations of 5.72 mm and 11.43 mm.

At the lowest unit-Reynolds-number condition run 17, the signal coherence

at the fundamental second-mode frequency of 178 kHz is 0.52 at a circumferential

separation of 5.72 mm and 0.28 at 11.43 mm. Using a coherence cutoff criterion of

0.2 to define the pressure disturbance width, the span of the second-mode pressure

disturbance at the wall is slightly greater than 3.9δ, where δ is the local boundary-

layer thickness. Using the same criterion, the higher-Reynolds-number condition

runs 9 and 30 wave extents are between 5.72 – 11.43 mm corresponding to 2.3δ – 4.6δ

for run 9 and 2.6δ – 5.2δ for run 30. By fitting a Gaussian to the three circumferen-

tial measurement locations (using a coherence value of 1 at ξ= 0), the extents are

more precisely estimated as 4.20δ for run 17, 3.16δ for run 9, and 3.11δ for run 30.

While more densely spaced PCB sensors would be required to make higher-accuracy

measurements of the second-mode wave spanwise extents, the results are again sim-

ilar to the spanwise extents reported by Kimmel et al. (1996), showing the pressure

footprint to be fairly limited in the circumferential direction.

96



5.3 AFRL High-Reynolds-Number Facility Experiments3

5.3.1 Test Conditions

Three experiments performed at different unit-Reynolds-number conditions

are analyzed from the AFRL Mach-6 High-Reynolds-Number facility. The facil-

ity operates at significantly higher freestream unit Reynolds numbers and densities

than either Tunnel 9 or the AFRL LT. This produces a more challenging environ-

ment for making boundary-layer transition measurements; namely, the high-density

freestream produces an extremely thin boundary layer (δ= 300µm – 1.2 mm) on the

cone resulting in second-mode frequencies in the megahertz range. At present, no

surface instrumentation is capable of reliably resolving frequencies in this range.

The previous studies of Stetson (1983) performed in this facility relied exclusively

on mean surface measurements, and no experimental confirmation of second-mode

instability waves was made prior to the current study. Data are analyzed for the

sharp-nose configuration at stagnation pressures of 4.87 – 6.22 MPa, the lower end

of the tunnel stagnation-pressure operational envelope. While data were collected

at higher pressures, the boundary layer was too thin to extract meaningful results.

Stagnation enthalpies were ≈ 0.58 MJ/kg, and the wall-to-stagnation temperature

ratio was 0.54. Freestream conditions can be found in table 5.8.

A high-density freestream also presents unique challenges for the schlieren

setup. The visualization region was limited to the most upstream portion of the

3This material is adapted from Jewell et al. (2018)
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test section window as transition occurs near the front of the cone, and physical

limitations constrain the relative location of the cone to the front of the optical

access. Employing a free-standing lens to focus the image into the camera (see §3.1)

resulted in a maximum of 7 pixels spanning the boundary layer, with a range of 4 – 7

pixels for the different unit-Reynolds-number conditions. While the observed most-

amplified second-mode frequencies are only weakly dependent on the wall-normal

location of the signal reconstruction, wave amplitudes are highly sensitive as the den-

sity eigenfunction is a function of the wall-normal coordinate. Reduced pixel density

within the boundary layer results in significant spatial integration, subsequently in-

troducing error into the amplitude measurement. In addition to the difficulties

associated with the magnification, in post-processing it was observed that the 10-m

focal length calibration lens did not produce a sufficiently large density gradient to

map the pixel intensities to density gradients, i.e., the highest intensity pixels in the

flow-on schlieren images had higher counts than those in the brightest portion of

the lens. A lack of a unique mapping for the highest pixel intensities leads to an

inability to calibrate the images; consequently, the amplitudes presented only serve

as qualitative assessments. Figures 5.27 and 5.28 show sample enhanced schlieren

images, and table 5.9 presents the computed wavepacket propagation speeds. Note

that, as the camera resolution is fixed to the maximum width of 1280 pixels, the

extremely thin boundary layer does allow approximately 200 δ to be viewed in the

streamwise direction. For all cases, the viewing location on the cone surface was

121.7 – 227.6 mm, and the camera frame rate was 368,421 frames per second.
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HRN Run # p0 M∞ Re∞/m ρ∞ T∞ u∞
[MPa] [1/m×106] [g/m3] [K] [m/s]

450 4.87 5.9 30.7 154 76.7 1038
452 5.53 5.9 35.1 176 76.7 1038
453 6.22 5.9 39.5 198 76.7 1038

Table 5.8: Reservoir (subscript 0) and computed freestream (subscript ∞) condi-
tions for the AFRL High-Reynolds-Number facility tests.

Figure 5.27: Sample images from run 450. Enhanced at original magnification (top).
Enhanced, cropped, and enlarged to 4x magnification using interpolation (bottom).

Figure 5.28: Enhanced image sequence from run 450 showing the propagation of
a wavepacket. The vertical white lines indicate the approximate extent of the
wavepacket in the first image and have been translated downstream in subsequent
images using the mean propagation speed.

HRN Run # up [m/s] 95% confidence [m/s] up/ue Wavepackets Analyzed

450 890.8 53.0 0.92 5615
452 896.6 66.6 0.93 7010
453 892.2 54.0 0.83 7000

Table 5.9: Wavepacket propagation speeds.
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5.3.2 Time-Averaged Results

Time-reconstructed pixel-intensity signals were generated using 5000 images

(13.6 ms) from each experiment. A comparison between the schlieren-measured

frequencies and PSE computations is provided in figure 5.29. Good agreement is

observed for each unit-Reynolds-number condition. Figure 5.30 presents the log am-

plitudes of the pixel-intensity signals for each frequency and downstream location.

The color scale in this case is arbitrary logarithmic units, as the calibration is not

available to convert amplitudes to N factors. The most-amplified frequencies rise

slightly in frequency with increasing unit Reynolds number over the three cases,

ranging from a minimum of 757 kHz to a maximum of 1066 kHz. The transition

front, visible as the region of broadband disturbances downstream of the narrow-

band second-mode instability, clearly moves forward with increasing unit Reynolds

number. No higher harmonics are visible in the spectra of figure 5.30; this may

be a consequence of the relatively low pixel counts in the extremely thin boundary

layers, as the harmonics have been shown to be concentrated in the center of the

waves and have limited vertical extent compared to the fundamental content.

Although no power is present in the spectra at higher harmonic frequencies

prior to breakdown, nonlinear interactions in the form of quadratic phase locking

can still be present. The bicoherence computed for run 453 is seen in figure 5.31.

Two weak interactions are present: f0 + f0→ 2f0 and 2f0 – f0→ f0. We note the

extremely high frequencies associated with the first harmonic: at s= 133.3 mm,

2f0 = 2120 kHz. Both the sum and difference interaction only exist over a very small
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Figure 5.29: Dimensionless most-amplified second-mode frequencies.

streamwise distance, first appearing at s= 133.3 mm and completely disappearing by

s= 145.0 mm. The interactions are also notable for their weak b2 values, reaching

a maximum of only 0.18. In general, the interactions evolve similarly to those

previously observed, increasing in b2 value from the upstream to downstream station

and spreading in bifrequency space, and then decreasing in value until no phase-

locked interactions remain.

5.4 Error Analysis

There are a number of error sources associated with the calculation of the

second-mode most-amplified frequencies and N factors from the schlieren images.

We consider the two largest contributors to the error: the computed wavepacket

propagation speed and identification of the second-mode peak frequency and ampli-

tude.
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Figure 5.30: Logarithmic pixel intensity (arbitrary units) computed as a function
of frequency and streamwise location for run 450 (top), run 452 (middle), and run
453 (bottom).
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Figure 5.31: Run 453 bicoherence computed at s= 133.3 mm (left) and s= 140.8 mm
(right).

Wavepacket propagation-speed error estimates based on a 95% confidence in-

terval are provided for each experiment. This confidence interval serves as a quan-

tification of the propagation-speed accuracy. For the purposes of this analysis, we

will assume this confidence interval is also indicative of the measurement precision.

To quantify the error associated with identifying the most-amplified frequency peak,

a 95% peak-power threshold is defined. The left plot of figure 5.32 shows an exam-

ple spectrum from AEDC T9 run 4119, with the vertical red lines identifying the

frequency bounds correlating to where the second-mode peak reaches 95% of the

maximum amplitude. The difference in frequency between the peak and 95% of the

peak amplitude is on the order of ± 4% of f0 for spectra computed upstream in the

field of view and ± 5% of f0 further downstream where the spectra spread slightly.

In considering the extreme case, the wavepacket propagation-speed error is ± 5%

and the error due to fitting the peak is also ± 5%. This would result in an over or

under prediction on the frequencies by roughly 7%. The right plot of figure 5.32

shows the normalized most-amplified frequencies with the error bounds plotted. It
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Figure 5.32: Spectrum with frequencies associated with 95% peak amplitude identi-
fied (left). Dimensionless second-mode most-amplified frequencies with error bounds
computed for AFRL LT (right). The dashed lines indicate the maximum error
bounds.

is important to note the agreement between the schlieren and PCB measurements,

since the PCB sensors are not subject to the error associated with converting the

spatial frequencies of the waves to temporal frequencies. Since good agreement is

observed between the frequencies measured by both techniques, we conclude that

the actual error associated with the schlieren measurements is likely significantly

lower than the outlined extreme case. The peak identification is expected to have

some impact on the measured amplitudes, but the assumption of constant initial

amplitudes for all disturbance frequencies is expected to dominate the error associ-

ated with the computed N factors. As cited in §4.2.1, for the extreme case this is

expected to introduce an error of ∆N ≈ 0.4.

Other contributions of error include model alignment and flow unsteadiness

which can lead to discrepancies between the measurements and PSE solutions. The

accuracy of the cone angle of attack is roughly 0.2◦ for AEDC T9 and the AFRL

HRN and 0.5◦ for the AFRL LT. A parametric study of the influence of angle
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of attack on stability characteristics is provided in Hofferth et al. (2013). They

observed a change in f0 of 6.5 – 8.4 kHz (2.5 – 3.2 % of f0) for a 0.1◦ change in cone

angle of attack, though caution in direct comparison is advised since their study

used a flared-cone model. Using an average change of 2.8% in f0 per 0.1◦ change in

cone angle of attack, in the present work this introduces a maximum error into the

most-amplified second-mode frequencies of 5.6% for the AEDC T9 and AFRL HRN

results, and 14% for the AFRL LT results. STABL results are computed using the

measured flow conditions from each experiment and as such the error should only

be subject to the error in acquiring the freestream conditions.

5.5 Discussion

Using the results of this chapter, comparisons can be drawn between transi-

tion measurements acquired in each facility. The first clearly observed difference in

the results are the most-amplified second-mode frequencies. Frequencies are low-

est in Tunnel 9, lying in the 70 – 130 kHz range, are higher in the AFRL LT at

200 – 400 kHz, and highest in the AFRL High-Reynolds-Number facility, where they

lie in the range 750 – 1100 kHz. Although this is expected due to the freestream

unit-Reynolds-number effect on boundary-layer thickness, it is important to note

as it plays an important role in explaining other observed behavior. A significant

difference is observed in the slope of the maximum N factors between the Mach-6

and Mach-14 results. The measured slope, dN/dR, is approximately 60% higher

in the AFRL LT at Mach 6 than in Tunnel 9 at Mach 14, indicating substantially
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higher spatial amplification rates. Increasing saturation N factors with increasing

unit Reynolds numbers are also observed in both the AFRL LT Mach 6 and Tunnel

9 Mach-14 results. Wave saturation amplitudes computed from the PCB sensors

are comparable for the Mach-6 and Mach-14 waves at ≈ 30% of the mean edge pres-

sure. This result is somewhat unexpected based on the data compiled by Marineau

et al. (2019): their data show weak variation of the maximum second-mode wave

amplitudes at Me > 5.8, but substantially lower values below that threshold. In the

AFRL LT experiments, however, Me = 5.46. The consequence of the comparable

saturation wave amplitudes are higher saturation N factors in the Mach-6 results.

In considering the effect of Mach and unit Reynolds number on the develop-

ment of waves in the nonlinear-growth regime, the relationships become less clear.

Although quadratic phase locking is observed in the bicoherence plots for the Mach-

6 data collected in both AFRL facilities, substantially more nonlinear interactions

are observed at Mach 14, including those involving third and fourth harmonics at

4f0 and 5f0. No time-averaged results are available for the Tunnel 9 Mach-10 waves,

but strong higher harmonics are visible in the wall-normal energy spectra. The re-

duced number of interactions in the Mach-6 High-Reynolds-Number facility results

compared to the Mach-6 Ludwieg Tube results may be due to the reduced number

of pixels across the boundary layer (4 versus 9 – 11) which, as discussed in §5.3.1,

has a significant spatial filtering effect. However, the impact of the second-mode

most-amplified frequencies being 5–10 times higher may also play a role, where

2f0≈ 2.12 MHz for the AFRL HRN run 453. With freestream noise levels scaling at

roughly f−3.5, the lower initial amplitude levels at higher harmonic frequencies may
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fail to provide disturbance seed amplitudes for the harmonics to reach sufficiently

large amplitudes relative to the fundamental frequency content to appear in the bi-

coherence analysis before the fundamental content begins to breakdown. However,

the freestream noise will be at higher frequencies in the HRN facility due to the

thin-wall boundary layers, and bulk viscosity effects may play a role at very high

frequencies. The recorded most-amplified second-mode frequencies in the Mach-14

case are notably low at 70 – 90 kHz because of the ability to observe transition at

low freestream unit Reynolds numbers enabled by the large model size. In these

experiments, the higher harmonics at 2f0 3f0, and 4f0 are still hundreds of kilo-

hertz, a frequency range over which freestream noise amplitudes remain high. The

number of nonlinear interactions and higher harmonics in the Mach-6 LT results

falls somewhere between these two extremes. Finally, we note that the development

of higher harmonics may also be a purely Mach number effect.

For individual second-mode wavepackets, minimal differences are observed be-

tween waves at similar stages of development at Mach 6, 10, or 14. Visual inspec-

tion shows qualitatively similar development from a rope-like appearance in the

linear-growth regime to a highly curved appearance during late-stage nonlinear de-

velopment to breakdown. Fundamental structure angles presented in figures 5.15

and 5.26 show similar shapes, but the Mach-6 waves have slightly lower angles of

115◦ – 120◦ at y/δ= 0.2 – 0.4 versus 140◦ – 160◦ for the Mach-10 and Mach-14 waves.

Minimum wave angles are consistent across all Mach numbers in the range of 8◦–

15◦ at y/δ= 0.85 – 1.0. Similarity across Mach numbers applies to the wall-normal

energy distributions as well, with the exception being the presence of harmonics
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discussed in the previous paragraph. The double-peak structure of the fundamental

energy content is observed for mature wavepackets of all three Mach-number waves.

No near-wall fundamental energy peak, as observed by Laurence et al. (2016) at high

enthalpy (h0 = 11.9 MJ/kg), appears for any of the present waves at any Mach num-

ber, and it is noted that all the present experiments were performed at stagnation

enthalpies of 2 MJ/kg or less.

Finally, we consider the spanwise pressure footprint of the second-mode waves.

The two-dimensional nature of the waves is confirmed, and for each set of experi-

ments, increasing the unit Reynolds number is observed to decrease the wave span

normalized by the local boundary-layer thickness.
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Chapter 6: Blunt-Nose Results

In this chapter, experimental data collected with nose tips of varying bluntness

in the AFRL Ludwieg Tube and the AFRL High-Reynolds-Number facility are pre-

sented. Two regimes are explored: small nose-tip bluntness (RN ≤ 1.524 mm) domi-

nated by second-mode waves, and moderate to large nose-tip bluntness (RN > 1.524 mm)

where nonmodal instabilities appear.

6.1 AFRL Ludwieg Tube Experiments1

6.1.1 Test Conditions

Table 6.1 presents the freestream test conditions along with cone nose-tip

radii and the computed entropy-layer swallowing lengths. Visualization and surface

pressure data are collected using the same experimental setup as the sharp-nose

experiments. The DPLR mean flow solutions are used to compute the boundary-

layer thickness. Nose tips of four different radii are tested: 0.508 mm, 1.524 mm,

2.540 mm, and 5.080 mm, or as a percentage of cone base radius (RN/Rb× 100%),

1%, 3%, 5%, and 10%, respectively. Sample visualizations for each of the four nose-

tip configurations are presented in figure 6.1, and the camera parameters are shown

1This material is adapted from Kennedy et al. (2019)
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LT Run # RN Re∞/m ρ∞ XSW Me

[mm] [1/m×106] [g/m3] [m]

31 0.508 13.72 52.78 0.069 5.46
24 1.524 18.27 70.24 0.330 3.65
25 2.540 18.27 70.24 0.625 3.41
26 5.080 18.27 70.24 1.644 2.96
27 5.080 22.71 87.28 1.769 2.92

Table 6.1: Experimental conditions. XSW and Me are computed using the STABL
software, and Me refers to the edge Mach number at the center of the schlieren
visualization region.

in table 6.2. Second-mode waves remain the most visible features within the schlieren

visualizations for the 0.508 mm and 1.524 mm radius nose-tip configurations, though

extremely weak nonmodal-growth features extending above the boundary layer are

infrequently present in the section upstream of the entropy-layer swallowing length

for the 1.524 mm case. For the 2.54 mm and 5.08 mm cases, elongated features

appear between the computed boundary-layer and entropy-layer-edges, and second-

mode waves within the boundary layer are no longer visible. The visualized features

for a given model configuration and freestream condition appear to be a function of

viewing location with respect to the entropy-layer swallowing length. Computational

and experimental data (Laurence et al., 2012) have shown that both nonmodal-

growth features and second-mode waves can exist in the vicinity of the entropy-layer

swallowing length. Since our visualization region is physically constrained, and in

no case captures enough of the cone to clearly visualize both behaviors at the same

condition, the behaviors will be considered separately.
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Figure 6.1: Enhanced schlieren visualizations generated by subtracting a mean flow-
on image from the image of interest. Images correspond to nose-tip-radius configu-
rations of 0.508 mm, 1.254 mm, 2.540 mm, and 5.080 mm (top to bottom).

LT Run # Frame Rate Location
[f.p.s] s [mm]

31 287,671 207 – 358
24 368,421 275 – 368
25 368,421 275 – 368
26 234,637 275 – 368
27 234,637 275 – 368

Table 6.2: Camera parameters used for different experimental conditions.
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6.1.2 Second-Mode Dominated Transition

For cone configurations with a nose-tip radius of 1.524 mm and less, the tem-

poral reconstruction techniques outlined in §4.1 are applied. Figure 6.2 shows the

most-amplified second-mode frequencies and their associated N factors for runs 31

and 24. Beginning with run 31, the frequencies computed by the PSE are observed

to be 10 – 20% higher than the PCB and schlieren frequencies across the entire

measurement range. Good agreement is observed between the PCB and schlieren

measurements in the upstream portion of the visualization region, but less so farther

downstream. In the linear-growth regime, the slope of the N -factor curve computed

from the schlieren is within 15% of that computed from the PSE. Deviation from

the linear curve occurs at approximately R= 1820 for both the schlieren and PCB

measurements, resulting in an overall maximum N factor of 6.2. The higher tran-

sition N factor here compared to any of the sharp-nose experiments is believed to

be a combination of the higher unit Reynolds number and higher most-amplified

second-mode frequencies resulting in lower initial disturbance amplitudes. Longer-

wavelength oblique features similar to those observed by Casper et al. (2016) in

schlieren visualizations over a 7◦ half-angle cone in a Mach-5 freestream also ap-

pear within the boundary layer, potentially introducing measurement error into the

time-reconstruction technique. Turning to run 24, a significant difference is observed

between the PSE frequencies and those measured from the PCB and schlieren data.

Poor agreement was also found between the PSE solutions and N factors measured

from the schlieren, likely due to the lower signal-to-noise ratio in the upstream por-
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Figure 6.2: Most-amplified second-mode frequencies (left) and N factors (right) for
run 31 (top) and run 24 (bottom). The filled symbols are schlieren measurements
and the open symbols are PCB measurements. The black line is the PSE results.

tion of the viewing area, and thus the schlieren data are omitted from figure 6.2

(bottom right). It is noted that the entropy-layer swallowing length extends to

330 mm, just upstream of the furthest downstream PCB sensor and well past the

start of the visualization region.
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6.1.3 Nonmodal Growth

6.1.3.1 Visualized Features

The unsteady elongated features seen in the bottom two images of figure 6.1

first appear in the visualizations of the 2.54 mm nose-tip-radius configuration and

are frequently present for the 5.08 mm nose-tip-radius configuration. The following

characterization focuses on the latter case as the features are significantly more

visible due to both the image magnification and viewing location. For both test

conditions at this nose-tip bluntness, the predicted entropy-layer swallowing length

is well past the end of the cone model, and no significant difference in visual structure

is observed between the features of the two slightly different experimental conditions.

In general, the features extend beyond the visual edge of the boundary layer and

appear similar to the images captured by Grossir et al. (2019) using a cone with a

nose tip of similar bluntness in a Mach-11.8 freestream. Unlike second-mode waves,

no clear peaks appear in the PCB signal power spectra computed using the entire

test time; however, as seen in figure 6.3, isolated segments of high-frequency (150 –

250 kHz) pressure content appear in the PCB signals. Matching the time stamps of

these events in the PCB sensors to the visualizations reveals clearly visible elongated

features believed to be associated with nonmodal growth. In this manner, we are

able to identify images where features are present.

Mean observations are made by analyzing 15 clearly visible instability features

present for runs 26 and 27. In agreement with what is anticipated from the amplifi-
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Figure 6.3: Spectrograms computed from PCB signals of run 26 at s=241 mm (left)
and s=341 mm (right).

cation associated with nonmodal growth, feature development occurs slowly across

the field of view, especially when compared to the rapid growth and breakdown

of the second-mode instability waves. In presenting mean characteristics, we first

consider the overall shape of a typical nonmodal-growth feature. Focusing on the

isolated elongated features in figures 6.4 and 6.5, the features appear nearly parallel

to the cone surface and gradually curve away from the surface. As the features

propagate across the visualization region, the portion extending furthest into the

freestream rotates downward towards the cone surface, resulting in a decrease in the

inclination angle and flattening of the structure. The maximum inclination angle lies

between 13 – 19◦ when the feature is at the most upstream end of the viewing area

and decreases to 8 – 14◦ once the feature has propagated to the most downstream

visible location. Figure 6.6 shows this evolution in feature shape by presenting the

location of the maximum-intensity pixel within a single nonmodal feature using data

extracted from four sequential visualizations from run 26. Select features such as

that shown in the eighth image from the top in figure 6.4 also exhibit a region of
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high curvature near the leading edge (downstream end). In the wall-normal direc-

tion, the features extend 2 – 3δ above the cone surface, and the strongest density

gradients are observed at a wall-normal height of 1 – 2.5δ. Qualitatively, both the

experimentally observed tilting and wall-normal power distribution are consistent

with the computational results of Paredes et al. (2019a) for the nonmodal growth

of planar disturbances.

6.1.3.2 PCB Measurements

In figures 6.7 and 6.8 we show the PCB pressure traces associated with the

image sequences presented in figure 6.4 and 6.5. Two distinct instability features are

observed in the lower unit-Reynolds-number run 26 shown in figure 6.4; their asso-

ciated pressure footprints are seen in the most upstream PCB sensor at t−t0 = 95µs

and t − t0 = 240µs. As the feature passes over the sensor, a slight rise followed by

several higher-frequency (several hundred kHz) oscillations is characteristic of the

pressure disturbance at the wall. A similar pressure disturbance with a frequency of

256 kHz is observed in the most upstream sensor in figure 6.8 for the run 27 distur-

bance. In figure 6.7, the two disturbances have a similar profile until s= 316 mm,

at which point the high-frequency content in the earlier disturbance is significantly

amplified and that of the later disturbance is attenuated. By s= 341 mm, the earlier

disturbance contains extremely strong content with a frequency of approximately

182 kHz, and the later disturbance is almost completely attenuated. The rapid am-

plification of the earlier disturbance recorded at the two most downstream sensors
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Figure 6.4: Run 26 (RN = 5.08 mm) enhanced visualization sequence. The top image
corresponds to time t0 with subsequent images separated by 21.3µs (i.e. every fifth
image shown). Black arrows indicate the streamwise locations of the 3 most down-
stream PCB sensors, located at s= 291 mm, s= 316 mm, and s= 341 mm. The black
horizontal line in the final image indicates the computed boundary-layer thickness.
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Figure 6.5: Run 27 (RN = 5.08 mm) enhanced visualization sequence. The top image
corresponds to time t0 with subsequent images separated by 21.3µs (i.e. every fifth
image shown). Black arrows indicate the streamwise locations of the 3 most down-
stream PCB sensors, located at s= 291 mm, s= 316 mm, and s= 341 mm. The black
horizontal line in the final image indicates the computed boundary-layer thickness.

Figure 6.6: Individual nonmodal-growth feature structure as a function of stream-
wise location.
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is an anomalous case; all other pressure disturbances appear similar in shape and

magnitude up through the sensor at s= 291 mm and see minimal amplification in

the more downstream sensors. Nonetheless, this unique disturbance is worth noting,

as the feature appears visually similar to the other instability features. In general,

the high-frequency pressure disturbances of run 27 have slightly higher frequencies

than those of run 26. Given the inversely-proportional relationship between the

second-mode fundamental frequencies and boundary-layer thickness, this may indi-

cate the high-frequency pressure disturbances associated with the trailing edge of

the nonmodal features are related to the second-mode.

In the bottom plots of figures 6.7 and 6.8, we show the pressure signals recorded

by the PCB spanwise array associated with the two image sequences. In general, the

isolated high-frequency pressure disturbances appear strongest on a single sensor in

the array, with a weaker signature on one of the adjacent circumferentially offset

sensors, and no discernible content on the other adjacent sensor. Beginning with

run 26, the high-frequency disturbance at t − t0 = 200µs is strongest in the center

sensor, with a weak pressure disturbance present in the sensors located on either

side (ξ= 5.72 mm and ξ= – 5.72 mm). Weak content is also observed in the ξ= –

5.72 mm and ξ= 0 sensor signals at t − t0 = 50µs. Similar to the run 26 spanwise

traces, the run 27 pressure disturbance at time t − t0 = 110µs is visible in both

the ξ= – 5.72 mm and ξ= 0 sensor, with minimal evidence of the disturbance in the

ξ= 5.72 mm sensor. For both experiments, the coherence computed as a function of

frequency identifies gives a magnitude-squared coherence estimate of 0.4 – 0.55 for

adjacent sensors. Limited coherence (∼ 0.1) is observed between the ξ= – 5.72 mm
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and ξ= 5.72 mm sensor signals, though ambiguity remains in defining the features

associated with nonmodal growth using solely the pressure data due to the lack of a

single distinguishing disturbance frequency. Normalized by the local boundary-layer

thickness computed from the DPLR mean flow solution, this gives an estimate of

spanwise extent of approximately 5 – 10δ.

While the PCB traces provide information on the pressure fluctuations in the

near-wall region associated with individual features, the frequency at which the non-

modal instability features appear in the visualizations is also of interest. Extracting

a dominant temporal frequency (for comparison to computational results), if present,

from the visualizations requires computing both the mean feature propagation speed

and spatial frequency. The mean propagation speed is computed by selecting a re-

gion of the feature located between the boundary-layer and entropy-layer edges and

using a cross-correlation technique to identify the downstream propagation between

sequential images. The average speed calculated over 162 image pairs from run 26

is 780± 90.1 m/s; values calculated for run 27 also lay within this range. The edge

velocities computed for these two conditions using the DPLR mean flow solution are

761 m/s and 757 m/s, respectively. Slightly higher local experimental values are ex-

pected given that the structures extend beyond the boundary-layer edge. Inspection

of the visualizations reveal a lack of clear spatial periodicity, and attempts at ex-

tracting a dominant frequency from the images failed to identify any frequency with

confidence. Two possibilities exist: either the nonmodal instability features are not

associated with a single dominant frequency, or the reduced schlieren contrast due

to the entropy-layer combined with the integrated nature of the technique eliminates
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Figure 6.7: Run 26 pressure traces. PCB traces at increasing streamwise locations
showing propagation of nonmodal features (top). Spanwise array pressure traces at
s= 316 mm (bottom). The pressure traces are vertically offset proportional to the
measurement coordinate.
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Figure 6.8: Run 27 pressure traces. PCB traces at increasing streamwise locations
showing propagation of a single nonmodal feature (top). Spanwise array pressure
traces at s= 316 mm (bottom). The pressure traces are vertically offset proportional
to the measurement coordinate.
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HRN Run # RN p0 M∞ Re∞/m ρ∞ T∞ u∞
[mm] [MPa] [1/m×106] [g/m3] [K] [m/s]

449 2.540 8.96 5.9 57.1 286 76.7 1038

Table 6.3: Typical facility reservoir (subscript 0) and computed freestream (sub-
script∞) properties of the test conditions employed in the experiments in the AFRL
High-Reynolds-Number facility.

the ability to consistently identify features. The computational results of Paredes

et al. (2019b) predict the nonmodal features to exhibit amplification over a signifi-

cantly broader range of frequencies than the second-mode, with the most-amplified

frequencies lying in the 100 – 800 kHz range depending on the nose-tip radius and

freestream conditions. Freestream noise levels, unique to each facility, may also play

a significant role in which frequency disturbances become most amplified depending

on their receptivity.

6.2 AFRL High-Reynolds-Number Facility Experiments

One experiment is presented from the AFRL High-Reynolds-Number facility

using a cone at zero incidence with a blunt nose tip. An extremely limited number

of visualizations appear to capture features similar to those observed in the AFRL

LT. The schlieren setup was the same as described in §5.3.1. Table 6.3 shows the

freestream conditions for the experiment presented.

An elongated feature propagating across the field of view is visible in the

visualization sequence shown in figure 6.9. In addition to only having ≤ 5 pixels

across the boundary-layer thickness, the low-density region generated by the entropy

layer significantly reduced the schlieren contrast. Qualitatively, the disturbance
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Figure 6.9: Schlieren sequence tracking an elongated feature. The black arrows
identify the streamwise location of the feature in each frame before it breaks down
to turbulence.

takes on the general characteristics described for those seen in the LT, extending

out beyond the boundary-layer edge and being inclined downstream. At a minimum,

the images confirm that similar instabilities are present in a facility with a different

freestream noise profile and higher freestream unit Reynolds numbers.
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Chapter 7: Conclusions

Understanding the laminar-to-turbulent transition of the boundary layer on

the surface of a hypersonic vehicle is widely recognized as one of the key challenges

associated with efficient high-speed vehicle design. The transition to turbulent flow

increases skin friction and heat flux into the vehicle body. Thermal management is

currently dealt with using massive thermal protection systems to dissipate the heat

at the expense of increased mass and decreased efficiency. By better understanding

the transition process and making more accurate predictions of transition location,

this additional mass could possibly be reduced, leading to more efficient designs.

Previous analytical and experimental studies demonstrated the inviscid second

mode to be the dominant instability mechanism leading to boundary-layer transi-

tion on slender geometries at small incidence at hypersonic Mach numbers. The

second mode is characterized by fundamental frequencies of hundreds of kilohertz,

and measurements of transition locations have been shown to be strongly linked

to the freestream conditions. This dependence on freestream conditions has mo-

tivated the importance of measuring instability-wave properties rather than mean

transition locations for the validation of computations. Extremely limited stability

measurements are available in the literature at Mach 14 or above.
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To investigate the effect of freestream conditions and nose-tip radius on second-

mode instability-wave development, experiments were performed in three different

hypersonic facilities: AEDC Tunnel 9, the AFRL Mach-6 Ludwieg Tube, and the

AFRL Mach-6 High-Reynolds-Number facility. The freestream Mach numbers were

6, 10, and 14 and the facilities provided a range of unit-Reynolds-number conditions

capable of producing natural transition on the model surface. A 7◦ half-angle slender

cone with an interchangeable nose tip was chosen as the test geometry due to its

canonical nature and use in an extensive amount of previous literature. PCB piezo-

electric pressure sensors mounted on the surface of the cone provided supplementary

high-speed pressure measurements.

A calibrated high-speed schlieren visualization system has been developed to

enable non-intrusive time-resolved quantitative measurements of second-mode in-

stability waves. By strategically optimizing the camera frame rate, field of view,

and magnification, individual wavepackets were captured in multiple sequential im-

ages and provided off-wall data inaccessible by surface measurements. The system

calibration was performed using a long-focal-length thin lens of known density gra-

dient. It was shown that, when placed within the schlieren system, the lens provided

a reference for generating a unique mapping of pixel intensity to density gradient.

An analysis on the calibration procedure was performed to characterize the thin lens

and quantify the sensitivity of the mapping to lens misalignment within the system.

With careful identification of the vertical coordinate corresponding to the optical

center of the lens, the calibration curve was shown to be relatively insensitive to

slight optical misalignment of the lens. The calibration was shown to be easy to
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implement with minimal to no modification of the schlieren system.

In order to convert the schlieren image data to a more desirable format for a

time-averaged analysis, a time-reconstruction technique was developed. The tech-

nique exploits the slow evolution of the waves between sequential frames along with

their roughly constant propagation speeds to reconstruct the pixel-intensity signal

at a given location in space. The signals are typically generated at the wall-normal

height of the maximum disturbance intensity and have a frequency resolution of

20 – 40 times the camera frame rate. The high-frequency-resolution signals com-

bined with the calibration allows for the measurement of second-mode instability

wave amplitude growth and integrated amplification rates. For comparison, second-

mode instability growth was computed using the parabolized stability equations as

part of the STABL software suite. Good agreement was generally observed between

the second-mode wave frequencies and amplitudes measured by the schlieren and

PCB surface pressure transducers and those computed by the PSE results in the

linear-growth regime in each experimental facility.

The time-averaged sharp-cone measurements revealed several key results. In

line with the theory of Mack (1975), the slope of the second-mode maximum N -

factor curves for the AFRL Mach 6 experiments was measured to be approximately

60% higher than the Tunnel 9 experiments. The Mach-6 waves attained higher

transition N factors due to their lower initial amplitudes compared to the Mach-

14 waves, a result that was not necessarily expected. For a given Mach number,

higher freestream unit Reynolds numbers were associated with higher transition

N factors due to the reduced initial amplitudes provided by the freestream noise.
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Measurements acquired in the Mach-6 High-Reynolds-Number wind tunnel were the

first experimental confirmation of second-mode transition in that facility, with the

most-amplified second-mode frequencies measured in the range of 760 – 1060 kHz. Of

particular importance was the identification of the role of higher harmonics in influ-

encing nonlinear wave growth. A bispectral analysis applied to the extremely high

frequency resolution time-reconstructed schlieren signals revealed quadratic phase-

locking of harmonic content with frequencies as high as 4f0 and 5f0. The maximum

computed bicoherence of the interactions were shown to precede the maximum am-

plitudes of the content they described, indicating that the phase locking is more

closely associated to the content amplification rate than absolute power. A larger

number of interactions involving higher frequency content were observed at Mach

14 than at Mach 6; this was theorized to be a result of the different second-mode

frequencies, although it may also be a Mach number effect. Increasing the angle of

attack increased the second-mode most-amplified frequencies on the cone but had

minimal effect on the experimentally measured N -factor slopes. Finally, besides

the presence of harmonic content, the individual wave development remained fairly

unchanged at different Mach numbers.

Increasing the radius of the cone nose tip resulted in the suppression of second-

mode waves and downstream movement of the transition location on the cone sur-

face. Second-mode waves no longer appeared in the visualizations for cone nose

tips of RN ≥ 2.058 mm, for which the computed entropy-layer swallowing length was

downstream of the visualization region. For the largest nose-tip radius, elongated

features associated with nonmodal growth were clearly visible. The strongest insta-
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bility feature content was concentrated primarily between the boundary-layer and

entropy-layer edges. In general, the spatial evolution of the features was slower

than the second-mode waves, consistent with their nonmodal character. Although

the visualized features lacked the periodic structure of second-mode waves, simul-

taneously acquired surface pressure measurements revealed high-frequency content

(i.e. characteristic of the second mode) associated with their trailing edge, suggest-

ing a potential connection between the two instability mechanisms.

In considering extensions of the present work, we note that all the experi-

ments were performed at low-enthalpy (≤ 2 MJ/kg) conditions. Given the demon-

strated importance of wall-temperature effects on second-mode development (Bitter

and Shepherd, 2015; Laurence et al., 2016) combined with the robustness of the

calibrated schlieren measurement system, experiments conducted at high-enthalpy

conditions would yield important computational validation results, particularly N -

factor slopes, and could be used to characterize the acoustic radiation associated

with the supersonic mode (Chuvakhov and Fedorov, 2016). Experiments performed

in the AFRL LT with the cone installed at different angles of attack could provide

additional meaningful information as well. Since the cone can be installed at a fixed

angle of attack in the LT, the schlieren system can be optimized for each model

configuration; this would allow meaningful data to be acquired at larger angles of

attack than was possible in the T9 campaign, potentially revealing trends in the

N -factor curves that did not appear clearly in the T9 data.

To improve the measurement technique, a combination of simultaneously ac-

quired calibrated schlieren and FLDI should be considered. The FLDI system could
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provide a quantitative measurement of density that can anchor the schlieren N -

factor measurements and eliminate the need for the PSE results. For experiments

conducted in lower freestream Mach numbers, where second-mode wavepacket prop-

agation speeds are lower, use of a linear light source such as an LED can be con-

sidered within the schlieren system. Provided the light source produces sufficiently

high-intensity, high-frequency pulses capable of freezing the flow, second-mode wave

growth can be directly calculated from the pixel intensities as the schlieren response

of the light rays would be linear. Finally, it may also be of interest to extend the

calibration technique to be used in a focusing schlieren system. This would allow

quantitative measurements from schlieren visualizations to be made of second-mode

waves developing on geometries where a traditional schlieren system would fail due

to its integrated nature, such as in the flat-plate experiments of Whalen et al. (2019)

and Kegerise and Rufer (2016).
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Appendix A: Integrated Wall-Normal Density-Gradient Profiles

We note that while the wall-normal spectra computed from the calibrated

density-gradient signals provide information on the development stages of the wavepacket,

the spectra computed from the density profiles may be more desirable information

from the perspective of computational validation. This is particularly true when

comparing to direct measurements of density such as the FLDI study performed by

Parziale (2013). In order to compare the difference between the density gradient

and density signals, the density-gradient distributions used to generate figure 5.13

are integrated downward from the known boundary-layer edge conditions to the

cone surface. Figure A.1 presents the power spectra computed from the integrated

signals at each wall-normal pixel height. A single fundamental peak is present in the

integrated power spectra for all wavepackets in which a two-peak profile is present in

the wall-normal density-gradient power spectra. Further, the fundamental peak of

the integrated spectra occurs at the y/δ location corresponding to the wall-normal

location of the valley between the two density-gradient fundamental peaks. In the

case where a single peak is present in the density-gradient power spectra, a single

peak is still present in the integrated signal spectra, but is located at a y/δ location

further towards the boundary-layer edge. The peaks at the cone surface are believed
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Figure A.1: Integrated wall-normal density-gradient profiles for run 4119 atR= 1782
(top left), R= 1862 (top right), and R= 1990 (bottom).

to be non-physical artifacts of the signal integration.
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Appendix B: Schlieren Integration Effect

In this section we quantify the effect of the integrated nature of the schlieren

system on the measurements. We begin by considering the effect of the cone curva-

ture on a single wave centered on the spanwise PCB array in the AFRL LT exper-

iments. For AFRL LT Run 9, a single wave is observed to have a circumferential

extent of 3.16δ with δ≈ 1.4 mm at the location of the spanwise array (s= 316 mm).

The angle, φ, that the wave covers on the cone surface, is defined in radians as

φ =
a

R
, (B.1)

where R is the radius of the cone at the downstream location of the spanwise array,

and a is the arc length. Using R= 38.5 mm and a= 2.21 mm (one half of the wave

width) to compute the change in height from the centerline to the edge of the wave,

the resulting angle is φ= 3.29◦. We now compute the change in vertical height from

the center to the edge of the packet, h, as

h = R (1 − cosφ), (B.2)

which results in h= 0.0635 mm, or h= 0.045δ. Thus, the effect of cone curvature

will have minimum impact on the measurement of a single wavepacket.
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We now the consider the effect of two wavepackets present at the same stream-

wise location as the spanwise array, but with one wavepacket circumferentially offset

from the center line of the streamwise ray by a distance equal to a single wave width

as shown in schematic B.1. In this case, the arc length spanned between the two

wavepacket centerlines is 6.32δ. Repeating the same analysis as above using the

values R= 38.5 mm and a= 8.85 mm, we arrive at a difference in center-line height

of h= 0.72δ. Referring to §5, in the linear-growth stage the strongest content of

the most-amplified second-mode content is shown to be contained between approx-

imately 0.7 – 0.85δ. Thus, any influence of the circumferential offset wavepacket

would appear in the near-wall region of the schlieren visualization and is not antici-

pated to affect the signals reconstructed at the wall-normal location of the maximum

disturbance intensity. In the case of a mature, nonlinearly evolving wave that has

developed a peak at the outer portion of the boundary layer, the most-amplified

content at the outer edge is located at a maximum height of 1.2δ. The influence

of a circumferentially offset nonlinear wave could potentially appear in the centered

wave at roughly 0.48δ, but again should have no effect on the reconstructed signal.

Finally, we note that while an off-center nonlinearly-evolving wave can affect the

individual wave wall-normal analysis, care is taken to perform the individual wave

analysis on second-mode waves that are clearly centered on the center line of the

cone and do not visually appear to be influenced by off-centered waves.
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Figure B.1: Schematic of two waves present on the cone surface.
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