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Abstract
Purpose of Review We identified 24 publications from January 2010 until September 2018 in the peer-reviewed literature
addressing the relationship of long-term air pollution exposures and type 2 diabetes-related morbidity and mortality among
adults. We examine key methodological issues, synthesize findings, and address study strengths and limitations. We also discuss
biological mechanisms, policy implications, and future research needed to address existing knowledge gaps.
Recent Findings In general, the studies included in this review employed rigorous methodology with large sample sizes,
appropriate study designs to maximize available cohort study or administrative data sources, and exposure modeling that
accounted for spatial patterns in air pollution levels. Overall, studies suggested increased risks of type 2 diabetes-related
morbidity and mortality among adults associated with increased exposures; however, findings were not uniformly positive nor
statistically significant.
Summary Current research is particularly limited regarding the biological mechanisms involved and the relationship between
ozone and diabetes. Additionally, more research is needed to distinguish clearly the effects of nitrogen oxides from those of other
pollutants and to identify potential subpopulations with greater susceptibility for certain pollutant exposures. A better under-
standing of the potential link between long-term ambient air pollution exposures and type 2 diabetes may provide opportunities
for the reduction of health risks and inform future interventions for environmental protection and diabetes management.

Keywords Air pollution . Type 2 diabetes . Chronic exposures

Introduction

According to the World Health Organization, exposure to am-
bient air pollution is responsible for 4.2 million premature
deaths worldwide every year [1•]. Ambient air pollution is a
complex mixture of natural and synthetic substances, contain-
ing many chemical and biological constituents, in the form of
gases and particulate matter released into and formed in the
atmosphere. In addition to particulate matter, other major con-
stituents of air pollution include ozone, nitrogen dioxide, sul-
fur dioxide, carbonmonoxide, and lead [2]. Studies conducted
over the last three decades have implicated exposure to ambi-
ent air pollution constituents to various adverse health effects,
including cardiovascular disease, respiratory diseases, adverse
pregnancy outcomes, cancer, and more recently, altered
neurodevelopment [3–6]. Prior research has also shown that
people with type 2 diabetes mellitus have higher risks of air
pollution-related cardiovascular and respiratory outcomes
compared with healthier populations [7, 8••, 9, 10]. There is
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also emerging evidence that increases in exposures to ambient
air pollution may be associated with increased risks of type 2
diabetes morbidity and mortality among adults [11, 12].

The potential link between ambient air pollution and dia-
betes is of significant public health concern as the global
health and economic burden from each of these is large and
expected to increase. For example by 2030, diabetes is esti-
mated to result in a global economic burden of $2.1 trillion
USD and is projected to be the seventh leading cause of death
worldwide [13]. Diabetes is a chronic disease that results from
the body’s inability to produce the insulin, which helps regu-
late the amount of glucose in the blood. The most common
types of diabetes are type 1, type 2, and gestational diabetes.
Type 1 diabetes results when the body cannot produce any
insulin, while type 2 results when the body does not produce
sufficient insulin. Type 2 diabetes is the most common type of
diabetes and occurs most often among middle-aged and older
adults [14]. While the exact biological mechanisms by which
ambient air pollutants could increase an individual’s risk of
developing diabetes have not been clearly elucidated, several
mechanisms have been proposed including impaired glucose
metabolism and inflammation [15–17]. In addition, an animal
study conducted by Sun et al. suggests linkages between par-
ticulate matter exposure and insulin resistance, supporting bi-
ologic plausibility [18].

In this review article, we examine peer-reviewed epidemi-
ologic studies published from January 2010 until September
2018 that evaluated the role of long-term ambient air pollution
exposures in the risk of type 2 diabetes-related morbidity and
mortality among adults. We examine key methodological is-
sues, synthesize findings, and address study strengths and
limitations. We also discuss biological mechanisms, policy
implications, and future research needed to address existing
knowledge gaps.

Methods

The US National Library of Medicine’s Pubmed database was
originally searched in March, 2018, and a more systematic
search developed by an experienced academic Public Health
Librarian was conducted on September, 2018 to verify and
update the results.

The initial search strategy combined ‘diabetes’ as a
Medical Subject Headings (MeSH) term and keyword with
the following MeSH terms and keywords for air pollution:
‘air pollution’, ‘particulate matter’, ‘particulates’, ‘nitrogen
oxides’, ‘nitrogen dioxide’, ‘ozone’, and ‘traffic air pollution.’
Initial searches used the broad term ‘air pollution’; however,
given the majority of resulting abstracts focused on the spe-
cific pollutants aforementioned and for the purposes of ad-
dressing the principal air pollutants considered in regulatory
policies, we employed the more specific pollutant terms in

order to capture additional abstracts that did not appear under
the broad term. The large number of articles and initial manual
review of all identified abstracts lead us to add the following
keywords to further the search focus: ‘long-term’ and ‘chron-
ic’. We excluded studies with keywords or MeSH terms of
‘smoking’ and ‘tobacco’. Using filters, we limited our search
to adult populations (to focus on type 2 diabetes), full articles,
original research, and human studies published in English
between 2010 and 2018. A manual search of abstracts was
conducted to identify epidemiologic studies with a main re-
search question/hypothesis and analyses addressing the rela-
tionship between type 2 diabetes and long-term exposure to
air pollution.

Consequently, a similar search strategy was developed by
an experienced academic Public Health Librarian (Appendix
1) based on the MeSH terms and keywords frequently used in
the 21 articles identified through the first search. A total of 432
references were initially identified followed by a manual pro-
cess of selection and screening titles and abstracts (Appendix
2). Full text manual screening of the 31 selected records re-
sulted in a final set of 24 publications of 21 study populations.

We note that most publications reported results from sev-
eral statistical models (e.g., adjusted for different confounders,
sensitivity analyses). In this review, we attempt to present at
least one fully adjusted model from the main analyses; how-
ever, our review is not an exhaustive nor comprehensive dis-
cussion of all results for each publication. For example, if
results were reported for exposures modeled using different
strategies, we may not have included results from each strat-
egy, particularly if results were comparable.

Epidemiologic Study Design Strengths
and Limitations

The 24 publications in this review focused on 21 study popu-
lations and were conducted in Europe, North America, and
China (Table 1); only a limited number of studies focused
on highly exposed populations. Global representation is likely
limited due to the databases searched and use of English as the
publication language, but also potentially due to the uneven
availability of air quality monitoring throughout the world.
The majority of the selected publications used cohorts, includ-
ing five cohorts exclusively enrolling women and one study
exclusively enrolled men [17, 22•, 23, 24•, 29•, 35, 40].
Among those studies using a cohort design, about half had
follow-up periods of approximately 10 years or longer, which
is a major strength for identifying cases of incident diabetes
[20•, 21, 22•, 23, 24•, 29•, 34•, 35, 37, 40]. A few publications
were cross-sectional analyses of a health survey [27, 31, 39].
The studies reviewed generally had large sample sizes (rang-
ing from 1775 to 2,145,400), and as with many large epide-
miologic studies, many of those included in our review
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primarily used administrative data for defining type 2 diabetes
(e.g., ICD codes from death certificates, hospitalization, or
health care visits [17, 20•, 21, 25, 26•, 34•, 36, 37, 38•, 40]).
While the use of administrative data has the potential of intro-
ducing bias due to misclassification of disease resulting from
challenges inherent in health system coding, use of this type of
data does offer higher power to detect effects due to the larger
sample sizes these data afford.

Several other studies were survey-based, initially relying on
self-reported physician diagnosis of diabetes. However, many
of these studies employed additional methods in attempts to
improve or examine diabetes assessment accuracy, including
querying participants or health records for diabetes medication
use and conducting nested validation studies [17, 22•, 23, 24•].
Other studies used a combination of information (e.g., treat-
ment, biomarker measures, discharge diagnoses) and designat-
ed study participants as having diabetes if any of the informa-
tion was suggestive of having the disease [19, 25, 28, 29•, 30,
31, 38•, 41]. Many studies used information from glucose test-
ing, one of the measures included in the World Health
Organization and American Diabetes Association diagnostic
criteria [19, 27, 28, 29•, 31, 32, 33•, 35, 41•]. To provide
information about the level of accuracy for diabetes assessment
and to facilitate translation of epidemiological research to clin-
ical guidelines, a comparison of outcome definitions with na-
tional or international diagnosis criteria is beneficial [e.g., 27,
31, 33•, 35, 42]. These standards require access to blood tests
and symptomology reports, reflecting the challenges involved
with obtaining specified laboratory testing (e.g., fasting for at
least 8 h and using certified standardized assays) on specified
criterion measures [43]. However, reliance on self-report or
medical record report of physician diagnosis alone could lead
to potential misclassification of disease given that the world-
wide prevalence of undiagnosed type 2 diabetes has been esti-
mated between 45 and 50% [44, 45]. Related to this, compar-
isons of self-report to biomedical measures tend to show low
sensitivity (55–80%), but high specificity (84–98%) [46, 47].
Though self-report of physician diagnosis alone is typically
highly specific, a study using information from a US cohort
on atherosclerosis observed the magnitude of associations be-
tween known risk factors and self-reported diabetes were at-
tenuated compared to using case definitions which included
one or two of the following criteria: self-report, glucose testing,
or medication. Differences in the strength of associations when
defining diabetes with one versus two of the criteria were in-
consistent [48].

Exposure Assessment

Overall, the majority of studies relied on exposure estimates
from various modeling strategies that included dispersion fac-
tors such as land use and meteorology. If both particulate

matter and nitrogen dioxide (NO2) or nitrogen oxides were
considered in the same study, investigators tended to use the
same modeling strategy to estimate both exposures. However,
some studies also included an additional model for one of the
pollutants. For example, some studies used dispersion and land
use regression modeling [22•, 28]. Generally, dispersion and
spatiotemporal modeling were used to estimate particulate
matter and NO2 or nitrogen oxides exposures for cohort or
national studies that had access to participant’s residential ad-
dresses. These studies benefit from more highly spatially re-
solved information on air pollution exposure assessment as
compared with the use of nearest monitors [19, 22•, 23, 28,
29•, 33•, 35, 37]. Spatiotemporal modeling was applied mostly
in cohort studies that covered a range of cities/regional areas in
the USA. The method was used to estimate NO2 or nitrogen
oxides and particulate matter exposures [30, 33•, 35]. Land use
regression modeling was the most common exposure estima-
tion procedure and was applied both in cohort studies and in
population-based registry and health service studies, with
many studies using this procedure for both NO2 or nitrogen
oxides and particulate matter exposure estimation [17, 20•, 22•,
23, 24•, 26•, 28, 34•, 38•, 39]. Two European studies employed
air chemistry transport models, Weinmayr et al. for particulate
matter estimation and Renzi et al. for ozone [38•, 41]. Renzi
et al., one of the only two ozone studies, also used a dispersion
modeling process for ozone estimation, while Jerrett et al. used
the US Environmental Protection Agency Community
Multiscale Air Quality System (an Eulerian chemical transport
model) scaled to measured levels [24•, 38•]. Liu et al. used the
global chemical transport model TM5 to adjust for ozone with
particulate matter less than 2.5 μg/m3 (PM2.5) estimates [31,
49]. Two studies used information only from air quality mon-
itors for PM2.5 and for NO2, while another study used monitors
in addition to a spatiotemporal model [17, 30, 36]. Only na-
tional or regional large population-based studies primarily re-
lying on health service usage and ICD coding for diabetes
assessment, employed aerosol optical depth satellite data to
characterize PM2.5 exposures [20•, 25, 31, 36, 40]. A limitation
of these methods is missingness in satellite observations due to
cloud cover, though authors of the included studies accounted
for missingness in their analyses in various ways. Only one
study did not provide enough detail in the publication to iden-
tify the specific modeling process used for comparison to other
studies [32].

As with all large ambient air pollution epidemiology stud-
ies, exposure estimation is necessary because personal expo-
sure monitoring is neither available nor feasible. Thus, the
spatial misalignment of monitors and study participants may
lead to misclassification of exposure in various ways. There
are of course limitations to each method of exposure estima-
tion. In general, those that perform some form of spatial aver-
aging are considered less susceptible to classical measurement
error (referring to when instrument error or other non-
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representative biases are imputed) as opposed to Berkson-type
errors (those which, while they may lead to imprecision in
health effect estimates, do not cause bias in said estimates).
Study findings did not appear to be clearly connected with
particular types of exposure assessment for particular pollut-
ants. Levels of exposure estimates produced by modeling
techniques and nearest monitor imputation methods were gen-
erally demonstrative of higher levels for densely populated,
heavily trafficked urban areas and lower levels for suburban/
rural areas. Overall, the strengths of these studies included
generally well-considered and described exposure estimation
methods with several studies using long time periods of avail-
able data. The consideration of dispersion factors and
missingness of data as well as the inclusion of detailed infor-
mation in publications is also necessary in future work, in
order to evaluate the level of accuracy of the assessment, the
sources considered, and whether background regional or local
variation is included.

Pollutants: Potential Biological Mechanisms
and Study Findings

The exact biological mechanisms by which ambient air pollu-
tion may be linked with diabetes have not been elucidated;
however, experimental and epidemiologic research has inves-
tigated potential pathways. We present findings from the epi-
demiologic studies included in this review alongside this
mechanistic work to enhance our examination of whether
the literature suggests a relationship of type 2 diabetes-
related morbidity or mortality in adults with exposures to par-
ticulate matter, NO2 or nitrogen oxides, ozone, and other am-
bient air pollutants.

Particulate Matter

Experimental studies indicate that PM2.5 could act as a medi-
ator of endothelial dysfunction and insulin resistance (IR). In
one animal study, exposure to PM2.5 in combination with a
high-fat diet was reported to increase fasting, postprandial
glucose, insulin, and Homeostasis Model Assessment-IR sim-
ilar to those observed with a high-fat diet over 24 weeks [50].
Elevated levels of tumor necrosis factor-alpha (TNF-α),
interleukin-6 (IL-6), resistin, and leptin levels were also ob-
served indicating a proinflammatory IR-resistant state. In an-
other study by Sun et al. [18], there was supportive evidence
of abnormal insulin signaling. Exposure to PM2.5 in the ab-
sence of a high-fat diet has also been shown to increase
HOMA-IR and postprandial glucose [51]. Limited epidemiol-
ogy studies also report that exposure to ambient air pollution
alters systemic biomarkers of inflammation [52, 53]. Another
plausible biological mechanism includes endoplasmic

reticulum (ER) stress [54]. In vitro studies have demonstrated
that exposure to PM2.5 can induce ER stress, and this may
represent a pathophysiologically relevant mechanism linking
particulate matter exposure with hepatic insulin resistance. In
other experimental studies, PM2.5 has been reported to de-
crease phosphorylation of Akt in the liver and skeletal muscle.
Other changes observed included hepatic lipid deposition and
decreased gluconeogenesis. In other research, PM2.5 exposure
was associated with alterations in IR and glucose homeostasis
[55, 56]. Some experimental studies indicate that exposure to
traffic-related fine and ultra fine particles (UFPs) and ozone
trigger inflammation, oxidative stress, and biological path-
ways that promote metabolic IR [57–59].

Based on the long-term exposure epidemiology studies we
reviewed, we found that particulate matter less than 10 μg/m3

(PM10) exposures were positively associated with prevalent
diabetes in two out of three studies (Fig. 1) and with incident
diabetes in four of five studies (Fig. 1), with two prevalent
studies and two of the incident studies reaching levels of sta-
tistical significance [17, 28, 29•, 35, 38•, 39, 41]. Two of the
incidence studies with positive findings were conducted
among women only [17, 29•]. No obvious consistent differ-
ences among studies were observed (e.g., mean population
age or outcome assessment differences for those with stronger
findings). Notably, a null association was reported for the
study with the largest sample size and highest average expo-
sure [38•]. Contrary to other studies which included urban and
suburban/rural areas, this study was conducted in a population
dense, heavily trafficked city, and also reported statistically
significant positive associations with traffic-related pollutants.
Incident diabetes was also statistically significantly associated
with living in close proximity to a major road in two of three
studies [19, 27, 35]. Differences among studies could be due
to differences in PM10 composition and sources. Findings for
PM2.5 exposures with diabetes prevalence and incidence were
similar with the majority of studies showing positive associa-
tions, albeit with fewer studies reaching statistical significance
(Fig. 1) [17, 25, 30, 31, 36, 40]. Several studies were conduct-
ed among only women and showed positive associations [17,
23, 29•]. Both diabetes-related mortality studies of particulate
exposures reported statistically significant increased risk asso-
ciated with higher long-term exposures to PM2.5 [21, 34•]. No
consistent pattern of differences among study methods, levels
of exposure, or other factors we examined provide a clear
explanation regarding the variations in findings. For UFPs,
data are very limited in epidemiologic as well as animal stud-
ies [20•].

NO2 or Nitrogen Oxides

NO2 or nitrogen oxides are gaseous pollutants that often serve
as a proxy for traffic-related pollution. Epidemiologic studies
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of associations and toxicologic studies providing evidence for
pathophysiologic pathways for NO2 or nitrogen oxides are
limited in part because these pollutants react with other pol-
lutants, are correlated with other pollutants (positively and
negatively), and are highly spatially variable; thus, both expo-
sure estimation and distinguishing health outcomes specifical-
ly linked to NO2 or nitrogen oxides from other pollutants are
particularly challenging [24•, 60, 61, 62••]. While
underscoring the limitations and need for additional mecha-
nistic and toxicology studies examining the long-term impacts
of NO2 or nitrogen oxides, the review of evidence on health
aspects of air pollution (REVIHAAP) Project: Technical
Report suggests that current studies show some support for
inflammation, airway hyperresponsiveness, and oxidative
stress as potential pathophysiological mechanisms for adverse
human health effects [62••]. Both oxidative stress and

inflammation have been linked with insulin resistance and
metabolic dysfunction.

Among the studies included in our review, positive associ-
ations were reported for all studies assessing long-termNO2 or
nitrogen oxide exposures, indicators of traffic-related pollu-
tion, with diabetes prevalence (Fig. 2) [28, 30, 38•, 39].
Findings for diabetes incidence with NO2 were inconsistent,
with about half of the studies reporting increasing risk with
increasing exposures [17, 19, 20•, 29•]. An association be-
tween nitrogen oxides and incident diabetes was only support-
ed by one (HR: 1.011, 95%CI: 1.003–1.019) of three studies
examining the relationship [29•, 33•, 38•]. One study explored
diabetes-related mortality and NO2 exposures, reporting sta-
tistically significant increased risk with NO2 exposures in the
year prior to death and an attenuated but positive association
with longer-term NO2 exposures [37].

Fig. 1 Reported relative risks and 95%confidence intervals for fully-adjusted models of associations between type 2 diabetes and particulate matter
exposures
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Ozone and Other Pollutants

Ozone, formed by photochemical reactions on emissions from
fossil fuel combustion and industrial and vehicular activities,
has been linked to poorer fasting glucose and insulin levels, and
HOMA indices among older adults, with stronger associations
observed among those with a history of diabetes or increased
susceptibility to oxidative stress [63, 64]. One recent experi-
mental study conducted by Vella et al. exposed rats to
environmentally-relevant doses of ozone (0.8 ppm) and found
that exposure induced whole-body insulin resistance and oxi-
dative stress with associated endoplasmic reticulum (ER)
stress, c-JunN-terminal kinase (JNK) activation, and disruption
of insulin signaling in skeletal muscle [59]. The authors also
reported that subchronic exposure to ozone (0.25 ppm, 12 h/
day for 4 days) led to pulmonary inflammation, oxidative
stress, and insulin resistance. Vella et al. suggest that production

of lung mediators that induce oxidative stress and subsequent
activation of JNK activation in skeletal muscle could disrupt
insulin-induced signaling and glucose uptake [59].

Thus, although biologically plausible, only two studies ex-
amined long-term ozone exposures with prevalent diabetes,
reporting a null association and a weak inverse association
[31, 38•]. Two studies reported statistically significant positive
associations with incident diabetes. One study was conducted
exclusively among women and the other study found stronger
risks among women compared to men [24•, 38•].

Susceptible Subpopulations

Differences in human susceptibility to environmental expo-
sures can be related to comorbid disease; demographic or an-
thropometric characteristics; genetics; race and ethnicity;

Fig. 2 Reported relative risks and 95%confidence intervals for fully-adjusted models of associations between type 2 diabetes and NO2 and NOx, and
exposures
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lifestyle, behaviors, and socioeconomic position. In general, the
studies included in our review also considered whether differ-
ences in effects varied based on age group, sex, socioeconomic
status, smoking, alcohol consumption, diet, comorbidities, and
body mass index (BMI). Overall, consistent evidence of effect
modification by any one of these factors or for any particular
pollutant exposures/diabetes outcomes was limited, with the
possible exception of differences based on age and sex.

Most studies examining age group differences reported
none; however, a few studies reported observing higher risks
among participants under 50 years of age compared to older
groups for incident diabetes associated with exposure to
UFPs, PM10 and with ozone [20•, 25, 38•]. These findings
are noteworthy as type 2 diabetes incidence tends to increase
with age, and recently, type 2 diabetes is becoming more com-
mon among youth [65–67].

Some studies also reported differences by sex, with few
interactions statistically significant. Weinmayer et al. reported
stronger risks among men for incident diabetes associated
with PM10 and PM2.5 exposures and Puett et al. for PM2.5,
while others reported stronger associations with PM2.5 for
women [25, 35, 36, 41]. Puett et al. reported a strong positive
association between living within 50 m of a heavily traveled
road compared to living more than 200 m from the road for
women, but the same finding was not true for men [35].
Studies also reported stronger associations among women
compared to men for incident or prevalent diabetes with
higher NO2 or nitrogen oxide exposures [19, 20•, 27, 33•].

Areas for Further Research

The implications of findings from the studies we examined are
similar to those raised in previous reviews [68–71]. Well-
designed epidemiologic studies of type 2 diabetes and long-
term ambient air pollution exposures with rigorous methods
and exposure assessment can inform clinical treatment prac-
tices and air quality regulatory guidelines. Large population-
based studies with administrative data and cohort studies with
more detailed information, including biomarkers and periodic
follow-ups, are still needed to address inconsistent findings
and areas with limited information, such as potential effect
modification by sex and age for certain pollutants and associ-
ations in underrepresented groups (e.g., racial/ethnic minori-
ties). Challenges may exist with regard to air pollution model-
ing, but additional well-designed and clearly reported studies
in areas of high pollution and diabetes prevalence/incidence
are needed to provide additional information about etiology
and group differences. With respect to gaining further insights
regarding higher risks among younger age groups, future stud-
ies will need careful consideration of age range inclusions and
case definitions in order to gain information about type 2
diabetes in younger populations while avoiding potential

misclassification by including type 1 diabetes cases, which
is more common under age 30. Approximately half of the
studies included in this review reported a mean/median age
(typically at baseline) between 50 and 65 years with additional
studies focused on populations with mean/median ages 70 and
older, limiting numbers of younger study participants [17, 19,
20•, 25, 26•, 28, 29•, 30–32, 33•, 35–37, 40, 41•].

Administrative data and well-characterized cohort data that
include biomarkers, symptomology, and medical treatment
can enhance sensitivity as well as specificity of diabetes diag-
nosis. This is critical for ensuring type 2 diabetes outcome
accuracy to reduce potential misclassification and bias in main
association studies, potentially explaining some of the incon-
sistencies observed in findings across the studies reviewed.
For example, in a study assessing the importance of diabetes
case definitions used in epidemiologic research, Bielinski and
colleagues reported that the magnitude of associations be-
tween known risk factors and diabetes varied depending on
the criteria that were selected to identify diabetes cases [48].
Some studies included in this review addressed this issue by
reporting results from sensitivity analyses conducted with
multiple diabetes case assessment definitions [28, 35, 37].

In addition, better sensitivity and more comprehensive data
are key for mechanistic studies, another area warranting fur-
ther research. For example, studies have reported that statins, a
class of drugs often prescribed by doctors to help lower cho-
lesterol levels, reduced the risk of cardiovascular outcomes
associated with particulate matter exposures, particularly
among people with diabetes; a finding that has possible impli-
cations for diabetes studies if statin use in the population under
study is unknown [72, 73]. Some of the cohort studies with
more comprehensive biomarker data that were included in this
review have embarked on initial mechanistic research. For
example, Kramer and colleagues also examined the influence
of an inflammatory biomarker on the relationship of incident
diabetes and traffic-related long-term air pollutant exposures
[17]. Eze et al. followed their main association study with
mechanistically focused research, reporting an association be-
tween PM10 exposures and diabetes among individuals with
pro-inflammatory candidate gene polymorphisms, providing
further evidence for the inflammatory pathway [30, 74].

With regard to specific pollutants, epidemiologic data are
very limited with respect to ultrafine particulates and ozone
exposures. Prevalence and incidence association differences
also suggest further research is needed with NO2 and NOx
exposures. Toxicological research on long-term NO2 and ni-
trogen oxides exposures is severely limited. In epidemiologic
studies, challenges clearly exist for distinguishing NO2 or ni-
trogen oxides impacts from those of correlated pollutants. For
example, Jerrett et al. examined and discussed the tradeoff
between ozone and NO2 levels (i.e., when one pollutant level
is high, the other is low) [24•]. Thus, the more highly concen-
trated pollutant might mask the association with diabetes by
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the other pollutant. The REVIHAAP Report also described
that NO2 is linked with particles and suggested that studies
could include NO2 and a particle mass indicator (e.g., ultra-
fines or black carbon) [62••].

Some of the studies included in this review investigated the
impact of co-pollutants in predictive models compared with
single pollutant models to demonstrate independent effects;
however, challenges exist when these pollutants are correlated
[e.g., 24•, 31, 35]. Most co-pollutants were other ambient air
pollutants; however, noise is an important co-pollutant that
has been linked with adverse health effects. The role of noise
pollution is difficult to distinguish from air pollution. In this
review, we included relevant findings from one study that
focused primarily on noise, with air pollution treated as a co-
pollutant [26•]. The authors reported that noise was associated
with incident diabetes independent of air pollution, while the
reverse situation was not observed. Findings from this and
other studies in this small but growing body of work will
provide important information with respect to whether each
type of pollutant differentially impacts certain aspects of the
diabetes pathway or certain subpopulations [75].

Studies in this review and rigorous methodological studies
addressing the needs described above are important for
supporting further policy and translational work in risk assess-
ment and cost-benefit analyses which can more directly sup-
port air quality policies. Previous approaches for quantitative-
ly incorporating population vulnerability and susceptibility in
risk assessment have accounted for differences in baseline
heath status using measures such as cause-specific death rates,
hospital/emergency department visit rates, disease prevalence
rates, and/or pollutant-specific differential relative risk esti-
mates, which may serve as models for future diabetes and
air pollution work [76–80, 81••].

Conclusions

In summary, the studies included in this review generally
employed rigorous methodology with large sample sizes, ap-
propriate study designs to maximize available cohort study or
administrative data sources, and exposure modeling that
accounted for air pollution dispersion factors. Overall, most
studies for each pollutant/outcome reported increased risks
associated with increased exposures; however, findings were
not uniformly positive nor statistically significant. Further re-
search is needed to provide a more comprehensive under-
standing for clinical treatment and air quality regulatory
guidelines. Current research is particularly limited regarding
the biological mechanisms involved, examining the relation-
ship between ozone and diabetes, distinguishing NO2 or ni-
trogen oxides effects from those of other pollutants, and iden-
tification of potential subpopulations with greater susceptibil-
ity for select pollutant exposures.
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