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Cross-lingual resources such as parallel corpora and bilingual dictionaries are
cornerstones of multilingual natural language processing (NLP). They have been
used to study the nature of translation, train automatic machine translation systems,
as well as to transfer models across languages for an array of NLP tasks. However,
the majority of work in cross-lingual and multilingual NLP assumes that translations
recorded in these resources are semantically equivalent. This is often not the case—
words and sentences that are considered to be translations of each other frequently
diverge in meaning, often in systematic ways.

In this thesis, we focus on such mismatches in meaning in text that we expect
to be aligned across languages. We term such mismatches as cross-lingual semantic
divergences. The core claim of this thesis is that translation is not always meaning
preserving which leads to cross-lingual semantic divergences that affect multilin-
gual NLP tasks. Detecting such divergences requires ways of directly characterizing

differences in meaning across languages through novel cross-lingual tasks, as well



as models that account for translation ambiguity and do not rely on expensive,
task-specific supervision.

We support this claim through three main contributions. First, we show that a
large fraction of data in multilingual resources (such as parallel corpora and bilingual
dictionaries) is identified as semantically divergent by human annotators. Second,
we introduce cross-lingual tasks that characterize differences in word meaning across
languages by identifying the semantic relation between two words. We also develop
methods to predict such semantic relations, as well as a model to predict whether
sentences in different languages have the same meaning. Finally, we demonstrate the
impact of divergences by applying the methods developed in the previous sections
to two downstream tasks. We first show that our model for identifying semantic
relations between words helps in separating equivalent word translations from di-
vergent translations in the context of bilingual dictionary induction, even when the
two words are close in meaning. We also show that identifying and filtering semantic
divergences in parallel data helps in training a neural machine translation system

twice as fast without sacrificing quality.
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Chapter 1: Introduction

Resources such as parallel corpora and bilingual dictionaries serve as corner-
stones of multilingual and cross-lingual natural language processing (NLP). These
resources, which typically consist of words and sentences aligned with their transla-
tions in one or more languages, have a long history of use in building machine trans-
lation (MT) systems (including rule-based (Dugast et al., 2007), statistical (Brown
et al., 1993; Yamada and Knight, 2001), and neural models (Bahdanau et al., 2014;
Vaswani et al., 2017)). Beyond translation, they have also been used to facilitate
cross-lingual learning by transferring labeled data (Hwa et al., 2005; Mayhew et al.,
2017; Yarowsky et al., 2001) and trained models (Kozhevnikov and Titov, 2013;
McDonald et al., 2011) from one language to another for many NLP tasks such as
part-of-speech tagging, named entity recognition, semantic role labeling and syntac-
tic parsing.

A common assumption in most of these works is that all translations recorded
in these resources are semantically equivalent, i.e. the meaning of a word or a
sentence is faithfully reproduced in its translation. However, this is often not the
case. The meaning of a translation frequently diverges from that of the source text,

and often does so in systematic ways. In this thesis, we focus on such mismatches



in meaning in multilingual settings where we expect the text to be aligned to each
other, 7.e. a text is paired with its corresponding translation. We refer to such

mismatches as cross-lingual semantic divergences.

Definition 1. Cross-lingual Semantic Divergences: Mismatches in meaning
in text and its translation which are expected to be aligned across languages and

equivalent in meaning.

Cross-lingual semantic divergences arise naturally as a result of the transla-
tion process. Human translators apply a variety of strategies while translating a
text from one language to another and many such strategies cause the meaning of
the translation to diverge from the source text. For instance, Baker (2011) lists
eight strategies used by professional translators to cope with issues that arise while
translating, some of which are not meaning preserving e.g. replacing a word by
a more general or a more specific word, or omitting parts of the source text to
make the translation clear. As such, semantic divergences are found not only in
automatically created noisy parallel corpora and dictionaries, but also in curated
resources such as test corpora used to evaluate MT systems and dictionaries created
by humans. Table 1.1 shows examples of divergent pairs selected from two cor-
pora created in different ways—one by automatically aligning TV /movie subtitles
from different languages (Tiedemann, 2007), and the other manually by professional
translators (Callison-Burch et al., 2012). Divergences also occur in comparable cor-
pora that describe the same topic in different languages, such as news or Wikipedia

articles. For instance, the English Wikipedia article of actor David Tennant states



Divergent sentences in OpenSubtitles

en someone wanted to cook bratwurst.
fr vous vouliez des saucisses grillées.
gl you wanted some grilled sausages.

en idon’t know what i’'m gonna do.
fr j’en sais rien.
gl idon’t know.

en - has the sake chilled? - no, it’s fine.
fr - c’est assez chaud?
gl - it is hot enough?

en you help me with zander and i helped you with joe.
fr tu m’as aidée avec zander, je t’ai aidée avec joe.
gl you helped me with zander, i helped you with joe.

Divergent sentences in newstest2012

en iknow they did.
fr je le sais.
gl 1iknow it.

en the female employee suffered from shock.
fr les victimes ont survécu leur peur.
gl the victims have survived their fear.

Table 1.1: Parallel sentences exhibit semantic divergences, as can be seen in these
examples (English sentence (en), French sentence (fr) and its gloss (gl)) observed
in a random sample of OpenSubtitles and the newstest2012 test set from WMT
evaluations.

“David Tennant is a Scottish actor”, while the corresponding French article says
“David Tennant, est un acteur britannique” (“David Tennant is a British actor”).
Thus, the English article is more specific than the French article.

Automatically identifying cross-lingual semantic divergences provides seman-
tic insight into multilingual text by precisely characterizing differences in meaning
between words and sentences in different languages. Knowledge of divergences en-
coded in resources can help in better exploiting them for multilingual tasks that

rely on such resource, such as (but not limited to) machine translations. Identifying



divergences in output of automatic methods provides a window into the working of

such models, and an opportunity to further improve them.

1.1 Thesis Statement

Translation is not always meaning preserving which leads to cross-lingual se-
mantic divergences that affect multilingual NLP tasks. Detecting such divergences
requires ways of directly characterizing differences in meaning across languages
through novel cross-lingual tasks, as well as models that account for translation

ambiguity and do not rely on expensive, task-specific supervision.

1.2 Roadmap

We support the claims of the thesis statement in three ways. We quantify how
often semantic divergences occur in commonly used resources, motivate tasks and
build models to recognize and characterize differences in meaning across languages,
and use these models to understand the impact of divergences on downstream tasks.

We start by surveying the body of literature relevant to the thesis in Chapter 2.
After establishing our definition of divergences, we discuss how translation is not
always meaning preserving. We also look at the various ways in which semantic
divergences manifest in data. To contextualize our work on identifying meaning
differences between across languages, we discuss relevant work in computational
modeling of lexical semantics.

In Chapter 3, we establish that semantic divergences occur frequently in bilin-



gual resources that record translations. We analyze data from three commonly used
datasets—two parallel corpora and a bilingual dictionary—containing translations
of different granularities, and show that almost 20-40% of examples are judged to
be divergent by human annotators. This highlights the need for precise ways of
characterizing differences in meaning across languages.

Chapters 4 and 5 introduce two new tasks for precisely characterizing differ-
ences in cross-lingual word meaning by identifying the semantic relation between
two words in different languages. Additionally, we also introduce models for these
tasks that do not rely on task-specific cross-lingual training data and respect the
ambiguous nature of translation. We start in Chapter 4 by motivating the task of
identifying cross-lingual hypernymy, as hypernymy is commonly observed in auto-
matically induced translation pairs (Peirsman and Padé, 2011). Our solution to this
task, BISPARSE-DEP, uses sparse, bilingual word embeddings combined with an un-
supervised scoring function (Geffet and Dagan, 2005). BISPARSE-DEP embeddings
are learned jointly in the two languages using monolingual corpora, and a bilingual
dictionary that aligns the two languages. Experiments show that BISPARSE-DEP
identifies cross-lingual hypernymy more accurately than methods based on trans-
lation and existing cross-lingual embeddings, when evaluated on a challenging new
dataset covering four languages paired with English. BISPARSE-DEP is also robust
when exposed to various resource-scarce settings.

In Chapter 5, we then expand to simultaneously classifying between multi-
ple lexical relations defined under the natural logic framework (MacCartney and

Manning, 2009) which have been useful in describing relations between English



paraphrases (Pavlick et al., 2015), and in downstream natural language inference
systems (MacCartney and Manning, 2007). We present BILEXNET, a weakly su-
pervised neural classifier that learns to predict cross-lingual semantic relations.
BILEXNET is trained on monolingual examples of semantic relations and a bilin-
gual dictionary, using a novel approach based on knowledge distillation. Evaluated
on a test bed of English-Hindi and English-Chinese word pairs labeled with the
correct semantic relations, BILEXNET outperforms methods that more naively rely
on bilingual embeddings or dictionaries for translation and cross-lingual transfer.
Crucially, both BISPARSE-DEP and BILEXNET rely on bilingual dictionaries for
cross-lingual transfer, and in both cases, these dictionaries capture translation am-
biguity by allowing multiple translations for each word.

Chapter 6 focuses on identifying semantic divergences in parallel sentences. We
introduce an approach based on neural semantic similarity that separates divergent
examples from semantically equivalent examples, and does so more accurately than
models based on surface features and word alignments. Importantly, this model also
does not require manually annotated task-specific data, and thus can be trained for
any language pair and domain with a parallel corpus.

Chapter 7 takes an extrinsic view and studies semantic divergences in the
context of downstream tasks. First, we model word-level divergences in the context
of bilingual dictionary induction using BILEXNET, and show that even when the
input word pair is close in meaning, BILEXNET helps separate divergent translations
from equivalent translations. Second, we show that divergences in parallel sentences

slow down training of neural machine translation models and filtering these out



using the method introduced in the previous chapter makes training twice as fast
with no loss in translation quality.

Finally, we conclude in Chapter 8 by summarizing our contributions, high-
lighting the shortcomings of the work described in this thesis, and suggesting future

directions.

1.3 Contributions

The main contributions of this thesis can be divided into four areas:

e Conceptual: Recognizing that translation is not always meaning preserving,
we introduce two novel cross-lingual tasks viz. cross-lingual hypernymy detec-
tion, and cross-lingual identification of lexico-semantic relations, with the aim
of precisely characterizing differences in word meaning across languages. These
tasks have been previously only studied in monolingual settings where the two
words are in the same language or in transfer settings, where models from one
language are ported to another language. Instead, we propose cross-lingual

tasks with the objective of directly comparing words in two languages.

e Models: We design three methods to identify differences in meanings between
words and sentences in two languages. The lack of labeled data discourages
traditionally supervised methods, hence we do not rely on task-specific cross-
lingual training. Importantly, these methods incorporate translation ambigu-
ity as part of the modeling process. Specifically, to identify how word meanings
are related, we introduce an unsupervised algorithm for cross-lingual hyper-

7



nymy detection, and a weakly supervised method for identifying cross-lingual
semantic relations. Both these methods rely on monolingual and bilingual
corpora, and bridge the gap between the two languages using a bilingual dic-
tionary that preserves ambiguity by recording multiple translations for each
word. Our third method is a deep neural model for identifying semantic diver-
gences in parallel sentences that uses synthetic supervision where the negative

examples are based on mismatches from parallel segments.

Data: To evaluate our (and future) models, we collect and release several
datasets. First, we provide a dataset for evaluating models of cross-lingual
hypernymy which covers four language pairs (English-French, English-Arabic,
English-Chinese, and English-Russian), and contains approximately 3000 pos-
itive examples of cross-lingual hypernyms, paired with an equal number of
negative examples. Second, we introduce MULTILEXREL, a dataset of al-
most 2000 English-Hindi and English-Chinese word pairs labeled with natural
logic relations. Finally, we release a dataset of parallel sentence pairs labeled
with binary divergence annotations. Our models and datasets are all available

publicly at https://github.com/yogarshi.

Applications: We evaluate the impact of semantic divergences and semantic
relations between words on two downstream tasks and show that divergences
affect the quality of automatically constructed dictionaries, and slow down
neural MT training. We also show that we can filter out semantic divergences

to improve training times of neural M'T models.


https://github.com/yogarshi

Chapter 2: Background

2.1 Translation

In Chapter 1, we defined cross-lingual semantic divergences as mismatches in
meaning in text and its translation, that is typically expected to be aligned across
languages and equivalent in meaning. We also claimed that such divergences arise
because translation is not always meaning preserving. Here, we support this claim
by looking at different ways in which translation equivalence has been defined and
how such definitions do not necessarily ensure the preservation of meaning between

the source and target texts.

2.1.1 Meaning and Semantic Equivalence

In order to study semantic divergences, we must first establish what it means
for two texts to have the same meaning or to be semantically equivalent. This
requires laying down an operational definition of meaning.

Defining the meaning of a word has been a fundamental problem in the phi-
losophy of language and lexical semantics (see Gasparri and Marconi (2015) and

Murphy (2010, Chap. 2) respectively, for a comprehensive discussion). For the pur-



pose of this thesis, we are interested in a denotative definition of meaning, i.e., we
want a definition that that tells us what a word can and cannot refer to. Denota-
tive meaning stands in contrast to connotative meaning, which refers to the looser
semantic associations of a word, which do not form the core denotative meaning of
a word.

We follow Murphy (2010, p. 36) and define the meaning of a word as its word
senses. Further, again following Murphy (2010, p. 39), we define a word sense as
an abstract representation that connects the word form to the concept as it exists
in the world. This definition of word meaning is in contrast to a referential theory
of word meaning, which defines the meaning of a word as the set of things that it
can refer to (or “point out”) in the world.

The sense-based definition of word meaning leads to a simple definition of
lexical equivalence that is also language independent—two words are semantically
equivalent iff they share at least one word sense. As a proxy for this abstract repre-
sentation, we computationally represent words using distributional or vector space
representations which are empirically estimated using contextual co-occurrences
from a corpus. Such representations are based on the distributional hypothesis,
which claim that the meaning of a word is defined on the basis of the words that it
co-occurs with (Firth, 1957; Harris, 1954).

We define the meaning of larger units of texts (such as phrases and sentences)
following the principle of compositionality, i.e. the meaning of a sentence, depends
in some way on the words that constitute the sentence. Again, as a proxy for this

compositional representation, we will use an empirical model of representing the
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meaning of a sentence that uses recurrent neural networks to encode the meaning
of a sentence based on its words. We call two sentences semantically equivalent iff
they are paraphrases of each other i.e. they represent the same event or fact without
additional explanation of the context in which these two sentences occur.

The definitions of semantic equivalence between words and sentences laid down
here are practical notions that can be easily applied across languages. They are
also well suited for not just skilled translators, but also to bilingual speakers of
both the source and target language such as the non-expert bilinguals who provide

annotations in this work (Chapter 3 as well as Sections 4.4 and 5.3).

2.1.2 Translation Equivalence is not Semantic Equivalence

Defining translation equivalence has been a fundamental (and often controver-
sial) problem in the translation studies literature. Broadly, translation equivalence
is used to indicate that the text being translated (or the source language text) and
its translation (or the target langauge text) have some sort of “sameness” or “sim-
ilarity” (Panou, 2013). Different ways of characterizing this similarity have given
rise to various definitions of translation equivalence over the years.

Vinay and Darbelnet (1958) claim that equivalence is situational. They present
equivalence as a procedure in which a situation described in the source text, is
presented in the target language using different words.

In a seminal work, Nida (1964) posits the idea of dynamic equivalence. Under

this definition, a translation aims to evoke the same response in readers of the
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translation, as it did in readers of the source language text. He contrasts this with
formal equivalence, where the focus is on translating more literally and maintaining
the lexical choices and the grammatical structure of the source language text. This
definition moves beyond faithfulness to the source text, and is the first to take into
account the receptor of the target text into account. Newmark (1981) also supports
such a view of equivalence, using the terms semantic and communicative equivalence
respectively. Thus, such definitions of equivalence move beyond the semantics of the
source and the target text and focus on the effects of the two texts on readers.

Similarly, House (1997) claims that a source text and a target text are equiv-
alent only if they serve the same function. This definition adopts a more pragmatic
view of equivalence and requires taking into account both textual and non-textual
aspects of the source and the target text.

Finally, it has also been argued that a single definition of equivalence is im-
possible to define. Koller (1979) and Baker (2011) both define a taxonomy of
equivalences and claim that different situations require preserving different kinds
of equivalences, and it is the job of the translator to identify such needs.

These definitions make it clear that good translations do not necessarily convey
the exact meaning as the source text ¢.e. translation equivalence is not necessarily

semantic equivalence, as defined in the preceding subsection (Section 2.1.1).
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2.1.3 Automatically Identifying Translation Correspondences using
Alignment

Computationally, translation correspondences are identified using the process
of alignment. Given a source text and its translation in the target language, align-
ment refers to the procedure of identifying which part of the source text is translated
to which part of a target text (Wu, 2010). Alignment is a key component of the
machine translation pipeline and pieces of texts that are aligned to each other are
expected to be semantically equivalent.

The primary resource that machine translation systems rely on are parallel
corpora. Parallel corpora contain a collection of original texts in a source language
and their translations into a set of target languages. The translated documents are
automatically segmented into sentences which are further automatically aligned to
their corresponding source sentences, based on information such as sentence length
and order in the documents (Brown et al., 1991; Gale and Church, 1991). The re-
sulting sentence pairs form training examples for machine translation (MT) systems.
While neural MT architectures directly learn translation models from these sentence
pairs, statistical M'T systems rely on word level translation lexicons automatically
induced by aligning words within sentence pairs (Brown et al., 1993).

A common assumption in multilingual NLP is that translations identified using
alignments are semantically equivalent. For example, MT systems are regularly
trained on all aligned sentences from commonly used parallel corpora (Bahdanau

et al., 2014; Vaswani et al., 2017, inter alia), cross-lingual embeddings are trained
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using word-aligned and sentence-aligned corpora with the assumption that aligned
words and sentences are equivalent in meaning (Klementiev et al., 2012; Luong et al.,
2015), and word alignments are commonly used to build translation lexicons (Koehn
et al., 2007). In studying cross-lingual divergences, we focus on situations where this

assumption of alignment implying semantic equivalence does not hold.

2.1.4 Semantic Divergences in Noisy Parallel Data

While perfectly valid translations can cause semantic divergences, such diver-
gences also manifest in real-world data due to different kinds of noise. A large body
of prior MT work has focused on detecting noise in parallel data, and identifying
the impact of such noise on phrase-based and neural MT systems.

Goutte et al. (2012) show that phrase-based systems MT are remarkably robust
to noise in parallel segments. When introducing noise by permuting the target side
of parallel pairs, as many as 30% of training examples had to be permuted to degrade
translation quality significantly (measured using the BLEU score (Papineni et al.,
2002)). While such artificial noise does not necessarily capture naturally occurring
divergences, there is evidence that data cleaning to remove real noise can benefit
MT, including in low-resource settings (Matthews et al., 2014).

Advances in machine translation afforded by neural models are accompanied
by newer and perhaps more increased concerns about noise in data and its impact
on models. While the idea of crawling the web for automatically obtaining parallel

data is not new (Resnik, 1999), there has been an increasing amount of focus on
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building such corpora to satisfy data-hungry neural models (Koehn et al.; 2018a;
Schwenk et al., 2019; Tiedemann, 2007). To mitigate the impact of noise from such
corpora, Koehn et al. (2018b) propose a shared task where participants develop
methods to filter a large, noisy parallel corpus to a smaller sized corpus of high
quality sentence pairs. Models trained on this smaller corpus are evaluated on a
variety of test sets to measure their generalization capability across domains and
genres. The more successful participants rely on large neural MT and language
models as features for learning scoring functions for sentence pairs, highlighting the
need for more lightweight approaches.

On the modeling side, neural M'T models appear to be more sensitive to the
nature of training examples than phrase-based models. Chen et al. (2016) suggest
that neural MT systems are sensitive to sentence pair permutations in domain adap-
tation settings. Belinkov and Bisk (2017) demonstrate the brittleness of character-
level neural MT when exposed to synthetic noise (random permutations of words
and characters) as well as errors that can be made naturally by humans. Hassan
et al. (2018) claim that even small amounts of noise has adverse effects on neural
MT models, as they tend to assign high probabilities to rare events. The higher
sensitivity of neural models makes it imperative to test whether and to what extent
are such systems affected by semantic divergences. We return to this problem in

Chapter 7.
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2.1.5 Translation Divergences

Previous work in MT has focused on translation divergences, which have been
defined as structural or syntactical differences between sentences that convey the
same meaning (Barnett et al., 1991; Dorr, 1990). The key difference between se-
mantic divergences and translation divergences is that the former refers to differences
in meaning, while the latter reflects the fact that languages can encode the same
meaning in different ways.

The study of translation divergences was pioneered by Dorr (1994) who de-
scribes seven types of translation divergences based on English, German, and Span-
ish along with an interlingua-based MT approach to handle such divergences. Later
work has used this classification to study translation divergences between more dis-
tant language pairs such as English-Hindi (Dave et al., 2001) and Urdu-English (Sa-
boor and Khan, 2010). However, applying a taxonomy defined using a set of Euro-
pean languages to more distant languages is restrictive since divergence phenomena
differ across languages from different families. Moreover, defining an exhaustive
set of divergences manually for each language pair is difficult and needs bilingual
experts. To overcome these issues, Deng and Xue (2017) propose a data-driven
approach for studying translation divergences. They utilize the large amounts of
parallel data available to modern MT systems to semi-automatically identify and
categorize translation divergences between English and Chinese. Their strategy

consists of manually aligning parse trees in the two languages, and then using the
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alignment between the non-terminal nodes of the parse trees to extract divergences.
Using such a data-driven approach reveals that translation divergences occurring in
large-scale parallel data are far more diverse than the few categories described in
previous work. They also show that divergences are captured by rules encoded in a
syntax-based SMT framework (Chiang, 2007).

As it stands, there has been little work that investigates the impact of transla-
tion divergences in neural M'T models. While neural models are known to produce
more fluent output (Bentivogli et al., 2016; Koehn and Knowles, 2017), it remains

to be seen whether and to what extent can they handle such divergences.

2.2 Divergences in Sentences Beyond Parallel Data

The work discussed so far looks at semantic divergences in the context of
parallel corpora and machine translation. However, a larger body of work has looked
at the broader notion of semantic equivalence between sentences and phrases, both
within and across languages, with different ways of characterizing non-equivalence.

The task of paraphrase identification aims to identify whether two texts (sen-
tences or phrases) have the same meaning or not (Dolan et al., 2004). A key resource
in the context of this task is the Paraphrase Database (PPDB) which consists of
millions of automatically extracted paraphrases in different languages (Ganitkevitch
et al., 2013). This dataset consists of lexical, phrasal, and syntactic paraphrases de-

rived from large bilingual parallel corpora using the pivoting technique proposed

'Manually instead of automatically to isolate real divergences caused by different syntactic
realizations from artificial ones produced by erroneous parses.
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by Bannard and Callison-Burch (2005). The intuition behind the technique is that
two strings in the source language that translate to the same string in a target
language can be assumed to be paraphrases of each other. However, PPDB is rife
with divergences—Pavlick et al. (2015) show that the diversity of semantic relations
found in word-aligned parallel corpora causes the pivoting technique to yield seman-
tically divergent paraphrases. They (automatically) annotate the English PPDB
with semantic relations defined under the natural logic framework (MacCartney
and Manning, 2009). This labeling reveals that the largest English PPDB collection
(PPDB-XXXL) which consists of 77.4M paraphrase pairs, contains less than 10%
pairs which are truly equivalent. This does not diminish the utility of the other 90%
pairs, but knowing the precise relation between these divergent pairs can help in us-
ing them more effectively for downstream tasks. The idea that not all paraphrases
have to be logically equivalent has also been supported through linguistic definitions
of paraphrases, which allow for quasi-synonymity or only approximate equivalence
between paraphrases (Beaugrande and Dressler, 1981; Bhagat and Hovy, 2013).
Two texts that are not exactly equivalent or paraphrases of each other exhibit
varying degrees of similarity. The task of identifying the semantic textual simi-
larity softens the binary notion of equivalence assumed by paraphrase tasks. The
objective instead is to assign a real valued score to a sentence pair that captures a
graded similarity between the two sentences (Agirre et al., 2014; Corley and Mihal-
cea, 2005). However, STS only tells us to what extent two sentences differ, but not
how they differ. One framework that explicitly characterizes the nature of semantic

divergences is textual entailment (TE) (Dagan and Glickman, 2004). To recognize
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textual entailment is to identify whether the meaning of one sentence (the premise
or the text) implies the meaning of another sentence (the hypothesis). While moti-
vated from logical entailment, the definition of textual entailment is more relaxed: a
sentence t entails h if, typically, a human reading ¢ would infer that A is most likely
true. By virtue of this definition, textual entailment also eschews the symmetry in-
herent to paraphrase detection and STS, since entailment relations are asymmetric.

In the following example,

— Premise: Raj bought a novel yesterday

— Hypothesis: Raj purchased a book

the premise entails the hypothesis, but the reverse is not true.

These various frameworks have also been used to study differences in meaning
across languages. In multilingual settings, work on cross-lingual semantic textual
similarity (Agirre et al., 2014) and cross-lingual textual entailment (Mehdad et al.,
2010; Negri et al., 2012, 2013) characterizes semantic relations between sentences in
different languages beyond translation equivalence. These tasks have similar goals as
their monolingual counterparts, with the key difference being that the input consists
of a pair of words, phrases or sentences in different languages. Recent work has
also promoted work on cross-lingual transfer for such tasks, where models trained
on English are evaluated on other languages (Agi¢ and Schluter, 2018; Conneau
et al., 2018). Cross-lingual models share core intuitions, relying either on MT to
transfer the cross-lingual task into its monolingual equivalent (Jimenez et al., 2014;
Zhao et al., 2013), or on features derived from MT components such as translation
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dictionaries and word alignments (Lo et al., 2016; Turchi and Negri, 2013).

Models based on deep neural networks have also been proposed for monolingual
and cross-lingual versions of the tasks (He et al., 2015; Rocktéschel et al., 2015; Tai
et al., 2015, inter alia). These models are generally more accurate than their non-
neural counterparts (He and Lin, 2016). Naturally, improved performance comes
with reliance on large amounts of training data. This restricts the direct application
of neural models in cross-lingual settings, where labeled training data is scarce to
non-existent. We return to neural models and the question of their training in
Chapter 6 where we discuss a deep neural architecture for semantic similarity that
we re-purpose for detecting divergences in parallel data, and show an effective way
of training such a model without human annotated cross-lingual data.

A key limitation of datasets proposed for cross-lingual STS (Cer et al., 2017)
and TE (Conneau et al., 2018; Negri et al., 2012, 2013) is that they are prepared by
translating one side of existing datasets into the language of interest, specifically for
the purpose of the task. Such techniques rely on the assumption that translation
is meaning preserving and that semantic relations between words and sentences
are preserved across languages. As discussed in Section 2.1.2; this assumption is
not always valid, and in this thesis we build datasets of divergences that consist of

naturally occurring cross-lingual pairs drawn from a parallel corpus (Chapter 3).
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2.3 Lexical Divergences and Semantic Relations

In the previous two sections, we saw various ways in which divergences arise in
translations, and we saw how various frameworks have been introduced to charac-
terize differences in meaning between sentences. In this section, we look at semantic

divergences between words.

2.3.1 Non-equivalence of Lexical Translations

The observation that a word and its translation often do not cover the exact
same semantic space has been recognized and exploited in various ways. Even
withing a single language, it has been widely argued that true synonymy is rare, if
it exists at all. The principle of contrast by Clark (1987) represents one extreme
end of such argument as it claims that if two words differ in form, they differ in
meaning. On the other hand, Church et al. (1994) argue that many (but not all)
synonyms can be identified by their ability to substitute for each other in broader
context. Edmonds and Hirst (2002) claim that true meaning equivalence (or true
synonymy) between words is very rare. They instead argue that synonyms are more
likely to be near-synonyms. Near-synonyms are very similar, but not identical, in
meaning. They are not fully inter-substitutable, but instead vary in their shades of
denotation, connotation, implicature, emphasis, or register.

Edmonds and Hirst (2002) also claim that near-synonymy is the norm for
lexical choice in translation, i.e. the word in the target language that is closest to

that in the source text is more often a near-synonym rather than an exact synonym.
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Words are also often translated non-literally due to lexical gaps or decisions made by
translator (Bentivogli and Pianta, 2000; Santos, 1990). For instance, Baker (2011)
suggests that a common strategy used by translators is to translate a word to a
more general word, if an exact translation for the original word cannot be found.

Consider the example below:

— Source Text : Shampoo the hair and lightly towel dry.

— Target Text : Lavar el cabello y frotar ligeramente con una toalla.

— Gloss : Wash hair and rub lightly with a towel.

Here, the translator has chosen to replace the word “shampoo” by the more general
word “wash”, which leads to a semantic divergence (you can wash lots of things,
but you can only shampoo hair). This shows that semantic divergences often arise
as a result of differences in meaning between words and their translations, and often
such words and their translations are related in systematic ways.

A related observation is made by Peirsman and Padé (2011) who claim that
that many pairs in automatically generated translation lexicons exhibit semantic re-
lations beyond synonymy. In an analysis of a German-English lexicon, they observe
that only about half of a random sample of pairs exhibit synonymy, and about 20%
evoke well-defined taxonomic relations other than synonymy ¢.e. relations that are
covered by a taxonomy or ontology such as WordNet (Fellbaum, 2010; Miller, 1995).

These relations include:

1. Hypernymy: Is-A relation; e.g. Dramatiker (‘playright’) - writer (writer is a
hypernym of Dramatiker)
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2. Hyponymy: Reverse of hypernymy; e.g. Kunstwerk (‘work of art’) - painting

(painting is a hyponym of Kunstwerk)

3. Co-hyponymy: Words with a common hypernym; e.g. Straenbahn (‘tram’)

- bus

4. Antonymy: Opposites; e.g. Inneres (‘interior’) - exterior

Inspired by this observation, they call for work on identifying such relations
in cross-lingual settings, but there has been little work on such tasks. Our work
(Chapters 4 and 5) aims to fill this gap by defining cross-lingual tasks that directly
characterize differences in meaning between words in two languages by identify-
ing the semantic relation between them. We also introduce datasets for this task
consisting of bilingual words pairs that are directly annotated for the semantic rela-
tions of interest, and are not simply translations of monolingual datasets as in prior
work (Glavas and Vuli¢, 2018).

While work in cross-lingual settings has been limited to multilingual tax-
onomies (Bond and Foster, 2013; Navigli and Ponzetto, 2012), semantic relations
beyond synonymy have been very well-studied in monolingual settings. Our cross-
lingual models in Chapters 4 and 5 share several core ideas with methods for the
monolingual task, so we briefly discuss the various relations and methods for iden-

tifying them within a single language.
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2.3.2 Lexico-semantic Relations

The term semantic relations is used to denote meaningful, well-defined as-
sociations between two or more concepts, entities or sets of entities. When these
relations are studied on the basis of words used to represent the concepts, then they
are called lexical relations, or lexico-semantic relations. In this thesis, we use these
two terms interchangeably, since we will always focus on relations between concepts
represented by words.

Semantic relations have been studied by Cruse (1986) under the umbrella of
congruence relations between lexical items. He defines four congruence relations
using elementary relations from set theory. The four congruence relations defined

over classes A and B (with their corresponding semantic relations) are:

1. Identity: A and B have the same members

2. Inclusion: B is wholly included in A

3. Overlap: A and B have members in common but each has members not

found in the other

4. Disjunction: A and B have no members in common

The congruence relations defined above are further used by Cruse (1986) to a
fundamental set of lexical relations, which have also been studied computationally.
Inclusion, as defined by Cruse (1986), corresponds to the hypernymy /hyponymy

relations. A word w; is a hypernym of another word wjy, if the concept represented
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by wy can be claimed to be a kind of w; e.g. author is a hypernym of Shakspeare,
and Shakespeare is a hyponym of author. A closely associated relation to hypernymy
is co-hyponymy. Two words are said to be co-hyponyms if they share a common
hypernym e.g. Shakespeare and Austen are co-hyponyms because they both share
a common hypernym viz. author. Antonymy captures opposites e.g. hot and cold.
Both antonymy and co-hyponymy can be thought of as sharing the disjunction
congruence relation. Finally, meronymy (and its reverse holonymy) captures
part-whole relationships between concepts : engine is a meronym of car, finger is a
meronym of a hand. While these relations capture principled associations between
words, they only exist between a small set of words. Boyd-Graber et al. (2006)
propose identifying the evocation relation between concepts i.e. to what extent
does one concept bring to mind another. Unlike the other relations, evocation is a
weighted relation since different concepts can have different strengths of evocations
with respect to a specific concept. Recent work by Vuli¢ et al. (2017) also adds a
weight to the hypernymy relation, with the claim that not all hypernym relations
are equally significant.

An overarching concept that attempts to unify several of these relations is
that of lexical entailment which was introduced by Geffet and Dagan (2004) to
capture the notion of meaning-preserving substitutability. Informally, a word w
lexically entails another word v, if w can substitute for v in some contexts, while
implying v’s original meaning. Lexical entailment generalizes over the taxonomic
relations discussed above—synonyms typically entail each other, hyponyms entail
their hypernyms, while entailment holds for meronymy in only certain cases. Resnik
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Natural Logic Taxonomic | PPDB Monolingual
Relation Relation Label Example
Equivalence Synonymy Equivalence dog, canine
Forward Entailment | Hypernymy Forward Entailment | crow, bird
Reverse Entailment | Hyponymy Reverse Entailment | bird, crow
Negation Antonymy Exclusion good, evil
Alternation Co-hyponymy | Exclusion dog, cat
Independence Other Other hungry, hippo

Table 2.1: A unified summary of taxonomic semantic relations, natural logic rela-
tions (MacCartney and Manning, 2007), and the re-definition of the natural logic
relations for PPDB (Pavlick et al., 2015), along with examples.

(1993) advances a similar notion of plausible entailment to define synonymy: two
words share a meaning if there is a representative context in which they are mutually
substitutable without changing the inferences that one can draw about that context.

Variations on some of these relations have been defined under the natural logic
framework defined by MacCartney and Manning (2007, 2009) to perform textual
inference directly over natural language without using formal logic representations.
The natural logic relations were further refined by Pavlick et al. (2015) to identify
relations between paraphrases in PPDB. The negation and alternation relations as
defined by MacCartney and Manning (2009) are replaced by the broader notion
of exclusion, while the cover relation is entirely dropped as its practical utility is
unclear. We use this re-definition in our study of cross-lingual semantic relations
(Section 6.2). These relations and their correspondence with taxonomic relations

are summarized in Table 2.1.
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¢ S: (n) gym shoe, sneaker, tennis shoe (a canvas shoe with a pliable rubber
sole)
o direct hyponym | full hyponym
e S: (n) plimsoll (a light gym shoe with a rubber sole and a
canvas top)
o direct hypernym | inherited hypernym [ sister term
o domain region
o direct hypernym | inherited hypernym [ sister term
e S: (n) shoe (footwear shaped to fit the foot (below the ankle) with a
flexible upper of leather or plastic and a sole and heel of heavier
material)

Figure 2.1: Example of a WordNet synset (gym shoe, sneaker, tennis shoe), along
with its hypernym (shoe), and its hyponym (plimsoll) synsets

2.3.3 Automatic Methods for Detecting Hypernymy and Hyponymy

The most well-studied relations from those discussed in the previous section
are the dual hypernymy-hyponymy relations. Fundamentally, these relations are de-
fined between word meanings or concepts (Miller et al., 1990) : a concept lexicalized
as L is a hypernym of another concept lexicalized as Lo (or Lg is a hyponym of
Ly), if Ly can be claimed to be a kind of L;. One of the earliest contributions to
the computational study of hypernyms and hyponyms was WordNet, a taxonomy
that organizes words in English into unordered sets of synonyms that each expresses
a distinct concept (Miller et al., 1990). These synsets are then linked using vari-
ous semantic relations, of which hypernymy and hyponymy are the most frequent.
Figure 2.1 shows an example synset with its hypernym and hyponym synsets.

Defining such relations simply on the basis of concepts organized in a taxonomy
is restrictive, as this does not allow inferring relations between new words or words

from a different domain that are not already present in the taxonomy. This has
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encouraged development of automatic methods for identifying hypernymy between

two word types. There are two main family of methods for identifying hypernymy:

Pattern-based The earliest approaches for automatically identifying hypernyms
suggested that noun phrases connected by specific textual patterns are indicative
of hypernymy (Caraballo, 1999; Hearst, 1992) e.g. “such authors as Shakespeare”
indicates that author is a hypernym of Shakespeare. Snow et al. (2005) extend
such approaches to take into account syntactic patterns extracted from dependency
parses, which allow capturing of more complex long-distance phenomena. Such
approaches have also been extended to languages other than English (Lefever et al.,
2014; Yildirim and Yildiz, 2012). Path-based methods are limited by their recall,
since they model the hypernymy relation based on the joint occurrence of the two
input words, and thus require both words to occur together in a sentence in the

given corpus.

Distributional Distributional methods, on the other hand, base their predictions
on separate contexts for each of the two words. Each input pair is represented using
a combination of the vector representations of the two words, and a prediction is
made based on this input representation. Distributional methods do not suffer from
the coverage issue that pattern-based approaches suffer from as they do not require
the two input words to co-occur. However, they are less precise at identifying the
hypernymy relation, and more successful at detecting broad semantic similarity.

Distributional methods can also be further divided into unsupervised and su-
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pervised techniques. Unsupervised methods take in as input the vector space rep-
resentations (or, word embeddings) of the two words as features and output a real
valued score which indicates the degree of hypernymy. The scoring functions used
by these approaches are motivated by specific linguistic hypotheses. One such idea
underlying several scoring functions (Clarke, 2009; Kotlerman et al., 2009; Lenci
and Benotto, 2012) is the Distributional Inclusion Hypothesis which posits that the
prominent context features of a hyponym are expected to be included in those of
its hypernym (Geffet and Dagan, 2005). Scoring functions based on this hypoth-
esis have been highly successful at detecting hypernymy (Shwartz et al., 2017).
The distributional inclusion hypothesis serves as a key modeling hypothesis for our
Bi1SPARSE-DEP model for cross-lingual hypernymy identification (Section 4.2).
Supervised methods for hypernymy detection generally outperform unsuper-
vised approaches, but they require labeled training data i.e. word pairs which are
known to be hypernyms/hyponyms of each other. Early supervised approaches have
relied on simple operations over the word embeddings of the two words as input fea-
tures to a linear classifier or an SVM with a polynomial kernel (Fu et al., 2014; Roller
et al., 2014; Weeds et al., 2014). Prompted by concerns that such methods only learn
prototypical properties of individual words (such as the fact that animal is likely
to be a hypernym), and not relations between the word pair (Levy et al., 2015),
subsequent techniques have incorporated non-linear transformations (Glavas and
Ponzetto, 2017). More recent supervised methods attempt to combine the precision
of pattern-based approaches with the coverage of embedding based methods (Roller

and Erk, 2016; Shwartz et al., 2016). For instance, Shwartz et al. (2016) show that
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by using an integrated neural network which encodes patterns between words using
an LSTM, and combines this encoded representation with the distributional repre-
sentations of the two words, they can more successfully identify hypernyms than

purely pattern-based or distributional methods.

2.3.4 Automatic Methods for Other Relations

Automatic methods for identifying relations beyond hypernymy also use both
pattern-based (Berland and Charniak, 1999; Chklovski and Pantel, 2004; Nguyen
et al., 2017) and distributional approaches (Yih et al., 2012). However, most meth-
ods target a single relation and isolate instances of that relation from those of
other relations. In general, methods that deal with multiple semantic relations
are fewer (Pantel and Pennacchiotti, 2006; Pennacchiotti and Pantel, 2006; Turney,
2008), and recent shared tasks have shown that this is a challenging problem, espe-
cially when ontologies and other structured resources are not available, and models
are trained only on raw corpora (Santus et al., 2016).

Shwartz and Dagan (2016b,c) generalize their integrated method for detect-
ing hypernymy (Shwartz et al., 2016) and show that they can more successfully
distinguish between multiple relations than other approaches. This model, called
LEXNET, is a starting for our model for identifying cross-lingual semantic relations
(Chapter 5). However, LEXNET is fully supervised and needs labeled data for train-
ing. This is an unrealistic assumption in cross-lingual settings, and we discuss how

we train a comparable cross-lingual model without direct supervision (Section 5.2).
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2.3.5 Semantic Relations across Languages

Work on lexico-semantic relations discussed above has largely focused on a sin-
gle language, which is more often than not English. In recent years, however, there
has been some investigation on cross-lingual transfer of models for semantic rela-
tions. This line of works asks whether we can use models trained in a high resource
language with labeled data (say English) to identify semantic relations in other lan-
guages (Glavas and Vuli¢, 2018; Roth and Upadhyay, 2019). The assumption of
availability of only high-resource training data is shared by our model (Section 5.2).
However, we make predictions between words in two different languages, while the
aforementioned works still focus on a single language.

The development of linked multilingual resources such as Babelnet (Navigli
and Ponzetto, 2012) and the Open Multilingual WordNet (Bond and Foster, 2013)
also provides a way to identify relations across languages, but just as in monolingual
WordNet, these resources are limited by domain and vocabulary, and expensive to
create and maintain. In this thesis, we generalize traditionally monolingual tasks
to cross-lingual settings by providing datasets and benchmarks for cross-lingual hy-
pernymy (Chapter 4) and cross-lingual semantic relations (Chapter 5). We build
models that can automatically identify such relations without relying on expensive

cross-lingual ontologies or labeled training data.
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2.3.6  Utility in downstream tasks

Apart from identifying intrinsic relations between words, lexico-semantic rela-
tions have served a variety of downstream NLP tasks. Knowledge of hypernyms has
proven to be useful in many different NLP tasks, such as textual entailment Dagan
et al. (2013), coreference resolution (Ponzetto and Strube, 2006), relation extrac-
tion (Demeester et al., 2016), and question answering (Huang et al., 2008). More
broadly, knowing whether and how two words related is useful for automatic gen-
eration of thesauri (Grefenstette, 1994), building domain specific ontologies (Zouaq
and Nkambou, 2008) and generating paraphrases (Madnani and Dorr, 2010).

The ability to detect semantic relations across languages can also serve as a
building block in corresponding cross-lingual tasks, including cross-lingual textual
entailment (Negri et al., 2012, 2013). It can also help in constructing multilingual
taxonomies (Fu et al., 2014) by helping organize lexicons across multiple languages,
and in evaluating Machine Translation output (Pado et al., 2009) by allowing direct
comparison of a translated text with the source. As a case study (Chapter 7), we
demonstrate that our model for recognizing semantic relations can help in filter-
ing semantically equivalent cross-lingual pairs from divergent pairs, and improve a

bilingual dictionary model based on word embeddings.

2.4  Summary

This chapter supports the central claim of this thesis, viz. translation is not

always meaning preserving, by presenting definitions of translation equivalence from
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prior work in translation studies, and establishing how these definitions do not
guarantee semantic equivalence. We also look at other ways in which divergences
manifest in data (such as through noise), and various frameworks which have been
proposed to characterize differences in meaning across and within languages, both

between words and sentences.
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Chapter 3: Quantifying and Analyzing Divergences in Bilingual Re-

sources

We start our study of cross-lingual semantic divergences by focusing on a
practical question: how frequently do semantic divergences occur in resources that
record translations? We answer this question by annotating divergences in transla-
tions drawn from a bilingual dictionary and two sentence-aligned parallel corpora.
These resources contain translations of different granularities, and in both cases
20-40% of examples studied are found to be semantically divergent. Examples re-
veal that these divergent translations are diversely related to the source words or

sentences.

3.1 Divergences in Bilingual Dictionaries

Data Selection We start by analyzing divergences in high-quality bilingual dic-
tionaries created by annotators on Mechanical Turk and spanning 100 languages
(Pavlick et al., 2014).") Each dictionary contains ~10000 words for a particular
language, with multiple English translations for each word. Strict quality control

has been followed in the creation process—a subset of the annotations have been

'https://www.mturk.com
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compared against gold standard translations, copy-pasting from automatic services
(e.g. Google Translate) has been checked for and filtered out, and translation quality
has been measured and only translations that meet a quality threshold have been
retained. These dictionaries have been used as a gold standard test bed to evaluate
automatic methods for inducing bilingual dictionaries (Irvine and Callison-Burch,
2017), making it all the more important to understand the nature of translations

captured by them.

Annotation Protocol We choose a random subset of 500 Hindi words and their
translations from the dictionary to study the presence of divergences. We only
choose lexical i.e. single word translations. These words pairs are annotated by three
annotators, who are native or near-native speakers of Hindi, and fluent speakers
of English. Annotators perform a binary decision task of identifying whether the
translation pair is equivalent in meaning or not. Specifically, they are asked whether

the meaning of the English word and the Hindi word is the same.

Annotation Analysis Figure 3.1 shows the breakdown of results of the annota-
tion with respect to annotator agreement. Annotators largely tend to agree—for
75% examples all three annotators assign the same label. 63% examples (314/500)
are labeled as being equivalent by all three annotators. This is not surprising given
that this dictionary has been carefully created to ensure high quality translations.
Factoring in examples that are annotated as being equivalent by two out of three an-

notators, this number goes up to almost 80% (393/500). However, this implies that
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Figure 3.1: Breakdown of a random sample of 500 examples from a Hindi-English
bilingual dictionary with respect to annotator agreement.

for about 20% examples (107/500), two annotators agreed on the example being not
equivalent.

Table 3.1 shows some random examples of Hindi words and their English
translations that are labeled as being not equivalent by two out of three annotators.
These divergent English translations are related to the Hindi words in different
ways. Several are related by taxonomic relations such as antonymy (FATHT, export),
hypernymy /hyponymy (F=aT, surname), and co-hyponymy (SGHISH, atmosphere).
Others are associated words (U, swivel) or noisy translations (1T, telgu). There
are some annotation errors as well (e.g. gTE=r and duct mean the same but are

annotated as divergent), but looking at the data reveals that these are rare.
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Hindi Word English Translation Gloss of Hindi Word

HATITT export import
qaer soft thin
TT surname nanda (a specific surname)
T telgu telugu
fishes cnidaria
SqHTST atmosphere biosphere
T west pan
CUEE swivel rotation

CNECTE duct duct / channel

Table 3.1: Examples of Hindi-English pairs labeled as divergent by annotators.

3.2 Divergences in Parallel Sentences

Data Selection Having looked at examples of divergences in bilingual dictionar-
ies, we now turn our attention to parallel sentences. We crowdsource annotations
of English-French sentence pairs to assess how frequent semantic divergences are
in parallel corpora. We draw examples for annotation randomly from two English-
French corpora, using a resource-rich and well-studied language pair, and for which
bilingual annotators can easily be found. The OpenSubtitles corpus contains
33M sentence pairs based on translations of movie subtitles. The sentence pairs
are expected to not be completely parallel given the many constraints imposed on
translations that should fit on a screen and be synchronized with a movie (Lison
and Tiedemann, 2016; Tiedemann, 2007), and the use of more informal registers
which might require frequent non-literal translations of figurative language. The
Common Crawl corpus contains sentence-aligned parallel documents automati-
cally mined from the Internet. Parallel documents are discovered using e.g., URL

containing language code patterns, and sentences are automatically aligned after
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structural cleaning of HTML. The resulting corpus of 3M sentence pairs is noisy,
yet extremely useful to improve translation quality for multiple language pairs and

domains (Smith et al., 2013).

Annotation Protocol Divergence annotations are obtained via Crowdflower.?
Since this task requires good command of both French and English, we rely on
a combination of strategies to obtain good quality annotations, including Crowd-
flower’s internal worker proficiency ratings, geo-restriction, reference annotations
by a bilingual speaker in our lab, and instructions that alternate between the two
languages (Agirre et al., 2016).

Annotators are shown an English-French sentence pair, and asked whether they
agree or disagree with the statement “the French and English text convey the same
information.” We do not use the term “divergent”, and instead frame the question
in accordance with the definition of semantic equivalence set forth in Chapter 2. We
set up two distinct annotation tasks, one for each corpus, so that workers only see
examples sampled from the same corpus in a given job. Each example is shown to

five distinct annotators.

Annotation Analysis Forcing an assignment of divergent or equivalent labels
by majority vote yields 43.6% divergent examples in OpenSubtitles, and 38.4% in
Common Crawl. Fleiss’ Kappa indicates moderate agreement between annotators
(0.41 for OpenSubtitles and 0.49 for Common Crawl). This suggests that the anno-

tation protocol can be improved, perhaps by using graded judgments as in Semantic

2http://crowdflower.com
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Textual Similarity tasks (Agirre et al., 2016), or for sentence alignment confidence
evaluation (Xu and Yvon, 2016).

Current annotations are nevertheless useful, and different degrees of agree-
ment reveal nuances in the nature of divergences (Table 3.2). Examples labeled as
divergent with high confidence (lowest block of the table) are either unrelated or
one language misses significant information that is present in the other. Examples
labeled divergent with lower confidence contain more subtle differences (e.g. “what

does it mean” in English vs. “what are the advantages” in French).

3.3 Summary

This chapter established that semantic divergences occur frequently in bilin-
gual resources that record translations. 20% of Hindi-English word pairs in a bilin-
gual dictionary, and 40% of English-French parallel sentences from two different
corpora were annotated as being semantically divergent by annotators. This exer-
cise reveals that divergences occur in corpora that record translations of different
granularities. Divergences discovered cover a wide spectrum, including subtle dif-
ferences in meaning, well-defined taxonomic relations, as well as noisy translations.

Datasets annotated in this chapter will later be used to estimate the accuracy
of divergence detection models (Chapter 6) and to gauge the utility of models for
downstream tasks (Chapter 7). Before that, in the next three chapters, we turn to
the problem of building models that can detect semantic divergences and differences

in meaning across languages.
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Equivalent with High Agreement (n = 5)

en the epidemic took my wife, my stepson.
subs fr 1’épidémie a touché ma femme, mon beau-fils.
gl the epidemic touched my wife, my stepson.
en to instantly check availability for all san sebastian hostels, use the form on
the left of the page.
cc fr  pour vérifier la disponibilité de toutes les auberges a saint-sébastien, utilisez
le formulaire & gauche.
gl to verify the availability of all the hostels in san sebastian, use the form on
the left.
Equivalent with Low Agreement (n = 3)
en she was a kind person, then, was she?
subs fr  c’était quelqu’'un de gentil, non ?
gl it was someone nice, no?
en cancellation policy: if cancelled up to 28 days before date of arrival, no fee
will be charged.
ce fr  conditions d’annulation : en cas d’annulation jusqu’a 28 jours avant la date
d’arrivée, 'hotel ne préleve pas de frais sur la carte de crédit fournie.
gl cancellation conditions: in case of cancellation up to 28 days before arrival
date, the hotel does not charge fees from the credit card given.
Divergent with Low Agreement (n = 3)
en i tried to keep things nice and civil... but, hey, 25,000 for three suits?
stibs fr  je voulais que tout se passe gentiment, mais dites... 25 000 dollars pour 3
costumes ?
gl I wanted that everything goes nicely, but say... 25 000 dollars for 3 suits?
en what does it mean when food is “low in ash” or “low in magnesium”?
ce fr  quels sont les avantages d’une nourriture “réduite en cendres” et “faible en
magnésium” ?
gl what are the advantages of a food “low in ash” or “low in magnesium”?
Divergent with High Agreement (n =5)
en rabbit? if i told you it was a chicken, you wouldn’t know the difference.
subs fr  vous croirez manger du poulet.
gl you think eat chicken
en you need food to fuel your body to help you push further, to run faster, to
ce perform at the highest possible level.
fr  ce mois-ci, pourquoi ne pas vous fouetter le paté aux patates parfait ?
gl this month, why not whisk yourself paté potato perfect?

Table 3.2: Randomly selected sentence pairs (English (en), French (fr) and gloss
of French (gl)) annotated as divergent or equivalent, with high and low degrees of
agreement between the 5 annotators. Examples are taken from the OpenSubtitles
(subs) and Common Crawl (cc) corpora.
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Chapter 4: Identifying Cross-lingual Hypernymy using Sparse Bilin-

gual Embeddings

The notion of cross-lingual semantic divergences between words is tightly cou-
pled with the problem of identifying how words in different languages are related
to each other. Knowing when two words differ in meaning is useful in identify-
ing divergences, but the knowledge of how they differ can help in more precisely
characterizing differences in word meaning across languages. Thus, in the next two
chapters, we focus on identifying semantic relations between words across languages
using algorithms that do not rely on task-specific cross-lingual training data. In
the present chapter, we focus on identifying a single relation semantic relation, viz.
hypernymy. We choose hypernymy as hypernyms/hyponyms are commonly found
in automatically induced translation pairs (Peirsman and Padd, 2011). Besides,
the lack of an equivalent target language word for a given source word often leads
translators to choose a hypernym or a hyponym while translating (Baker, 2011;
Chesterman, 1997). Hypernyms have also received significant attention in monolin-
gual (mostly English) settings as a representation-agnostic way of modeling lexical
semantics (Hearst, 1992; Lenci and Benotto, 2012; Shwartz et al., 2016; Snow et al.,

2005; Weeds and Weir, 2003, inter alia). As such, there is a wealth of work on
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modeling hypernymy which motivates approaches for the cross-lingual task.

Our emphasis in the next two chapters is intrinsic, i.e. we focus on building
models for identifying semantic relations between words and evaluating how well
various approaches perform at this task. We will return to the impact of such
models vis-a-vis semantic divergences when we investigate the value of such models

for downstream tasks in Chapter 7.

4.1 Cross-lingual Hypernymy : Challenges and Contributions

Building models that can robustly identify hypernymy across the spectrum
of human languages is a challenging problem, that is further compounded in low
resource settings. At first glance, translating words to English and then identifying
hypernyms in a monolingual setting may appear to be a sufficient solution. How-
ever, this approach is impaired by its inability to capture translation ambiguity. For
instance, the English words cook, leader and supervisor can all be hypernyms of the
French word chef, as the French word does not have a exact translation in English
covering its possible usages. However, translating chef to cook and then determining
hypernymy monolingually precludes identifying leader or supervisor as a hypernyms
of chef. Similarly, language-specific usage patterns can also influence hypernymy
decisions. For instance, the French word chroniqueur translates to chronicler in En-
glish, but is more frequently used in French to refer to journalists (making journalist
its hypernym).!

This motivates approaches that directly detect hypernymy in the cross-lingual

LAll examples are from our dataset described in Section 4.4.
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setting by extending distributional methods for detecting monolingual hypernymy.
Limited training resources in cross-lingual settings make unsupervised methods more
desirable than supervised hypernymy detection approaches. However, monolingual
distributional methods cannot be applied directly to the cross-lingual task, because
the vector spaces of two languages need to be aligned using a cross-lingual resource
(a bilingual dictionary, for instance). Finally, state-of-the-art distributional ap-
proaches (Roller and Erk, 2016; Shwartz et al., 2017) for detecting monolingual
hypernymy require syntactic analysis (e.g. dependency parsing), which may not
available for many languages, raising the question of whether syntactic transfer from
related languages (Zeman and Resnik, 2008) is a useful substitute in such situations.

We address these challenges using BISPARSE-DEP—a family of robust, unsu-
pervised approaches for identifying cross-lingual hypernymy. BISPARSE-DEP uses
a sparse, bilingual word embedding model learned from a small bilingual dictionary
and a variety of monolingual syntactic context extracted from a dependency parsed
corpus. We extensively evaluate BISPARSE-DEP on a new crowd-sourced cross-
lingual dataset for hypernymy detection, with over 2900 hypernym pairs, spanning
four languages from distinct families—French, Russian, Arabic and Chinese. Our
evaluation shows that BISPARSE-DEP is more accurate than similar models which
use window based contexts, or weaker baselines that simply rely on translations.
Crucially for cross-lingual settings, BISPARSE-DEP also exhibits robust behavior
along multiple dimensions. In the absence of a dependency treebank for a language,
it learns embeddings using a parser trained on related languages. When exposed
to less monolingual data, or a lower quality bilingual dictionary, BISPARSE-DEP
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degrades only marginally. In all these cases, it compares favorably with models that
have been supplied with all necessary resources, showing promise for low-resource

settings. Our crowdsourced datasets are also publicly available for future work.

4.2 Unsupervised Identification of Cross-lingual Hypernymy

As in the monolingual case, we perform unsupervised identification of cross-
lingual hypernymy using a scoring function which quantifies the directional similar-
ity of an input word pair. A variety of functions have been introduced to quantify
the directional relationship between two words, given feature representations of the
two words (Lenci and Benotto, 2012; Lin, 1998; Weeds and Weir, 2003). A key idea
underlying several functions is the Distributional Inclusion Hypothesis: given
feature representations of the contexts of two words u and v, v is a hypernym of
w if all features of u tend to appear within the features of v (Geffet and Dagan,
2005). Scorers based on the distributional inclusion hypothesis have been found to
accurately distinguish hypernymy from other relations (Shwartz et al., 2017).

Specifically, we use BalAPinc to score word pairs for hypernymy (Kotlerman
et al., 2009), as it has been well studied and compared against other approaches (Tur-
ney and Mohammad, 2015). Formally, BalAPinc is the geometric mean of a sym-
metric similarity score, LIN (Lin, 1998), and an asymmetric score, APinc. Given a

directional hypernym pair (u — v),

BalAPinc(u — v) = \/LIN (u,v) - APinc(u — v) (4.1)
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Assume we are given ranked feature lists F'V, and F'V, for words u and v
respectively. Let w,(f) denote the weight of a particular feature f in FV,. LIN is

defined as

>, [wu(f) +wu(f)]

_ fEFVLNFV,
VG0 = o > alf) 42)
feFV, fEFV,

APinc is a modified asymmetric version of the Average Precision metric used

in Information Retrieval:
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APinc(u — v) = 2= VA (4.3)
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0 otherwise

Thus, to use BalAPinc for cross-lingual hypernymy identification, we need a
ranked list of features that capture information about the context of words in two
languages. In the monolingual case, features are dimensions in a distributional se-
mantic space. For the cross-lingual task, we need to represent words in two languages

in the same space, or in spaces with a one-to-one mapping between dimensions.
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4.3 BISPARSE-DEP: Sparse Bilingual Word Representations using

Dependency Contexts

There is a wealth of existing methods for learning representations that capture
context of words in two different languages in the literature (Hermann and Blunsom,
2013; Luong et al., 2015; Upadhyay et al., 2016, inter alia). However, they have been
evaluated on tasks that do not require much semantic analysis, such as bilingual
lexicon induction or document categorization. In contrast, detecting hypernymy
requires the ability to capture more subtle semantic distinctions. This requires
bilingual representations to capture both the full range of word contexts observed in
original language texts, as well as cross-lingual correspondences from translations.

We propose a new model that uses sparse non-negative embeddings to repre-
sent word contexts as interpretable dimensions, and facilitate context comparisons
across languages. This is an instance of sparse coding, which consists of modeling
data vectors as sparse linear combinations of basis elements. In contrast to dimen-
sionality reduction techniques such as PCA, the learned basis vectors need not be
orthogonal, which gives more flexibility to represent the data (Mairal et al., 2009).
These models have been introduced as word representations in monolingual settings
with the goal of obtaining interpretable, cognitively-plausible representations (Mur-
phy et al., 2012) .

Additionally, work in monolingual setting has established that using depen-

dency contexts to represent words (instead of window-based contexts) improves hy-
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Figure 4.1: The BISPARSE-DEP approach, which learns sparse bilingual embeddings
using dependency based contexts. The resulting sparse embeddings, together with
an unsupervised entailment scorer, can detect hypernyms across languages (e.g.,
pomme is a fruit).

pernymy detection, as dependency contexts capture richer information about both
position and syntax (Levy and Goldberg, 2014; Lin, 1998; Shwartz et al., 2017). Mo-
tivated by this observation, we use syntactic contexts in order to represent words.
Figure 4.1 shows an overview of the end-to-end pipeline of our approach, which
we call BISPARSE-DEP. We first describe our generic framework for generating
sparse bilingual embeddings (Section 4.3.2), and then describe how we extract de-
pendency based contexts (Section 4.3.3). We also discuss how to extract such con-
texts in the absence of a treebank in the language (Section 4.3.4) using a (weak)
dependency parser trained on related languages. The resulting sparse bilingual em-
beddings that are used with a unsupervised entailment scorer to predict hypernymy

for cross-lingual word pairs, as described earlier (Section 4.2).

4.3.1 Review: Learning Monolingual Sparse Representations

Before introducing our novel bilingual formulation, we review the monolin-

gual models for learning sparse representations. Previous work on obtaining sparse
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monolingual representations is based on a variant of the Nonnegative Matrix Fac-
torization problem (Faruqui et al., 2015; Murphy et al., 2012). Given a matrix X
containing v dense word representations arranged row-wise, sparse representations

for the v words can be obtained by solving the following optimization problem.

AD i

such that A >0 ID;|I3 <1

The first term in the objective (Equation 4.4) factorizes the dense represen-
tation matrix X into two matrices, A and D such that the [y reconstruction error
is minimized. The second term is an [; regularizer on A which encourages sparsity,
where the level of sparsity is controlled by the A hyperparameter. This, together with
the non-negativity constraint, helps in obtaining sparse and interpretable represen-
tations in A since non-negativity has been shown to correlate with interpretability.
The objective function on its own is degenerate since it can be trivially optimized by
making the entries of D arbitrarily large and choosing corresponding small values

as entries of A. To avoid this, an additional l; constraint is imposed on D.

4.3.2 BISPARSE: Learning Sparse Bilingual Embeddings

Having seen how sparse representations can be obtained in monolingual set-
tings, we now describe our novel formulation for obtaining such representations in

bilingual settings using two sources of information.
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e Monolingual distributional representations independently learned
from large amounts of text in each language: We denote them as two
input matrices, X, and X¢, of respective sizes v, X n. and vy x ny. Each row in
X, is the representation of a particular word in the first language, e, obtained
using the contexts it appears in. Similarly, X¢ contains word representations

for the other language f.

e Cross-lingual correspondences that enable comparison across lan-
guages: We define a “score” matrix S of size v, X vy, which captures high-
confidence correspondences between the vocabularies of the two languages.
There are many ways of defining S. As a starting point, we define each row
of S as a one-hot vector that identifies the word in f that is most frequently
aligned with the e word for that row in a large parallel corpus. This allows a
many-to-one mapping from e to f, which captures translation ambiguity by

allowing multiple words in e to be aligned to the same word in f.

Given this information, our BISPARSE model solves the following optimization prob-

lem to obtain sparse bilingual representations.

Ve

) 1
arg min_ ) §|\AeiDeT — X2+ Ael|Aes|n (4.5)
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The first two rows and the constraints in Equation 4.5 can be understood as in
Equation 4.4—they encourage sparsity in word representations for each language.
The third row imposes bilingual correspondence constraints, weighted by the regu-
larizer A\,. These constraints encourage words in e and f that are strongly aligned

according to S to have similar representations.

4.3.3 BISPARSE-DEP: Inducing Dependency Based Contexts

The BISPARSE framework requires contextual representations of words in the
two languages as inputs X and X¢. One way to construct these is by representing
a target word using its window-context, i.e. treating the words that appear to the
left and the right of the target word as the context. However, work in monolingual
settings has established that syntactic context is more valuable than window-context
when it comes to hypernymy detection, as it captures both positional and syntactic
information, as opposed to window-based context, which only contains positional in-
formation. Moreover, syntactic contexts capture functional similarity (e.g. lion-cat)
rather than the topical similarity (e.g. lion-zoo) that window-based contexts cap-
ture, and the former is more essential to hypernymy identification. Thus, our final
model BISPARSE-DEP, uses syntactic contexts extracted from dependency graphs
to represent words.

Given a dependency graph, the context of a word can be described in multiple
ways using its syntactic neighborhood in the graph. For instance, in Figure 4.2, we

describe the context for a target word (traveler) in the following two ways:
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Figure 4.2: Example Dependency Tree.

e FULL context (Baroni and Lenci, 2010; Levy and Goldberg, 2014; Pad6 and
Lapata, 2007): Children and parent words, concatenated with the label and

1

direction of the relation (e.g. roamed#nsubj~' and tired#amod are contexts

for traveler).

e JOINT context (Chersoni et al., 2016b): Parent concatenated with each of its

siblings (e.g. roamed#desert and roamed#secking are contexts for traveler).

These two contexts exploit different amounts of syntactic information—FULL
requires labeled parses, unlike JOINT. JOINT combines parent and sibling informa-
tion, while FULL treats them distinctly. Both encode direction of the dependency

into the context through label direction and sibling-parent relations respectively.

4.3.4 Dependency Contexts without a Treebank

Using dependency contexts in multilingual settings may not always be possi-
ble, as dependency treebanks are not available for many languages. However, related
languages show common syntactic structure that can be transferred to the original
language of interest, with delezicalized parsing being one common approach (Mc-
Donald et al., 2011; Zeman and Resnik, 2008, inter alia).

To extract contexts for BISPARSE-DEP for a language without a treebank,
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we train a delexicalized parser using treebanks of related languages, where the word
form based features are turned off, so that the parser is trained on purely non-lexical
features (e.g. POS tags). More sophisticated techniques for transferring syntactic
knowledge have been proposed (Ammar et al., 2016; Rasooli and Collins, 2017), but

we prioritize simplicity and show that a simple delexicalized parser is effective.

4.3.5 Optimization of BISPARSE formulation

While we have described our formulation for obtaining sparse representations
(Equation 4.5), and the inputs to the model, we have not described how we can
solve the formulation to obtain the expected output of sparse embeddings. Equa-
tion 4.5 defines a non-differentiable, non-convex optimization problem and finding
the globally optimally solution is not feasible. However, various methods used to
solve convex problems work well in practice. We use Forward Backward Splitting,
a proximal gradient method for which an efficient generic solver, FASTA, is avail-
able (Goldstein et al., 2014).2 FASTA (Fast Adaptive Shrinkage / Thresholding
Algorithm) is designed to minimize functions of the form f(Ax) + g(z), where f is
a differentiable function, g is a function (possibly non-differentiable) for which we
can calculate the proximal operator, and A is a linear operator. For the objective

function in our model, the [; terms form ¢ and the [y terms form f.

Zhttps://github.com/tomgoldstein/fasta-matlab
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4.4 Crowd-Sourcing Annotations

To measure the accuracy of approaches for identifying cross-lingual hypernymy,
we collect and release reliable and high-quality testbeds spanning four languages
from distinct families—French (Fr), Russian (Ru), Arabic (Ar) and Chinese (Zh)—
paired with English. Lack of available datasets to evaluate models of hypernymy
detection across multiple languages aggravates the need for a high quality test bed.
While ontologies like Open Multilingual WordNet (OMW) (Bond and Foster, 2013)
and BabelNet (Navigli and Ponzetto, 2012) contain cross-lingual links, these re-
sources are semi-automatically generated and hence contain noisy edges. Below, we
describe how we pool candidates from such resources, and crowdsource high-quality

annotations to create the testbeds.

4.4.1 Annotation Setup

We collect evaluation datasets using Crowdflower.®> The annotation task for
a particular target language requires annotators to be fluent in both the target
language and English. To ensure only fluent speakers perform the task, for each
target language, we provide task instructions in that language itself. Also, we restrict
the task to annotators verified by Crowdflower to have those language skills. Finally,
annotators also need to pass a quiz based on a small amount of gold standard data
to gain access to the task.

To begin the annotation process, we first obtain candidate pairs using hyper-

3http://crowdflower.com

93


http://crowdflower.com

nymy edges across languages from OMW and BabelNet, along with translations
from monolingual hypernymy datasets (Baroni and Lenci, 2011; Baroni et al., 2012;
Kotlerman et al., 2010). Annotators choose between three options for each candi-
date pair (py, ¢.), where py is a target language word and ¢, is a English word : “py
is a kind of ¢.”, “q. is a part of p;” and “none of the above”. Word pairs labeled with
the first option are considered as positive examples while those labeled as “none of
the above” are considered as negative. The second option is included to filter out
meronymy examples that are part of the noisy pool. We leave it to the annotator
to infer whether the relation holds between any senses of py or ¢, if either of them
are polysemous. We collect more negative pairs than positive, but down-sample the
negative examples to keep a balanced dataset for ease of evaluation.

For every candidate hypernym pair (py, ¢.), we also ask annotators to judge
its reversed and translated hyponym pair (¢, p.). For instance, if (citron, food) is a
hypernym candidate, we also show annotators (aliments, lemon) which is a poten-
tial hyponym candidate (potential, because translation need not preserve semantic
relations). The purpose of presenting the hyponym pair, (g, pe), is two-fold. First,
it emphasizes the directional nature of the task. We want annotators to accurately
identify that food is a hypernym of citron, but not the other way around. Sec-
ond, it identifies hyponym pairs, which we use as negative examples. The hyponym
pairs are challenging since differentiating them from hypernyms requires detecting
asymmetry.

Each pair is judged by at least five annotators, and judgments with 80% agree-

ment are considered for the final dataset. This is a stricter condition than certain
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Language pair #crowdsourced #pos (= #neg)

French-English 2115 763
Russian-English 2264 706
Arabic-English 2144 691
Chinese-English 2165 806

Table 4.1: Statistics of our crowd-sourced test bed. #pos (#neg) denote positives
(negatives) in the evaluation set. We down-sample negatives to have a balanced
evaluation set.

monolingual hypernymy datasets—for instance, EVALution (Santus et al., 2015)—
where agreement by 3 annotators is deemed sufficient. Inter-annotator agreement
measured using Fleiss” Kappa (Fleiss, 1971) is 58.1 (French), 53.7 (Russian), 53.2
(Arabic) and 55.8 (Chinese). This indicates moderate agreement, on par with agree-
ment obtained on related fine-grained semantic tasks (Pavlick et al., 2015). We
cannot compare with monolingual hypernymy annotator agreement as, to the best
of our knowledge, such numbers are not available for existing test sets. Dataset
statistics are shown in Table 4.1.

We observe that annotators were able to agree on pairs containing polysemous
words where hypernymy holds for some sense. For instance, for the French-English
pair (avocat, professional), the French word avocat can either mean lawyer or av-
ocado, but the pair is annotated as a positive example. Hence, we leave it to the

annotators to handle polysemy by choosing the most appropriate sense.

4.4.2 Two Evaluation Test Sets

To verify if the crowdsourced hyponyms are challenging negative examples we

create two evaluation sets. Both share the (crowdsourced) positive examples, but
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differ in their negatives:
e HYPER-HYPO: negative examples are the crowdsourced hyponyms.
e HYPER-COHYPO: negative examples are cohyponyms drawn from OMW.

Cohyponyms are words sharing a common hypernym. For instance, biere
(“beer” in French) and vodka are cohyponyms since they share a common hypernym
in alcool/ alcohol. We choose cohyponyms for the second test set because: (a) They
require differentiating between similarity (a symmetric relation) and hypernymy
(an asymmetric relation). For instance, biére and vodka are highly similar but they
do not have a hypernymy relationship. (b) Cohyponyms are a popular choice of

negative examples in many entailment datasets (Baroni and Lenci, 2011).

4.5 Experimental Setup

4.5.1 Data and Evaluation Setup

Training BISPARSE-DEP requires a dependency parsed monolingual corpus,
and a translation matrix for jointly aligning the monolingual vectors. We compute
the translation matrix using word alignments derived from parallel corpora (see cor-
pus statistics in Table 4.2). While we use parallel corpora to generate the translation
matrix to be comparable to baselines (Section 4.5.2), we can obtain the matrix from
any bilingual dictionary.

The monolingual corpora are parsed using Yara Parser (Rasooli and Tetreault,

2015), trained on the corresponding treebank from the Universal Dependency Tree-
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bank (McDonald et al., 2013) (UDT-v1.4). Yara Parser was chosen as it is fast,
and competitive with state-of-the-art parsers (Choi et al., 2015). The monolingual
corpora was POS-tagged using TurboTagger (Martins et al., 2013). We induce de-
pendency contexts for words by first thresholding the language vocabulary to the
top 50,000 nouns, verbs and adjectives. A co-occurrence matrix is computed over

this vocabulary using the context types in Section 4.3.3.

Inducing Dependency Contexts The entries of the word-context co-occurrence
matrix are re-weighted using Positive Pointwise Mutual Information (Bullinaria and
Levy, 2007). The resulting matrix is reduced to 1000 dimensions using SVD (Golub
and Kahan, 1965).* These vectors are used as X, and Xy in Equation 4.5 to generate

100 dimensional sparse bilingual vectors.

Evaluation We use accuracy as our evaluation metric, as it is easy to interpret
when the classes are balanced (Turney and Mohammad, 2015). Both evaluation
datasets—HYPER-HYPO and HYPER-COHYPO—are split into 1:2 dev/test splits.
BalAPinc has two tunable parameters - 1) a threshold that indicates the BalA Pinc
score above which all examples are labeled as positive, 2) the maximum number
of features to consider for each word. We use the tuning set to tune these two

parameters as well as the various hyperparameters associated with the models.

4Chosen based on preliminary experiments with {500,1000,2000,3000} dimensional vectors for
En-Fr.
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Monolingual

Language Parallel Data #sent. Data #sent.
Wackypedia
English -~ - (Baroni et al., 43M
2009)
IST (LDC2007T08), Arabic
Arabic NewsCommentary, Wikipedia 1.1IM  Gigaword 3.0 17M
(Tiedemann, 2012) (LDC2007T40)
Chinese
Chinese  FBIS (LDC2003E14) 9.5M  Gigaword 5.0 58M
(LDC2011T13)
Europarl (Koehn, 2005),
French NewsCommentary®, Wikipedia 2.7M  Wikipedia® 20M
(Tiedemann, 2012)
Russian  Yandex-1M* 1.6M  Wikipedia® 22M

¢ = wwv.statmt.org/wmt15/training-parallel-nc-v10.tgz
& = dumps.wikimedia.org/xxwiki/20161201/
# = translate.yandex.ru/corpus

Table 4.2: Training data statistics for different languages. Note that while we
use parallel corpora for computing translation dictionaries, our approach does not
require it, and can work with any bilingual dictionary.

4.5.2 Contrastive Approaches

We compare our BISPARSE-DEP embeddings with the following approaches:
MoNo-DEP (Translation baseline) For each word pair (py, g.) in the test data,
we translate py to English using the most common translation in the translation

matrix. Hypernymy is then determined using sparse, dependency based embeddings

in English.

BiSPARSE-LEX (Window context) Instead of using dependency context, this

approach generates sparse, cross-lingual embeddings using a window based context
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allowing us to directly compare the relative importance of dependency contexts and

window based contexts.

Bivec+ (Window context) Our extension of the BIVEC model of Luong et al.
(2015). BIVEC generates dense, cross-lingual embeddings using window based con-
text, by substituting aligned word pairs within a window in parallel sentences. By
default, BIVEC only trains using parallel data, so we initialize it with monolingually

trained window based embeddings to ensure fair comparison.

CL-DEP (Dependency context) The model from Vuli¢ (2017), which induces
dense, dependency based cross-lingual embeddings by translating syntactic word-
context pairs using the most common translation, and jointly training a word2vecf
model for both languages.” Vuli¢ (2017) showed improvements for word similarity
and bilingual lexicon induction. We report the first results using CL-DEP on this
task. By comparing with dense representations induced by BivEc and CL-DEP, we

can identify the importance of our sparse coding framework.

4.5.3 Evaluating Robustness of BISPARSE-DEP

We investigate how robust BISPARSE-DEP is when exposed to data scarce
settings. Evaluating on a truly low resource language is complicated by the difficulty
of obtaining an evaluation dataset for such a language. Therefore, we simulate such

settings for the languages in our dataset in multiple ways.

“bitbucket.org/yoavgo/word2vect/
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No Treebank If a treebank is not available for a language, dependency contexts
have to be induced using treebanks from other languages (Section 4.3.4), which
can affect the quality of the dependency-based embeddings. To simulate this, we
train a delexicalized parser for all four languages. We use treebanks from Slovenian,
Ukrainian, Serbian, Polish, Bulgarian, Slovak and Czech (40k sentences) for train-
ing the Russian parser, and treebanks from English, Spanish, German, Portuguese,
Swedish and Italian (66k sentences) for training the French parser. At the time of
this work, UDT did not have languages in the same family as Arabic or Chinese, so
for the sake of completeness, we train Arabic and Chinese parsers on delexicalized
treebanks of the language itself. After delexicalized training, the Labeled Attach-
ment Score (LAS) on the UDT test set dropped for all languages (76.6% to 60.0%
for Russian, 83.7% to 71.1% for French, 76.3% to 62.4% for Arabic, and 80.3% to
53.3% for Chinese). The monolingual corpora are then parsed with these weaker

parsers, and co-occurrences and dependency contexts are computed as before.

Subsampling Monolingual Data To simulate low-resource behavior along an-
other axis, we subsample the monolingual corpora used by BISPARSE-DEP to induce
the monolingual vectors, X, and X¢. Specifically, we learn X, and Xy using pro-

gressively smaller corpora.

Quality of Bilingual Dictionary We study the impact of the quality of the bilin-
gual dictionary used to create the translation matrix S. This experiment involves

using increasingly smaller parallel corpora to induce the translation dictionary.
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Model Ru-En  Zh-En Ar-En  Fr-En  Average

Translation Baseline

MonNo-DEP 50.1 52.3 51.8 54.5 52.2
Window Based Contexts
BISPARSE-LEX 56.6 53.7 50.9 52.0 53.3
BivEc+ 55.8 52.0 51.5 53.4 53.2
Dependency Based Contexts
CL-DEP 60.2 54.4 56.7* 53.8 56.3
BiSPARSE-DEP (Full) 59.0 55.9 52.6  56.6 56.0
BI1SPARSE-DEP (Joint) 53.8 57.0%* 524 59.9% 55.8

BiSPARSE-DEP (Unlabeled)  55.9 51.2 53.3 55.9 04.1

Table 4.3: Comparing the different approaches from Section 4.5.2 with our
B1SPARSE-DEP approach on HYPER-HYPO (random baseline = 0.5). Bold denotes
the best score for each language, and the * on the best score indicates a statisti-
cally significant (p < 0.05) improvement over the next best score, using McNemar’s
test (McNemar, 1947). Dependency based models largely outperform window based
models, and all BISPARSE-DEP models outperform translation baselines.

4.6 Experiments

Our experiments aim to answer the following questions — (a) Are dependency
based embeddings superior to window based embeddings for identifying cross-lingual
hypernymy? (Section 4.6.1) (b) Does directionality in the dependency context help
cross-lingual hypernymy identification? (Section 4.6.2) (c) Are our models robust
in data scarce settings (Section 4.6.3)7 (d) Is the answer to (a) predicated on the

choice of entailment scorer? (Section 4.6.4)?
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Model Ru-En  Zh-En Ar-En  Fr-En  Average

Translation Baseline

MonNo-DEP 58.7 50.0 65.1 56.9 Y
Window Based Contexts
BISPARSE-LEX 63.8 55.8 65.8 63.2 62.2
BivEc+ 55.9 64.9 62.2 54.1 58.3
Dependency Based Contexts
CL-DEP 56.2 62.7 63.1 61.0 60.0
BiSPARSE-DEP (Full) 63.6 67.3 66.8% 66.7* 66.1
BI1SPARSE-DEP (Joint) 60.6 63.6 65.9 64.9 63.8

BiSPARSE-DEP (Unlabeled)  58.6 66.7 624  61.5 62.4

Table 4.4: Comparing the different approaches from Section 4.5.2 with our
B1SPARSE-DEP approach on HYPER-COHYPO (random baseline = 0.5). Bold de-
notes the best score for each language, and the * on the best score indicates a
statistically significant (p < 0.05) improvement over the next best score, using Mc-
Nemar’s test (McNemar, 1947). BISPARSE-DEP models continue to outperform
window based models and the translation baseline on an average.

4.6.1 Dependency v/s Window Contexts

We compare the performance of models described in Section 4.5.2 with the
BiSPARSE-DEP (FULL and JOINT) models. We evaluate the models on the two test

splits described in Section 4.4.2, i.e. HYPER-HYPO and HYPER-COHYPO.

Hyper-Hypo Results First, results in Table 4.3 highlight the benefit of cross-
lingual modeling (as opposed to translation). Almost all models (except CL-DEP
on French) outperform the translation baseline. Among dependency based models,
B1SpARSE-DEP (FuLL) and CL-DEP consistently outperform both window models,
while BISPARSE-DEP (JOINT) outperforms them on all except Russian. BISPARSE-

DEP (JOINT) is best overall for two languages (French and Chinese), CL-DEP for
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one (Arabic), with no statistically significant differences between BISPARSE-DEP
(JoinT) and CL-DEP for Russian. This confirms that dependency context is more

useful than window context for cross-lingual hypernymy detection.

Hyper-Cohypo Results The trends observed on HYPER-HYPO also hold on
HyPER-COHYPO, i.e. dependency based models continue to outperform window
based models (Table 4.4). Overall, BISPARSE-DEP (FULL) performs best in this
setting, followed closely by BISPARSE-DEP (JOINT). This suggests that the sibling
information encoded in JOINT is useful to distinguish hypernyms from hyponyms
(HYPER-HYPO results), while the dependency labels encoded in FULL help to dis-
tinguish hypernyms from co-hyponyms. All models also improve significantly on the
HYPER-COHYPO set, suggesting that discriminating hypernyms from cohyponyms
is easier than discriminating them from hyponyms.

While the BISPARSE-DEP models generally perform better than window mod-
els on both test sets, CL-DEP is not as consistent (e.g. it is worse than the best
window model on HYPER-COHYPO). As shown by Turney and Mohammad (2015),
BalAPinc is designed for sparse embeddings and is likely to perform poorly with
dense embeddings. This explains the relatively inconsistent performance of CL-DEP.

Finally, besides establishing the challenging nature of our crowd-sourced set,
the experiments on HYPER-COHYPO and HYPER-HYPO also demonstrate the abil-
ity of the BISPARSE-DEP models to discriminate between different lexical-semantic

relations (viz. hypernymy and cohyponymy) in a cross-lingual setting.
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4.6.2 Ablating Directionality in Context

The context described by the FULL and JOINT BISPARSE models encodes
directional information (Section 4.3.3) either in the form of label direction (FULL),
or using sibling information (JOINT). Does such directionality in the context help
to capture the asymmetric relationship inherent to hypernymy? To answer this,
we evaluate a third BISPARSE-DEP model which uses UNLABELED dependency
contexts. This is similar to the FULL context, except we do not concatenate the
label of the relation to the context word (parent or children). For instance, for
traveler in Figure 4.2, contexts will be roamed and tired.

Experiments on both HYPER-HYPO and HYPER-COHYPO (bottom row, Ta-
bles 4.3 and 4.4) highlight that directional information is indeed essential. UNLA-
BELED almost always performs worse than FULL and JOINT, and in many cases

worse than even window based models.

4.6.3 Evaluating Robustness of BISPARSE-DEP

No Treebank We run experiments (Table 4.5) for all languages with a version
of BISPARSE-DEP that use the FULL context type for both English and the non-
English (target) language, but the target language contexts are derived from a corpus
parsed using a delexicalized parser (Section 4.5.3). This model compares favorably
on all language pairs against the best window based and the best dependency based
model. In fact, it almost consistently outperforms the best window based model by

several points, and is only slightly worse than the best dependency-based model.
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Model Ru-En Zh-En Ar-En  Fr-En Average

Hyper-Hypo
Best Window 56.6 53.7 51.5 53.4 53.8
Delexicalized 59.1* 55.1*  54.6* 56.1* 56.2

Best Dependency  60.2  57.0%  56.7% 59.9% 58.5

Hyper-Cohypo

Best Win. 63.8 64.9 65.8 63.2 64.4
Delexicalized 59.4 65.7%  67.5% 66.3* 64.7
Best Dependency  63.6%  67.3*  66.8%  66.7 66.1

Table 4.5: The delexicalized model is competitive with the best dependency based
and the best window based models on both test sets. For each dataset, * indicates
a statistically significant (p < 0.05) improvement over the next best model in that
column, using McNemar’s test (McNemar, 1947).

Further analysis reveals that the strong performance of the delexicalized model
is due to the relative robustness of the delexicalized parser on frequent contexts in
the co-occurrence matrix. Specifically, we find that in French and Russian, the most
frequent contexts were derived from amod, nmod, nsubj and dobj edges (together
they make up at least 70% of the contexts). For instance, the nmod edge appears in
44% of Russian contexts and 33% of the French contexts. The delexicalized parser
predicts both the label and direction of the nmod edge correctly with an F1 of 68.6
for Russian and 69.6 for French. In contrast, a fully-trained parser achieves a F1 of

76.7 for Russian and 76.8 for French for the same edge.

Small Monolingual Corpus In Figure 4.3, we use increasingly smaller mono-
lingual corpora (10%, 20%, 40%, 60% and 80%) sampled at random to induce
the monolingual vectors for BISPARSE-DEP (FULL) model. Trends indicate that
B1SPARSE-DEP models that use only 40% of the original data remain competitive

with the BISSPARSE-LEX model that has access to the full data. Robust perfor-
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Figure 4.3: BISPARSE-DEP outperforms the best window based model on HYPER-
HyPoO, even with about 40% of the monolingual corpora, for most languages.

mance with smaller monolingual corpora is helpful since large monolingual corpora

are not always easily available.

Quality of Bilingual Dictionary Bilingual dictionaries derived from smaller
amounts of parallel data are likely to be of lower quality than those derived from
larger corpora. To analyze the impact of dictionary quality on BISPARSE-DEP
(FuLL), we use increasingly smaller parallel corpora to induce bilingual dictionaries
used as the score matrix S (Section 4.3.2). We use the top 10%, 20%, 40%, 60% and
80% sentences from the parallel corpora. Trends in Figure 4.4 show that even with

a lower quality dictionary, BISPARSE-DEP is more accurate than BISPARSE-LEX.
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Figure 4.4: BISPARSE-DEP outperforms the best window based model on HYPER-
HyPo with increasingly lower quality dictionaries, for most languages.

4.6.4 Choice of Entailment Scorer

While BISPARSE-DEP uses BalAPinc to score hypernyms, how robust is it
to other functions motivated by different linguistic hypotheses? To answer this, we
change the hypernymy scorer from BalAPinc to SLQS (Santus et al., 2014) and
redo experiments (Section 4.6.1). SLQS is based on the distributional infor-
mativeness hypothesis, which states that hypernyms are less “informative” than
hyponyms, as they occur in more general contexts. The informativeness F, of a word
u is defined as the median entropy of its top N dimensions, E, = median j_, H(cy.),
where H(c;) is the entropy of dimension ¢;. The SLQS score for a pair (u,v) is the

relative difference in entropies,

SLQS(u—v) =1 - % (4.6)
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Recent work (Shwartz et al., 2017) has found SLQS to be more successful than other
metrics in monolingual hypernymy detection.

The trends observed in these experiments are consistent with those in Section
4.6.1—both BISPARSE-DEP models still outperform window-based models. Also,
the delexicalized version of BISPARSE-DEP outperforms the window-based models,
showing that the robust behavior demonstrated in Section 4.6.3 is also invariant
across metrics. We also find that using BalA Pinc leads to better results than SLQS.
For both BISPARSE-DEP models, BalA Pinc wins across the board for two languages

(Russian and Chinese), and wins half the time for the other two languages.

4.7 Summary

The focus of this chapter was on the task of identifying hypernymy relations
between words across languages. We introduce this task in order to provide a prin-
cipled way of characterizing differences in word meaning across languages. Mo-
tivated by the distributional inclusion hypothesis, we introduced BISPARSE-DEP,
a new unsupervised approach for identifying cross-lingual hypernymy. BISPARSE-
DEP uses sparse bilingual word representations learned from both dependency-based
co-occurrence patterns in monolingual corpora and bilingual correspondences from
parallel text. We showed that BISPARSE-DEP is superior for the cross-lingual hy-
pernymy detection task, when compared to standard window based models and
a translation baseline. Further analysis showed that BISPARSE-DEP is robust to

various low-resource settings. In principle, BISPARSE-DEP can be used for any lan-
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guage that has a bilingual dictionary with English and a related language with a
treebank. We also introduced crowd-sourced cross-lingual hypernymy datasets for
four languages and make them publicly avaiable for future evaluations.

The accuracy of BISPARSE-DEP reveals that hypernymy identification can still
be further improved, especially in the harder setting where it has to be distinguished
from the inverse hyponymy relation. In monolingual settings, improvements have
been obtained using supervised methods, but direct supervision is unrealistic to
assume in cross-lingual scenarios. Instead, methods that learn from supervised data
in a high-resource language (Glavas and Vuli¢, 2019; Vuli¢ et al., 2019) provide a

reasonable alternative.
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Chapter 5:  Weakly Supervised Identification of Cross-lingual Seman-

tic Relations

While hypernymy is one way of characterizing differences in meaning across
languages, words across languages can be related in many different ways. In this
chapter, we expand our scope to the broader challenge of simultaneously classifying
between multiple relations. Given a word pair (water, 99), the classification task
is to select one of the five entailment classes (Figure 5.1) defined under the natural
logic framework of MacCartney and Manning (2009). The challenges associated
with hypernymy detection in the previous chapter still remain — we cannot assume
that labeled examples exist for all language pairs and learning from English labeled
examples is complicated by translation ambiguity, and by semantic relations not
being preserved by translation, as illustrated by Figure 5.1.

We introduce BILEXNET, a neural classifier for semantic relations based on
cross-lingual distributional and path-based features inspired by the monolingual
LEXNET model (Shwartz and Dagan, 2016b,c) (Section 5.1). LEXNET achieved the
highest performance (45 F1) among participating teams on the CogALex-V shared
task on identification of semantic relations (Santus et al., 2016) without ontologies

or structured information. We adapt LEXNET to make cross-lingual predictions by
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Figure 5.1: On the left, we illustrate cross-lingual semantic relation classification:
given the pair (water, 99) as input, the task is to select the Equivalence class (in
bold/green) from the five possible relations. On the right, we show that seman-
tic relations change by translation. 99 translates to liquid and water, and their
respective semantic relations with water differ.

proposing to model cross-lingual relations using lexico-syntactic paths from both
languages.

We then design a novel training procedure for BILEXNET that leverages weak
supervision in the form of examples translated from English via a knowledge distilla-
tion technique guided by translation dictionaries (Hinton et al., 2015) (Section 5.2).
Knowledge distillation has been proposed to compress a model with many param-
eters (the teacher model) to a model with fewer parameters (the student model).
It has also been used successfully to learn mappings between languages (Nakashole
and Flauger, 2017) or to transfer knowledge from models trained on one language
to a different target language for text classification (Xu and Yang, 2017) and belief
tracking (Chen et al., 2018a), in settings where the classification labels are transla-
tion invariant. This work adapts distillation to a setting where labels might change

when samples are translated.
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Finally, we collect and release MULTILEXREL, a crowdsourced benchmark to
evaluate models for this task on a high-resource (English-Chinese) and a low-resource
(English-Hindi) language pair (Section 5.3). Experiments show that BILEXNET
substantially outperforms translation baselines and approaches the performance of

a fully supervised English semantic relation classifier (Section 5.5).

5.1 BILEXNET: a Classifier for Cross-Lingual Semantic Relations

The task of classifying semantic relations is a multi-class classification prob-
lem, where the classes are the set of five semantic relations from Pavlick et al. (2015):
Equivalence (X is the same as Y), Forward Entail (X is more specific than/a type
of Y), Backward Entail (X is more general than/encompasses Y), Exclusion (X
is mutually exclusive with/opposite to Y), and Other (X is not related or related
in other ways to Y). We choose these relations as they have been useful in de-
scribing lexical relations between English paraphrases (Pavlick et al., 2015), and in
downstream natural language inference systems (MacCartney and Manning, 2007,
2009).

Our classifier, BILEXNET, adapts the LEXNET English classifier (Shwartz and
Dagan, 2016b,c) to cross-lingual settings. BILEXNET represents the input word pair
(z, y) by a feature vector v,,, consisting of complementary distributional and path-
based features i.e. Vuy= [Vo;VyiVpaths(ey)]- The distributional semantic properties of
x and y are captured by bilingual word embeddings v, and v,. Vpuns@,y) encodes

lexico-syntactic paths that represent the relation between words x and y in con-
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text (Hearst, 1992; Shwartz et al., 2016; Snow et al., 2005). For classification, v,
is input to a multi-class classifier, parameterized as a feed-forward neural network

with a single hidden layer.

lout :WQ * ReLU(W1 * ny)

Z‘ - eXp(lout,i)
>y exp(lour)

lprea = arg max I; (5.1)

W, and W, are the weights of the network, and the biases have been omitted for

simplicity.

5.1.1 Cross-lingual Paths

In LEXNET, a lexico-syntactic path is the sequence of edges that lead from
r to y in the dependency tree of a sentence. Each edge contains the word and
part-of-speech tag of the source node, the dependency label of the edge, and the
edge direction between two subsequent nodes (see Figure 5.2 for an example). The
vector representation of each edge is formed by concatenating the vectors of these
four components. Vpuns(e,y) is obtained by encoding the sequence of edges using an
LSTM (Hochreiter and Schmidhuber, 1997).

In English, these paths are extracted from sentences where x and y co-occur.
However, when x and y are in different languages, a new path definition is required.

For a cross-lingual pair (x.,ys), we extract cross-lingual paths V,uns(z, y,) from a

Ze, Yf
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e~
. g3 gied fafv=1 ustrfd & ST .

.. different species of animals including pigs ..

root l and
nmod

Figure 5.2: The English path between animals and pigs has three edges:
[X/NOUN/nmod/>, species/NOUN/root/A, and Y/NOUN/nmod/>]. The path between
animals and 37T is defined as a combination of the English path and the Hindi
path between JTHET and g7,

word-aligned parallel corpus (Figure 5.2). We first extract all parallel sentences
which contain . on the source side and y; on the target side. For each sentence,
using word alignments, we can extract ¢, the target word aligned to z., and y. the
source word aligned to yy. We then extract a path connecting the two word in the
source sentence i.e. x. and y.. Similarly, we also extract a corresponding path con-
necting the two word in the target sentence u.e. xy and yy, since different languages
can encode the same information differently due to structural divergences (Dorr,
1994). Thus, if the parallel corpus contains m sentence pairs where ., occurs on the
source side and yy on the target side, we extract a total of 2m paths. All of the 2m
paths paths are encoded using a single LSTM, and averaged to form vpains(z..y -
Two special cases arise from this definition. First, a path can be a single
alignment link if . and y; are aligned to each other ie. z; = y; and y. = ..

Second, if no path is found in the corpus, Vyains(z,.y,) 15 set to the zero vector.
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Figure 5.3: Illustration of weakly supervised training: For a given English example
(cat, animal), we generate predictions ] e using the monolingual English teacher
model. Simultaneously, we also generate predictions e/ using the cross-lingual
student model after translating one of the two English words using a dictionary.
The cross-lingual classifier attends to all translation candidates and predicts a class
based on a weighted average of their features. The loss is defined as CROSS-
ENTROPY(1 7¢, 1) + CrROss-ENTROPY(1 7/ 1) + KL-DIVERGENCE(I ¢/ 1 ¢7¢),

5.2 Weakly Supervised Training via Knowledge Distillation

Cross-lingual examples for fully supervised training of BILEXNET are hard to
obtain: examples of relations such as synonymy or hypernymy can be derived from
multilingual WordNets (Bond and Foster, 2013), but such resources are not available
for many languages, and only cover a subset of semantic relations. Instead, we
introduce a dictionary-guided variant of knowledge distillation to train BILEXNET.
This procedure only relies on a set of monolingual labeled examples that are readily

available for various lexical relations in English, and a translation dictionary that
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maps words in the source language to the target language.

Our approach transfers knowledge from a monolingual teacher model to a
cross-lingual student model. The teacher model is a monolingual LEXNET model
(say M,) trained on the source-language examples S = {(zci, Ve, i)} Here, x.;
and y.,; are a pair of words in the same language and I, € R is a one-hot encoding
of the relation between x.; and y.; (the number of possible relations is ¢). Given
(Teiiy Yeuis ;) € S, M, is trained by minimizing the cross-entropy loss between the

predicted output 1°7¢ and the gold label L;:

c

Ll = — Z lij lOg ije—)e (52)

j=1

BILEXNET plays the role of the student model (denoted M,) and is trained
to make predictions that agree with those of the teacher model. The student model is
trained using weak supervision which is generated by using a bilingual dictionary
D to translate the right side of each training pair into the target language S to
obtain S" = {(z¢4, T3, 1;)}, where T; = {t;1,ti2, .., tin} is the set of translations of y.,
in D. S’ serves as weak supervision because semantic relations are not translation
invariant (Figure 5.1), and hence the label 1; is not correct for every (x.,t;) pair.

To extract useful training signals from the weak supervision, we use an atten-
tion mechanism which guides the model to attend to translations that preserve
the monolingual label. The attention component constructs the input represen-
tation for the cross-lingual model M., in Equation 5.1 by averaging representa-

tions for all translation candidates, giving more weight to those that are likely to

76



preserve the monolingual label. Given a training sample (z.;, T;, ;) € S with
T; = {ti1, tia, .., tin}, the score for a candidate translation ¢;, is calculated using the
word embeddings of z.,; and t;;, along with 1, an embedding of the gold label 1; as
features to a feed-forward network f (with one hidden layer). 1is provided to help
select translations that are consistent with the correct label for the monolingual
pair. The scores for all translations are converted to probabilities using the softmax

function, and the input features v,

e for the student model M,; are a sum of the

features obtained from each of these translations, weighted by the probabilities.

score((Teq, tin), L) = f([xi; tig:1]) (5.3)

p(tn) = fop(score(tik)

=1 exp(score(t;))

V:/ve;,-ye;i = Zp(t'lk‘)vxe,ztzk (54)
k=1

The student model is then trained to maximize the distillation objective:

c A‘e%f
Ly==Y [(1—a)ljlog 7 +a i log(;e—m)] (5:5)
i=1 J

where 17¢ is calculated using M,, 177 is calculated using the attended repre-

sentation v, . as input to M.y and « is an interpolation parameter. The first

term is again a cross-entropy loss that aims to measure how well the cross-lingual

model M. does at predicting the relation given V;e,iye,i . The second term uses

KL-Divergence (Kullback and Leibler, 1951) to penalize differences in predictions

by M.y on the cross-lingual input v, and the predictions by M, on the mono-

iYe;i
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lingual input v,_,... As is typical in distillation, we flatten the softmax of both

inputs to the KL-Divergence term, by using a temperature parameter 7.

5.3 MULTILEXREL : A Dataset for Cross-lingual Semantic Relations

Existing resources containing annotated cross-lingual lexical relations are lim-
ited in scope, quality, and quantity. Resources such as bilingual dictionaries or
the Open Multilingual WordNet (Bond and Foster, 2013) can be mined for exam-
ples of synonyms, hypernyms and hyponyms, but these examples are noisy as these
resources are created in a semi-automatic way.

In this section, we crowdsource MULTILEXREL, a set of new high-quality an-
notations for English-Hindi (En-Hi) and English-Chinese (En-Zh) word pairs using
the natural logic relations laid out in Section 6.2.! We leverage monolingual an-
notations to speed up the process and enable comparisons between monolingual
and cross-lingual models. We use Google Translate to translate one side of a ran-
domly sampled subset of the gold-standard dataset of semantic relations created by
Pavlick et al. (2015), and ask crowdworkers whether the semantic relation holds af-
ter translation. Each example is annotated by five annotators and annotations are
aggregated using MACE, a Bayesian model that estimates the trustworthiness of
annotators and accordingly assigns a label to each instance (Hovy et al., 2013). The
distributions of the five relations are shown in Table 5.1. 40-45% of the examples
shown to annotators were deemed to not preserve the monolingual relation after

translation. The final test sets consist of the remaining 55-60% examples.

Via http://figure-eight.com/
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Relation En-Hi En-Zh

Equivalence 158 174
Forward Entail 220 240
Backward Entail 215 236
Exclusion 124 154
Other 323 94
Total 1040 898

Table 5.1: Distribution of the five semantic relations for the two crowdsourced test
sets.

5.4 Experimental Settings

MULTILEXREL is used as a test set to evaluate our models. Training only
requires English labeled examples, and other resources derived from raw monolingual

and parallel corpora.

5.4.1 Data

English Supervision The English training samples are derived from the English
Lexical-XXXL PPDB. After filtering away pairs containing non-alphabetic charac-
ters, we choose a random sample as training pairs. The number of samples for all
classes is balanced, except for Exclusion (since there are fewer examples of this
class in PPDB). All in all, the size of the training set is ~20K pairs. Like previous
work, we ensure a lexical split where the English words that are present in the test
data are not seen in the training data (Levy et al., 2015). This makes the task
challenging as it prevents model from memorizing patterns of words such as their
“prototypicality” for certain relations i.e. whether certain words are likely to appear

in specific relations.
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Validation data Since we assume no access to labeled cross-lingual examples, we
need to define a validation set using the resources available to us. We construct a
validation set by randomly removing 1000 pairs from the training data, and auto-
matically translating the right side of each example with the bilingual dictionary
used for training. This process yields a noisy validation set, which is solely used for

tuning hyper-parameters.

Unlabeled Resources The bilingual dictionary for knowledge distillation is ob-
tained from the MUSE project (Lample et al., 2018) for En-Hi, while the MDBG
dictionary is used for En-Zh.? We use FastText bilingual embeddings (Bojanowski
et al., 2017).> We extract English paths for the monolingual model from the En-
glish Wikipedia.? Cross-lingual paths are extracted from a random sample of the
WMT18 parallel corpora® for En-Zh (~5M sentences) and the IIT Bombay English-
Hindi corpus (Kunchukuttan et al., 2018) for En-Hi (~1M sentences). All corpora
are parsed using YaraParser (Rasooli and Tetreault, 2015) trained on the treebank
of the corresponding language from the Universal Dependencies (v2.2) project (Mc-
Donald et al., 2013). Tokenization is performed using the Moses tokenizer for En-
glish (Koehn et al., 2007), the Indic NLP tokenizer for Hindi,% and the Jieba word

segmenter for Chinese.”

Zhttps://www.mdbg.net/chinese/dictionary?page=cc-cedict
3https://fasttext.cc/docs/en/aligned-vectors.html
‘https://dumps.wikimedia.org/enwiki/
Shttp://statmt.org/wmt18/translation-task.html
Shttps://github.com/anoopkunchukuttan/indic_nlp_library
"https://github.com/fxsjy/jieba
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5.4.2 Model Configurations and Baselines

Model Configuration The path-encoder LSTM has two layers with 60 hidden
units each, with dropout (Srivastava et al., 2014) applied after the first layer. All
feed-forward neural networks have a single hidden layer with 50 hidden units and
dropout regularization. All models are trained in mini-batches of size 4 using the
Adam optimizer (Kingma and Ba, 2014) with initial learning rate set to 1072. The
temperature parameter 7 for knowledge distillation is tuned over {1.0, 1.5, 2.0, 5.0},

and the interpolation parameter a over {0.75, 0.90}.

English-only Model: EnLexNet We also use a vanilla LEXNET model ap-
plied to a monolingual test set in order to measure the gap between cross-lingual
performance and monolingual performance. ENLEXNET is trained on the same En-
glish samples used for training the BILEXNET model, and evaluated on the En-En
examples used to generate cross-lingual examples in Section 5.3.We re-implement
the LEXNET model and verify its accuracy by replicating results on the CogALex

dataset.

Baselines Our experiments aim to assess how the direct cross-lingual modeling
of semantic relations in BILEXNET impacts predictions, and to isolate the impact
of key training components: knowledge distillation and translation selection via

attention. We compare against the following baselines :

e RANDOM BASELINE: Randomly assign one of the five semantic relations to
each word pair.
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e TRANSLATION BASELINE: This baseline combines dictionary translation and
the English-only system ENLEXNET to gauge the relative difficulty of predict-
ing semantic relations across languages rather than in English only. Each pair
(we,ys) in the test set is translated into English using the bilingual dictionary
D. Since y; can have multiple translations, we pair z. with each of these
translations, and use ENLEXNET to predict the relation for each of these
pairs. The relation for (z.,ys) is then chosen as the most general relation
among those predicted for the translated pairs according to the order in which
they appear in Table 5.1. We also experimented with a voting based approach

to combination, but it generally performed worse.

e BILEXNET (NO DISTILLATION): A simple strategy for cross-lingual transfer
consists in seeding a vanilla LEXNET model with bilingual embeddings in the
source and target languages before training. This strategy has been success-
fully used for other NLP tasks (Guo et al., 2015; Klementiev et al., 2012, inter
alia). By keeping the embeddings fixed, we can use source language data to
train the monolingual LEXNET model using features based on source embed-
dings and source language paths as usual. At inference time, the model uses

both the source and target embeddings as input, and the cross-lingual paths

defined above.

e SPECIALIZED TENSOR MODEL (STM): How does a model that has primarily
been used for comparing words in the same language perform on cross-lingual

comparisons? Our final baseline answers this question. Proposed by Glavas
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and Vuli¢ (2018), STM is a neural architecture for identifying semantic rela-
tions that achieves state-of-the-art performance on two English datasets. STM
is based on the hypothesis that specialized word embeddings are necessary to

accurately disambiguate between semantic relations.

More precisely, STM assumes that different specializations of generic word
embeddings are needed to recognize different relations and that interactions
between the specialized vectors can be used to identify the semantic relations.
These different specializations are implemented using K feed-forward neural
networks. Given a word pair, STM takes in as input a pair of generic word
embeddings for the word pair which are then specialized by the K transforma-
tions. Each pair of corresponding specialized embeddings is used to calculate a
score based on a non-linear transformation of their bilinear product. Finally,
the K scores obtained from K pairs of specialized embeddings are used as

features to train a multi-class classifier.

Besides English, STM has also been used for cross-lingual transfer, where a
model trained on one language (say English) is used to test on word-pairs in
another language (say German). Here, we use STS in a new setting to predict

the semantic relation between two words in different languages.

We use the official implementation of STM with the same bilingual embed-
dings used by BILEXNET.® We tune three hyperparameters on the validation

set: the size of the specialized tensors {100, 200, 300, 500}, the number of spe-

8https://github.com/codogogo/stm
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En-Hi En-Zh

Model P R F P R F
RANDOM BASELINE 22.9+1.3 209425 21.4+1.4 22.941.3 20.9+25 21.4+1.4
TRANSLATION BASELINE 30.1+1.7  26.3+1.3  28.3+1.5 50.1+£2.2 32.840.8 33.0+1.0
STM 32.0 33.0 29.0 20.0 15.0 16.0

BILEXNET (No distillation) 34.9+1.2 34.3+0.6 32.2+0.8 41.7+64 33.5+£6.2 32.6+7.2
BILEXNET (No attention) 47.2+1.0 42.9+1.8 41.9+23 45.041.5 40.841.8 39.840.8
BILEXNET (Full) 47.7+1.2 442408 43.3+1.0 48.3+£16 41.6+11 41.1+0.9

Table 5.2: Precision (P), Recall (R) and F1-score (F) for BILEXNET and contrastive
baselines on the two MULTILEXREL test sets. All configurations are trained with
five random seeds. We report the mean score and standard deviation. The full
BILEXNET model performs best and is consistently better with the attention com-
ponent.

cialization functions {3, 5, 7}, and the learning rate {0.0001, 0.0003}. Default

values are used for all other hyper-parameters.

5.5 Results

Tables 5.2 summarizes results on the MULTILEXREL test sets. BILEXNET
achieves F1 scores that are roughly double of those obtained by the random baseline

for H-way classification.

Impact of cross-lingual modeling We assess the impact of direct cross-lingual
modeling in BILEXNET by comparing against the TRANSLATION BASELINE. Us-
ing a translation dictionary to naively convert cross-lingual relation prediction to
an English task, the translation baseline F1 scores are 8 to 13 points higher than
RAaNDOM for both language pairs. This difference can be attributed to easy exam-
ples where English semantic relations are preserved by simple dictionary translation.

BILEXNET further improves F1 by 8 to 15 points over the TRANSLATION BASE-
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LINE, primarily by improving recall.

Supervised English system Without cross-lingual training samples, we can-
not compare weakly supervised and fully supervised training for BILEXNET in a
controlled fashion. However, the supervised monolingual ENLEXNET model (Sec-
tion 5.4) evaluated on the En-En test set offers a reference point: remarkably the
F1 scores of BILEXNET are only 1 to 3 points lower than those obtained by the

supervised English model (~44 on the En-En test set).

Impact of knowledge distillation We compare the full BILEXNET model to the
naive baseline (BILEXNET (NO DISTILLATION)) that only relies on embeddings for
cross-lingual transfer and does not perform cross-lingual distillation. This approach
performs on par with or a little better than the translation baseline, but ~9 points
worse than the full BILEXNET model, losing on both precision and recall. This
result confirms the benefit of aligning training and test conditions for our model
with knowledge distillation and not relying solely on embeddings. These results are

consistent with prior findings on distributional representations.

e Distributional representations have difficulties in discriminating between mul-
tiple semantic relations (Chersoni et al., 2016a). As such, relying solely on
word embeddings for cross-lingual transfer can cause loss of knowledge during

transfer.

e Syntactic divergences cause differences in paths in the source and target lan-

guages. This can cause a distribution shift between the features seen by the
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classifier during training and test time, thereby affecting performance. Again,
word embeddings are not sufficient to bridge the gap between the distributions

of the two languages (Chen et al., 2018b).

Impact of attention We test the impact of the attention model in BILEXNET
by removing it, and instead translating training samples for distillation using the
single most frequent translation. Removing attention yields small but consistent
degradations, suggesting that attending to multiple translations is beneficial, but
leaves room for improvement. We analyze the behavior of the attention model in

the next section.

Specialization Finally, we observe F1 scores of STM are significantly worse than
those of BILEXNET. In fact, it is the weakest model for En-Zh, and is only 3 points
better than the translation baseline for En-Hi. The relatively poor performance of
STM highlights that our cross-lingual task, which directly compares words in two
languages, is fundamentally different from the transfer task, where models trained
in one language are ported to other languages. Thus, models such as STM, which

have been designed for transfer, may not be directly suitable for our task.

5.6 Analysis

This section further breaks down the results, and highlight some successes
and failures of BILEXNET to guide future work on cross-lingual semantic relation

classification.
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Class En-Hi En-Zh En-En

Equivalence 33 30 31
Exclusion 33 28 23
Forward Entail 47 48 48
Backward Entail 45 58 48
Other 51 29 53

Table 5.3: Per-class F1 scores for median En-Hi and En-Zh BILEXNET model and
the ENLEXNET model.

Performance Per Class We break down the performance of the BILEXNET
model per target relation (Table 5.3). The Equivalence and Exclusion classes are
the hardest to predict correctly, which is consistent with our monolingual results
and those from prior work (Shwartz and Dagan, 2016¢): distributional models have
trouble distinguishing synonyms from antonyms (Yih et al., 2012) and synonyms
rarely occur in the same sentence, and hence path-based methods are less useful for
this class. However, in BILEXNET, words of the Equivalence class can occur in a
parallel sentence pair where they are aligned to each other. Thus, there is a direct
signal for examples of this class which helps discriminate between Equivalence and
Exclusion.

The largest fraction of errors are caused by the model predicting Other instead
of a specific relation. This suggests that special treatment of this class might im-
prove performance, perhaps by using a multi-step process which filters out pairs not
related under the relations that we are targeting, and then performs 4-way classifi-
cation for the remaining examples. This is similar to the the CogALex shared task,
where the first part of the task is to eliminate completely unrelated pairs, before

predicting relations on the remaining pairs (Santus et al., 2016). However, filtering
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out unrelated pairs is an easier task than filtering pairs in the Other category.

Missing cross-lingual paths Cross-lingual paths might not exist for all word
pairs, particularly for language pairs with limited parallel data such as En-Hi.
BILEXNET would then only rely on word embeddings as features to predict seman-
tic relations. We assess the impact of missing paths by comparing the classification
performance on pairs which have cross-lingual paths (70% of the test), against pairs
which do not have paths in the En-Hi setting. The former subset has a higher F1
score (44.6) than the latter (40.2), mainly due to differences in recall. This differ-
ence in performance also confirms that the cross-lingual paths complement word

embeddings, in the same way that monolingual paths do.

Attention Analysis We complement ablation experiments in Table 5.2 by ex-
amining a random sample of 25 monolingual training pairs (z.,y.) where y, has
multiple translations in the bilingual dictionary. We manually check for how many
pairs the model places the highest attention weight on a translation that preserves
the relation label of the monolingual pair. This happens in 64% of the cases (16
out of 25). The attention model is often able to modulate the choice of the right
translation of y, based on the context provided by x. and the gold label. For exam-
ple, given the monolingual example (drop, fall, Forward Entail) the model places
the highest weight on the Hindi word fiT¥T, which captures the “moving downward”
sense. On the other hand, for the example (autumn, fall, Equivalence), the model

correctly identifies TS as the right translation.
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There still remains a lot of overhead for improving the attention component.
Some failure cases in the 25 examples occur for pairs where the set of translations
of y. contains an incorrect translation which is totally unrelated to z. or y.. For
example, given (country, uganda), the model chooses the word #SeT (transliteration
for candle) and not gfl'l@'l‘ (transliteration for uganda). Of course, this is an extreme
example, but such errors are also more likely to occur when the noisy translation is
in the same domain as z. and y.. Fixing such errors can help improve the training

process.

5.7 A Comparison of Unsupervised and Weakly Supervised Approaches

Having studied the performance of BILEXNET on the task of identifying the
full spectrum of semantic relations from Section 6.2, we now compare its performance
against the BISPARSE-DEP model introduced in Chapter 4, on the task of cross-
lingual hypernymy detection. Besides the empirical question of which method is
more accurate at identifying hypernyms, there are two other reasons why such a
comparison is useful.

First, since both models assume access to different kinds of resources, this
comparison can guide model choice based on the availability of resources. Specifi-
cally, recall that BISPARSE-DEP requires a small amount of cross-lingual word pairs
labeled with hypernymy information for tuning hyper-parameters, which are poten-
tially difficult to create for new language pairs. On the other hand, BILEXNET uses

a large number of English training pairs labeled with semantic relations, from an al-
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HyprPERrR-HYPO HYPER-COHYPO
En-Fr En-Zh En-Fr En-Zh

B1SPARSE (Unsupervised) 59.9 57.0 66.5 67.3
BILEXNET (Weakly Supervised) 70.9+081 70.7+1.17 69.0+2.79 73.5+4.9

Table 5.4: Accuracies of the weakly supervised BILEXNET when compared to the
unsupervised BISPARSE method from Chapter 4 on the task of cross-lingual hy-
pernymy detection. The weak supervison enables BILEXNET to more accurately
identify cross-lingual hypernymy than the unsupervised approach.

ready existing resource viz. PPDB. Conversely, BILEXNET needs sentence-aligned
parallel data, while BISPARSE-DEP can be trained using a bilingual dictionary.
Knowing the trade-off between resources and accuracy can help in better selecting
which approach to use for new language pairs.

Second, work in monolingual settings has established that unsupervised meth-
ods for hypernymy detection are generally less accurate than their supervised coun-
terparts (Levy et al., 2015; Shwartz et al., 2017). Comparing the two approaches

will reveal whether and to what extent this is true in cross-lingual settings.

Setup We use the English-Chinese and English-French subsets of the HYPER-
CoHYyPO and HYPER-HYPO test beds described in Section 4.4. Our training setup
for MULTILEXREL is exactly the same as described earlier (Section 5.4), with one
small change. We match the binary classification setup of the cross-lingual hyper-
nymy detection task by treating the training and validation examples with Forward

Entail label as positive examples, and all other examples as negative examples.

Results Table 5.4 shows that BILEXNET is more accurate than BISPARSE-DEP

for both languages tested and on both versions of the dataset. Improvements are
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larger on the HYPER-HYPO datasets, but performances are similar across HYPER-
HypPo and HYPER-COHYPO. This indicates that BILEXNET is able to distinguish
hypernyms from hyponyms as well as hypernymy from co-hyponymys with the same
ease. In contrast, BISPARSE-DEP is more accurate at distinguishing hypernyms
from co-hyponyms than hyponymys (Tables 4.3 and 4.4).

These results also confirm that the merits of supervision for hypernymy detec-
tion hold even in cross-lingual settings. Despite being only weakly supervised using
English examples translated via dictionary-guided distillation, BILEXNET is more

accurate than the unsupervised BISPARSE-DEP.

5.8 Summary

This chapter motivated and introduced the task of classifying semantic rela-
tions between words in different languages with the objective of precisely character-
izing differences in word meaning. Additionally, we introduced MULTILEXREL, a
dataset of about 1000 English-Hindi and 900 English-Chinese word pairs annotated
with the natural logic lexical entailment classes of MacCartney and Manning (2007),
and BILEXNET, a cross-lingual relation classification model.

We also introduced a knowledge distillation algorithm for BILEXNET, which
only needs annotated monolingual examples and a bilingual dictionary. Unlike pre-
vious uses of knowledge distillation for cross-lingual transfer, our approach does not
assume that labels are translation invariant, and relies on an attention mechanism

to select translations that best explain a given label. Experiments show that this
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method largely outperforms baselines that use bilingual embeddings or dictionaries
more naively for cross-lingual transfer, and that it approaches the performance of
fully supervised systems on an English-only version of the task.

Taken together, the last two chapters provide two different ways of charac-
terizing differences in meaning between words in two different languages. While
we discuss one potential use-case of modeling semantic relations in a later chapter
(Chapter 7), such models can be used for a wide variety of problems in multilingual
NLP by discovering fine-grained characterization of difference in meaning across

languages.
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Chapter 6: Identifying Semantic Divergences in Parallel Text with-

out Annotations

Having introduced models to detect semantic relations between words across
languages, we now turn to the problem of identifying differences in meaning in
bilingual sentence pairs drawn from parallel corpora. In this chapter, we discuss
an automatic method to distinguish semantically equivalent sentence pairs from
semantically divergent pairs, so that parallel corpora can be used more judiciously
in downstream cross-lingual NLP applications. We propose a semantic model to
automatically detect whether a sentence pair is semantically divergent (Section 6.2).
While prior work relies on surface cues to detect misaligments, our approach focuses
on comparing the meaning of words and overlapping text spans using bilingual word
embeddings (Luong et al., 2015) and a deep convolutional neural network (He and
Lin, 2016). Crucially, training this model requires no manual annotation. Noisy
supervision is obtained automatically borrowing techniques developed for parallel
sentence extraction (Munteanu and Marcu, 2005). Our model can thus easily be
trained to detect semantic divergences in any parallel corpus.

We extensively evaluate our semantically-motivated models on the intrinsic

task of detecting divergent examples in the two parallel English-French data sets we
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collected in Chapter 3 (Section 3.2). We show that our semantically motivated model
significantly outperforms other methods based on word alignment cues, shallow word

embeddings, and neural machine translation scores.

6.1 Background

Non-Parallel Corpora Beyond understanding the impact of noisy data (Sec-
tion 2.1.4), mismatches in bilingual sentence pairs have also been studied to extract
parallel segments from non-parallel corpora to augment MT training data (Abdul-
Rauf and Schwenk, 2009; Fung and Cheung, 2004; Munteanu and Marcu, 2005, 2006;
Riesa and Marcu, 2012; Smith et al., 2010, inter alia). Methods for parallel sen-
tence extraction rely primarily on surface features based on translation lexicons and
word alignment patterns (Munteanu and Marcu, 2005, 2006). Similar features have
proved to be useful for the related task of translation quality estimation (Spe-
cia et al., 2010, 2018), which aims to detect divergences introduced by MT errors,
rather than human translation. Recently, sentence embeddings have also been used
to detect parallelism (Espana-Bonet et al., 2017; Schwenk and Douze, 2017). Al-
though embeddings capture semantic generalizations, these models are trained with
neural MT objectives, which do not distinguish semantically equivalent segments

from divergent parallel segments.

Cross-lingual Semantics Tasks such as cross-lingual semantic textual similarity
(STS) (Agirre et al., 2014) and cross-lingual textual entailment (CLTE) (Mehdad

et al., 2010; Negri et al., 2012, 2013) seek to characterize semantic relations between
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sentences in two different languages beyond translation equivalence, and are there-
fore directly relevant to our goal of identifying divergences in bilingual sentences.
We re-purpose data and methods for CLTE to determine whether annotations for
closely related cross-lingual tasks help in identifying divergences (Section 6.3.5).
Our core model for detecting divergences, which we introduce in the next section,

is based on an accurate model for identifying monolingual semantic similarity.

6.2 Approach

We introduce our approach to detecting divergence in parallel sentences, with
the goal of (1) detecting differences ranging from large mismatches to subtle nuances,

(2) without manual annotation.

Cross-Lingual Semantic Similarity Model We address the first requirement
using a neural model that compares the meaning of sentences using a range of granu-
larities. We re-purpose the Very Deep Pairwise Interaction (VDPWI) model, which
has been previously been used to detect semantic textual similarity (STS) between
English sentence pairs (He and Lin, 2016). It achieved competitive performance on
data from the STS 2014 shared task (Agirre et al., 2014), and outperformed pre-
vious approaches on sentence classification tasks (He et al., 2015; Tai et al., 2015)
with fewer parameters, faster training, and without requiring expensive external
resources such as WordNet.

The VDPWI model was designed for comparing the meaning of sentences in

the same language, based not only on word-to-word similarity comparisons, but
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also on comparisons between overlapping spans of the two sentences, as learned by
a deep convolutional neural network. We adapt the model to our cross-lingual task
by initializing it with bilingual embeddings. To the best of our knowledge, this is
the first time this model has been used for cross-lingual tasks in such a way. We
give a brief overview of the resulting model here and refer the reader to the original
paper for details. Given sentences e and f, VDPWI models the semantic similarity

between them using a pipeline consisting of five components:

1. Bilingual word embeddings: Each word in e and f is represented as a

vector using pre-trained, bilingual embeddings.

2. BiLSTM for contextualizing words: Contextualized representations for
words in e and f are obtained by choosing the output vectors at each time
step obtained by running a bidirectional LSTM (Schuster and Paliwal, 1997)

on each sentence.

3. Word similarity cube: The contextualized representations are used to cal-
culate various similarity scores between each word in e with each word in f.
Each score thus forms a matrix and all such matrices are stacked to form a

stmilarity cube tensor.

4. Similarity focus layer: The similarity cube is fed to a similarity focus layer
that re-weights the similarities in the cube to focus on highly similar word
pairs, by decreasing the weights of pairs which are less similar. This output is

called the focus cube.
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5. Deep convolutional network: The focus cube is treated as an “image” and
passed to a deep neural network, the likes of which have been used to detect
patterns in images. The network consists of repeating convolution and pooling
layers. Each repetition consists of a spatial convolutional layer, a Rectified
Linear Unit (Nair and Hinton, 2010), and a max pooling layer, followed by

fully connected layers, and a softmax to obtain the final output.

The entire architecture is trained end-to-end to minimize the Kullback-Leibler di-
vergence (Kullback and Leibler, 1951) between the output similarity score and gold

similarity score.

Noisy Synthetic Supervision How can we obtain gold similarity scores as su-
pervision for our task? We automatically construct examples of semantically diver-
gent and equivalent sentences as follows. Since a large number of parallel sentence
pairs are semantically equivalent, we use parallel sentences as positive examples.
Synthetic negative examples are generated following the protocol introduced by
Munteanu and Marcu (2005) to distinguish parallel from non-parallel segments.
Specifically, candidate negative examples are generated starting from the positive
examples {(e;, f;) Vi} and taking the Cartesian product of the two sides of the pos-
itive examples {(e;, f;) Vi, j s.t. @ # j}. This candidate set is filtered to ensure that
negative examples are not too easy to identify: we only retain pairs that are close
to each other in length (a length ratio of at most 1:2), and have enough words (at
least half) which have a translation in the other sentence according to a bilingual
dictionary derived from automatic word alignments.
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This process yields positive and negative examples that are a noisy source
of supervision for our task, as some of the positive examples might not be fully
equivalent in meaning. However, experiments in the next section (Section 6.4) will
show that, in aggregate, they provide a useful signal for the VDPWI model to learn

to detect semantic distinctions.

6.3 Divergence Detection Evaluation

We evaluate the accuracy of our cross-lingual semantic divergence detector
using the dataset annotated in Chapter 3 (Section 3.2), and compare it against a
diverse set of baselines in controlled settings. We test our hypothesis that semantic
divergences are more than alignment mismatches by comparing the semantic diver-
gence detector with models that capture mis-alignment (Section 6.3.2) or translation
(Section 6.3.3). Then, we compare the deep convolutional architecture of the seman-
tic divergence model, with a simpler model that directly compares bilingual sentence
embeddings (Section 6.3.4). Finally, we compare our model trained on synthetic ex-
amples with a supervised classifier used in prior work to predict finer-grained textual
entailment categories based on manually created training examples (Section 6.3.5).
Except for the entailment classifier which uses external resources, all models are
trained on the exact same parallel corpora (OpenSubtitles or CommonCrawl for
evaluating on the corresponding test bed). This is a transductive setup, where the
test set is a (very small) subset of the training set. Note that the true label for a

sentence pair, 7.e. whether it is divergent or not, is not known during training.
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6.3.1 Neural Semantic Divergence Detection

Model and Training Settings We use the publicly available implementation
of the VDPWI model.! We initialize with 200 dimensional Bivec French-English
word embeddings (Luong et al., 2015), trained on the parallel corpus from which
our test set is drawn. We use the default setting for all other VDPWI parameters.
The model is trained for 25 epochs and the model that achieves the best Pearson
correlation coefficient on the validation set is chosen. At test time, VDPWI outputs
a score € [0, 1], where a higher value indicates less divergence. We tune a threshold

on development data to convert the real-valued score to binary predictions.

Synthetic Data Generation The synthetic training data is constructed using
a random sample of 5000 sentences from the training parallel corpus as positive
examples. We generate negative examples automatically as described in Section 6.2,
and sample a subset to maintain a 1:5 ratio of positive to negative examples. We
experimented with other ratios and found that the results only slightly degraded
while using a more balanced ratio (1:1, 1:2), but severely degraded with a skewed

ratio (1:9).

6.3.2 Parallel vs. Non-parallel Classifier

Are divergences observed in parallel corpora more than alignment errors? To

answer this question, we reimplement the model proposed by Munteanu and Marcu

'https://github.com/castorini/VDPWI-NN-Torch
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(2005). Tt discriminates parallel pairs from non-parallel pairs in comparable corpora

using a supervised linear classifier with the following features for each sentence pair
(e, f):

e Length features: |f|, |e|,H, and %

€

e Alignment features (for each of e and f): Alignments are obtained using IBM
Model 2 trained in each direction, combined with union, intersection, and

grow-diag-final-and heuristics, and the following features are extracted:

— Count and ratio of unaligned words
— Top three largest fertilities

— Longest contiguous unaligned and aligned sequence lengths

e Dictionary features: A bilingual dictionary is constructed using word align-
ments from a random sample of a million sentences from the training parallel
corpus. Features measure fraction of words in e that have a translation in f

and vice-versa.

Training uses the exact same synthetic examples as the semantic divergence model

(Section 6.2).

6.3.3 Neural MT

If divergent examples are nothing more than bad translations, a neural MT
system should assign lower scores to divergent segments pairs than to those that are

equivalent in meaning. We test this empirically using neural MT systems trained
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for a single epoch, and use the system to score each of the sentence pairs in the
test sets. We tune a threshold on the development set to convert scores to binary
predictions.

The MT system uses the attentional encoder-decoder model (Bahdanau et al.,
2014) implemented in the Sockeye toolkit (Hieber et al., 2017). Encoders and de-
coders are single-layer GRUs with 1000 hidden units (Cho et al., 2014). Source and
target word embeddings have size 512. Using byte-pair encoding, the vocabulary
size is 50000 (Sennrich et al., 2016). Maximum sequence length is set to 50.

We optimize the standard cross-entropy loss using Adam (Kingma and Ba,
2014), with learning rate set to 0.0003 and halved when the validation perplexity
does not decrease for 3 checkpoints. The batch size is set to 80. Preliminary
experiments showed that training for more than one epoch does not help divergence

detection, so we terminate training after an epoch.

6.3.4 Bilingual Sentence Embeddings

Our semantic divergence model introduces a large number of parameters to
combine the pairwise word comparisons into a single sentence-level prediction. This
baseline tests whether a simpler model would suffice. We detect semantic divergence
by computing the cosine similarity between sentence embeddings in a bilingual space.
The sentence embeddings are bag-of-word representations, built by taking the mean
of bilingual word embeddings for each word in the sentence. This approach has been

shown to be effective, despite ignoring fundamental linguistic information such as
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word order and syntax (Mitchell and Lapata, 2010). We use the same 200 dimen-
sional Bivec word embeddings (Luong et al., 2015), trained on OpenSubtitles and

CommonCrawl respectively.

6.3.5 Textual Entailment Classifier

Our final baseline re-purposes annotations and models designed for the task
of Cross-Lingual Textual Entailment (CLTE) to detect semantic divergences. This
baseline was introduced in Carpuat et al. (2017), and it helps us understand how
the synthetic training data compares to training examples generated manually, for
a related cross-lingual task. Using CLTE datasets from SemEval (Negri et al., 2012,
2013), we train a supervised linear classifier that can distinguish sentence pairs that
entail each other, from pairs where entailment does not hold in at least one direction.
The features of the classifier are based on word alignments and sentence lengths.

First, differences in sentence lengths are strong indicators of divergence be-
tween e and f. Accordingly, we use four length features: |e|, | f], ﬁ, and %

Second, we assume that the configuration of word alignment links between
parallel sentences (e, f) is indicative of equivalence: if e and f have the same mean-

ing, then they will be easier to align. Accordingly, we compute the following features

for each of e and f:

e Ratio of aligned words
e Ratio of unaligned words

e Ratio of unaligned content words (defined as words that do not appear in a
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stopword list)

Number of unaligned contiguous sequences

Length of longest contiguous unaligned sequence

Average length of aligned sequences

Average length of unaligned sequences

All alignments are trained on 2M sentence pairs from Europarl (Koehn, 2005)
using the Berkeley aligner (DeNero and Klein, 2007; Liang et al., 2006). The clas-

sifier is the linear SVM from Scikit-Learn.?

6.4 Intrinsic Evaluation Results

Table 6.1 shows that the semantic similarity model is most successful at dis-
tinguishing equivalent from divergent examples. The break down per class shows
that both equivalent and divergent examples are better detected. The improvement
is larger for divergent examples with gains of about 10 points for F-score for the
divergent class, when compared to the next-best scores.

Among the baseline methods, the non-entailment model is the weakest. While
it uses manually annotated training examples, these examples are drawn from dis-
tant domains, and the categories do not exactly match the task at hand. In contrast,
the other models benefit from training on examples drawn from the same corpus as
each test set.

Next, the MT based model and the sentence embedding model, both of which

2https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
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Divergence Detection Approach +P +R +F -P -R -F Overall F

OpenSubtitles
Sentence Embeddings 65 60 62 56 61 58 60
MT Scores (1 epoch) 67 53 59 54 68 60 60
Non-entailment 58 78 66 53 30 38 54
Non-parallel 70 8 76 61 42 50 66
Semantic Dissimilarity 76 80 78 75 70 72 77
Common Crawl
Sentence Embeddings 78 58 66 52 74 61 64
MT Scores (1 epoch) 54 65 59 17 11 14 42
Non-entailment 73 49 58 48 72 57 58
Non-parallel 70 83 76 61 42 49 67
Semantic Dissimilarity 82 88 85 78 69 73 80

Table 6.1: Intrinsic evaluation on crowdsourced semantic equivalence vs. divergence
testsets. We report overall F-score, as well as precision (P), recall (R) and F-score
(F) for the equivalent (+) and divergent (-) classes separately. Semantic similarity
more accurately identifies divergences across the board, with larger improvements
on the divergent class.

are unsupervised, are significantly weaker than the two supervised models trained
on synthetic data, highlighting the benefits of the automatically constructed diver-
gence examples. The strength of the semantic similarity model compared to the
sentence embeddings model highlights the benefits of the fine-grained representa-
tion of bilingual sentence pairs as a similarity cube, as opposed to the bag-of-words
sentence embedding representation.

Finally, despite training on the same noisy synthetic data as the parallel vs
non-parallel system, the semantic similarity model is better able to detect diver-
gences. This highlights the benefits of (1) meaning comparison between words in a
shared embedding space, over the discrete translation dictionary used by the base-
line, and (2) the deep convolutional neural network which enables the comparison

of overlapping spans in sentence pairs, as opposed to local word alignment features.
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6.4.1 Analysis

We manually examine the 13-15% of examples in each test set that are correctly
detected as divergent by semantic similarity and mis-classified by the non-parallel
detector.

On OpenSubtitles, most of these examples are true divergences rather than
noisy alignments (i.e. sentences that are not translation of each other). The non-
parallel detector weighs length features highly, and is fooled by sentence pairs of
similar length that share little content and therefore have very sparse word align-
ments. The remaining sentence pairs are plausible translations in some context that
still contain inherent divergences, such as details missing or added in one language.
The non-parallel detector views these pairs as non-divergent since most words can
be aligned. The semantic similarity model can identify subtle meaning differences,
and correctly classifies them as divergent. As a result, the non-parallel detector has
a higher false positive rate (22%) than the semantic similarity classifier (14%), while
having similar false negative rates (11% v/s 12%).

On the CommonCrawl test set, the examples with disagreement are more
diverse, ranging from noisy segments that should not be aligned to sentences with

subtle divergences.

6.5 Summary

This chapter focused on semantic divergences in parallel sentences and intro-

duced an approach for detecting such divergences. The model is based on neural
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semantic similarity and importantly, does not require manual annotation, and thus
can be trained for any language pair and domain with a parallel corpus. Evaluating
the model on the intrinsic divergence datasets collected in Chapter 3 shows that the
model detects such divergences much more accurately than shallower translation or
alignment based models. While divergence detection accuracy can still be further
improved, a relevant questions is how does the intrinsic performance translate to
improvements on a downstream task? We answer this question in the next chapter,

where we investigate the impact of divergence detection on machine translation.
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Chapter 7: Divergences in NLP Applications

Over the last three chapters, we have introduced models for identifying lexico-
semantic relations and semantic divergences across languages. Further, these models
have been tested intrinsically for their ability to identify the phenomena they are
meant to capture. In this chapter, we take an extrinsic view and study semantic
divergences in the context of downstream tasks.

In the first part of this chapter, we consider semantic divergences between
words in the context of the task of bilingual dictionary induction. Using this task
allows us to identify whether predictions from BILEXNET can distinguish semanti-
cally equivalent translations from divergent translations in settings where bilingual
word pairs are relatively closer in meaning than in MULTILEXREL, thus exhibiting
more subtle divergences.

In the latter part, we focus on semantic divergences between sentences. We
use our model for detecting semantic divergences in parallel data (Section 6.2) to
identify divergences in data used to train a neural MT system. We use the model
for data selection for English-French and Vietnamese-English machine translation
(MT), and show that the models helps select data to train neural MT models faster

with no loss in translation quality.
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Taken together, this chapter provides evidence that semantic divergences affect
downstream NLP tasks and motivates building improved models for detecting such

divergences.

7.1 Semantic Divergences in Automatically Constructed Dictionaries

The testbed used to evaluate BILEXNET (Section 5.3) consists of arbitrary
word pairs that are not restricted to be close in meaning. However, semantic
relations also exist between word pairs that are closer in meaning than those in
MuLTIiLEXREL. For instance, near-synonyms, which are very similar but not iden-
tical in meaning, also exhibit relations such as Forward Entail/Backward Entail
(execute-kill) and Exclusion (execute-murder) (Edmonds and Hirst, 2002). Cruse
(1986) terms relations between near-synonyms as micro-relations, as the intensity
of these relations is diminished when compared to word-pairs that are not near-
synonyms. Thus, micro-relations represent a more subtler notion of divergences
than macro-relations (which are captured in MULTILEXREL).

Experiments in Section 5.5 on MULTILEXREL demonstrate that BILEXNET
identifies macro-relations more accurately than naive baselines based on translation
or bilingual embeddings. Can BILEXNET also identify micro-relations? In this
section, we use the task of bilingual dictionary induction (BDI) to answer this ques-
tion. BDI consists of building a lexicon of bilingual word pairs that are equivalent
in meaning. Thus, word pairs drawn from automatically constructed lexicons using

BDI are expected to be close in meaning. At the same time, as observed by Peirsman
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and Padé (2011), such word pairs also exhibit a variety of semantic relations. This
tension makes the task a suitable candidate for testing the ability of BILEXNET to
identify micro-relations. Specifically, we ask whether predictions from BILEXNET
can improve the accuracy of BDI, by separating semantically divergent translations,

represented by micro-relations, from equivalent translations.

7.1.1 Background: Bilingual Dictionary Induction via Bilingual Em-
beddings

Formally, BDI is defined over a source language F (with vocabulary V,) and
a target language F' (with vocabulary V). Given a set of words in the source
language, S, = {e1, e, ..., €}, the task is to find words Sy = {f1, fo, ..., fx} C V¢
such that Vi, e; and f; have the same meaning. BDI has been widely studied, under
a variety of assumptions about the resources used (Irvine and Callison-Burch, 2017;
Klementiev et al., 2012; Rapp, 1995, inter alia). Recent work has motivated BDI
as an evaluation task for bilingual embeddings, and this has in-turn led to purely
embeddings-based approaches to this task. We operate under such an embeddings-
based framework since it is conceptually simple and better highlights the utility of
modeling semantic relations to capture divergences. Methods based on embeddings
are also known to outperform more traditional approaches such as those based on
multilingual topic models (Vuli¢ and Moens, 2016).

The typical approach to BDI using word embeddings consists of two steps:
1. Construction of a bilingual word embeddings space: Each word w in
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both V. and V7 is represented using a vector w in a common vector space.

2. Identifying translations: For each e; € S, a translation f; € V} is identified
using the positions of vectors of words in V; with respect to the position of
¢€;. One way to do this is by identifying the target language word f, such that
f is most similar to ¢€; in the embedding space i.e. f; = arj% r‘r/laxe_; : f Other

vy
methods such as the inverted softmax (Smith et al., 2017) and cross-domain

similarity local scaling (CSLS) (Conneau et al., 2017) have been proposed as

alternative distance metrics but we focus on cosine similarity for simplicity.

7.1.2 Using BILEXNET to Filter Divergent Lexical Translations

We propose a modification to the embeddings-based approach described above
that combines evidence from word embeddings and the output of BILEXNET. The
objective, as stated earlier, is to separate equivalent translations from non-equivalent
translations, and thereby test if BILEXNET can capture micro-relations. However,
results in Section 5.5 show that BILEXNNET does not always generate correct pre-
dictions. To extract meaningful signal from the noisy predictions of BILEXNET, we

make the following two modeling assumptions:

1. Instead of using the predicted relations directly, we use the full range of output
probabilities over the five semantic relations, with the expectation that these

probabilities contain more information than the raw predictions.

2. While similarity is not the same as equivalence, we recognize that the cosine
similarity between word embeddings is often a strong indicator of semantic
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equivalence. Hence, instead on solely relying on the BILEXNET probabilities,
we use an evidence combination approach that combines these probabilities

with cosine similarities between embeddings.
Formally, given a query word, e;, our approach consists of the following steps

1. Generating Candidate Sets : Obtain the K most-similar words to e in
the target language. Let this set be Cy = {fi, fi2, ..., fix} C V, and the
associated similarities be Sims = {sim;1, sima, ..., simik }. C is our candidate
set—we assume that the right translation exists in this set, and we aim to

identify it by re-ranking the candidates in the next steps.!

2. Scoring Candidates using BiLexNet: Using BILEXNET, we calculate
syn(e;, fi.) Vk € [1, K], i.e. the probability that the candidate is equivalent
in meaning to the query word. syn(.) directly aims to model equivalence in

meaning in contrast to cosine similarity.

3. Normalizing Scores: We normalize both the similarity scores and the BILEXNET
probabilities using the softmax function to obtain two independent probability

distributions over the candidate set. Thus,

exp(syn(e, fir)
S w—1 exp(syn(e, fr))

(7.1)

exp(simyy)

25:1 exp(simgr)

psim(eia fzk) = and psyn(eia fzk) =

4. Evidence Combination: We combine these two independent sources of in-

LK is set to 10 for all experiments.
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Full Test Set Manually Filtered Test Set

Approach Precision@1  Precision@5 Precision@1 Precision@5
EMBEDDINGS 45.9 63.4 51.7 70.3
BILEXNET 27.8 50.1 30.3 57.0
EMBEDDINGS + BILEXNET 47.9 63.4 53.1 70.8
ORACLE (Precision@10) 67.1 74.2

Table 7.1: Combining predictions of semantic relations from BILEXNET with
embeddings-based cosine similarity consistently improves Precision@1 for bilingual
dictionary induction. Results in bold are statistically significant compared to next
best result in the column (McNemar’s test, p < 0.05).

formation to assign a final score for each candidate. Thus

score(e;, fir) = Psim(€is fir) + Psyn(eis fir) (7.2)

The correct translation is the candidate one with the highest score i.e.

[ = argmax score(e;, fir) (7.3)
fiECf

7.1.3 Setup and Data

For evaluation, we use the Hindi-English bilingual dictionary from (Pavlick
et al., 2014) that we studied in Section 3.1. The full dictionary consists of 9150
Hindi words, paired with one or more English translations. We filter the dictionary
to keep only lexical translation into English (While multi-word translations are
important they are not within the ambit of this work). We also filter out stop
words in both languages, words containing numerals, and source words that contain

characters not in the Devanagari script. Our final test set consists of 7764 Hindi
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words. Besides evaluating on this complete set, we also evaluate on the subset that
was manually labeled as being equivalent in Section 3.1. This subset provides a
more cleaner testbed, as we saw in Section 3.1 that an unfiltered dictionary is likely
to contain divergences, which can make the evaluation unreliable. To obtain Cf,
we use the MUSE embeddings as we did in the intrinsic experiments in Section 5.4.
Similarly, we obtain BILEXNET predictions from the model trained as described in
Section 5.4.

We contrast results obtained from the approach described in Section 7.1.2
(EMBEDDINGS + BILEXNET) with results from the two components that we com-

bine:

1. EMBEDDINGS: The most-similar translation from C'

2. BILEXNET: The translation with the highest syn(x) score

As is standard, we measure performance on the task using Precision@1 and
Precision@5. Additionally, we also calculate an upper-bound on any re-ranking
based approach by measuring the ORACLE precision, which measures how many

query words have a right translation in CY.

7.1.4 Results and Discussion

Comparing the ORACLE approach (P@Q1 = 67.1) with the EMBEDDINGS only
approach (P@1 = 46.9) shows that a large absolute gain of almost 20 points is
possible with a re-ranking approach. Unsurprisingly, the BILEXNET translations
by themselves, with a P@Q1 of 30.5, are the least accurate amongst the methods
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considered. This highlights the need for better models for semantic relations that
can simultaneously perform well on intrinsic and extrinsic evaluations.

Most importantly, combining EMBEDDINGS and BILEXNET leads to a small
but statistically significant boost (McNemar’s test, p < 0.05) over EMBEDDINGS.
A cleaner test set boosts all scores by about 3 to 7 points, as demonstrated by the
scores on the smaller, manually curated set. However, even with higher scores, the
difference in performance between EMBEDDINGS and EMBEDDINGS + BILEXNET
remains constant (and significant).

Taken together, these two sets of results demonstrate that despite not be-
ing fully accurate, predictions from BILEXNET provide useful signals that cap-
ture micro-relations and filter out divergent relations. These predictions refine an
embeddings-based approach and more accurately detect semantically equivalent re-

lationships across languages.

7.2 Improving Neural MT Training by Filtering Semantic Diver-

gences

Having seen the impact of semantic divergences model on a word-level down-
stream task, we now turn our attention to sentence-level divergences, and study the
utility of our divergence detector (Section 6.2) on a downstream task. Specifically,
we focus on machine translation. We study neural machine translation since, as
discussed in Section 2.1.4, neural MT systems are more sensitive to the nature of

examples than phrase based-systems. Concretely, we hypothesize that divergent
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training pairs can hamper a neural MT system and that filtering such pairs can
help in better training of neural MT systems. We investigate this hypothesis by
taking a data selection approach, and selecting the least divergent examples in a
parallel corpus based on a range of divergence detectors discussed in Section 6.3,

and comparing the translation quality of the resulting neural MT systems.

7.2.1 Translation Tasks

English-French We evaluate on 4867 sentences from the Microsoft Spoken Lan-
guage Translation dataset (Federmann and Lewis, 2016) as well as on 1300 sentences
from TED talks (Cettolo et al., 2012). Training examples are drawn from OpenSub-
titles, which contains ~28M examples after deduplication. We discard 50% examples

for data selection.

Vietnamese-English Since the SEMANTIC SIMILARITY model was designed to
be easily portable to new language pairs, we also test its impact on the IWSLT
Vietnamese-English TED task, which comes with ~120,000 and 1268 in-domain
sentences for training and testing respectively (Cettolo et al., 2016). This is a more
challenging translation task as Vietnamese and English are more distant languages,
there is little training data, and the sentence pairs are expected to be cleaner and
more parallel than those from OpenSubtitles. In these lower resource settings, we

discard 10% of examples for data selection.
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7.2.2 Neural MT System

The MT system is the same one used in the intrinsic experiments for the
neural MT based divergence detector (Section 6.3.3). Neural architectures such as
the one we use here are significantly stronger than phrase-based systems on high-
resource language pairs such as English-French (Cettolo et al., 2016) and are also
competitive in low-resource settings (Luong and Manning, 2015).> We use the atten-
tional encoder-decoder model (Bahdanau et al., 2014) implemented in the Sockeye
toolkit (Hieber et al., 2017). Encoders and decoders are single-layer GRUs (Cho
et al., 2014) with 1000 hidden units. Source and target word embeddings have size
512. Using byte-pair encoding (Sennrich et al., 2016), the vocabulary size is 50000.
Maximum sequence length is set to 50.

We optimize the standard cross-entropy loss using Adam (Kingma and Ba,
2014), until validation perplexity does not decrease for 8 checkpoints. The learning
rate is set to 0.0003 and is halved when the validation perplexity does not decrease
for 3 checkpoints. The batch size is set to 80. At decoding time, we construct a
new model by averaging the parameters for the 8 checkpoints with best validation
perplexity, and decode with a beam of 5. All experiments are run thrice with distinct

random seeds.
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Figure 7.1: Learning curves on the validation set for English-French models (mean
of 3 runs/model). The SEMANTIC SIMILARITY model outperforms other models
throughout training, including the one trained on all data.

Model MSLT BLEU TED BLEU
Average FEnsemble ‘ Average Ensemble
RANDOM 43.49 45.64 36.05 38.20
PARALLEL 40.65 42.12 35.99 37.86
ENTAILMENT 39.64 41.86 33.30 35.40
SEMANTIC SIMILARITY 45.53 47.23* 36.98 38.87
ALL 44.64 46.26 \ 36.98 38.59

Table 7.2: English-French decoding results. BLEU scores are either averaged across
3 runs (“Avgerage”) or obtained via ensemble decoding (“Ensemble”). SEMANTIC
SIMILARITY reach BLEU scores on par with ALL with only half of the training data.
SEMANTIC SIMILARITY scores marked with * are significanly better (p < 0.05) than
the corresponding ALL scores.

7.2.3 English-French Results

We train English-French neural MT systems by selecting the least divergent

half of the training corpus with the following criteria:

e SEMANTIC SIMILARITY (Section 6.2)

e PARALLEL: the non-parallel sentence detector (Section 6.3.2)

2More recent work (Sennrich and Zhang, 2019) has shown that a carefully tuned neural system
can outperform phrase-based systems even in low-resource settings.
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e ENTAILMENT: the entailment classifier (Section 6.3.5)

Learning curves (Figure 7.1) show that data selected using SEMANTIC SIM-
ILARITY yields better validation BLEU throughout training compared to all other
models. SEMANTIC SIMILARITY selects more useful examples for MT than PAR-
ALLEL, even though both selection models are trained on the same synthetic exam-
ples. This highlights the benefits of semantic modeling over surface mis-alignment
features. Furthermore, SEMANTIC SIMILARITY achieves the final validation BLEU
of the model that uses ALL data with only 30% of the updates. This suggests that
semantically divergent examples are pervasive in the training corpus, confirming
the findings from manual annotation (Section 3.2), and that the presence of such
examples slows down neural MT training.

Decoding results on the blind test sets (Table 7.2) show that SEMANTIC SIM-
ILARITY outperforms all other data selection criteria (with differences being statis-
tically significant under bootstrap resampling tests (Koehn, 2004), p < 0.05), and
performs as well or better than the ALL model which has access to twice as many

training examples.

7.2.4 Vietnamese-English Results

Trends from English-French carry over to Vietnamese English, as the SEMAN-
TIC SIMILARITY model compares favorably to ALL while reducing the number of
training updates by 10%. SEMANTIC SIMILARITY also yields better BLEU than

RaNDOM with the differences being statistically significant. While differences in
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Model Avgerage Test Set BLEU

RaNDOM (90%) 22.71
SEMANTIC SIM. (90%) 23.38
ALL 23.30

Table 7.3: Vietnamese-English decoding results: dropping 10% of the data based on
SEMANTIC SIMILARITY does not hurt BLEU, and performs significantly (p < 0.05)
better than RANDOM selection.

|

2 0.945
©
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Fry 0.89 ¥ Semantic Similarity
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1 11 21 31 41 51 61

Number of updates

Figure 7.2: Brevity penalties on the validation set for English-French models.

score here are smaller, these results are encouraging since they demonstrate that

our semantic divergence models port to more distant low-resource language pairs.

7.2.5 Analysis

We break down the results seen in Figure 7.1 and Table 7.2, with a focus on
the behavior of the ENTAILMENT and ALL models. We start by analyzing the BLEU
brevity penalty trends observed on the validation set during training (Figure 7.2).

We observe that both the ENTAILMENT and SEMANTIC SIMILARITY based
models have similar brevity penalties despite having performances that are at oppo-

site ends of the spectrum in terms of BLEU. This implies that translations generated
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Entailment is inadequate due to under-translation

Source he’s a very impressive man and still goes out to do digs.
Reference c’est un homme tres impressionnant et il fait encore des
fouilles.

ENTAILMENT c’est un homme tres impressionnant.

Source when the Heat first won.
Reference lorsque les Heat ont gagné pour la premiere fois.
ENTAILMENT quand le Heat a gagné.

Parallel produces garbage tokens

Source alright.
Reference d’accord.
ENTAILMENT { \ pos (192,210)} d’accord.

Table 7.4: Selected translation examples from the ensemble systems of the various
models.

by the SEMANTIC SIMILARITY model have better n-gram overlap with the refer-
ence, but are much shorter. Manual examination of the translations suggests that
the ENTAILMENT model often fails by under-translating sentences, either dropping
segments from the beginning or the end of source sentences (Table 7.4).

The PARALLEL model consistently produces translations that are longer than
the reference. This is partially due to the model’s propensity to generate a sequence
of garbage tokens in the beginning of a sentence, especially while translating shorter
sentences. In our test set, almost 12% of the translated sentences were found to
begin with the garbage text shown in Table 7.4. Only a small fraction (< 0.02%) of
the French sentences in our training data begin with these tokens, but the tendency
of PARALLEL to promote divergent examples above non-divergent ones, seems to

exaggerate the generation of this sequence.
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7.3 Summary

In this chapter, we moved beyond intrinsic evaluation for models of semantic
divergences, and investigated how semantic divergences and our models for detecting
differences in meaning across languages impact downstream tasks. First, using the
task of bilingual dictionary induction, we investigated the ability of BILEXNET to
recognize micro-relations and showed that predictions of BILEXNET can be com-
bined with cosine similarity scores to improve the accuracy of an automatically
induced dictionary by filtering out divergent translations. Second, we showed that
divergences in parallel data impede the training of neural MT systems, and that
filtering out divergences reduces the training time of such systems by half, without
affecting the translation quality. Collectively, results from this chapter demonstrate
that semantic divergences manifest in various ways in downstream tasks, and af-
fect the task in different ways. However, automatic models that do not rely on

task-specific labeled data can help in alleviating the impact of such divergences.
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Chapter 8: Conclusion

The main claim of this thesis is that translations are not always meaning
preserving, and as a result cross-lingual semantic divergences are pervasive in multi-
lingual settings. Translation ambiguity prevents direct porting of monolingual mod-
els and datasets to cross-lingual settings, and hence this thesis contributes novel
cross-lingual tasks, datasets, and models which directly identify and characterize
differences in meaning between two words and sentences in different languages.

We conclude by summarizing the central contributions of this thesis and point-
ing out key limitations of the work discussed here which suggest directions for future

research.

8.1 Summary of Contributions

We start in Chapter 3 by showing that translations recorded in bilingual re-
sources are not always meaning preserving, leading to semantic divergences. Anno-
tating subsets of data from a bilingual dictionary and two parallel corpora reveals
that divergences discovered cover a wide spectrum, including subtle differences in
meaning, well-defined taxonomic relations, as well as noisy translations. Parts of

this chapter were previously published in Vyas et al. (2018).
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Motivated by the fact that translation is not meaning preserving, we introduce
novel tasks to directly identify and characterize differences in meaning across lan-
guages. In Chapters 4 and 5, we focused on word level differences in meaning and
proposed two novel tasks with the objective of exactly characterizing such differences
by identifying the semantic relation between two words. The first task (Chapter 4)
is that of identifying cross-lingual hypernymy, as hypernymy is commonly observed
in automatically induced translation pairs (Peirsman and Padd, 2011), while the
second task expands to simultaneously classifying between multiple lexico-semantic
relations from the natural logic framework (MacCartney and Manning, 2007, 2009)
(Chapter 5). These tasks have been well-studied in purely monolingual settings, but
datasets and models cannot directly port to cross-lingual setting because changes in
meaning due to translations can change semantic relations. Instead, we directly an-
notate bilingual word pairs for these relations, and create datasets spanning multiple
languages for both tasks (Sections 4.4 and 5.3).

Solving these cross-lingual tasks by converting them to monolingual tasks in
a high resource language via translation is complicated by the exact same reason—
translation does not preserve meaning and this can cause semantic relations to
change. Thus, we introduce solutions for these tasks do not rely on direct transla-
tion, and instead encode the ambiguity of translation into the models. Our models
also eschew traditional supervised learning as labeled cross-lingual data for these
tasks is difficult to obtain. Instead, we recognize hypernymy through an unsuper-
vised model of sparse, bilingual embeddings that encodes the distributional inclusion
hypothesis (Geffet and Dagan, 2005). Our model, BISPARSE-DEP, learns from large
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monolingual corpora, and aligns the two languages using a bilingual dictionary that
allows for multiple translations for a word (Section 4.3). For the broader task of iden-
tifying between multiple lexico-semantic relations, we present BILEXNET, a neural
model that predicts relations by combining bilingual word embeddings, with lexico-
syntactic paths in both languages (Section 5.1). Unlike BISPARSE-DEP, which was
an unsupervised model, BILEXNET is trained in a weakly supervised fashion using
labeled examples in English which are easily available. These examples are used to
train a cross-lingual predictor using a novel dictionary-guided knowledge distillation
approach (Section 5.2). Chapters 4 contains work that was previously published in
Vyas and Carpuat (2016) and Upadhyay et al. (2018),! while work in Chapter 5
appears in Vyas and Carpuat (2019).

We shifted our attention to semantic divergences in parallel sentences in Chap-
ter 6 and introduced an approach for directly identifying if a sentence and its trans-
lation are semantically equivalent. The model, which is based on neural semantic
similarity, does not require manual annotation and thus can be trained for any lan-
guage pair and domain with a parallel corpus. Evaluating the model on the intrinsic
divergence datasets collected in Chapter 3 shows that our model detects such diver-
gences much more accurately than shallower translation or alignment based models.
This work previously appeared in Vyas et al. (2018).

Finally, in Chapter 7 we showed that semantic divergences affect downstream
tasks, but models developed in this thesis alleviate the impact of such divergences.

We first modeled word-level divergences in the task of bilingual dictionary induction

IThe first two authors contributed equally to this work
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using BILEXNET, and showed that even when the input word pair is close in mean-
ing, BILEXNET helps separate divergent translations from equivalent translations.
We also showed that divergences in parallel sentences slow down training of neural
MT systems, and that filtering out divergences reduces the training time of such
systems by half, without affecting the translation quality. Portions of this chapter

were previously published in Vyas et al. (2018).

8.2 Limitations and Future Work

In this section, we point out some limitations of the work discussed in this
thesis. These limitations naturally raise some open questions which can serve as

directions for future work.

8.2.1 Fine-grained Distinction of Divergences

A limitation of our work on detecting divergences in parallel data, is that we do
not distinguish between different types of divergences i.e. we only consider whether a
sentence pair as either divergent or not. This is a narrow view of divergences because
translators adapt different translation strategies, and these different strategies can
give rise to different types of divergences (Baker, 2011). Treating different types
of divergences in the same way may not be an optimal way of dealing with these
differences. The work of Zhai et al. (2018, 2019) is a step in this direction, as they
investigate how different translation processes are manifested in real parallel data,

and to what extent can they be recognized automatically. However, their approach
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relies on labeled training data, which they point out is very expensive and time-
consuming to obtain. Whether such fine-grained information can be detected using
weaker forms of supervision (e.g. synthetic data as in our work), or even in an
unsupervised way, is a crucial open question for expanding to more language pairs.

Distinguishing types of divergences is also crucial for downstream tasks, as this
information can guide how different divergences in data are handled. For example,
while we show that discarding the most divergent half of a parallel corpus improves
training time of a neural MT system, this is a crude strategy that discards ~14
million parallel sentences, including some which are potentially valuable. Knowing
why a divergent pair is divergent can help in retaining useful pairs and potentially
extract training signals from them. This strategy has been adapted by Pham et al.
(2018), who build upon our work and show that certain semantic divergences, viz.
those that contain extra words on either the source or the target side, can be fixed
(by deleting those extra words), and these fixed examples can be used for training
instead of discarding. Knowing the type of semantic divergence can also help in
defining curriculum learning strategies (Zhang et al., 2018, 2019), where training
examples are presented in a well-defined order based on their divergence type and
score. Such strategies could lead to more judicious use of training data, which is
especially important in low-resource settings where parallel data of any form is hard
to acquire.

Similarly, while studying lexico-semantic relations, we only make categorical
distinctions, e.g. either a word is a hypernym of another word or it is not. However,

work on semantic prototypes has established certain concepts are consistently more
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central to a specific semantic category than others (Rosch, 1975), and thus semantic
relations can be captured on a graded scale. This graded notion has been explored
for monolingual hypernymy detection (Vuli¢ et al., 2017) where high inter-annotator
agreement scores reveal that even non-experts are consistent in identifying the degree
of hypernymy. Vuli¢ et al. (2019) also extend our work to build models for graded
cross-lingual hypernymy, but it remains to be seen how other cross-lingual semantic
relations can be identified in a graded fashion and how such graded judgments can

assist downstream applications.

8.2.2 Integrating Lexical and Sentential Models by Identifying Se-
mantic Relations in Context

Approaches for identifying semantic relations between words and semantic
divergences between sentences are discussed independently in this thesis, but the
problems themselves are not. As a simple example, knowing that the Spanish lavar
(wash) is a hypernym of the English shampoo, allows us to identify that the two
sentences “lavar el cabello” (wash the hair) and “shampoo the hair” are semantically
divergent. This raises the question of whether models of lexical relations offer ways
of improving sentence level models by identifying fine-grained information between
words in sentences. A related challenge is the ability to model lexical semantics
in context. We investigate cross-lingual semantic relations in Chapters 4 and 5 at
the word type level, without taking into account the context in which these words

appear. This obstructs the integration of word and sentence level models because
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lexico-semantic relations can change with context, based on the sense in which the
word was used.

Admittedly, identifying semantic relations in context is a challenging prob-
lem even within the same language, and has been relatively less explored in prior
work compared to the context-agnostic tasks. In our own work, we have shown
that existing methods for monolingual, context-agnostic hypernymy detection, when
used in tandem with contextualized word representations, perform only slightly bet-
ter than context-agnostic baselines (Vyas and Carpuat, 2017). This motivates the
need for specialized methods for the context-sensitive version of the task. Deep
contextualized word representations obtained using large-scale, language-modeling
based pre-training can potentially serve as strong baselines for such context-sensitive
tasks(Devlin et al., 2019; Peters et al., 2018). For the broader task of identifying
semantic relation in context, Shwartz and Dagan (2016a) introduced the CONTEXT-
PPDB dataset. This dataset consists of word pairs along with a pair of sentential
contexts, with a label indicating the semantic relation between the two words in
the given contexts (the labels are those used in PPDB (Pavlick et al., 2015)). How-
ever, since CONTEXT-PPDB only consists of ~3700 sentence pairs, it provides only
a smaller number of annotated examples per relation, making it difficult to train
large supervised models on. Such challenges of models and data are likely to be
exacerbated in multilingual and cross-lingual settings.

A related limitation of the work on lexico-semantic relations, both in this
thesis as well as in the broader literature in monolingual settings, is that models

for representing words using vectors typically conflate different senses of a word
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into a single representation. Sense-agnostic word representations cannot capture
all senses of a word even when such senses occur in the corpus used to train these
embeddings (Schiitze, 1998; Yaghoobzadeh and Schiitze, 2016), and this can cause
inaccurate detection of semantic relations which are typically defined between senses.
Possible solutions to this problem include modeling word meaning using multi-sense
representations that more accurately capture multiple senses of a single word type
(Camacho-Collados and Pilehvar, 2018), or by explicitly balancing the various senses

while building representations (Yin and Roth, 2018).

8.2.3 Impact of Divergences and Cross-lingual Semantic Relations on
other Cross-lingual Tasks

A final question of interest is to understand the impact of semantic divergences
and cross-lingual semantic relations on tasks beyond translation.

Semantic relations have been found to be useful in many downstream mono-
lingual tasks. They have been used for relating named entities in question answer-
ing (McNamee et al., 2008), query expansion in information retrieval (Voorhees,
1994), and for tasks such as coreference resolution (Ponzetto and Strube, 2006) and
relation extraction (Demeester et al., 2016). Similarly, can relations between words
in different languages assist cross-lingual versions of these tasks (e.g. cross-lingual
information retrieval, or cross-lingual question answering)?

Bilingual dictionaries and parallel corpora are used to facilitate cross-lingual

learning by transferring labeled data (Hwa et al., 2005; Mayhew et al., 2017; Yarowsky
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et al., 2001) and trained models (Kozhevnikov and Titov, 2013; McDonald et al.,
2011) from one language to another for many NLP tasks such as part-of-speech
tagging, named entity recognition, semantic role labeling, and syntactic parsing. To
what extent do semantic divergences affect cross-lingual transfer of both models as
well as data? How can we systematically measure the impact of divergences on a
diverse array of tasks? Can we build robust multilingual models that ameliorate the
impact of these divergences? Answering these and other related questions will help

in understanding the broader impact of divergences on multilingual NLP problems.
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