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Chapter 1: Introduction

This dissertation investigates methods for detumbling a satellite prior to servicing. The
motivations will be discussed after some basic definitions are given; then the specific methods
proposed will be discussed in detail. In satellite servicing, there is a client satellite receiving
various upgrades or alterations and a servicing satellite providing those upgrades. These
will be referred to in this document as the servicer (that which provides the upgrades) and
the client (that which receives the upgrades). In this dissertation, the post-grapple phase of
a satellite servicing mission is considered, with the client potentially tumbling. Controllers
for satellite attitude and a robotic manipulator will be presented for use in detumbling of a
system of two satellites coupled through a robotic manipulator, in the case where the system
has a non-zero inertial attitude rate. A method of vibration detection and reduction in this
system will also be presented such that modal excitation of a client can be reduced during

a detumbling maneuver. The progression of this dissertation is as follows:

1. This chapter presents the motivation for satellite servicing and explains the focus on
the post-grapple phase, as well as the emphasis on satellite pairs coupled through

robotic manipulators.



2. The second chapter will provide background on some previously proposed nonlinear
attitude controllers; introduce a novel nonlinear attitude controller; show proof of its
stability, and; provide cases in which it has improved performance in comparison to

other controllers. (Contribution 1)

3. The third chapter provides a review of existing manipulator controllers; identifies how
they are deficient for the use case presented, and; presents a novel manipulator con-

troller for reduction of system vibration. (Contribution 2)

4. The fourth chapter discusses the impact of the necessary sliding-window Fast Fourier
Transform (FFT) parameters and presents a novel method of automating the detection
of dominant peaks within its output in the presence of noise, which is a necessary step

for the realization of Contribution 2. (Contribution 3)

5. The fifth chapter presents a detailed description of the combined system in a 6-Degree

of Freedom (DOF) orbital simulation and presents the results of several experiments.

6. The sixth and final chapter will summarize the technical contributions of this disser-

tation and include suggestions for further development of this area in future research.

1.1 Motivation

Humans have been launching satellites for over sixty years. The satellites they have

launched often had flexible appendages such as solar arrays for power, or long antennae for



communications or scientific measurements. Sputnik, the first artificial satellite of Earth,
launched in 1957, had four relatively large antenna (2.4 - 2.9 meters), compared to its body
size (a 0.58 meter sphere). [1] According to the Union of Concerned Scientists, as of 30 April
2018, there were 1,886 active satellites in orbit. [2]

The servicing of satellites while on-orbit is a topic of increasing interest. Servicing is

an umbrella phrase that can cover many different activities, including

e orbit modification, e.g.

— lower to de-orbiting,
— raise to return to desired operational altitude or a graveyard orbit, or

— continuous maintainenance, that is, addition of a new propulsion system that

remains attached;

e replenishment of satellite fuels (refueling); or,

e complete replacement of major components.

The vast majority of satellites are designed to be expendable, disposed of after compo-
nent failure or fuel depletion, as discussed by Reedman et al. [3] in discussion of requirements
for future servicable satellites. One prime example of component replacement on orbit is the
Hubble Space Telescope (HST), which was designed from its inception to be servicable in
orbit by human crews. Some of the lessons learned from the first three servicing missions to
HST are discussed by Werneth [4]. Long et al. [5] illustrate how the business case for compo-

3



nent replacement and satellite augmentation for Geosynchronous communications satellites
already exists. Joppin and Hastings [6] investigate how the addition of servicing can add
flexibility and value to science missions. Long and Joppin both use the lessons learned from
the HST servicing to inform their analyses. Naasz et al. [7] show the business case for re-
fueling of geosynchronous satellites, in adition to repair or inspection. It is possible that a
fully-functional satellite is moved to a graveyard orbit simply because it is running low on
the fuel needed to maintain its position within its assigned orbital slot, or a failure in its
primary propuslion system as was the case with PanAmSat’s Galazy 8i [3]. Satellites such
as this could be returned to useful service with additional fuel or replacement propulsion
systems. Significant savings could be achieved if repair and refueling can be performed on
orbit as long as launch costs remain one of the largest portions of total mission cost, as
shown by Sullivan et al. in [8]. Satellites that have had other failures may be in desirable
orbits and their disposal would provide the benefit of decreasing space debris and returning
their orbits to productive users. Disposal can take the form of de-orbiting the spacecraft to
burn up in the atmosphere or performing a maneuver to place it in a so-called graveyard
orbit. Ellery et al. [9] study the benefits of this disposal capability in the geosynchronous
satellite market.

The business case has been made so well that two commercial ventures are contracted
for some form of on-orbit servicing, as of 2018. Orbital ATK (now Northrup Grumman

Innovation Systems) has announced it is now taking orders for its Mission Extension Vehicle



(MEV), which will attach to a client satellite in Geosynchronous Earth Orbit (GEO) to
assume all attitude and stationkeeping functions for clients that are low on fuel. [10] Effective
Space, a UK company, has also announced contracts to provide its own “Space Drone” system
for similar propulsion assistance to communications satellites. [11] In both cases, the client
satellites will be operational at the time of rendezvous meaning the orbit, attitude and body
rates of the client can be well controlled prior to capture. Also, as GEO communications
satellites have a preferred nominal orientation to point their large antennae and reflectors
towards Earth’s surface, their nominal attitude and body rates are well behaved, which eases

the rendezvous process.

1.1.1 Clients may be tumbling

Within this work, the term “tumbling” is used to indicate the state of an uncontrolled
multi-axis attitude rate. There are several reasons a potential client may be tumbling. Some
satellites are spin-stabilized design but are not de-spun at end of life once they become
uncontrolled. An analysis by Kaplan et al. [12] determined there were over 100 GEO ob-
jects that were spin stabilized and could still have spin rates as high as 40 Revolutions Per
Minute (RPM) (240 deg/sec) as of 2010. Other satellites may be tumbling due to internal
failures such as fuel depletion, or actuator failures. If the spacecraft’s attitude cannot be
controlled, then tumbling can be induced by the space environment. Even at geostationary

altitudes, atmospheric drag, gravity gradient and Solar Radiative Pressure (SRP) can induce



a tumble in an uncontrolled satellite. [13] Tumbling can be induced by conjunction events,
i.e. collisions with space debris or derelict spacecraft. Additionally, energetic failure modes
can lead to a lack of Attitude Control System (ACS) control authority such as shortages of
battery circuits leading to explosions, or fuel tank ruptures. One example of an energetic
failure inducing a tumble is the Japanese Aerospace Exploration Agency (JAXA) X-Ray
observatory Hitomi (also know as ASTRO-H). It mis-fired its attitude control system until
it spun fast enough to rip itself apart after a series of errors initiated as it flew through the
South Atlantic Anomaly (SAA). [14] Early optical observations of the satellite, post-breakup,
estimated it rotating once every 5.2 seconds, or 69.2 deg/sec. The spacecraft broke apart
into several pieces, ten of which are still large enough to track and are still in orbit, according
the tracking website Heavens-above.com. Those pieces, too, are likely to have substantial
body rates.
One example of naturally induced tumbling is the communications satellite KOREASAT-

1. Tt completed its useful mission and was raised from its initial geostationary orbit to a
graveyard orbit 200 km above in 2005. When its spin rate was estimated with optical mea-
surements in 2013, natural perturbations had increased its rate to 4.8 deg/sec. [15] Finally,
tumbling can be caused by forces exerted on the client by the servicing vehicle during the
grapple procedure. The ability to service tumbling satellites increases the pool of poten-
tial customers, further strengthening the business case for satellite servicing. A tumbling

spacecraft presents several challenges to servicing, one of which, the post-grapple detumbling



procedure, will be addressed in this research.

1.1.2 Rendezvous

The controlled arrival of one spacecraft within the vicinity of another spacecraft can
most generally be described as a rendezvous.! This research is focusing on detumbling of
clients. Detumbling methods can be classified into two categories: those requiring contact
and those that do not. There has been interesting research by Sugai, et al. on the use
of electrical eddy currents to affect a change in spin rate of a client spacecraft without
contact [16], [17]. That avenue remains an area of active research, but the vast majority of
other detumbling methods require contact. Rendezvous methods that involve contact can be
generally classified as either a docking or a grapple. A docking involves the secure mating of
two spacecraft via a pre-designed interface for the transfer of fluids (e.g. fuel, atmosphere) or
people and other solid cargo. A grapple involves the secure mating of two spacecraft via an
active component on the servicer side and a passive component on the client/receiving side,
but not necessarily a pre-designed interface for in-space contact on the client side. A docking
requires two vehicles to have been designed with this interfacing in mind, and therefore is
classified as a cooperative rendezvous. The rendezvous of the Soyuz and Progress Russian

spacecraft with Mir and International Space Station (ISS), as well as the docking of the

L As oppossed to an uncontrolled rendezvous, potentially involving the impact of the two spacecraft in

question, which would be best described as a conjunction event.



Space Shuttle with the ISS are both examples of cooperative docking. A grappling event
may be achieved either with a cooperative or uncooperative client.

Past missions that were designed to grapple other free-flying components in micro-
gravity, e.g. Shuttle Remote Manipulator System (RMS), ISS RMS, Engineering Test
Satellite (ETS)-VII, and Orbital Express, were operated with flight rules or Concept of
Operations (ConOps) that required zero or very low relative linear velocity and attitude
rates between the client and the grasping spacecraft. They also required clients to have an
active ACS that is able to maintain attitude until the grapple is to be attempted, immedi-
ately before which time the client ACS would be put into free drift to avoid the client ACS
from fighting the servicer manipulator and servicer ACS. [18] The presence of an active ACS
system ensures desirable relative rates, alleviating potential problems caused by excessive
tumbling (and subsequent detumbling maneuvers), but restricts the pool of possible clients

for servicing.

1.2 Robotic manipulators for operational adaptability

A spacecraft is described as “non-cooperative” if it has been designed without aids
for rendezvous and docking while on-orbit. Robotic manipulators are commonly proposed
mechanisms for grappling of cooperative and non-cooperative satellites. [19] Robotic ma-
nipulators have been flown on many missions in the past and several are currently in orbit

today. A very thorough review was published by Flores-Abad in 2014 [20], several relevant



devices and missions are discussed below, supporting the design of the manipulator proposed
within this work, and providing necessary contrast to the focus of this research.

To motivate the selection of manipulator kinematics and general sizing chosen for this
research, as well as the motivation for the proposed control algorithm, several previous and

proposed space servicing manipulators will be discussed in Chapter 3.

1.3 Current Methods Of Modal Avoidance

The methods presented below each address pieces of the overall problem, but not the
whole, and present areas to begin the investigation. Initial methods of mitigating suscep-
tibility of satellite appendages to vibration included designing the structure of the overall
system to be stiff enough and strong enough to survive and damp out any disturbances that
might occur [21], with subsequent methods focused on limiting the excitation of primary

modes, either by avoiding them or actively reacting to them.

1.3.1 Structural Filters

A common method of avoiding vibrational modes or undesirable frequencies in actua-
tion commands are structural filters, e.g. low-pass, band-pass, high-pass and notch filters.
Low-pass filters only allow frequencies of signal below a specified frequency to be executed;
band-pass filters only allow frequencies between two defined frequencies to be executed; high-

pass filters only allow frequencies above a specified frequency to be actuated; and, finally,



notch filters, only allow frequencies outside a certain frequency range to be actuated. A
priori knowledge of sensitive structural modes are used to design structural filters. An ACS
command is passed through the filter and modified such that the output set of commands
will have less content in the frequencies of concern. It is that modified command that is then
passed to the actuators. For example, notch filters were successfully employed on the Space

Shuttle to avoid exciting modes of its payloads and of vehicles to which it was docked. [22]

1.3.2 Piezo-electric Actuators

Whereas structural filters, above are designed to limit actuation within a desired fre-
quency range, piezo-electric actuators can be thought of as the opposite. Azadi [23], Gen-
naro [24] [25], Hu [26] [27], Meyer [28], Oh [29], Sabatini [30], Singhose [31], Song [32] [33],
and Zarafshan [34], among others, present different ways that piezo-electric actuators can be
used to detect and dampen vibration in flexible structures. Their biggest limitation, as they
relate to this research, is that the devices must be built into the structure which one wishes
to detect or dampen the vibrations. The focus of this research is the reduction vibrations
in uncooperative clients by servicing vehicles during post-grapple detumbling maneuvers,
therefore modifications to the client structure are not possible prior to a successful detumble
which would precede servicing. Therefore this form of actuation will not be considered for
this research.

Satellite actuation can be performed on satellites with a variety of devices. Thrusters
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provide forces and torques. Reaction wheels, Control Moment Gyros (CMGs) and magnetic
torquer bars [35], all provide only torque. Robotic manipulators also provide torque to the
base body, or forces if there is another body to react against.

To limit the scope of this research, only methods that can perform attitude control of
the detumble with thruster-based attitude control are investigated. This allows for larger

torques to be actuated, limiting the time necessary for given detumbling procedures.

1.4 Conclusion

The motivation for this work and a variety of partial solutions has been presented. In
the next chapter, a nonlinear attitude controller for detumbling will be presented, its stability
will be proven and its benefit in contrast to some other nonlinear controllers will be presented.
Subsequently, manipulator control methods that have been previously presented will be
discussed and how they fail to meet the design requirements for this problem will be discussed.
Then a manipulator control strategy for disturbance rejection will be presented. The details
of disturbance detection using the force-torque sensor (FTS) will be presented in Chapter 4.
The details of the 6-DOF orbital simulation will be presented in Chapter 5 along with the
results of several examples with the combined attitude controller, disturbance detection and
manipulator controller working in unison. Finally, in Chapter 6, the contributions will be

summarized and future work will be proposed.
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Chapter 2: Nonlinear Quaternion Feedback Controller

2.1 Introduction

In this chapter, a nonlinear quaternion feedback controller for attitude regulation, given

an error quaternion, q... = [€’,n]T and rate error, w, Eq. (2.1), will be presented and a

proof of its stability will be given.

u = —sign (7) Ke — (1 — €'¢) Dw (2.1)
1 forn >0

sign (n) = (2.2)
—1 fornp < 0

This controller uses matrices, K and D, to scale each axis of the gains separately based
on the spacecraft inertia. The following stability proofs will show first that it is stable and
furhter that its stability does not require perfect knowledge of the inertia of the spacecraft.
The importance of stability in the presence of inertia knowledge in a system of a servicer

satellite coupled with a client satellite or piece of orbital debris is that the inertia of the
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couple load may not be well known. Indeed, in the case of orbital debris such as that created
by the disintegration of Hitomi X-ray observatory, as discussed earlier, large pieces of debris
were created with high tumble rates. [14] If these pieces must be detumbled for deorbit, it
would be very difficult, a priori, to attain a reliable estimate of debris inertias.! The cases

in which this controller is superior to a scalar gain case will also be presented below.

2.1.1 Notation, Identities, Dynamics

Let the attitude of a spacecraft be represented by a rotational axis unit vector, e, an

Euler Axis, and a rotation about that axis, ¢, then

-
~—
@)}

esin(
q: =

cos (%) n
where € = [e,,€,,€.]" . It should be noted that ||q|| = 1, i.e. € + e, + e +n° = 1. In other
words, a quaternion is of unit length. Let qb/i (read as “cue eye to bee”) be the quaternion
representation of the current actual spacecraft body coordinate frame, ‘b’ with respect to
the the inertial reference frame, ‘i’. Let a,, be the quaternion representation of the desired
spacecraft body coordinate frame, ‘d’, with respect to the inertial reference frame. Then, the
error quaternion from the current body frame to the desired body frame can be computed

byq =q, = g, ® qb_/li, where ® is the quaternion multiplication operation, which will

d/b

!This case would represent one of least cooperative of uncooperative clients.
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be defined below. Let q, = [€], na]T and q, = [€], nb}T be two arbitrary unit quaternions.

Then the product of their multiplication is

Mh€q + Na€p — €q X €
de =4 X Qp =

T
NaTly — €, €p

Other identies of use are

a®ql=1[0,00 +1]".

X

Another useful definition is the cross-product matrix operator, [-]*. Given a vector v =

T ond u = T
[V, vy, v, ] and u = [uy, uy, u, |,
0 —v, vy
X _
Vo= o, 0 —v, |-
—Vy Uy 0

such that [v*]u=v x u.
Given a system with inertia tensor J which is about the center of mass and evaluated
in the system’s body frame; an attitude q = [eT,n}T which is evaluated from a reference
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frame (inertial space, for example), to the same system body frame; a body attitude rate w,
as measured from the reference frame to the body frame; and a torque input u, all expressed
in the spacecraft’s body frame, then the dynamics of the system are described by Eqgs. (2.3),

(2.4), and (2.5) below.

1 1
€= Eexw + 5w (2.3)
: 1
nN=—=€w (2.4)
2
w=J"[wJIw+u] (2.5)

2.1.2 Prior Work

Several previous quaternion feedback controllers are presented below for comparison.

Wie and Barba in [36] proposed three quaternion feedback laws:

u=—-Tke—T.Dw (2.6)
T.k

u=-— e e — T.Dw (2.7)

u = —T,sign (n) ke — T.Dw (2.8)

where u is the commanded control torque vector; T, is the positive scalar control torque level
of the reaction jets; k is a scalar positive gain; D = [ &y, 0, 0; 0, ko, 0; 0, 0, k3] > 0 is a
positive definite diagonal gain matrix; q = [eT, n }T is the attitude error quaterion; and,
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w is the spacecraft inertial rate. They note, however, that when the initial attitude error
is near 1807, the quaternion scalar, n is near zero resulting in nearly infinite control torque
commanded in (2.7). They also note that for n > 0, Equations (2.6) and (2.8) are identical,
but when n < 0, Eq. (2.8) ensures the shortest path to reorientation.

Subsequently, Wie proposed with Weiss and Arapostathis [37] the following quaternion

feedback controller:

u=—-w Jw—-Dw-Kaq,

where D and K are 3 x 3 constant gain matrices. They note that the inclusion of the
gyroscopic component increases performance with high velocity maneuvers.
Wen and Kreutz-Delgado proposed [38], and later Joshi, Kelkar and Wen [39] proved

the stability of a different quaternion feedback for attitude stabilization:

u——% [(e+n) G, +~v(1—n)I]e— Guw,

where G, and G, are symmetric positive definite (3 x 3) matrices, v is a positive scalar and
I is the (3 x 3) identity matrix.
Later still, Markley and Crassidis propose in [40] (as Eq. (7.14)) a shortest-distance

control law:

u=—kpysign(n)e—kq (1L €ee)w, (2.9)
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where € and n are the vector and scalar components, respectively, of the attitude error

quaternion; k, and k; are positive scalar gains; and w is the spacecraft inertial body rate.

2.2 Quaternion Feedback Attitude Controller Stability

2.2.1 Static Inertia, Perfect Knowledge

The new quaternion feedback controller presented here is similar to that of Markley
[40], presented as Eq. (2.9) above, except the position and rate gains are positive definite
symmetric matrices, not scalars. In this subsection, its stability will be proven in the case
of a static moment of inertia with perfect knowledge. Note that the stability proof below
also holds for gains that are positive definite diagonal matrices. The attitude control torque
is defined by Eq. (2.1), introduced above. The gains will be defined as functions of the
spacecraft inertia, controller scalar response frequency, w. > 0, and controller scalar response

damping ratio, (. > 0. See Egs. (2.10) and (2.11), below.
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K=wll g g, J. (2.10)
Joz Sy ez
| Jrz Jay  Jaz |
D=2we | g 1. J. (2.11)
Joz Sy Sz

The stability of this controller will be proven via Lyapunov analysis. The Lyapunov
candidate function, Eq. (2.12) below, is similar to that proposed by Wie and others in [37],
but modified to be piece-wise, similiar to Thienel and Sanner in [41] to handle both positive

and negative signs of 7.

1 (n—1)* forn >0
V= §wTK_1Jw +e2+et+e+ (2.12)

(n+1)* forn <0

K~! exists because K is symmetric positive definite. It is clear from Eq. (2.12)
that V> 0V q,w, it is zero at the origin, V(qo,wg) = 0 (qo = [ 0, 0, 0, £1 ] and
wo = [0, 0, 0]7) and that it is continuous. Note that by definition, a quaternion must
satisfy €2 4 €, + €2 +n”> = 1. This can be rearranged to €2 + €, + €2 = 1 — 5>, Then Eq.
(2.12) becomes
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(n—1)* forn>0

1
V= §wTK_1Jw +1-—n*+
(n+1)> forn <0

and can be further rearranged to

2(1—n) forn>0

1
V= §wTK_1Jw + (2.13)
2(14+n) forn<0
Note here it is assumed that the inertia is constant, therefore J = [0]. Taking the
derivative of Eq. (2.13) with time, yields:
| 1 —2n forn >0
V= inKfle + inK’lJcb + (2.14)
2n  forn <0
Noting that K—1J = (K~'J)", Eq. (2.14) simplifies to
‘ —2n forn>0
V=w'KJw (2.15)
+2n forn <0

Substituting the dynamics, Eq. (2.4) and Eq. (2.5), into Eq. (2.15):

V=wK'JI [w Jw + u]
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Simplifying and replacing u with Eq. (2.1), the above becomes:

efw forn>0

V =wlK™! [w*Jw — sign (n) Ke — (1 — €"€) Dw| +

—€efw forn <0

Next, remove the brackets by multiplying through by w?K™!.

efw forn>0
V = w'K 'w*Jw — sign () 'K 'Ke — (1-€"€)w' K 'Dw +

—efw forn <0

(2.16)

Then note that K~'K = I3, where I3 is the 3 x 3 identity matrix, and Eq. (2.16) becomes

el'wforn >0
V=wK'w*Jw —sign(n) w'e — (1 — €’e) o' K 'Dw + . (2.17)

—€elwforn <0

Evaluating sign () in Eq. (2.17), and recognizing that w’e = €’ w, it becomes:

' —(Nwle+€'w forn>0
V ="K 'w*Jw — (1 - eTe) W K 'Dw +

— (-l wle—€lw forn<0
V =w'K W Jw — (1-€"€) w' K 'Dw (2.18)
Let us inspect the first scalar term of Eq. (2.18) and recall that by construction K is

symmetric positive definite, therefore its inverse, K=, exists and (Kﬁl)T = K~1; also noting
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that the dense inertia matrix, J, is symmetric positive definite, (see [42]) therefore J = J7;

and further noting that the cross-product matrix operator produces a skew-symmetric matrix

such that (w*)" = —w*, the following is true:

[wTK_leJw]T = w!'J7 (wX)T (K‘l)T (wT)T
=w’] (—wx) K 'w
= —wlJw'K'w (2.19)

< —llwl* I flw* [ < 0. (2.20)

The transition from Eq. (2.19) to Eq. (2.20) follows from the definition of a vector
or matrix norm and the equivalence of norms principle [43]. So, the candidate function

derivative becomes:

V<~ [wlPIIlllw* K| = (1~ €"e) 'K 'Dw < 0 (2.21)

Therefore, this controller is globally stable because V' >= 0 and V<OV quw

2.2.2 Static Inertia, Imperfect Knowledge

In this section, the stability of the case where the inertia is unchanging, but knowledge
of the that inertia is imperfect will be presented. The motivation for this discussion is
manifold. First, the inertial knowledge of any spacecraft that is not perfectly solid is never
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completely accurate, even the inaccuracies can be bounded prior to launch. Second, in the
case of derelict or non-cooperative clients, the true orientation of appendages, or state of
fuel depletion may not be well known. Finally, for space debris, such as was generated by
the breakup of the Hitomi observatory [14], the pieces that require detumbling and control
may have inertias and masses that are impractical, if not impossible, to predict with much
accuracy. Stability of the attitude controller in the face of error in the estimate of the coupled
system inertia tensor is an important factor to consider. First, revisit Egs. (2.10) and (2.11)

but some error, E;, will be explicitly included, on the true inertia when defining the gains.

- Joz Joy Jzz - - Eew By Eg. - - Koo Koy K -
K= w? Joy Sy Jys + Euy Eyy By T | Ky Ky Ky (2.22)
Joz Jyz Jaz E.. By, E. K,. K,. K.
— Jow Joy - | Eeo Epy B _ _ Dyw Dy Dy, _
D=2we || g, Jy Jpo | 7| Euy E,y Epo || = | Doy D,y Do | (223)
oz Jyo Sz E.. E,. E. D,. D,. D..

The fact that both gains remain symmetric positive definite matrices will be employed

to prove the stability. Revisiting Eq. (2.16),
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. efw forn>0
V=wK'wJw-sign(nw K 'Ke— (1-€¢e)w' K 'Dw+

—€eTw forn <0

(2.24)
As already stated, K~! exists because K is symmetric positive definite by construction,
then K~'K = I3 for any choice of K, regardless of the quality of the inertia knowledge.
Further, it is never the case that the choice of gains, K or D, are used to cancel any inertia
terms from the Lyapunov candidate function or its derivative, i.e. no K=1J, D71J, J7'K,
nor J~!D terms appear and thus must be removed. The proof above remains unchanged
and V < 0V q,w and the controller is globally stable with imperfect moment of inertia

knowledge.

2.3 Performance of Diagonal Gain vs. Scalar: Stabilize From Tumble

This section will analyze where and how the proposed controller, Eq. 2.1, utilizing di-
agonal gains performs better than a scalar gain quaternion feedback controller as in Markley
and Crassidis’ controller, Eq. 2.9. Three cases will be compared - the diagonal matrix gain
using the diagonal of the moment of inertia; the scalar gain using the minimum moment of
inertia; and, the scalar gain using the maximum moment of inertia. (Note that in systems
modeled as multiple bodies, “moment of inertia” in this case would be the composite moment
of inertia of all bodies as expressed in the base body coordinate frame.) All other aspects of
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the systems will be the same; only the controller and its gains will differ.

The ACS system was executed at 10 Hz. The natural frequency of each controller was
wyp = 27 0.001 rad/sec and the controllers’ damping ratio was ¢ = v/2/2. Consider a system
of a servicer satellite connected to a client satellite through a perfectly rigid robotic ma-
nipulator of unchanging configuration, as shown in Figure 2.1. The manipulator, described

kinematically in Appendix A, is rigid at joint angles

6 =1[0° —60°, 0°, —120°, 0°, —60°, 0°],

and grappled to the client satellite at rgf/TB = [—0.138, —0.5, —0.06 " meters, in the
client’s body frame; with the gripper’s frame 75° rotation about the client’s Z axis, i.e.
qeray,, =10, 0, 0.609, 0.793 1"

As Wiktor notes in [44], there are three different measures for controller performance.
For a given error quaternion, q and rate error, w, and resulting torque command M, =

f(q,w), the following is true:

1. the controller that minimizes || My, ||; minimizes total instantaneous effort (i.e. fuel flow

rate in the case of thruster-based attitude control);
2. the controller that minimizes || Mp||o minimizes power; and,

3. the controller that minimizes || Mp||o minimizes peak individual DOF torque.

The composite inertia of the system at the origin of the servicer (to the nearest 10
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kg -m?), as expressed at the servicer origin in the servicer coordinates is

10450 —450 —4000
S
Jsvs = | —450 19260 —610 | - (2.25)

—4000 —610 12510

The masses of the servicer and client are 1,000 kg each, excluding the manipulator. The
manipulator mass is 67.4 kg total. The masses and inertias of the two solar arrays are
included, but the connections are rigid and flexibility is not present in this simulation for
simplicity. The coupled system has an initial tumble rate of [30, 30, 30] degrees per second,
as measured in the servicer body frame. The desired body rate with respect to inertial is
zero. The initial and target inertial attitude is assigned to point the +7 axis of the servicer
towards the Earth and point the +X axis of the servicer into the velocity vector. This
Local Vertical Local Horizontal (LVLH) orientation allows the solar arrays to easily track
the sun throughout the orbit. Initially this is equivalent to [88.8, —48.5,178.0] degrees (to
the nearest tenth of of a degree) in X-Y-Z Euler angles. The orbit is in GEO at 42,000 km.
The simulation lasts 400 seconds. Applied torque was not limited nor quantized. The ACS
controller is initially off, and is enabled one second into the simulation. When the ACS is
enabled, it will apply torque to the servicer to reattain the desired attitude with zero body

rate.? Figure 2.1 is the visualization of the coupled system from the Freespace simulation,

2To maintain a true LVLH attitude, the servicer would try to maintain a body rate about its Y axis equal
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with the axes of each vehicle visualized as colored arrows. For both vehicles, the colors of
the axis arrows are blue, green and red for X, Y and Z of each respective spacecraft body.
The origin of the Servicer is at the center of the face nearest the client, also the face to
which the robotic manipulator is mounted. (This face is hidden in Figure 2.1 because it is
pointing towards the client.) The origin of the client is where the central axis of the marman
ring intersects with the spacecraft’s aft bulkhead, which is the bulkhead facing the viewer
in the image. In Figure 2.1, the origin is visible at the location where the blue and green
arrows of the Client’s X and Y axes intersect. The Y axis of each spacecraft is parallel to
the nominal axis of rotation for its respective solar arrays. The Z axis of the client is defined
positive through the vehicle, away from the separation plane of the marman ring. The X
axis of the client is perpendicular to both the Y and Z axes with its sign chosen to complete
the right hand rule. The Z axis of the servicer is definied positive emanating out of the
bulkhead where the manipulator is mounted. The X axis of the servicer is is perpendicular
to both Y and Z axes with its sign chosen to complete the right hand rule. The results of
the comparison between scalar gains (minimum and maximum inertia components) versus
the diagonal are given below in terms of attitude and rate errors, as well as torque applied
and time taken to settle errors below stated limits (to be defined below).

Figure 2.2 shows a comparison of the total attitude angular error as represented by

to the average orbital rate, but at this altitude, that is only 0.004 degrees per second, so a zero rate was

chosen for this demonstration.
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Figure 2.1: Satellite body azes labeled in the grappled configuration. Blue, green and red arrows

are the positive X, Y and Z axis, respectively, of each vehicle.

just the error component of the Eigen Axis/Angle set. It should be remembered that in the
Eigen Axis/Angle representation of an attitude error, a 0° error is equivalent to a 360° error.
The sign from which 0° (or 360°) is approached only indicates whether the reduction of the
error was achieved in a clockwise or counter-clockwise direction. All three methods converge
to nearly no attitude error after 280 seconds. If one inspects the attitude error at 80 seconds,
for instance, it is clear that the Scalar Max is closest to zero error, i.e. converging faster;
next closest to zero error is the Diagonal controller; and finally, the Scalar Min controller

is furthest from no error (even as quantified as its difference from a 360° error). It will be
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discussed below by what metric this apparent deficiency of the Diagonal Gain case performs

better than the Scalar Max case.

Total Attitude Error
360‘ """"" """"" """"" """"""

- (— Scalar Min).
| — Scalar Max:

— — Diagonal |
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Figure 2.2: Comparison of gain types and effect on total attitude angle error (in the Eigen
Azis/Angle sense). Scalar with minimum inertial scaling, Scalar with mazimum inertia scaling,
and Diagonal Matriz scaling from Inertial Tensor Diagonal. ACS is enabled 1 second into the
simulation. Note that the domain of the Eigen rotation angle parameter is [0°,360°) therefore the

scalar minimum controller is asymptotically approaching zero error, but from the other direction.

Next, the attitude error on an individual axis basis will be reviewed, as represeneted by

X-Y-Z Euler angles. Figures 2.3, 2.4, and 2.5 show the attitude error of each method in the
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X, Y, and Z axes, respectively. Recall from Eq. (2.25) that the coupled system composite
moments of inertia are within 40kg - m? for the X and Y axes of the Servicer body, and
the Z axis inertia is roughly 65% of X or Y. It may not be intuitive from the inertia tensor
of the composite spacecraft, but in this case of a tumble rate equal across all three axes,
the diagonal inertia scaling controller decreases the settling time for the Y axis best. The
diagonal gain controller performs no worse than the scalar minimum controller case, but its

utility beyond the scalar maximum will be shown be further metrics.

ACS On » ‘ Attitude Error, X ‘ » »
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Figure 2.3: Comparison of gain types and effect on X attitude angle error.
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Figure 2.4: Comparison of gain types and effect on Y axis attitude angle error.
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Figure 2.5: Comparison of gain types and effect on Z axis attitude angle error.
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Figure 2.6 shows the RSS body rate of the servicer-client system over time as the it
is brought under control. Again, the ACS system in this simulation was turned on at one
second into the simulation. The ability of the diagonal gain controller to bring the tumble
of the system to near zero is very similar to the scalar gains, as they all are assymptotically
approaching zero by 120 seconds into the simulation, but the merits of the diagonal controller
will be demonstrated by other metrics. Now, let us consider the rate errors on a per-axis
basis. Figure 2.7 shows the differing performance between the contollers on the X axis of
the servicer attitude rate; Fig. 2.8 shows the performance on the Y axis; and, Figure 2.9
shows the performance on the 7 axis. Not surprisingly, the diagonal gain controller settles
faster than the minimum scalar controller in all axes, but it is also able to settle faster than
the scalar max controller in the Y axis (see Fig. 2.8). This is depsite the inertia of this axis

being nearly as large as X axis.
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Figure 2.6: Comparison of gain types and effect on RSS body rate error. Scalar with minimum

inertial scaling, Scalar with mazximum inertia scaling, and Diagonal Matriz scaling from Inertial

Tensor Diagonal. ACS is enabled 1 second into the simulation.
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Figure 2.7: Comparison of gain types and effect on X axis body rate error. Scalar with minimum
inertial scaling, Scalar with mazximum inertia scaling, and Diagonal Matriz scaling from Inertial

Tensor Diagonal. ACS is enabled 1 second into the simulation.
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Figure 2.8: Comparison of gain types and effect on Y axis body rate error. Scalar with minimum

inertial scaling, Scalar with mazximum inertia scaling, and Diagonal Matriz scaling from Inertial

Tensor Diagonal. ACS is enabled 1 second into the simulation.
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Figure 2.9: Comparison of gain types and effect on Z axis body rate error. Scalar with minimum

inertial scaling, Scalar with mazximum inertia scaling, and Diagonal Matriz scaling from Inertial

Tensor Diagonal. ACS is enabled 1 second into the simulation.
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Figure 2.10: Comparison of gain types and effect on applied RSS torque. Scalar with minimum
inertial scaling, Scalar with mazximum inertia scaling, and Diagonal Matriz scaling from Inertial

Tensor Diagonal. ACS is enabled 1 second into the simulation.

Next, the torque required over time for each controller type will be inspected. Figure
2.10 shows the Root Sum Squared (RSS) of the torque applied over time to stabilize the
system. Figures 2.11, 2.12, and 2.13 show the per-axis torque applied in the X, Y and Z
axes, respectively. Figure 2.10 shows that the scalar minimum is the slowest to coverage, as
epected, but also that the diagonal matrix gain converges slightly quicker than the scalar

maximum controller.
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Figure 2.11: Comparison of gain types and effect on applied X axis torque. Scalar with minimum
inertial scaling, Scalar with mazximum inertia scaling, and Diagonal Matriz scaling from Inertial

Tensor Diagonal. ACS is enabled 1 second into the simulation.
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Figure 2.12: Comparison of gain types and effect on applied Y axis torque. Scalar with minimum
inertial scaling, Scalar with mazximum inertia scaling, and Diagonal Matriz scaling from Inertial

Tensor Diagonal. ACS is enabled 1 second into the simulation.
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Figure 2.13: Comparison of gain types and effect on applied Z axis torque. Scalar with minimum
inertial scaling, Scalar with mazximum inertia scaling, and Diagonal Matriz scaling from Inertial

Tensor Diagonal. ACS is enabled 1 second into the simulation.
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Table 2.1: Convergence times, in seconds, to within 100 arcsecond (0.028°) tolerance of attitude
error for scalar vs. diagonal matriz gains. [Note: Simulation mazimum duration was 400 seconds.

If convergence not achieved before 400.0 seconds, “N/A” is listed.]

Scalar Min Scalar Max Diagonal Gain
Err. Eigen Angle N/A 323.4 338.9
Att. Err. X N/A 302.9 319.6
Att. Err. Y 353.5 298.7 253.6
Att. Err. 7 389.9 310.4 332.3

Table 2.2: Convergence times, in seconds, to within 10.0 arcsec/sec (0.003°/sec) tolerance of

rate error for scalar vs. diagonal matriz gains.

Scalar Min Scalar Max Diagonal Gain
Rate Err. RSS 352.2 281.3 296.3
Rate Err. X 199.6 152.2 162.5
Rate Err. Y 200.2 140.7 99.9
Rate Err. Z 208.5 82.4 127.6
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Table 2.3: Convergence times, in seconds, to within 0.10 Nm tolerance of applied torque for

scalar vs. diagonal matriz gains.

Scalar Min Scalar Max Diagonal Gain
Torque RSS 343.1 240.5 247.0
Torque X 341.7 235.4 246.8
Torque Y 264.5 222.6 184.3
Torque Z 253.9 187.6 148.4

Table 2.4: Mazimum of Attitude Error vs Gain Type: total attitude error in an Eigen Angle/Axis

sense; in absolute value, single DOF X-Y-Z Euler angle sense; or 1-Norm of Fuler angles sense

Scalar Min Scalar Max Diagonal Matrix
Eig.Ang. (Deg) 360.0 304.0 325.7
| X| (Deg) 179.7 179.6 179.8
Y| (Deg) 84.4 89.0 80.5
|Z| (Deg) 179.7 179.9 179.5
1-Norm (Deg) 333.2 356.5 328.7
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Table 2.5: Mean of Attitude Error vs Gain Type: total attitude error in an Figen Angle/Axis

sense; in absolute value, single DOF X-Y-Z FEuler angle sense; or 1-Norm of Euler angles sense

Scalar Min Scalar Max Diagonal Matrix
Eig.Ang. (Deg) 303.5 29.2 31.6
| X| (Deg) 33.3 16.3 16.6
Y| (Deg) 8.4 7.6 6.2
1Z| (Deg) 23.1 11.8 14.0
1-Norm (Deg) 64.9 35.7 36.8

Table 2.6: Mazimum of Rate Error vs Gain Type

Scalar Min Scalar Max Diagonal Matrix
RSS (Deg/Sec) 52.2 52.2 52.2
| X| (Deg/Sec) 39.0 37.7 37.9
Y| (Deg/Sec) 30.0 30.0 30.0
|Z| (Deg/Sec) 37.4 30.4 35.4
1-Norm (Deg/Sec) 90.0 90.0 90.0
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Table 2.7: Mean of Rate Error vs Gain Type

RSS (Deg/Sec)
| X]| (Deg/Sec)
Y| (Deg/Sec)
|Z] (Deg/Sec)

1-Norm (Deg/Sec)

Scalar Min Scalar Max Diagonal Matrix
5.1 3.5 3.7
2.5 1.3 1.7
2.5 1.9 1.5
2.9 2.1 2.5
7.9 5.3 5.7

Table 2.8: Mazimum Applied Torque vs Gain Type

RSS (Nm)
| X[ (Nm)
Y] (Nm)
1 Z] (Nm)

1-Norm (Nm)

Scalar Min Scalar Max Diagonal Matrix
850.8 1305.6 1172.2
589.0 903.9 903.9
431.0 561.3 560.3
493.0 756.6 493.0
1447.8 2221.8 1957.2
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Table 2.9: Mean Applied Torque vs Gain Type

Scalar Min Scalar Max Diagonal Matrix
RSS (Nm) 39.3 35.6 34.9
| X| (Nm) 23.1 154 20.0
Y| (Nm) 16.7 22.4 174
|Z] (Nm) 20.3 17.1 16.2
1-Norm (Nm) 60.1 54.9 53.6
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Figure 2.2 shows the attitude error as the angle of the Eigen Axis / Eigen Angle
representation of the error quaternion as a means of capturing the total error across all three
axes simultaneously. The domain of the Eigen Angle is [0°,360°), so the scalar mininum
case settling to 360° is equivalent to reaching zero error. Figures 2.3, 2.4, and 2.5 show the
attitude error in the X, Y, and Z axes of the servicer, respectively, as X-Y-Z Euler angle
representations of the error quaternion. Figure 2.6 shows the body rate error represented as
a Root Sum Squared (RSS) (2-Norm) value for all axes. Figures 2.7, 2.8 and 2.9 show the
rate errors as measured in the servicer frame on the X, Y, and Z axes respectively. Figure
2.10 shows the applied torque to the servicer as an RSS of all axes. Figures 2.11, 2.12, and
2.13 show the torque applied in the servicer’s X, Y and Z axes, respectively. ® It is not
immediately clear from the figures alone, however, if the diagonal gain is an improvement so
further metrics are required.

Table 2.1 summarizes how long each method takes to reduce the attitude error to
within 100 arcseconds (0.028°) of desired in an Eigen Angle sense and individually in the X,
Y, and Z axes. By these metrics, the diagonal gain case only outperforms the scalar max
case in the Y axis, and the scalar min performs worse than both others in all categories.
Table 2.2 summarizes how long each method takes to reduce the rate error to within 10

arcsec/sec (0.003 deg/sec) of desired in RSS, and X, Y, and Z axes. Again the diagonal gain

3Given initial peak torques, it is clear that not limiting the thruster forces (and resulting body torques)
enables all controllers to arrest the tumble (initially 52 deg/sec) rapidly but would require substantial

thrusters.
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case only outperforms the others in the Y axis and the scalar min case performs worse than
the others in all categories. Table 2.3 summarizes how long each method takes to no longer
apply any torque above 0.10 Nm in the RSS and X, Y, and Z axes.* Here the diagonal gain
case reaches this criteria faster than the others in the Y and Z axes, while the scalar min
case remains worst performing in all categories.

Table 2.4 summarizes the maximum attitude error over time in the Eigen Angle sense,
1-Norm (of the error quaternion represented as X-Y-Z Euler angles) sense and in the X, Y and
Z axes. By this measure, the diagonal gain method outperforms the other methods in three
of the five categories: the Y and Z axes, and the 1-Norm. Table 2.5 summarizes the mean
(as opposed the the maximum, previously discussed) attitude error over time in each axis as
welll as overall in the Eigen Angle sense and 1-Norm sense. By this measure the diagonal
gain method is best only in the Y axis. Tables 2.6 and 2.7 summarize the performance of
each method in terms of the rate error as the maximum and mean, respectively, over time.
Tables 2.8 and 2.9 summarize the performance of each method in terms of the applied torque
applied as the maximum and mean, respectively, over time. In terms of both mean and max
applied torque or rate error over time, all methods perform very similarly.

Table 2.10 summarizes the sum of the RSS of applied torques over time for the whole

simulation, which is analogous to the total power expended. By this measure, the diagonal

4 Any suitably small torque value can be chosen here. In the design of real spacecraft, it would likely be
the torque created by the thrust of the thrusters’ minimum on time times either the minimum or maximum

arm from thruster to center of mass, or some multiple thereof.
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Table 2.10: Total Torque Applied, as measured by Sum of 2-Norm (analogous to total power

expended) and 1-Norm (analogous to total fuel expended) over time, per gain type, .

Method S - ll2 [Nm] = - [y [Nm]
Scalar Min 157.0 x 10° 240.7 x 103
Scalar Max 142.3 x 103 219.7 x 103

Diagonal Matrix ~ 139.6 x 103 214.4 x 103

gain method performs 1.9% better than the scalar max gain method and 11.0% better than
the scalar min gain method. Table 2.10 summarizes the sum of the 1-Norm of applied torques
over time for the whole simulation, which is analogous to total fuel expended. This measure
also shows that the diagonal gain method performs best; it requires 2.4% less fuel than the
scalar max gain method and 10.9% less fuel than the scalar min gain method.

Finally, the experiment above demonstrates that the proposed nonlinear quaternion
feedback controller, with diagonally-scaled gains, provides minimal power expended per re-
orientation, and minimum total fuel expended compared to the scalar methods (Table 2.10).

These are metrics which mission designers may care greatly about.
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2.4  Conclusion

This chapter has detailed a novel nonlinear quaternion feedback controller. The sta-
bility of the controller has been proven in the sense of Lyapunov in the case of static inertia
with perfect and imperfect knowledge of that inertia. The performance has been compared
to a similar controller and it has been demonstrated to expend less power per reorientation
maneuver and expend less fuel. In the next chapter, the development of FFT parameter

selection will be discussed.
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Chapter 3: Manipulator Controller for Vibration Reduction

3.1 Introduction

Several methods exist to use robotic manipulators to reduce impact energy due to con-
tact or base motion due to manipulator motion. The following chapter will discuss several
of these methods and why each is insufficient for the application proposed: detumbling cou-
pled satellites while reducing appendage motion. The desired manipulator control strategy
for reducing appendage vibration during a coupled detumble maneuver has the following

properties:
1. allows non-zero system base attitude rates (during maneuver),
2. allows an active ACS (non-zero external base torques),
3. allows non-zero initial angular momentum,

4. allows non-zero reaction forces and torques at the end effector;

5. and, provides active system vibration reduction.

A further desire is that the proposed solution requires as little increased hardware as
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necessary to perform the above task. Several current methods will be discussed below and
the deficiencies of each will be highlighted. Finally, a new method is proposed that meets

the above requirements.

3.2 Current Manipulator Actuation Methods

3.2.1 Generalized Jacobian

The generalized Jacobian method of coordinated manipulator-base control proposed in
K. Yoshida, et al. [45], for use on the ETS-VII, derives a Jacobian suitable for use in resolved
acceleration control that accounts for motion of the base caused by the internal torques of
the manipulator to resolve motion in inertial space. It starts by writing the equations of

motion for the manipulator and satellite base as Equation 3.1.

H, H,, Xp Cy Fb JT
+ = + Fn (3.1)
H! H, ¢ Cm T I

Where in Eq. 3.1, H, € R%*6 is the inertia matrix of the base satellite; H,, € R™ " is
the inertia matrix for a manipulator with n links; Hy,,, € R%%" is the coupling inertia matrix;
c;, € RS is the velocity-dependent nonlinear term for the base; c,, € RS is the velocity-
dependent nonlinear term for the manipulator; F, € RS is the force and torque exerted on

the center of mass of the base; Fj, € RS is the force and torque exerted on the end effector;
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7 € RS are the internal torques on the manipulator joints; x;, € RS are the inertial base
coordinates; and ¢ € RS are the joint angles. In the free-flying case, with the ACS inactive, a
simplifying assumption is made that the external forces are zero, i.e. F, =0 and F;, = 0. If
external reactions are zero, then the linear and angular momentum of the system (PT, ET)T

remain constant.

P .
=Hyx, + Hp,, @ (32)

L

Then the velocity of the manipulator hand (end effector) in the inertial frame is given

by Equation 3.3, below.

Xp = T+ JuX, (3.3)

Equation 3.2 is simplified by the authors assuming that the angular momentum of the
system is zero, (which cannot be the case for a tumbling servicer-client system) and reordered

to solve for x;, then this is used to simplify Equation 3.3 to Equations 3.4 and 3.5.

X, = Jy¢ (3.4)

J,=J, - J,H,'H,, (3.5)

The manipulator Jacobian, J,,, base-motion-to-hand-motion Jacobian, J,, and the
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coupling inertia matrix, Hy,, are all dependent upon current manipulator joint angles. Not
clearly stated is the chosen attitude representation for the satellite base in inertial space,
other than indicating it was a vector in R®. The authors conclude with flight experiment data
showing minimal absolute inertial disturbance to the manipulator hand while performing
straight-path tracking in inertial space, a successful demonstration of this approach to limit
unintended motion. The Generalized Jacobian is therefore a method to reduce base motion
disturbance introduced by the motion of the arm itself, in the inertial domain, without
regard to frequency content, but only with the critical requirements that the system starts
with zero initial angular momentum and any ACS is inactive. Therefore it is not useful

during detumbling.

3.2.2 Reactionless Null-Space

Reactionless Null-Space (RxNS) controllers seek to design manipulator motion to
achieve some tool goal while moving in such a way as to minimize reaction torques ap-
plied to the base [46]. They have been demonstrated on the Japanese orbital experiment
ETS-VII [45], [47], and studied for use on the Japanese Experimental Module Remote Ma-
nipulator System (JEMRMS)/Small Fine Arm (SFA) on the ISS [48], and other systems.

Start with system dynamics as in Equation 3.1, and the constant momentum, Equa-
tion 3.2, in the case with no external forces or torques. The momentum equation can be

partitioned to include only the angular momentum components (note the tilde on the inertia
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matrices to indicate partition) such that,

I:Ibwb + I:Ibm¢ =L. (36)

If there is no initial angular momentum, £ = 0 and no base disturbance, w;, = 0, then

we are left with

H,,¢ = 0. (3.7)

and a null-space solution

¢ = (I - I:I(j_mI:Ibm> ¢ (3.8)
where T above indicates the right pseudo-inverse, and C is an arbitrary vector. Also, note
that (I — I:I;“mICIbm> is a projection operation of the input onto the nullspace of the coupling
inertia. The number of degrees of freedom for ¢ is n — 3, where n is the number of degrees
of freedom of the manipulator. In the case of a 6 DOF manipulator, either the position
or orientation of the end effector may be chosen, while achieving tool motion with no base

reactions. The motion of the end effector observed in the satellite body frame can be written

as
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= @ (3.9)

Where J, and J, above are the standard translational and rotational matrix Jacobian ma-
trices, respectively. Then the solutions to Equation 3.10 and 3.11, below, provide the paths

to reactionless translation or reorientation, respectively.

Hy, | 0
o= (3.10)
Jv b'vh
Hy, | 0
b= (3.11)
Jw bwh

In [45], Yoshida notes that Equations 3.10 and 3.11 both take the form Mo = x.
To solve these equations, M must be inverted, yet they have potentially many singularities

which prevents inversion. Yoshida suggests the following work-around for square M:

¢ =k-adj(M)x (3.12)

where adj(-) is the adjugate matrix operation, but choose k equal to 1/det(M), then the
result is the same, but k can be bounded near a singularity.

Previous work by Nenchev et al. [46] built on even earlier work by Lee and Book [49]
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to include the reduction of vibration in the flexible base by motion of the manipulator. They
begin with the system dynamics in Equation 3.13, below. They differ from Eq. 3.1 by
the inclusion of the terms Dy, D,,, and K,, damping of the base motion, damping of the
manipulator motion, and stiffness of the base, respectively and the exclusion of the forces

experienced at the hand, Fj,.

H, H,, Xp D, O Xp Kyxy Cy Fp
+ + - = (3.13)
H! H, ] 0 D, ] 0 Cm, T

The approach of Lee and Book was to assume that the arm is initially stationary,
thereby approximating c, and c,, by zero; second, they assumed that deflections would be
small, so they approximated the submatrices by the joint variables only, not their transcen-
dental functions. They further simplify the system by ignoring the base damping. With that,
they observed that the upper half of the equations of motion can be rewritten as Equation
3.14, below.

Hbj.(b + KbXb = —Hme (314)

Then with the choice of joint accelerations,

0 = H H,GyX, (3.15)

25



where Gy is a constant gain matrix, and H; € R"*™ is the right pseudo-inverse of the inertia
coupling matrix, results in vibration damping of the system. While the above method allows
base motion and reaction forces and torques at the end effector, it makes no attempt to
reduce system motion caused by appendage vibration.

Subsequently, Nenchev et al. proposed a joint-acceleration-based controller that achieves
vibration damping, joint motion damping and arbitrary desired motion (u), via Equation

3.16, below.

0 =1y, (HGik — Hyp) + (T - Hy, Hy) u — G (3.16)

Where above, G,, is the joint damping control gain, and it is assumed that the ma-
nipulator provides kinematic redundancy, i.e. n > 6. Nenchev et al. also later propose a

torque-based vibration suppression control algorithm as Equation 3.17, below.

T =H,H} GX, +c,, — H,H ¢, +H, (I-H H,,)u-G,0 (3.17)

However, by the derivation of the dymanics of the above Nenchev methods, reaction forces
and torques at the end effector are not allowed; disqualifying them from this application.
Washino, et al. [50] used a reactionless nullspace controller to reduce vibrations im-
parted on a flexible base by a teleoperated manipulator by driving a secondary manipulator
attached to the same base with motions designed to cancel the momentum induced by the

primary manipulator. L.e. while a human drove the primary manipulator to achieve a desired
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task, the secondary manipulator was driven by equation 3.18, below.

0, = —H} H,,,0, (3.18)

bms

The requirement of the Washino method of vibration reduction on a secondary manipulator
limits the solution space for a coupled satellite problem to where the available inertia of
the secondary manipulator is comparable to the system inertia of the client satellite at the
end of the primary manipulator. This introduces the need for either a comparatively large
secondary manipulator or a reduced client-space for possible inertias, negatively impacting
the number of client satellites that could be included.

It is apparent that reactionless nullspace methods have many and varied applications.
This method’s controller input relies on calculations including H,,, and Hy,,, however, making
its performance dependent upon the accuracy of those quantities. Also, sensing of distur-
bances is limited to joint measurements, estimates of base state, and ultimately may not be

observable.

3.2.3 Robust Impedance Control

Wongratanaphisan and Cole [51] demonstrate vibration suppression of manipulator
motion while performing contact maneuvers on a flexible base by inserting a first-order filter

into its impedance controller. This filter transfer function is given by Equation 3.19, below.
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7'18—|—1

Q(s) = P (3.19)

Where 71 < 75 and 7, selected such that 1/7; is less than the first natural frequency of

the base. This is inserted into the modified impedance control law,

m

U(s) = —mﬁdQ—l(s)K(s)Xm(s) n (—Q—l(s) _ 1) F(s) (3.20)

mq
where K (s) = bys+ kq, mq, cq and kg are the desired impedance mass, damping and stiffness,
respectively. Further, X,,(s) = X(s) — Xj(s), where X,,(s) is the position state of the
manipulator, X, (s) is that of the base and X (s) is that of the whole system. m is the mass
of the whole system. F(s) is the force sensed at the end of the arm with a FTS. U(s) is the
resulting actuator response of the manipulator. In this method, the impedance controller
can be designed as desired, and the filter design parameters 7, and 75 can be adjusted until
the closed-loop system shows stability via the Popov criterion. Again, this method requires
some a priori knowledge of the natural frequencies of concern for filter design, like static
structrual filters. However, most disqualifying of all is that the derivation of the dynamics

requires that the ACS not be active during this manipulator control phase.

3.2.4 Compliance Control

The Force-Moment Accommodation (FMA) controller of Morimoto, et al. [52] is de-
scribed by the transfer function in Equation 3.21, below, where K| is the product of several
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controller gains from inner control loops that were part of their design, M is the compliance
synthetic mass, C' is the compliance synthetic damping, and K is the compliance synthetic

stiffness.

Ko (Ms*+ Cs + K)

Gcom = -
p(5) Ms?+Cs+ K + K,

(3.21)

whereas a mass-spring-damper system has a transfer function of Equation 3.22, below, ex-
pressed as the ratio of force, F'(s) and V (s), often referred to as the impedance. [53].
M+ Cs+ K

Z(s)=F(s)/V(s) = . (3.22)

The FMA controller therefore modifies desired end effector position, relative to its
mounting location, based on detected disturbance in an F'TS, which is similar to our problem,
as the exact position of the end effector relative to the base is less important than preventing
contact between vehicles, but it does not taken advantage of the F'TS signal to determine
the state of what the gripper is in contact with. Furhtermore, this method seeks to reduce
to zero the detected forces and torques at the end effector without regard to the forces or

torques that might be required during a detumble maneuver.

3.2.5  Summary

Table 3.1 summarizes some of the key aspects of the manipulator control stategies
that have been highlighted above. The manipulator control strategy required for a grappled
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Table 3.1: Comparison of manipulator motion damping methods. Darkened cells indicate unde-
sirable properties for the goals of this research. Reactive Control is the novel manipulator control

strategy proposed here.

Allows Allows
Allows Allows Reduces Secondary
Nonzero Reaction
Method Base Active System Manipulator
Init. At End
Att. Rate ACS Vibration Not Required
Ang. Mom. Effector
Generalized
No No No No Yes Yes
Jacobian
RxNS
No No No No Yes Yes
(Yoshida)
RxNS
Yes No Yes No Yes Yes
(Nenchev)
RxNS
No No No No Yes No
(Washino)
Robust
Impedance Yes No Yes Yes Yes Yes
Control
FMA
N/A N/A N/A Yes No Yes
Compliance
Reactive
Yes Yes Yes Yes Yes Yes
Control
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de-tumbling maneuver that reduces system vibration requires that it allows for:

1. non-zero system base attitude rates (during maneuver),
2. an active ACS (non-zero external base torques),

3. non-zero initial angular momentum,

4. non-zero reaction forces and torques at the end effector;

5. and, active system vibration reduction.

An additional desire of the control strategy is a minimal requirement on additional
hardware. An FTS does not represent a large design or mass penalty, but, for instance,
a redundant or secondary manipulator does represent a potentially large mass penalty (as
would be required by Washino’s RxNS method). None of the reviewed methods allows for
all of these conditions simultaneously, thus necessitating something new. The proposed
manipulator control strategy, here described as Reactive Control, will be presented in the

next section.

3.3 Proposed Reactive Control

Reactive Control proposed here is based on a catersian end-effector path that is in-
formed by the dominant modal disturbances of the system appendages. The high-level path
control takes place in the Arm Control (ARMCTRL) module, while the low-level joint con-
trol is enacted in the Manipulator (MANIP) module. Figure 3.1 is a block diagram of the
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Figure 3.1: Block diagram of manipulator Reactive Control; cartesian path control is produced

based on detected modal frequency and phase reactions to counteract appendage motion.

data flow between the modules. The path generated in the path control module depends on
the detection of dominant appendage modal frequencies, which will be discussed in Chapter
4. In other words, the manipulator tool is used as a tunable damper or antinode to the

system disturbances.

3.3.1 Manipulator Trajectory Generation

Once the reaction frequencies, f;; and f,,;, and phases, ¢s; and ¢,,,;, have been
identified, per the above methods, and the reaction DOF chosen, the reaction forces and/or
torques for each DOF ¢ € (z,vy, z) can be constructed in Cartesian manipulator space. For

force reactions, the set position of the grapple fixture (end effector or tool) is modified.
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The per-DOF modification is computed by Eq. 3.23. The full tool position modification,
Preact/des; (read as the position change p from desired, “des”, to reactive, “react”, pose) is
then a composition of each DOF per Eq. 3.24. The final commanded tool position, peng, is

then the sum of the desired tool position relative to the base and the reaction motion per

Eq. 3.23, 1.e. Pemd = Preact/base-

preact/des,fi =ay; sin (27Tfreact,fi + qbreact,fi) (323)

Preact/des, fx

Preact/des = Dreact/des, fy (324)
DPreact/des, fz
Pemd = Preact/des + Pdes/base (325)

The torque reactions are modifications of the desired tool attitude (as opposed to the
current measured tool attitude) with respect to the manipulator base, on a per-DOF basis by
Eq. 3.26. The attitude modifications will be small (relative to the entire domain of potential
tool orientations), so these per-DOF attitude modifications are converted to a quaternion

difference, qreqct/des, using an Euler-angle to quaternion routine per Eq. 3.27.

gmi = Qm sin (27Tfreact,mi + ¢react,mz’) (326)

qreact/des - euler,?quat (emxy emya emzv “123”) (327)
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The new desired tool attitude is computed via quaternion multiplication as in Eq. 3.28,

where qges/base 15 the attitude change from the base to the initial desired tool location.

Acemd = Qreact/des ® Qdes/base (328)

Finally, the commanded joint torques for the manipulator, 0.,,;, are determined with Eq.
3.29, where 0.,,cny are the current manipulator joint angles and the function invkin() per-

forms the inverse kinematics based on the current pose.

ecmd = invkin <0¢:urrent7 Pemd; qcmd) (329)

The selection of a,,; and ay, is by linear gain scheduling, driven by the reaction fre-
quency in question. That is, the amplitudes are scheduled on a per-axis and DOF combi-
nation, k, basis by ay = mg freact,r + bk, Where my, is a negative scalar that decreases the
amplitude as the detected frequency to react to increases and b, is the scalar Y-intercept.

This set of commanded joint angles is maintained by the manipulator Joint Hold mode.

3.4 Conclusion

Many manipulator control algorithms have been reviewed which do not meet all of
the design criteria for the problem under consideration. A new method has been proposed

predicated on detection of appendage motion within the coupled satellite system. Subsequent
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chapters will discuss how that coupled system appendage modal content can be detected,

and further, performance results of the proposed algorithms will be discussed.
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Chapter 4: Sliding FF'T Window Properties and Automated Peak Detection

Method

In order for the Reactive Control manipulator controller to work, the frequency and
phase of the desired mdoe to react to must be identified. Frequency identification is done
using the discrete FF'T. The FFT has many parameters which effect its performance and
utility. This chapter presents terminology, rationale for parameter selection and finally a
method fast automated peak detection of the output signals that may then be used to drive

the manipulator.

4.1 Considerations for FF'T sampling of unknown target signals

This section will discuss the ability of an FF'T to identify the frequency and phase of a
dominant frequency in a noisy signal of multiple frequencies, where the dominant frequency
is the frequency that has the largest amplitude. The MATLAB implementation of the
FFT algorithm is used here to demonstrate the algorithms capability for this task, whereas

in subsequent Freespace simulations the open source GNU Scientific Library (GSL) FFT
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library is employed to take advantage of the speed of its C-language implementation.! For
the opening example, a time-series signal is constructed of five additive cosine signals with

the following properties:

frequencies sampled from a uniform distribution of range [0, 100) Hertz;

e phases sampled from a uniform distribution of range [0, 180) Degrees;

amplitudes of 25,20, 15, 10, 5] plus a random amplitude sampled from a uniform dis-

tribution of range [0,2.5); and

e guassian noise of an amplitude of one half of the lowest amplitude cosine frequency.

For this discussion, the phrase target frequency means the frequency of the dominant
sinusoidal component, i.e. of the largest amplitude within the signal. A real-time signal may
only be digitally sampled once. A digitized sample, for example a reading from a FTS, is
continually sampled at the sampling frequency, F;. A subset of this data, referred to as a
window, is then passed into the FFT algorithm. The number of samples between the start
of each window k and k 4 1 that are processed is called the window stride. The samples in
a window that are passed to the FFT do not need to be consecutive. The spacing of the
samples selected from the full data set and placed in the window is called the element stride,
for example an element stride of 1 would take every adjacent sample from the full data set;

an element stride of two would take every other sample, etc.

IThe Freespace simulation environment will be explained in detail in Chapter 5.
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All Samples: |12 |3 (4(5|6|7|8|9(10/11|12|13(|14|15/16|17|18(19|21|22|23

Windowk: 1|2 [3]4|5[6|7]8]

Window k+1: 213415678 9‘

Window k+2: 3|4]s]|e]|7]8]9]i0]

Figure 4.1: Diagram depicting a sliding window of eight samples, a window stride of one sample

and element stride of one sample. There is an overlap of 87.5% between windows at k and k + 1.

All Samples: [1]2[3]4[5]6|7]8]9[10[11]12[13]14]15|16(17|18|19/21|2223]

Windowk: (1|2 [3[4[5]6|7]8]|

Window k+1: 5(6(7 8|9 |10|11]12

Window k+2: 9(10{11/12|13(14(15(|16

Figure 4.2: Diagram depicting a sliding window of eight samples, a window stride of four samples

and element stride of one sample. There is an overlap of 50% between windows k and k + 1.

67|89 (10/11|{12(13|14|15|16(17|18|19(21|22|23

AllSamples: |1 (2|3 |4 |5

window i [1] 5]

Window k+1: 2 4 6 8 10| |12 14| |16

Window k+2: @

Figure 4.3: Diagram depicting a sliding window of eight samples, a window stride of one sample

and element stride of two samples. There is an overlap of 87.5% between windows k and k + 1 in

time, but none of the samples are the same.
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Given a large buffer of digitallly sampled data, a subset of that data is called a window.
If that window were to move across that buffer as processing progress that is called a sliding
window. [54]. Figures 4.1, 4.2 and 4.3 illustrate the different effects of window stride and
element stride on a sliding window. Figure 4.1 depicts a sliding window of eight samples, a
window stride of one sample and element stride of one sample. There is an overlap of 87.5%
in time between windows at k£ and k£ + 1. The sampling frequency of the windows, F yin,
in this example is the same as the sampling frequency of the original set of all samples, Fj.
Figure 4.2 depicts a sliding window of eight samples, a window stride of four samples and
element stride of one sample. There is an overlap of 50% between windows k and k + 1.
Again, the sampling frequency of the windows, Fj s, in this example is the same as the
sampling frequency of the original set of all samples, F§. Figure 4.3 depicts a sliding window
of eight samples, a window stride of one sample and element stride of two samples. There
is an overlap of 87.5% between windows k and k -+ 1 in time, but none of the samples are
the same in any two subsequent windows; however, element overlap between windows k£ and
k + 2 is 87.5%. In this third example, the effective sampling frequency of each window is
now half that of the full set of samples, i.e. Fsupin = Fs/Seiem, where Seen is the element
stride of the window.

The detection of the phase of a signal using an FFT is improved by knowing the proper
sampling frequency and oversampling by powers of two, e.g. using a sampling frequency

several power-of-two multiples that of the frequency of intersest, as noted in Oppenheim [54]
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and Lyons [55]. The following experiment however, demonstrates that the detection of
the phase of the target frequency is not improved by selecting the element stride to more
closely sample the data at a frequency that is a power-of-two multiple of the detected target

frequency, given a previously digitally sampled signal. Here are the steps in this experiment:
1. Construct a time-series signal with a dominant signal of frequency fiurger and phase
Otarget, as discussed above.

2. Sample the signal at very high frequency, Fy, that exceeds potential frequencies of

interest by several orders of magnitude. This will be referred to as stage 1 sampling.
3. Construct the stage 1 window of four seconds duration and Sejenm = 1.
4. Perform FFT to determine dominant signal frequency, f; and phase, ¢;.

5. Select an element stride, sgem2, such that the stage 2 window’s effective sampling
frequency is close to a power of two multiple of the target frequency, i.e. Sgems =

TOund(Fs/,ﬁ) and Fs,win = FS/SelemQ .

6. Construct the second window with S.j¢,2 from the same four second buffer and perform
an FFT once again to determine frequency and phase of the dominant frequency, f,

and ¢o, respectively. This will be referred to as stage 2 sampling.
7. Compare the the error between f; and fo versus figrger, and ¢; and ¢o versus @uarget-
The minimum frequency detection error is one half of the FFT bin size. The size

of each bin is a function of the sampling frequency and number of samples in a window.
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The size of the stage 1 bins is by = Fy/nyi, in Hz and the size of stage 2 bins is by =
(Fs/Setem)/ floor(nwin1 / Seiem)- Therefore, except for small 7,,;,; where the effect of the floor
function is noticable, the bin sizes of stages 1 and 2 are nearly identical.

Figure 4.4 shows the input phase and frequency of the dominant signal in the randomly
generated signals for one thousand randomly sampled runs. This is included to illustrate the

diversity of input cases. The results of their processing will be discussed below.

Target Phase vs Target Frequency
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Figure 4.4: Target phase vs target frequency of the input signals for one thousand randomly

generated signals.

Figures 4.5 and 4.6 show the detected frequency and phase error, respectively, versus
the target frequency for stages 1 and 2. This demonstrates that the error is not related to
the target frequency of the signal.

Figures 4.7 and 4.8 show the deteced frequency and phase error, respectively, versus
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Detected Frequency Error vs. Target Frequency
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Figure 4.5: Detected frequency error vs target frequency for stages 1 and 2. One thousand

randomly sampled signals.

target phase for stages 1 and 2. From these it can be seen that the error is not related to
target phase of the signal.

Figures 4.9 and 4.10 show detected frequency and phase error, respectively, versus
signal noise as a percentage of the maximum signal. One can conclude from these that the
error is not related to signal noise.

Figures 4.11 and 4.12 show the detected frequency error and detected phase error,
respectively, for stage 1 versus stage 2. If both stages detected the target frequency with
minimal error, Figure 4.11 would show an nearly circular ellipse with radii of one-half the bin
width of each stage and Figure 4.12 would be a point at the origin. It is clear from Figure

4.11 that this method has a detrimental impact on frequency detection performance and
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Detected Phase Error vs. Target Frequency
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Figure 4.6: Detected phase error vs target frequency for stages 1 and 2. One thousand randomly

sampled signals.
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Figure 4.7: Detected frequency error vs target phase. One thousand randomly sampled signals.
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Detected Phase Error vs Target Phase
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Figure 4.8: Detected phase error vs target phase. One thousand randomly sampled signals.
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Figure 4.9: Error in detected dominant signal frequency vs signal noise as a percentage of dom-

want signal amplitude.
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Detected Phase Err. vs. Signal Noise
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Figure 4.10: Error in detected dominant signal phase vs signal noise as a percentage of dominant

signal amplitude.

from Figure 4.12 that it has no discernable positive impact on phase detection performance.

Another way to view the frequency and phase detection error of stage 2 detection is
as a percentage of the stage 1 error. Let f;; be the detected frequency in stage 1; let fs, be
the detected frequency of stage 2; and, let fiqr4e¢ be the target frequency. Then the stage 2
detection error as a perctage of stage 1 error is ey = ﬁfﬁj%m The same is applied
to the phase detection error, es. Figures 4.13 and 4.14 show histograms for the stage 2
detection errors of frequency and phase, respectively, for the above described experiment
when the elements of the stage 2 window are all within the stage 1 window length, i.e. the

stage 2 window is a subset of the stage 1 window. Several outliers with stage 1 error near

zero were not included in the histogram because these skewed the histograms to include
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Figure 4.11: Detected frequency error of stage 1 vs stage 2. One thousand randomly sampled

runs. No outliers removed.

error increases of thousands. These outliers are safe to ignore in the histogram because their
percentage of 1,000 runs is < 1%. What is telling is that more than 40% of solutions of
stage 2 have a frequency identification error of 10% or less. In other words, the frequency
identification is equal or better for stage 2 for all runs. However, roughly two thirds of
stage 2 phase detection errors saw a decrease, and about one third of runs saw an increase
in the phase detection error. Phase detection error must be less than 180° to not create
constructively oscillatory signals in respone.

It is possible to determine the impact of the number of samples in the stage 2 window.
If a buffer of the high-rate stage 1 samples is available that exceeds the length of the stage 1

window, it is possible to perform the stage 2 FFT over a window with the same number of
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Detected Phase Err.: Stage 2 vs Stage 1
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Figure 4.12: Detected phase error of stage 1 vs stage 2. One thousand randomly sampled runs.

No outliers removed.

samples as stage 1 (assuming a sufficiently large buffer to sample from) with the necessary
element stride. The histogram of the results of this subsequent experiment are show in
Figures 4.15 and 4.16 for frequency and phase error detection, respectively. Again, some
results with stage 1 error are so near zero as to cause stage 2 error increases over 200%
were removed for clarity. Those figures show the results of a separate set of one thousand
randomly sampled signals per the above specifications but bear remarkably similar results.
Frequency detection error is decreased across the board, but phase detection error increases
for one third of cases. Performance is not markedly improved but the cost of re-processing
with the larger stage 2 sample set is that of larger memory requirements, and as the length

of the buffers increases, the center-time of the window also increases, introducing lag into
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Stage 2 Frequency Ident. Error as Percent Stage 1 Error :

Num. Solutions
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Figure 4.13: Histogram of the stage 2 relative frequency detection error as a percentage of the
stage 1 error when stage 2 windows are always sub-sets of the stage 1 window elements. One
thousand randomly sampled runs. [Three runs (0.3% of runs) have been removed because of an

increase in error greater than 200% for clarity./

the results.

Therefore, in the absence of fore-knowledge of the target frequencies, it is concluded
that sampling the signal at ultra-high frequencies to better gauge the proper subsampling
frequency has no positive effect on the detection of the dominant frequency or phase signal
in a noisy measurement of multiple sinusoids. Whereas the choice for the sampling frequency
of the commanded Propulsion (PROP) torques or MANIP joint torques will be driven by
controller bandwidth requirements and system dynamics, the choice of the FTS sampling

frequency is a free parameter. Given the results discussed above, it will therefore not be
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Figure 4.14: Histogram of the stage 2 phase detection error as a percentage of the stage 1 error
when stage 2 windows are always sub-sets of the stage 1 window elements. One thousand randomly

sampled runs.

necessary to over-sample the FTS measurements, and a lower rate will be sufficient.

4.2 Series Length Selection

This section illustrates the importance of the length of the acfft window on detection
of dominant frequencies. The length of the FFT window, Ny, determines the width of
the output bins and also dictates the time it takes to record a signal at a given sampling
frequency. The length of the FFT window series must be chosen but there are competing
factors in its selection. A shorter window allows for a faster response to potentially changing
signals, while, on the other hand, a longer window provides greater noise rejection and finer
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Stage 2 Frequency Ident. Error as Percent Stage 1 Error :
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Figure 4.15: Histogram of stage 2 frequency detection error as a percentage of stage 1 error
when stage 2 windows all have the same number of samples as the stage 1 windows. One thousand

randomly sampled runs. Outliers above 200% removed.

frequency resolution because the number of frequency bins is equal to % + 1 and the

i o ] N
resolution of each bin is equal to (%) / (8EEL +1).
To investigate the impact of the FFT series window length, a data series with sinusoids

of four frequencies, listed below, and additive zero-mean Gaussian noise was generated with

F of 500 Hz.

1. fi =200 Hz, amplitude a; = 10, noise p; = 0.75
2. fo =100 Hz, amplitude as = 7, noise p; = 0.75

3. f3 = 33 Hz, amplitude a3 = 5, noise p3 = 0.75
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Stage 2 Phase Ident. Error as Percent Stage 1 Error
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Figure 4.16: Histogram of stage 2 phase detection error as a percentage of the stage 1 error
when stage 2 windows all have the same number of samples as the stage 1 windows. One thousand

randomly sampled runs. Outliers above 200% removed for clarity.

4. fy = 10 Hz, amplitude a4 = 2, noise py = 0.75

s = Za (sin (f;) + pi N (0,1)) (4.1)

Window lengths of 128 (i.e. 27) samples through 262, 144 (i.e. 2!%) samples, equivalent,
at this sampling frequency, to windows of 0.3 seconds through 8.7 minutes are processed
below. Figure 4.17 shows the impact of the series length when processed by MATLAB’s
FFT routine. The strongest frequency is discernable from the noise with windows as small

as 128 samples (0.3 seconds), but to discern the smallest (by amplitude) frequency signal,
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at 20% of the greatest signal, requires over 4 seconds of data, or 2048 samples. If the noise
of each signal is reduced to 25% of their amplitudes, then the smallest signal, by amplitude,
can be discerned above the noise with a series of just 256 samples (0.512 seconds at 500 Hz),
as Figure 4.18 shows.

The final choice of the FFT series window length will depend on the expected detector

noise levels and the dynamic range of the signals required to be detected for each subsystem.
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Figure 4.17: A comparison of FFT series length performance; J sinusoidal signals each with
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Figure 4.18: A comparison of FFT series length performance; J sinusoidal signals each with

25% noise.
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4.3 Automated Peak Detection

The output of an FFT is a signal in the frequency domain where the relative strengths
of each sinusoidal component of the time-series signal can be discerned by their relative
amplitude in the frequency domain. It is easy for the human eye to distinguish peaks in this
data, but determining them numerically requires several steps. The approach utilized here
to detect peaks in the FFT output is detailed in Algorithm 1 and graphically as flowchart in
Figure 4.19. Depending on the signal source, before being processed by the FFT algorithm,
the mean of the time series data may or may not be subtracted from the data. First, the
FFT output is normalized by its maximum value to put the amplitudes in the domain of zero
to one. This is helpful for comparisons between frequency domain data of differing units,

e.g. an FTS senses force in Newtons but torques in Newton-meters.

Time Freq.
Series Dom. ,
s Y . Y
—»| FFT < » Normalize |« »| Smooth 4—‘
All
. Peaks Top
Y »| Local Max | »| Sort |——»nN
Peaks

Figure 4.19: The peak detection process flow.

After normalization, a sliding-window averaging smoother is used to reduce the noise in

the frequency domain signal. The choice of the span of the sliding window, n,00tn, depends
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10

11

Data: Sliding window raw signal, s; number of peaks to return, n,; FF'T bin center
frequency labels, fy;,; sliding window smoother span, ng,oon; single-sided
inflection point search neighborhood, n;,;; single-sided local maximum
search neighborhood, ny,,q.; sampling frequency, f,

Result: n, or less peaks are identified

Y =fit(s, f5);

absY =abs(Y')/max(abs(Y));

phi =angle(Y');

[sY, S frin] =smooth(absY, Nsmootn);

linfIdx] =inflectSearch(sY, n,f);

[mIdz] =localMaxSearch(sY, infIdx, nyma:);

[cIdx] =topSearch(sY, mIdx,n,);

peakFreqs = s fyin(cidx);

peakAmps = sY (cldx);

peakPhases = phi(cldx);

N found =length(cidz);

Algorithm 1: FFT peak identification algorithm
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on the number of frequency bins in the signal. The smoothing routine is detailed below in
Algorithm 2. Next, peaks are determined by sign changes in the slope of the signal. The
slope is calculated with a simple back-difference of the frequency domain signal, as described
in Algorithm 3. The indexing here is chosen so that for a given index of the back-difference
it is the slope to the right of the same index in the original signal. That is, given a frequency
domain signal x and its back-difference dx, the slope to the left of z(k) is dx(k — 1) and the

slope to the right of z(k) is dx(k).

1 Function [sY] s fy;,] =smooth (Y, fuin, Nsmootn);
2 tail = (Ngmooth — 1)/23
3 len =length(Y);

4 for k = (tail +1) to (len — tail) do

5 sum = 0;

6 for 7 =1 to ngmoorn do

7 sum = sum + Y (j);

8 end

9 sY (k — tail) = sum/Ngmootn;
10 8 foin(k — tail) = fuin(k);

11 end

Algorithm 2: Sliding-window smoothing algorithm (note: first array index is 1)
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1 Function|d] =backDiff(sig, len);
2 for k=1 1tolen—1do
3 | d(k)=sig(k+1)— sig(k);

4 end

Algorithm 3: Back-difference algorithm (note: first array index is 1)

The inflection point search inspects the slopes within a neighborhood, 1y, of a given
point in order to select that point as an inflection point, i.e. nj,s slopes to the left of
the point must be positive and n;, s slopes to the right must be negative. Here the term
netghborhood of size n around sample k means all samples between sample k —n and k + n.
See Algorithms 4, 5 and 6, below.

Further, given the choice of n;, s, and the noisiness of the signal (even post-smoothing),
there may be several inflection points in close proximity to each other in the frequency
domain. The human eye might group these together into one growing peak, but numerically
peaks within a larger growing peak can be filtered out by ensuring that a given inflection
point is also a local maximum within some neighborhood. For each inflection point found,
a local maximum search is performed to check that the given point is the maximum within
Nimae POiNts to the left and right. Note that in the case of two adjacent points having the
same amplitude in the frequency domain, in this formulation the slope will be zero for the

left-most point of the pair and that point is considered to be a local maximum, whereas the
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1 Function [inflectFound|= leftSearch(rightslope, len, n, 1, k);
2 inflectFound = 1;

3 for j =1 to ny,n do

4 if £ — 7 <0 then
5 if n==1 then
6 in flect Found = 0
7 break;
8 end
9 else
10 if rightSlope(k — j) < 0 then
11 in flect Found = 0
12 end
13 end
14 end

Algorithm 4: Search slopes to the left of the point of interest to ensure that they

are rising.
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1 Function|in flect Found] =rightSearch(rightSlope, len, ni, 1, k);

N

inflect Found = 1;

3 for j =0 to (niny — 1) do

4 | if (k+j) > (len — 2) then

5 break;

6 end

7 | if rightSlope(k + j) > 0 then

8 inflect Found = 0;

9 end
10 end

Algorithm 5: Search slopes to the right of the point of interest to ensure that they

are falling.
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right-most point in the pair will not. This prevents missing a peak due to a plateau of two
equal points and prevents anomolous detection of two adjacent points as two independent
peaks.

Finally, the relative amplitude of the peaks that survived the local maximum search
are sorted and the top n, are returned. This is described in Algorithm 8. The solution of the
sorting of each remaining peak includes the center frequency of the matching FFT output
bin, the normalized amplitude and the phase.

To illustrate the steps of the peak identification process, two examples are included
below. The first example is a window of samples from the actuated forces from the propulsion
module during a detumble maneuver. The time series signal included 128 samples collected
at the module frequency of 10 Hz. Figure 4.20 shows the logarithm of the FFT output
at the beginning of the peak identification process. Figure 4.21 shows the same signal
after it has been normalized by its maximum value. Figure 4.22 shows this signal after
normalization and smoothing with a sliding window of 5 samples. Figure 4.23 shows this
signal after normalization and smoothing and identifies preliminary peak candidates with
red circles after an inflection point search with a neighborhood of 1 sample to either side.
Many candidate peaks exist and the DC peak is ignored, as desired. Figure 4.24 shows this
signal after normalization and smoothing with the peaks identified after removing several
peaks utilizing the local maximum search in a neighborhood of 2 samples to either side. The

five highest relative amplitude peaks are summarized in Table 4.1.
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10

11

12

13

Function[in f1dz] =inflectSearch(sY, n,);
nFound = 03

rightSlope = backDif f(sY,length(sY));
k=1;

while k <lenght(rightSlope) do

if leftSearch(rightSlope(k), ninpi) AND rightSearch(rightSlope(k), nins) then
nFound = nFound + 1;
infldr(nFound) = k;
k =k + ni,p;

else
k=k+1;

end

end

Algorithm 6: Inflection-point search algorithm (note: first array index is 1)
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1 Function|mIdz] =localMaxSearch(sY, idz, nymaz);
2 nFound = 0;

3 for k =1 to length(idz) do

4 isMax = 1;

5 for p =1 to nynee do

6 if ((idz(k) —p) > 0) AND (sY (idz(k) — p) >= sY (idx(k))) then
7 1sMax = 0;

8 break;

9 end
10 end
11 for p =1 to nype, do
12 if ((idx(k)+ p) <=length(sY')) AND (sY (idx(k) + p) > sY (idz(k))) then
13 tsMax = 0;

14 break;
15 end
16 end
17 nFound = nFound + 1;
18 | mlIdz(nFound) = k;

19 end

Algorithm 7: Search to check if a given point is the local maximum within the

neighborhood of 71,4, samples. 93




1 Function|c/dz] =topSearch(sY, mldz,n,);
2 [decsY, dldx] =sort(sY (mldz),‘descending’);
3 idr =1:ny;

4 cldx = mIdz(dldx(idx));

Algorithm 8: Find the indices of the top n, values of the subset mIdz of signal sY".

Table 4.1: The frequency, amplitude and phase of the five largest peaks as identified in the PROP

actuated X force signal.

Rank Bin Freq. [Hz] Rel. Amp. Phase [Deg]
1 26 2.1 -1.53 —132.3°
2 41 3.3 -1.58 84.8°
3 13 1.1 -1.61 119.8°
4 92 4.1 -1.67 —93.2°
) o6 4.5 -1.77 —14.2°
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Figure 4.20: Log of the FFT output raw signal of the actuated forces in the X axis from the

PROP module during a detumble maneuver.
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Figure 4.21: Log of the FFT output signal of the actuated forces in the X axis from the PROP

module during a detumble maneuver, normalized by its maximum value.
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Figure 4.22: Log of the FFT output signal of the actuated forces in the X awis from the PROP
module during a detumble maneuver, after normalization and smoothing with a sliding window of

5 points.

The second example is a window of samples from the measured forces from the FTS
module during a detumble maneuver. The time series signal included 4096 samples collected
at the module frequency of 500 Hz, a 8.192 second window. Figure 4.25 shows the logarithm
of the raw FFT output at the beginning of the peak identification process. Figure 4.26
shows the same signal after it has been normalized by its maximum value. Figure 4.27
shows this signal after normalization and smoothing with a sliding window of 7 samples.
Figure 4.28 shows this signal after normalization and smoothing and identifies preliminary
peak candidates with red circles after an inflection point search with a neighborhood of 1

sample to either side. Figure 4.29 shows this signal after normalization and smoothing with
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Figure 4.23: Log of the FFT output signal of the actuated forces in the X awis from the PROP
module during a detumble maneuver, after normalization, smoothing and inflection point identifi-

cation with a inflection neighborhood of 1 sample to either side.

the peaks identified after removing several with the local maximum search in a neighborhood
of 12 samples to either side. The five highest relative amplitude peaks are summarized in

Table 4.2.

4.4 Conclusion

This chapter has demonstrated three topics related to automated signal detection in
time-series data using an FFT. First, phase detection is not improved by re-processing
digital signals at varying window parameters, indicating the driving parameters for dominant

frequency detection are the length of the processing window and the sample rate. Secondly,
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Figure 4.24: Log of the FFT output signal of the actuated forces in the X awis from the PROP
module during a detumble maneuver. Peaks are identified with red circles after normalization,

smoothing, an inflection search and a local maximum search with a neighborhood of 2 samples to

either side.

98



Table 4.2: The frequency, amplitude and phase of the five largest peaks as identified in the FTS

measured Z axis force signal.

Rank Bin Freq. [Hz] Rel. Amp. Phase [Deg]
1 26 3.4 -1.5 151.9°
2 3 0.6 -1.8 70.3°
3 223 27.5 -9.5 106.3°
4 251 30.9 -6.6 95.0°
) 1886 230.5 -8.2 172.9°
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Figure 4.25: Logarithm of the FFT output raw signal from the measured FTS forces in its Z

direction during a detumble maneuver.
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Figure 4.26: Log of the FFT output signal from the measured FTS forces in its Z axis during a

detumble maneuver, normalized by its maximum value.

Smoothed Signal, winSize = 7

1.2

Log Amp. [-]

i i i I

i j
0 25 50 75 100 125 150 175 200 225 250

_8'4L i i i i

Freq [Hz]

Figure 4.27: Log of the FFT output signal from the measured FTS forces in its Z axis during a

detumble maneuver, after normalization and smoothing with o sliding window of 7 points.
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Figure 4.28: Log of the FFT output signal from the measured FTS forces in its Z axis during
a detumble maneuver, after normalization, smoothing and inflection point identification with a

inflection neighborhood of 1 sample to either side.

it determined the levels of noise that are allowable depending on the length of the processing
window. Finally, a method of automated multiple peak detection in the presence of noise
was presented. In the next chapter, the application of the above FFT processing and the
above nonlinear attitude controller will be used to demonstrate their combined ability to

reduce vibrations in a client’s appendage while performing a detumble maneuver.
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Figure 4.29: Log of the FFT output signal from the measured FTS forces in its Z axis during

a detumble maneuver. Peaks are identified with red circles after normalization, smoothing, an

inflection search and a local maximum search with a neighborhood of 12 samples to either side.
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Chapter 5: 6-DOF Orbital Simulation

This chapter will outline the components of the 6-DOF orbital simulation incorpo-
rating the previously discussed innovations and present how they can be utilized to reduce
vibrations in client appendages during detumbling. This chapter will also discuss how the
target frequencies are identified, and how manipulator trajectories are created. Then the
resulting reduction in client appendage motion will be compared to detumbling maneuvers

without this intervention. First, the Freespace simulation environemnt will be described.

5.1 Freespace Simulation Environment Overview

Full 6-DOF simulations of detumbling grappled satellites were done in the Freespace
simulation environment, an orbital and environmental dynamics simulation created by the
NASA’s Goddard Space Flight Center (GSFC). Freespace has been in development and use
at GSFC since prior to 2005. [56] Freespace was used for the design and development of
National Aeronautics and Space Administration (NASA)’s 2009 Relative Navigation System

(RNS) experiment on STS-125 for HST Servicing Mission 4 (SM4). [57] Freespace was used in
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Hardware In the Loop (HIL) testing for the NASA’s Satellite Servicing Projects Directorate
(SSPD) Argon test campaign, where it performed guidance, navigation and control functions;
integrated the dynamics; and issued commands to a Fanuc robotic manipulator that was
holding the computer vision sensor package. [58] It was also used in the development of
NASA’s Magnetosphere Multiscale Mission (MMS) mission [59] [60] [61], launched in 2015,
and several other missions yet to publish.

Freespace is a high-fidelity mission simulation and design tool. It includes an integrator
for the processing of multi-body system dynamics (i.e. kinematic chains of bodies and / or
gravitational effects of large celestial objects). It also features a scripting interface similar
to MATLAB for simulation configuration and subsequent processing of logged simulation
results, i.e. a scripting interface with MATLAB compatible syntax, navigable data tree
structures and robust 2D plotting tools. It also features a visualization component so that
3D CAD models of systems involved can be represented in their dynamic and relative states,
i.e. the user can see how a multi-body system moves with respect to other bodies within
that system in OpenGL environments. Figure 5.1 shows the main Freespace GUI interface
with its data tree browser on the left and the scripting console on the right. Figure 5.2
shows the GUI of the Freespace Engine which is the front-end to the integrator. Some
figures within this dissertation are captured from within Freespace’s visualizer, as indicated.
Furthermore, flight-like software written in C can be interfaced directly with the integrator

to test algorithms before integration to spacecraft. A module written for Freespace affects
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a simulation through two categories of interaction: its Real Time (RT) function and its
Discrete Real Time (DRT) function. Effects like the forces and torques of gravity, SRP or
aerodynamic drag, as well as actuation forces and torques of thrusters or reaction wheels
are realized through the RT functions as the integrator processes the simulation. The DRT
functions are most easily thought of as the discrete digital logic that is performed to decide
how much force or torque to apply in control, or when an estimator or filter will update. The
DRT functions are called at constants rates to process data, whereas the RT functions will be
called at varying (small) timesteps that the integrator deems necessary to achieve accurate
integration results. This is mentioned to clarify the distribution of labor (and computation)
that can be seen in the source code of the appendices: digital logic within DRT functions;

application of forces and torques within the RT logic.

5.2 Freespace Setup

In this study, we have the following standard modules active in Freespace:

e SOLSYS . it calculates locations of necessary celestial bodies;
e SUN . it calculates the location of the sun relative to Earth;
e GRAV . it calculates the gravitational impact on each body of the multi-body

system; and,
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File Edit Window C Help | 2020 | freons | 3om | wse | aiss
Filter [[

Working Dir |/nome/bdillow/freespace/projects/msjrestor/scripts/scenarios/landsat [t ]

>> L0G.CHASER. FSW. TRANSGUIDE . modeId (60976+5162, : )
ans = [1x1]

15
>> L0G.CHASER. FSW. TRANSGUIDE . FREONS . nRecd (60976+516000, : )

ans = [1x1]
11198
>> L0G.CHASER. FSW. TRANSGUIDE . FREONS . nRecd (60976+516001, : )
ans = [1x1]
11198
>> L0OG.CHASER. FSW. TRANSGUIDE . modeId (66976+5160, : )
ans = [1x1]
15
>> L0G.CHASER. FSW. TRANSGUIDE . modeId(60976+51000, : )
ans = [1x1]
15
Fiis >> 51000/6000
TRANSGUIDE ans = [1x1]
BUS . 8.5
FLTCTRL >> LOG.CHASER.NAV.TRUTH. r_tcm2cem_ric(60976+51000, :)
FREONS ans = [1x3]
Wlzccitl] -42.90181397075731 66.30022513155328 37.40407345792861
e >> L0G. CHASER. FSW. TRANSGUIDE . modeTd (66976+51600, :)
timestamp ans = [1x1]
v_izeem_i 15
v_iztem_i >> L0G.CHASER. FSW. TRANSGUIDE . modeId(60976+51001, : )
Guid ans = [1x1]
KRF
Lp 5
PROPD >> LOG.CHASER . FSW. TRANSGUIDE .modeTd (60976+50999, : )
= ——— | R
15
ﬂ 10G.time ,l
Y| [LOG.CHASER.FSW.TRANSGUIDI m |
. Symbol LOG.CHASER FSW.TRANSGUIDE.FREONS.nRecd Size 122957x1 Type Array [T
Info Log of number of freons packets received Units null

Figure 5.1: The Freespace workspace GUI showing variable tree browser (top left) and scripting

interface console (right).

Figure 5.2: The Freespace Engine GUL
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e VSD : it calculates the velocity state dynamics of each body in the multi-body
systems as they are perturbed by environmental forces/torques and actuated upon by
control forces/torques, as well as the forces and torques between bodies as they react

to one another in the DOF that are not free to rotate or translate.

In addition, the following modules were created for this research:

e SADA : it is the controller for the solar array drive actuator on the servicing

spacecraft to maintain pointing at the sun, when active;

¢ ARMCTRL : it is the high-level controller for the manipulators that implements the

cartesian position and velocity control, as well as interpretting the F'T'S measurements;
e MANIP : it is the joint-level manipulator controller;

e ACS : it is the attitude control system that converts error between current
sensed attitude and body rates and the desired attitude and body rates into torque

commands;

e PROP : it is the module to convert desired servicer-body torque commands to

individual thruster-firing on-times; and,

e FTS : it is the Force-Torque Sensor module for capturing reaction forces and

torques measurements within the gripper.

Each module implements its algorithms in the C programming language and is config-
ured at run-time with scripts written in a language similar to MATLAB and Octave. These
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“.m”, and are therefore sometimes referred to as

configuration scripts use the file extension
M-scripts.
The nominal DRT rates of each module are listed in Table 5.1.

Table 5.1: Nominal Simulation Module Rates (oo indicates RT only modules, without periodic

DRT calculations)

Module Rate [Hz] | Module Rate [Hz]
SOLSYS 00 SUN 00
GRAV 00 VSD 00
FTS 500 MANIP 500
ARMCTRL 500 ACS 10
PROP 10 SADA 1

5.2.1 Built-in Modules

The Solar System (SOLSYS) module calculates the position and velocity of selected
heavenly bodys in the solar system within the simulation. The SUN module calculates the
unit vector from epoch J2000 (2000 Jan. 1.5 TD) Earth-Centered Inertial (ECI) origin to
the sun for a given Julian day. It is accurate to within approximately 0.01 degrees. The
algorithm is based on Jean Meeus’ Astronomical Algorithms [62] (1998, pages 163-176).
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The Gravity (GRAV) module calculates the gravitational potential experienced by each
spacecraft body. The algorithm is based on the NASA GSFC and National Imagery and
Mapping Agency (NIMA) Joint Geopotential Model (EGM96) with shared sperical harmonic
evaluations, as described by Lemoine et al. in [63]. The Velocity State Dynamics (VSD)
module computes the accelerations and velocities of the bodies within the simulation as
well as any constraint forces and torques between two joined bodies, imparted by other
modules such as GRAV or PROP. It supports multiple open branching kinematic chains of
bodies. Connections between bodies can be single or three DOF translational (prismatic)
or rotational joints, as well as fully rigid. Its derivation is similar to that in Stoneking’s

Newton-Euler Dynamics example for a spacecraft [64].

5.2.2 Custom Modules

5.2.2.1 FTS, MANIP, and ARMCTRL Modules

The FTS module reads the constraint forces and torques on a rigid joint between two
bodies between the final actively controlled joint of the manipulator, the seventh, and the
grapple fixture. Within the Velocity State Dynamics (VSD), the FTS joint is the eighth
joint of the kinematic chain between the servicer’s base body and the next outward body in
the manipulator’s kinematic chain; the FTS joint has zero DOF and therefore all reaction

forces and torques required to maintain its initial relative pose between inward and outward
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bodies are calculated. The grapple fixture is the ninth joint in the kinematic chain from
the servicer’s base to the grappled client body, and its DOF vary depending on scenario
configuration. The force and torque measurements are saved to a buffer and a sliding-
window FFT is performed, as discussed in Chapter 4. This data is subsequently passed to
the ARMCTRL module for further processing and reaction.

The MANIP module is a joint-level controller for the manipulator. It can either perform
joint-space angle and rate Proportional-Integral-Derivative (PID) control, or directly execute
commanded joint-space desired torques from the ARMCTRL module. In joint-space PID
control, anti-windup protection are included to prevent excessive integral term reactons; the
joint torque, 7;, is computed based on deviations from commanded joint angle and rate as
in Eq. 5.1, where 6; and éj are the angle and rate of joint j, respectively; and Th;anrp is the
period of the MANIP DRT control cycle. The gains K, ;, K;;, K4  are the proportional,
integral and derivative gains, respectively, for each joint j and are chosen on a per-joint basis.
The MANIP module can also follow direct torque commands on a per-joint basis. In Joint-
Hold mode, Eq. 5.1 is used to calculate the joint torques for a static desired manipulator

pose, with each 0., ; set to zero.
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Ocrr,j = 0j — Ocma,j
Ocrrj = 0; = Oema
Yy =X 1+ OcrjTrantp (5.1)
% = sign(X;)min(|3;], Xmaz ;)
7j = —KpjOcrrj — Ki 2 — Kd,jéerr,j
The ARMCTRL module is a high-level manipulator control module that can compute
cartesian-space trajectories or other reactive measures. ARMCTRL has several modes but
the most important to the focus of this research is the Reactive Velocity Control mode which
monitors the FFT output of the commanded forces and torques from PROP, the commanded
joint torques from MANIP (or internally calculated), and sensed reaction forces and torques

in the manipulator at the grapple point from the FTS module. The down-selection of FFT

peaks of each DOF within each monitored module is illustrated by Figure 5.5.

5.2.2.2 ACS and PROP Modules

The ACS module contains the nonlinear attitude controller, as described in Chapter
2, that calculates servicer body torques based on attitude and rate errors. It runs at 10 Hz.
The torques that it calculates to correct the attitude errors are in the servicer body frame.
They are passed to the PROP.

The PROP module converts servicer body-frame torque commands to individual thruster
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on-time allocations. The mapping of body torques to thruster on-times introduces control
errors and nonlinearities which are of interest to spacecraft control due to thruster minimum
on times and thrust saturation. The PROP module may also be configured for perfect ap-
plication of body torques for studies which require it. There are many ways to map body
torques to thruster firing times. The simplest forms are direct mapping which directly al-
locate all body-frame torques in a given axis to a pre-defined set of thrusters and scale the
firing based on the torque requested [40]. This method requires detailed pre-analysis of com-
mands and a (nearly) unchanging spacecraft inertia to perform well, and is therefore not
suitable for a spacecraft with reconfigurable mass properties such as in a coupled satellite
configuration, where the barycenter of the coupled system is shifting more rapidly than a
traditional spacecraft with fuel depletion, OR a system with high inertia uncertainties, such
as when grappling a derelict client after a break-up event. At the other end of the complexity
spectrum, Mixed-Integer Linear Programming (MILP) is a method that provides the ability
to limit fuel usage considering multiple constraints, such as minimum thruster on times and
individual duty cycle limitations [65], [66], but it can be computationally expensive and the
efficiency it provides versus fuel usage and other metrics is not the focus of this research.
A balance is struck with the use of pseudo-inverse thrust mapping and null-space boosting
to meet minimum on time requirements, as in [67]. This method is similar to torque allo-
cations of redundant reaction wheel spacecraft as discussed in Markley [40], but applied to

uni-directional thrusters. First, the concurrent force and torque commands in the spacecraft
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body frame are combined into a single 6-DOF vector, as in Eq. 5.2. In the following simula-

tions, where no AV will be performed and the spacecraft are purely under attitude control,

the force commands, 2 ,, will be all zeros. The body torque commands, 7% ., come from
the ACS module.
fé)md
fcmd = (52)
Tlc)md

The thrust mapping matrix, M, is composed of the direction and moment arms of each
thruster, with the concatenated direction, d® and moment arm from the center of mass for

each thruster, a? = d® x r comprising one comlumn, as described in Eq. 5.3, for each

n n/c’m7

of n thrusters.

& .. @
M = (5.3)
al ..oal

Once M is constructed as an 6-by-n matrix, the individual thruster on times are calcu-
lated with Eq. 5.4, where the T operation again indicates the Moore-Penrose pseudo-inverse.
Tdes = (M>T -7'-265 (54)

The deficiency of this calculation is that it may produce individual components of 74

which are below the minimum thrust of a given thruster or even negative (an impossible

113



command for uni-directional thrusters). To correct this limitation, null-space boosting is
employed. Given any vector v,,; € NULL(M), Mv,.u; = 0. Fictuatea = MTema, any
relative variation of components of 7,4 that remain within the null-space of M will have
zero effect on Fipuateq- This provides the flexibility to modify 7., such that the entire
vector is changed without changing the overall effect on the forces and torques produced on
the spacecraft body. First, the null-space of the distributrion matrix is found using the SVD
algorithm and then the first column-vector is used. (Any choice of column would be equally
unimpactful on the actauted force and torque on the servicer body. If certain thrusters were
undesirable to be used additionally, the null-space vector could be selected differently.) The
selected null-space vector is designated v,,,;;. The thruster that is farthest from the minimum

on thrust is designated 7;,,,. Then the final thruster allocation is defined by Eq. 5.5.

Temd = Tdes T Voull (Tmin - 7—low) (55)

The resulting modified command produces the same resultant desired reaction:

Tb = MTcmd

actuated

fgctuated =M (Tdes + Vil (Tmin - Tlow))

b

factuated = MTdes + Mvnull (Tmin - Tlow)
b _

factuated - MTdes +0
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Once all thrusters are assured to be above the minimum thrust requirements or not
firing, the maximum thrust condition is checked. If any individual thruster’s thrust exceeds
the maximum capability, the command is clipped and the difference between desired com-
mand and actuated command is absorbed as actuation error. The impact of this clipping
actuation error can be limited by ensuring the commanded torques and forces in the body
frame are limited to remain within the total capability of the whole system of thrusters and
the commands’ directions preserved, i.e. if |f5 || > fiaer OF [|[T%.]| > Tinaz, the following

scaling is applied:

fb — lei)es f
N T R
b
b Ty
e =k,

In this example spacecraft, twenty four thrusters were employed, four per servicer face.
Nominal thruster positions are listed in Table 5.2 and nominal thruster directions are listed

in Table 5.3.

Number ID Pos. X Pos. Y Pos. Z

1 ZP1 -0.95 0.95 -3.0
2 7P2 -0.95 -0.95 -3.0
3 ZP3 0.95 -0.95 -3.0
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Number ID Pos. X Pos. Y Pos. Z

4 ZP4 0.95 0.95 -3.0
b} ZM1  -0.95 0.95 0

6 ZM?2 0.95 0.95 0

7 ZM3 0.95 -0.95 0

8 ZM4 - -0.95 -0.95 0

9 YM1  -0.95 1.0 -0.05
10 YM?2 0.95 1.0 -0.05
11 YM3 0.95 1.0 -2.95
12 YM4  -0.95 1.0 -2.95
13 YP1 -0.95 -1.0 -0.05
14 YP2 0.95 -1.0 -0.05
15 YP3 0.95 -1.0 -2.95
16 YP4  -0.95 -1.0 -2.95
17 XM1 1.0 -0.95 -0.05
18 XM2 1.0 0.95 -0.05
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Number ID Pos. X Pos. Y Pos. Z
19 XM3 1.0 0.95 -2.95
20 XM4 1.0 -0.95 -2.95
21 XP1 -1.0 -0.95 -0.05
22 XP2 -1.0 0.95 -0.05
23 XP3 -1.0 0.95 -2.9
24 XP4 -1.0 -0.95 -2.95

Table 5.2: Nominal thruster positions on servicer spacecraft. All positions are in meters.

Number ID Dir. X Dir. Y Dir. Z
1 ZP1 0 0 0
2 7P2 0 0 0
3 ZP3 0 0 0
4 7P4 0 0 0
5 ZM1 180 0 0
6 ZM2 180 0 0
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Number ID Dir. X Dir. Y Dir. Z

7 ZM3 180 0 0

8 ZM4 180 0 0

9 YMI1 0 -90 90
10 YM2 0 -90 90
11 YM3 0 -90 90
12 YM4 0 -90 90
13 YP1 0 -90 -90
14 YP2 0 -90 -90
15 YP3 0 -90 -90
16 YP4 0 -90 -90
17 XM1 0 90 0
18 XM2 0 90 0
19 XM3 0 90 0
20 XM4 0 90 0
21 XP1 0 -90 0
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Number ID Dir. X Dir. Y Dir. Z

22 XP2 0 -90 0
23 XP3 0 -90 0
24 XP4 0 -90 0

Table 5.3: Nominal thruster directions. All directions are Euler angles about the body azes in

Degrees.

The individual thrusters modeled here are throttled to the appropriate duty-cycle over
the command interval between their minimum and maximum thrust per command interval,
as opposed to modeling the duty cycle as 100% of the maximum thrust for some portion of
the command cycle between the minimum on time and the command cycle period. After
the commanded torques are mapped to individual thrusters based on the knowledge of the
thruster directions and moment arms, commanded per-thruster thrusts are passed back
through true the distribution matrix (i.e. without knowledge error), M, to calculate the final
actuated forces and torques for that control cycle, including the impact of that knowledge
error. These actuated forces and torques are stored to a circular buffer and a sliding window
FFT is used to determine the (at most) top five non-DC peak frequencies in each DOF. The
parameters for the PROP module FF'T are detailed in Table 5.4. The sampling frequency is

a function of the element stride and the frequency of the PROP module itself, as discussed
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in Chapter 4. These parameters are derived heuristically. The parameters for all six DOF

are chosen to be the same.

Table 5.4: PROP module FFT parameters.

Parameter Value
Sampling Frequency, Fj 10 Hz
Window Length, 1., 64
Window Stride, S, 10
Element Stride, Scem 1
Max Num. Peaks, npeqks 5
Smoothing Span, Sgmoeoth 3
Inflection Point Neighborhood, n;, s 1
Local Maxima Neighborhood, njoenzas 3

The impact of the thruster modeling can be seen in the individual thruster duty cycles.
The example below will be examined in more detail further down in Chapter 5, described as
the MMS-like tumble scenario. Initally, the coupled system is tumbling a rate of (0,0, 18)
degrees per second and the rate nulling is attempted. Figure 5.3 shows the thruster on-times
as a percentage per command cycle on the range of 0 (fully off) to 1 (fully on). As described
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above, in the Servicer body frame,

thrusters 1 through 4 apply +7 force,

thrusters 5 through 8 apply -Z force,

thrusters 9 through 12 apply -Y force,

thruster 13 through 16 apply +Y force,

thruster 17 through 20 apply -X force, and,

thrusters 21 through 24 apply +X force.

It is clear from figure 5.3 that both the -Z and +7Z thrusters are on 100% for almost the
first 90 seconds of the detumble maneuver. This is an artifact of the thruster mapping algo-
rithm not trying to be fuel efficient. Pairs of thrusters that have equivalent maximum thrust
but face in opposite directions produce zero net force or torque when fired simultaneously at
the same duty cycle. Another way to look at the impact of the thruster mapping algorithm
is to look at the histogram of thruster duty cycles. Figure 5.4 shows the histogram of the
thruster duty cycles for the same simulation as figure 5.3, with duty cycles broken down in
to bin increments of 10%. This shows the number of command cycles a given thruster was
commanded in that particular duty cycle range. For the given configuration of this example,
the minimum on time fell in the range between 10 and 20 % of a command cycle; therefore,
all commands in the 0 to 10 % range represented fully off command periods. From this it
is clear that the vast majority of commands for the pseudo-inverse thruster mapping with
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Figure 5.3: Thruster duty cycle vs. time for MMS-like detumble example.

null-space boosting end up being either at the minimum on time, or at 100 % duty cycle.
Other mapping algorithms will produce different firing profiles, and therefore different dis-
turbance profiles. (An observation which is mentioned again in the further research section

of Chapter 6.)
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Figure 5.4: Histogram of thruster duty cycles for MMS-like detumble example.

5.3 Reaction Frequency Identification

Reaction frequency identification requires identification of frequencies induced by Ser-

vicer actuation from the ACS and the MANIP so that those frequencies may be removed

from the signals detected in the FTS module. Each FFT result is reported as a relative signal

magnitude in frequency bins whose width (and center frequency) is a function of sampling
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Figure 5.5: Per-module FFT peak down-selection.

frequency and number of time-series samples per FFT window, as discussed in Chapter 3.
When combinbing these disparate sources, of potentially differing bin sizes, the coarseness
of the destination bins becomes a design parameter to be chosen. Each bin (source or des-
tination) has three frequencies of merit: the bin center frequency, f.; the bin left frequency,
fi = fe — fwian/2; and, the bin right center frequency, f, = fe+ fuwiamn/2. If the source FFT
output has a bin width which differs from the destination bin width, four different situations

can arise, illustrated in Figure 5.6:

A) The source peak’s center frequency falls between a destination bin left and right fre-
quencies but the source left and right frequencies fall outside of the destination bin,
i.e. the source bin is much wider than the destination bin. The source peak’s impact

is spread across the bins both to the left (lower in frequency) and to the right (higher
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in frequency), as well as the current bin.

The peak’s left source bin frequency falls outside of the destination bin, while the
peak’s right source bin frequency remains within. The source power is spread propor-
tionally between the bin to the left of the destination (lower frequency) and the current

destination bin.

Both the peak’s left and the right source bin frequencies fall within the destination bin.
This occurs when the width of the source bin is less than the width of the destination
bins and the center frequency of the source peak is closer to the destination bin center

than either edge.

The peak’s left source frequency falls within the destination bin, while the peak’s right
source bin frequency falls outside. The peak’s source center frequency lands within the
destination bin range, but it is spread across the current destination bin and the one

to the right (higher frequency).
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Figure 5.6: Four cases of handling FFT persistence allotment when source and destination bin
widths differ: A) source width covers three destination bins; B) source partially covers current bin

and one to the left; C) source completely within current bin, and; D) source partially covers current

bin and on to the right.
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5.4 Client Appendage Motion Reduction

The goal of this research is a reduction of the vibrations within client appendages
during detumble maneuvers. In the following example, a client is constructed with a single
solar array appendage. Figure 5.7 labels the client body axes and the axes of the solar array
appendage as displayed in its zero-angle position. The origin of the client body frame is at
the center of the marman ring that attached it to its launch vehicle at the plane of contact.
The Z axis is positive up through the body of the client spacecraft and colored red. The
Y axis is positive in the direction away from the solar array. The X axis completes the
right-hand rule system. The solar array consists of a single active drive assembly operating
in the -Y axis of the client body frame and four solar array panels which are folded upon
launch then deployed in orbit. Once the deploy activity is complete, these four joints lock
into position and become passive flexible joints. When the active joint is at its zero-angle
position (as shown in Fig. 5.7), each passive joint rotates in the client’s Z axis.

The example below has the coupled client and servicer system with an initial attitude
rate of (1,2,3) degrees per second as expressed in the servicer body frame. The deflection
of each joint in response to the detumbling maneuvers is shown in Figure 5.8. Each passive
deployment joint was given the same natural frequency and damping dynamics. It can be
seen in Figure 5.8 that this leads to similar angle waveforms but the amplitudes differ based

on total inertias experienced outboard of each joint.
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Figure 5.7: Client satellite with body azes, with the actively controlled joint and passive deploy-

ment joints (1 through /) labeled. Array shown at its zero angle position.

The simulation’s truth of the angle of each passive deployment joint (directly sampled
from the dynamics) is processed via a spectrogram below in Figures 5.9 through 5.12. The
angles are sampled at 100 Hz from the simulation dynamics; no sampling noise was inserted to
recreate any form of joint angle measurement. The samples are windowed with a rectangular
window. Each window of is 4096 samples. The stride between each window is 1 sample. With
a sampling rate of 100 Hz, the center frequency of the highest bin of the spectrogram is about
50 Hz. Reviewing Figures 5.9 through 5.12, it is clear that the interesting frequencies for
these appendages are much smaller than 50 Hz, even less than 1 Hz. Given the very similar
time-series response of the four joints in Fig. 5.8, it is not surprising that the spectrograms

of each indicates very similar responses in the Frequency domain over time.
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Figure 5.8: Client solar array passive joint angles between individual panels during detumble.

The first joint is the innermost, closest to the spacecraft body.
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Figure 5.9: First (innermost) client solar array passive joint spectrogram over all frequencies

given 100 Hz sampling rate.
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Figure 5.10: Second client solar array passive joint spectrogram over all frequencies given a 100

Hz sampling rate.
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Figure 5.11: Third client solar array passive joint spectrogram over all frequencies given a 100

Hz sampling rate.
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Figure 5.12: Fourth (outermost) client solar array passive joint spectrogram over all frequencies

given a 100 Hz sampling rate.

Figures 5.13 through 5.16 zoom in on the frequency response in the spectrograms that
are 5 Hz and under. In each of the four passive deployment joints, the dominant frequency
response is at the frequency bin centered on 0.17 Hz. To appropriately respond to this
frequency of dynamics, the F'TS will need to process a sufficient number of measurements at

a sufficient sampling frequency in each FFT window to detect this frequency and its phase.
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Figure 5.13: First (innermost) client solar array passive joint spectrogram, zoomed in to clarify

response below 5 Hz.
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Figure 5.14: Second client solar array passive joint spectrogram, zoomed in to clarify response

below 5 Hz.
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Figure 5.15: Third client solar array passive joint spectrogram, zoomed in to clarify response

below 5 Hz.
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Figure 5.16: Fourth (outermost) client solar array passive joint spectrogram, zoomed in to clarify

response below 5 Hz.

Next, the FTS measurements will be inspected to see if that is possible. Figure 5.17

133



shows the time-series measurements of the F'TS, in the FTS’s own coordinate frame, during
the grappled detumble as described above. This shows how the F'T'S senses the ACS reactions
up until the attitude errors are damped out around 60 seconds into the simulation, but the
reactive forces of the client appendages continue to be felt as motion damps out.
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Figure 5.17: Forces and Torques sensed at the FTS during detumble with the manipulator in

joint hold mode, prior to reactive forces/torques generation.

Spectrograms for the FTS-sensed forces and torques show similar spectral response
given the full sampling rates of the sensor. For example, Figure 5.18 shows the response in
the X force dimension out to 125 Hz. The interesting content is down within 10 Hz.

Figure 5.19 shows the sensed X force spectrogram for 5 Hz and under.

In Figure 5.19, the same peaks at roughly 0.75 Hz can be seen until the ACS system

stops reacting, and the natural frequency reaction of the client solar array can be seen to
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Figure 5.18: Spectrogram of FTS Force X during detumble up to 125Hz.
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Figure 5.19: Spectrogram of FTS Force x during detumble for 5Hz and under.

continue to respond as it dampens out between 0.15 and 0.2 Hz. This mode can be similarly

sensed in the Y and Z Forces (Figures 5.20 and 5.21), as well as the X through Z torques at
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the FTS.
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Figure 5.20: Spectrogram of FTS Force Y during detumble for 5 Hz and under.
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Figure 5.21: Spectrogram of FTS Force Z during detumble for 5 Hz and under.
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FTS Torque X, Fs = 250 Hz

40

20

-20

-40

-60

Time (mins}
Power/frequency (dB/Hz)

-80

-100

-120

4] 1 2 3 4 5
Frequency (Hz)

Figure 5.22: Spectrogram of FTS Torque X during detumble for 5 Hz and under.
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Figure 5.23: Spectrogram of FTS Torque Y during detumble for 5 Hz and under.

This establishes how the motion of the client appendages is detectable in the grapple

manipulator’s FTS.
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FTS Torque Z, Fs = 250 Hz
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Figure 5.24: Spectrogram of FTS Torque Z during detumble for 5 Hz and under.

5.5 Scenario 1: Single-Axis Detumble

Spin-stabilized spacecraft have the majority of their momentum in a single axis by
design, for example MMS. The next scenario is a coupled system of a servicer and a client
satellite that start with a single-axis tumble rate similar to MMS: (0,0, 18) deg/sec. [60].
The example client spacecraft is notably different from a member of the MMS constellation
in that it is an assymetric spacecraft with a deployable solar array, as shown in Figure
5.25, whereas the MMS spacecraft have their solar cells on the main body of spacecraft and

featuring multiple symmetric radial and axial boom antennae.! However, the spin rate of

Tt is much harder to detect the appendage motion of client spacecraft which are symmetric via only

the FTS at the grapple point due to the equal and opposite reactions of the appendage joints through the
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the example spacecraft is representative of an MMS member spacecraft. Further, the modal
responses of the client appendages that dominate the detectable response are due to the
joints between the solar array panels, as opposed to potential higher frequency modes in the
torsional or off-axis bending directions.

As in prior scenarios, the servicer control system has no knowledge or measurement
of the client’s appendage joint angles. The only source of information it has about the
client motion is measured through the FTS and detected via the sliding window FFT peak
detection methods described above. Figure 5.26 shows how the client’s solar array appendage
joints react to the detubmling with the Reactive Control algorithm disabled, as recorded by
the simulation’s dynamics module. In this figure, the robotic manipulator that couples the
two spacecraft is under active control but remains only in the Joint Hold mode and does not
make use of the data from the FTS. Here it is only the natural damping of the solar array
joints that reduces joint motion over time. The goal of the Reactive Control algorithm is
to decrease the time required to damp joint deflections and limit the maximum deflections
experienced while Reactive Control is active.

Figure 5.27 shows how the client appendage joints respond when the Reactive Control
is engaged, activating at 40 seconds into the simulation. Prior to the activation of the
Reactive Control system, the manipulator is effectively in the Joint Hold mode. In this

scenario, the active degree of freedom for the Reactive Control algorithm is Z translation.

motion. The assymetry prevents the natural cancellation and therefore allows the detection.
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Figure 5.25: Servicer (with red and green solar arrays) and client (with purple solar array)
configuration at start of detumble operations. The sevicer arrays are modeled as rigid here. The

purple client solar array is modeled with flexible joints between each of the four array panels.

Note the decreased peak displacement once Reactive Control is enabled and faster motion
dissipation, compared to Fig. 5.26. Figure 5.28 shows the change in the quaternion error
over time during this detumble with the Reactive Control enabled, proving that the system

attitude can be stabilized while also reducing client appendage motion.

140



Client Satellite Solar Array Passive Joints
Reactive Control Off

Joint Angle [Deg]

| | | |
0 20 40 60 80 100 120 140 160 180 200
Time [sec]

Figure 5.26: Client appendage joint response during detumble without Reactive Control activa-
tion. The blue trace is the innermost passive array joint; the black trace is the outermost passive

array joint.

Figures 5.30 through 5.32 compare the motion of the client’s appendage joints during
detumble when the Reactive Control is on and off. The Y axis scale of each figure is different
to highlight the effect of the Reactive Control at reducing the passive joint motion. If the
Y axes were held the same for all four figures, the effect would be difficult to observe in the

outer joints.

141



Client Satellite Solar Array Passive Joints
Reactive Control On

Joint Angle [Deg]

1 1 1 |
0 20 40 60 80 100 120 140 160 180 200

Time [sec]

Figure 5.27: Client appendage joint response during detumble with Reactive Control iniated at
40 seconds into the simulation. The blue trace is the innermost passive array joint; the black trace

1s the outermost passive array joint.
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Figure 5.28: MMS-like client detumble error quaternion with reactive control enabled at 40

seconds into the simulation.
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Figure 5.29: C(Client’s innermost solar array joint during an MMS-like detumble comparison
between Reactive Control disabled and enabled. The blue trace is without Reactive Control; the red

dashed trace is with Reactive Control enabled at 40 seconds.
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Passive Joint 2 Comparison
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Figure 5.30: Client’s second solar array joint during an MMS-like detumble comparison between
Reactive Control disabled and enabled. The blue trace is without Reactive Control; the red dashed

trace is with Reactive Control enabled at 40 seconds.
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Figure 5.31: Client’s third solar array joint during an MMS-like detumble comparison between
Reactive Control disabled and enabled. The blue trace is without Reactive Control; the red dashed

trace is with Reactive Control enabled at 40 seconds.
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Figure 5.32: Client’s outermost solar array joint during an MDMS-like detumble comparison
between Reactive Control disabled and enabled. The blue trace is without Reactive Control; the red

dashed trace is with Reactive Control enabled at 40 seconds.
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5.6 Scenario 2: Multi-Axis Detumble

The next scenario demonstrates the ability of these methods to bring a client /servicer
system, similar to the previous example, under control with an initial multi-axis tumble of
(2,20,5) deg/sec (as measured in the servicer body frame). As in prevous scenarios, the
ACS is enabled at 1 second into the simulation. Figure 5.33 shows the ACS response for the
system with the manipulator’s reactive control disabled; instead the manipulator is in joint
hold mode for the entire detumble to show client appendage response without the reactive
control effects. As in prior examples, the innermost solar array joint is represented by a
blue trace and shows the greatest displacement. Here, also, the active DOF for the reactive
control is the Z translational axis.

Once Reactive Control was enabled, figure 5.34 shows the body rate errors of the
servicer during the detumble maneuvers. Also, figure 5.35 shows the attitude error as a
quaternion during the detumble maneuvers. Not surprisingly, the attitude and rate errors
in the servicer’s Y axis (green trace) dominate both figures until there is sufficient time to
damp the motion. Figure 5.36 shows the response of the client appendage joints during the
same multi-axis detumble with Reactive Control enabled at 40 seconds into the simulation.
The overall deflection of the client appendage joints is reduced by the active manipulator

reactions.
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Figure 5.33: Multi-axis detumble with the manipulator in joint hold mode (reactive control

disabled).
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Servicer Body Rate vs Time
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Figure 5.34: System body rate vs. time during multi-axis detumble. The blue trace is the servicer

X axis rates. THe green trace is the servicer Y axis body rates. The red trace is the servicer Z axis

body rates.

150



Error Quaternion vs Time
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Figure 5.35: System attitude error quaternion vs time during multi-azis detumble.
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Figure 5.36: Multi-axis detumble, client appendage joint deflections with Reactive Control en-

gaged at 40 seconds.
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Figure 5.37 through 5.40 compare the client appendage joint deflections between reac-
tive control being disabled and enabled. Here it can be seen how the reactive control is able

to reduce the client appendage reduction.
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Passive Joint 1 Comparison
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Figure 5.37: Multi-axis detumble, client appendage innermost joint deflections. Blue trace is

with the reactive control disabled; red-dash trace is with the reactive control enabled.
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Passive Joint 2 Comparison
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Figure 5.38: Multi-azis detumble, client appendage second joint deflections. Blue trace is with

the reactive control disabled; red-dash trace is with the reactive control enabled.
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Passive Joint 3 Comparison
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Figure 5.39: Multi-azis detumble, client appendage third joint deflections. Blue trace is with the

reactive control disabled; red-dash trace is with the reactive control enabled.
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Passive Joint 4 Comparison

Joint Angle [Deg]

-0.75 i 1 1 1 1 ! 1 L 1 1 |
0 40 80 120 160 200 240 280 320 360 400

Time [sec]

Figure 5.40: Multi-azis detumble, client appendage fourth (outtermost) joint deflections. Blue

trace is with the reactive control disabled; red-dash trace is with the reactive control enabled.
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5.7 Conclusion

This chapter has presented the simulation environment which pulled together the im-
plementation of all three contributions of this work in a 6-DOF Earth-orbit environment:
the nonlinear attitude controller, the client appendage modal detection with a combination
of FTS and FFT signal processing; and a Cartesian-space reactive tool contoller to reduce
client appendage motion. These efforts combined show the effectiveness at reducing the

client appendage motion during a detumble maneuver.

158



Chapter 6: Conclusion

6.1 Contributions

The contributions of this work have been three-fold. First, a novel quaternion feedback
controller with a dense matrix gain was presented that outperforms its scalar counterparts
in several desirable ways. Most importantly, the stability of this attitude controller was
proven in the presence of inertia knowledge errors. Second, a method of automated modal
disturbance detection with an force-torque sensor via the FFT in the presense of sensor noise
was presented which enables the third contribution. Finally, a manipulator control algorithm
that takes advantage of the second contribution was presented to reduce the disturbances
contributed by a client’s appendages by modifying the end effector Cartesian path reaction
based on the modal response of the client, in a system where a client spacecraft is grappled

by a servicer spacecraft with a robotic manipulator.
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6.2 Proposed Further Research

One limitation that was observed of this method was the lack of ability to detect client
appendage motion in the cases of symmetric client appendages during the detumble. This
has been attributed to a natural cancellation of disturbance torques caused by appendage
deflection in the symmetric case that masks the actual appendage joint motion from the
FTS. One future avenue of research for improving this method would be the inclusion of a
computer vision algorithm to identify appendage joint motion so that it may be fused with
the F'TS information to create a better estimate of the client’s motion. A computer vision
implementation would present a non-intrusive, non-contact method of estimating the joint
appendage motion that would be well suited to the non-cooperative client model, at the risk
of adding lighting requirements to the concept of operations.

The current method relies heavily on the ability of the FFT to detect the phase of
the modes of interest. Robustness would be improved by inlcusion of additional methods of
the initial detection of modal phases or the subsequent verfication that the dominant mode
phase hasn’t changed.

Another avenue of improvement for this research would be additional research into
other methods of modal identification from the F'TS data such as adaptive notch filters that
might be able to perform the frequency and phase identification without the cumbersome

sliding-window FFT and its multiple associated configuration parameters.
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Finally, the reactive control method proposed above is a Cartesian-space reaction.
Another possible method for reactive control is to keep the trajectory in the velocity realm
and feed forward the ACS reactions to perform the detumble to the manipulator’s tool tip
and generate reaction forces and torques for the manipulator based on the desired response

at the grapple point.
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Appendix A: Servicer Manipulator

The servicer in this research uses a 7-DOF manipulator. The manipulator’s Denavit-
Hartenberg (DH) parameters, with all of the active joints at their zero positions, are listed
in Table A.1. These parameters follow the convention defined in Craig [68]. The axes and
d; parameters are depicted on its CAD model in Fig (A.1). The palm of the gripper is 0.15

meters from the origin of joint 7.
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Table A.1: Modified DH Parameters of the servicer’s manipulator, with all arm joints at zero.

Linki a;_; (rad) a;; (m) d; (m) 6; (rad)
1 0 0 0.255 0
2 /2 0 0 0
3 /2 0 0.97 0
4 —/2 0 0.215 0
) /2 0 1.02 0
6 /2 0 0 0
7 /2 0 0 0

163



Figure A.1: Servicer manipulator DH axes and parameters visualized. All joint angles are zero

degrees. Y axes are not shown for clarity, but each completes the right hand rule for that frame.
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Table A.2: Link mass and position of center of mass of each link, i, from the origin of link

i, in meters, to the nearest millimeter, expressed in that link’s mechanical frame for the servicer

manipulator.
Center of Mass
Link | Mass [kg|

XLi Y Zy;
1 10.35 0 0.157 0.103
2 6.93 0 -0.035 0.044
3 18.37 0 -0.013 0.420
4 6.93 0 0.008 -0.001
5) 17.34 0 0.033 0.448
6 4.82 0 -0.001 0.039
7 2.73 0 -1.080 0.007
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Table A.3: Moment of Inertia for each link, i, in kgm?, at the center of mass of the link,

expressed in the link’s mechanical coodrinate frame.

Link Ixx Iyvy Izz Ixvy Ixz Iyz

1 0.167 0.132 0.127 0 0 -0.048

2 0.091 0.087 0.066 0 0 0.022

3 2.160 2.143 0.158 0 0 0.129

4 0.087 0.090 0.042 0 0 -0.006

Y 2.246 2171 0.154 0 0 -0.265

6 0.022 0.023 0.012 0 0 0

7 0.013 0.014 0.009 0 0 0

166



1

2

Appendix B: Simulation Source Code

B.1 fit.h

B.1.1 struct fft_persistence_params_s

Listing B.1: Peak persistence search parameter structure

typedef struct fft_persistence_params_struct {
/* number of bins in destination FFT x/
unsigned int dst_nBins;
/* destination FFT delta—frequency per bin x/
double dst_dF ;
/* number of bins in source FFT x/
unsigned int src_nBins;
/* source FFT delta—frequency per bin x/

double src_dF;
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/* time between source samples, sec x/

double src_dt ;

/+* multiplicative amplitude degradation factor [0:1]x/

double degradeFactor;

/* bin size percentage epsilon for smearing check x/

double binEpsilon ;

/* nonzero if the source peaks will be smeared across mult dest bins x/
unsigned int doSmear;

} fft_persist_params_s;

B.1.2 struct fft_persistence_data_s

Listing B.2: Peak persistence search data structure

typedef struct fft_persistence_data_struct {
/* number of bins in persistence output x/
unsigned int n;
/* persistent amplitude (n length) x/
double xamp;

/* persistent time (n length) =/
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double xtime;

/* change in phase of this bin’s persistent phase (n length)x/

double xdeltaPhase;

/+* phase in this bin from previous sample (n length)x/

double xprevPhase;

/* rank of peak (1 being largest peak) of bins (n length)x/

double xrank;

} fft_persist_data_s;

B.1.3 struct fft_peaks_s

Listing B.3: FFT peaks data structure

typedef struct fft_peaks_struct {

double *nPeaks;
double xfreqs;
double *xamps;
double *phases;

} fft_peaks_s;
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B.1.4 struct fft_output_s

Listing B.4: FFT output data structure

1 typedef struct fft_output_struct {

2

8

9

1 typedef struct fft_struct {

2

/* inputs/outputs x/

double xnewMeas ;

/* nonzero to indicate the data has changed x/

/* parameters that won’t change x*/

int nBins;
double xF's;
double xdf;

} fft_out_s;

B.1.5 struct fft_s

Listing B.5: FFT top-most data structure

/* parameters x/
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double Fs; /* sampling frequency [Hz] x/

unsigned winLen; /* # samples in each FFT window [—] x/
unsigned winStride; /% # samples to skip between executing

FFT window [—] */
unsigned elemStride; /+ # samples to skip within a window [—] %/

unsigned maxNpeaks; /% max # of fft peaks to report x/

unsigned smoothSpan; /+ number of samples per smoothing window
(total span) x/

unsigned inflectN ; /* # samples to either side of point to be
considered for inflection point calculations x/

unsigned locMaxN ; /* # samples to either side of point for local
maximum searches x/

unsigned remMean; /* nonzero to remove FFT mean before peak search x/

double « df; /* delta—frequency per bin (resolution) [Hz| =/

fft _persist_params_s persistParams;

/* outputs / telemetry x/

double *freqBins; /* frequency labels for FFT output bins [Hz| x/
double *fftMag; /* magnitude of FFT output [?7] x*/
double xfftPhase; /* phase of FFT output [rads]| =/
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36

37
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long compTime ns; /+ time required for FFT computation

including copies x/

int fftRtn; /* FFT return status x/

int peaksRtn; /* findPeaks return status x/

double xnewMeas; /+ boolean, nonzero when new FFT output is present x/
fft _out_s out; /* structure of output to other modules x/

fft _peaks_s peaks;

fft _persist_data_s persistData;

/* private x/

char name|[FFT NAME MAX LEN]|;

/* circular buffer components x/
/* memory for in—place FFT calculations:
time—series samples preFFT, half—complex unpack FFT data postx/

double xfftWin;

unsigned winCnt; /% number of samples taken since

last FFT window calculation x*/
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double xbuf; /* circular buffer memory x/
double xbufHead ; /* newest sample in buffer window x/
double xbufTail; /* oldest sample in buffer window x/
double xbufEnd ; /* end address of buffer after allocation x/
unsigned nSamples; /[« # samples actually in the buffer x/
unsigned nBins; /* # freq. bins in output x/

b fft_s;

B.2 fft.c

B.2.1 calcPersistence

Listing B.6: calculate persistence properties for peaks /

int calcPersistence( /xin/outx/ fft_persist_data_s xdat,

double xdstBins,
fft _peaks_s xpeaks,

fft _persist_params_s xparams ) {

/*x @brief calculate persistence properties for peaks x/
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if ( !dat ) {

return (—1);

if ( !dstBins || !peaks || !params ) return(—2);

unsigned int p, b;

double srcF _left , srcF_right , dstF_left , dstF_right ,

/* decay all bins in amplitude and time x/
/+* NB: ignore DC bin at zero index x/
for ( b=1; b<dat—>n; ++b){
/* amplitude =/
if ( dat—amp[b] > 0 ) {
dat—amp[b]| *= params—>degradeFactor;

if ( dat—amp[b] < 0.0 ) dat—amp|[b] = 0.0;

174

perc;



26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

/* time x/

if ( dat—>time[b] > 0.0 ) {

dat—>time [b] —= params—>src_dt ;
if ( dat—>time[b] < 0.0 ) dat—>time[b] = 0.0;
}
}
if ( (int)peaks—>nPeaks[0] = 0 ) return (0);

for (p=0; p<(unsigned int)peaks—>nPeaks[0]; ++p ) {
srcF_left = peaks—>freqs|[p| — params—>src_dF /2.0;

srcF_right = peaks—>freqs|[p] + params—>src_dF /2.0;

for ( b=1; b<dat—>n; 4++b){
dstF_left = dstBins[b] — params—>dst_dF /2.0;

dstF_right = dstBins[b] + params—>dst_dF /2.0;

if ( srcF_left > dstF_right ) continue;
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if ( params—>doSmear — 0 ) {

/* all peak data will fit within one destination bin x/

if ( dstF_left <= peaks—>freqs[p]| && peaks—>freqs|[p]| <= dstF _righ

dat—>time [b]
dat—>amp b ]|
dat—>rank [b]

if ( dat—time [b]

= dat—>time[b] + params—>src_dt;
= peaks—>amps[p] * dat—>time[b];
= p+1;

<= params—>src_dt ) {

dat—>deltaPhase [b] = 0.0;

} else {

dat—>deltaPhase [b] = peaks—>phases[p] — dat—>prevPhase[b];

}

dat—>prevPhase [b]

= peaks—>phases[p];

break; /% stops searching bins further x/

}
} else {

/* peak energy might be spread across multiple destination bins x

if ( srcF_left < dstF_left && dstF_right < srcF_right ) {

/* source is much larger than destination x/

perc

= params—>dst_dF / params—>src_dF;
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if

dat—>time [b] = dat—>time [b] + params—>src_dt;

dat—amp [b] = (perc * peaks—amps|[p])*dat—>time[b];

dat—>rank [b] = p+1;

if ( dat—time[b] <= params—>src_dt ) {
dat—>deltaPhase [b] = 0.0;

} else {

dat—>deltaPhase [b] = peaks—>phases[p] — dat—>prevPhase[b];

}

dat—>prevPhase [b] = peaks—>phases[p];

( srcF_left < dstF _left && srcF _right <= dstF_right ) {

/% source is partially within bin from the left edge x/

perc = (srcF_right — dstF_left)/params—>src_dF ;
dat—>time [b] = dat—>time [b] + params—>src_dt;

dat—>amp [b] = (perc * peaks—amps|[p])*dat—>time[b];
dat—>rank [b] = p+1;

if ( dat—>time[b]| <= params—>src_dt ) {
dat—>deltaPhase [b] = 0.0;
} else {

dat—>deltaPhase [b] = peaks—>phases[p] — dat—>prevPhase[b];
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86 }

87 dat—>prevPhase [b] = peaks—>phases[p];

88 }

89 if ( srcF_left >= dstF _left && srcF_right <= dstF_right ) {

90 /* source is fully within destination bin x/

91 dat—time [b] = dat—>time[b] + params—>src_dt;

92 dat—>amp|[b] = peaks—>amps|[p]| * dat—>time[b];

93 dat—>rank [b] = p+1;

94 if ( dat—>time[b]| <= params—>src_dt ) {

95 dat—>deltaPhase [b] = 0.0;

96 } else {

97 dat—>deltaPhase [b] = peaks—>phases[p] — dat—>prevPhase[b];
98 }

99 dat—>prevPhase [b] = peaks—>phases[p];

100 }

101 if ( srcF_left >= dstF_left && srcF_right > dstF_right ) {

102 /* source is partially within destination bin from the right x
103 perc = (dstF_right — srcF_left)/params—>src_dF ;
104 dat—>time [b] = dat—>time[b] + params—>src_dt;

105 dat—>amp [b] = (perc * peaks—>amps|[p])*dat—>time[b];



106 dat—>rank [b] = p+1;

107 if ( dat—time[b] <= params—>src_dt ) {

108 dat—>deltaPhase [b] = 0.0;

109 } else {

110 dat—>deltaPhase [b] = peaks—>phases|[p] — dat—>prevPhase[b];
111 1

112 dat—>prevPhase [b] = peaks—>phases[p];

113 }

114

115 } /% end smear—else x/

116 } /* end dest bin for—loop x/

117

118 } /* end nPeaks for—loop x/

119

120 /% zero out prevPhase for bins that didn’t increase this time x*/
121 for ( b=1; b<dat—>n; 4++b){

122 if ( dat—>time[b] < params—>src_dt ) {

123 dat—>prevPhase[b] = 0.0;

124 }

125 }
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126

127
128 return (0);
129 }
B.2.2 checkSmear
Listing B.7: Compare soure and destination bins set doSmear flag accordingly /
1 int checkSmear( fft_persist_params_s sparams) {
2 /#x @brief Compare soure and destination bins, set doSmear flag accordingly x
3 if ( !params ) return(—1);
4
5 if ( fabs((params—>src_.dF — params—>dst_dF)/params—>dst_dF) > params—>bink
6 params—>doSmear = 1;
7 } else {
8 params—>doSmear = 0;
9 }
10
11 return (0);
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12}

B.2.3 doFFT

Listing B.8: perform FFT on complex data return magnitude and phase inrads /

1 int doFFT( /xoutx/double xmag, double xphase,

2 /*in*/ double xcomplexData, unsigned int elemStride, unsign
3 ned int nBins ) {

4 [/« @brief perform FFT on complex data, return magnitude and phase (in rads) =
5 /% mag — out — per—bin magnitude abs val complex fft output (must be alloc ’d
6 phase — out — per—bin phase in radians (must be alloc ’d nBins length)

7 complexData — in — WILL BE OVERWRITTEN by GSL, must be winLen in length

8 elemStride — in — # elements to stride in window, i.e. 1 uses all data in

10 int rtn = GSL_SUCCESS;

11 double invSqrtN = 1.0/sqrt(winLen);
12 double re, im;

13 unsigned int b;

14
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15 rtn = gsl_fft complex_radix2_forward ( complexData, elemStride, winLen);

16 if ( rtn != GSL.SUCCESS) {

17 fprintf(stderr,” gsl_fft_complex_radix2_forward () failed with retu
18 }

19

20 for ( b=0; b<nBins; ++b) {

21 re = REAL(complexData, b) * invSqrtN;

22 im = IMAG(complexData, b) * invSqrtN;

23 /* absolute magnitude of the complex number x*/

24 mag|[b] = sqrt(rexre 4+ imxim);

25 /* ignore magnitudes that are too low and would cause noisy phase calcu
26 if ( mag[b] < le—4 ) {

27 phase[b] = 0.0;

28 } else {

29 phase[b] = atan2(im, re);

30 }

31 }

32

33 return(rtn);

34 }
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B.2.4 findMax

Listing B.9: find the maz value and its index in a vector of doubles /

int findMax( double xmaxVal, unsigned int smaxld, double xsig, unsigned int 1

/* @brief find the max value and its index in a vector of doubles x/

@param [in] sig — the signal %/

@param[in] len — length of the signal x/
@param [out ] maxVal — maximum value within

@param [out ] maxId — index within

Y

sig

)

that

@Qreturn zero on succes, less otherwise x/

/* can’t work without input x/

if (!sig ) {

return(—1);

}

"sig o/

'maxVal’ can be found x/

/* won’t waste time if neither output is provided x/

if ( !maxVal && !maxId ) {

return (—2);

183



16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

if ( len =1 ) {

xmaxVal = xsig;
smaxIld = 0;
return (0);

double xk, xm = sig;
unsigned int n;
for ( k = &sig[l], n=0; k <= &sig|[len —1]; ++k, +n) {

if ( %k > «m ) {

if (maxVal) sxmaxVal = wm;

if (maxId) smaxId = (m — sig);
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36 return (0);

37 1

B.2.5 findNmaxSubset

Listing B.10: find the N maz values in a subset of a signal /

1 int findNmaxSubset( /+outx/unsigned int *xfoundlds,

2 unsigned int xnFound,
3 /*inx/ double xsig , unsigned int xids,
4 unsigned int nlds, unsigned int maxN ) {

5 /xx @brief find the N max values in a subset of a signal x/

6 /x @param[out] foundIds — pre—allocated vector of top maxN indices of subset
7 (ids match index in ’sig’, not position within ’ids’ vector) =/

8 /x @param[out] nFound — # of maxes actually found x/

9 /+ @param[in]| sig — signal of amplitudes (remains unchanged) x/

10 /+ @param[in] ids — indices of subset of interest x/

11 /* @param[in]| nlds — length of ’ids’ (length of subset) x/

12 /+ @param[in]| maxN — maximum number of maxes to find x/

13 /* @return zero on success, less on error x/
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if ( !foundIds || !nFound ||

fprintf(stderr,”%s: null pointer received!\n”, _FUNCTION_ );

return(—1);

'sig

if ( nlds =0 || maxN = 0 ) {

fprintf(stderr,”%s: illegal zero parameter received (nlds or maxN)!\n”,

__FUNCTION__);

return(—2);

int mylds[nlds];

unsigned int k, mK;

for (k=0;k<maxN;++k) {

foundIds [k] = 0;

/* trivial case x/

if ( nlds =1 ) {
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xnFound = 1;
foundIds [0] = ids[0];

return (0);

/* copy the ids vector so we can modify it without harming calling data x/

for (k=0;k<nlds;++k){ mylds[k] = (int)ids[k]; }

xnFound = 0;
while ( *nFound < maxN ) {
mK = 0;
while ( mylds[mK] < 0 && mK < nlds) {
+HnkK;
}
if (mK = nlds ) {
/* all entries in subset are marked found x/

break ;

}
for (k=0;k<nlds;++k) {

if ( mylds[k] >= 0 && sig[mylds[k]] > sig[mylds[mK]]
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}

foundIds [*nFound| = mylds [mK];

++(*nFound ) ;

mylds [mK] = —1; /% mark entry found x/
}
return (0);

B.2.6 findPeaks

Listing B.11: Find Peaks in an FFT signal /

int findPeaks(/+outx/ unsigned int *nFound,

double
double
double
/*inx/

double

xoutFreq,
xoutAmp,
xoutPhase ,
double xinAmp,

xinFreq ,
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double xinPhase,

unsigned int len

unsigned int smoothSpan,

unsigned int inflectN |

unsigned int locMaxN ,

unsigned int numPeaksToFind) {
/+* @brief Find Peaks in an FFT signal x/
if ( !nFound || !outFreq || l'outAmp || !outPhase ||

'inAmp || !inFreq || !inPhase ) {

return (—1);

if ( len = 0 || smoothSpan = 0 || inflectN = 0 ||
locMaxN = 0 || numPeaksToFind = 0 ) {

return(—2);

«xnFound = 0;

double maxVal;
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unsigned int k, j, i, dupe;

int rtn = 0;

const unsigned int tail = (smoothSpan—1)/2;
const unsigned int sLen = len — tail — tail;

unsigned int smoothLen = 0;

double sAmp[sLen|, sFreq[sLen]; /% post—smooth data x*/
unsigned int inflectId [sLen], nInflectFound;

unsigned int nLocMaxFound, isMax;

unsigned int maxId|[sLen], mld;

unsigned int outlds[sLen];

unsigned int nSearch;

double thisAmp|[len |;

for (k=0; k<numPeaksToFind; ++k){
outFreq[k] = 0;
outAmp[k] = 0;
outPhase [k] = 0;

}

/* normalize x/
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memcpy (thisAmp, inAmp, lenxsizeof(double));

rtn = findMax( &maxVal, maxIld, thisAmp, len );

if ((rtn !=0 ) {

fprintf(stderr,”%s: findMax ()

failed!

(rtn = %, inAmp @ %p, len = %u)\

_FUNCTION__, rtn, inAmp, len);

fflush (stderr);

return(—3);

for ( k=0; k<len; 4++k) {

thisAmp [k] /= maxVal;

/* smooth with sliding window =/

/# smooth () doesn’t handle the phases,

so be careful further on indexing the found phases =/

rtn = smooth( sAmp, sFreq, &smoothLen, thisAmp, inFreq, len, smoothSpan );

if (rtn !=0 ) {

fprintf(stderr,”%s: smooth ()
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_FUNCTION__, rtn

return(—4);

}

if ( smoothLen != sLen ) {

);

fprintf(stderr,”%s: WARNING sLen (%u) != smoothLen (%u)\n”,

_FUNCTION__, sLen, smoothLen );

/% inflection point search x*/

/* inflectld will be subset of smooth indices x/

rtn = inflectNeighborSearch( inflectId , &nlnflectFound ,

if (rtn !=0 ) {

fprintf(stderr,”%s: inflectNeighborSearch ()

_FUNCTION__, rtn
return(—>5);
}
if ( nlnflectFound = 0 ) {

nFound = 0;

sAmp, smoothLen, inflectN );

);

192

failed!

(rtn=0d)\n”



87 return (0);

88 }

89

90

91 /* local maximum search x/

92 nLocMaxFound = 0;

93 for (k=0; k<nInflectFound; ++k ) {

94 isMax = 0;

95 rtn = localMaxSearch( &isMax, sAmp, smoothLen, inflectld k], locMaxN );
96 if (rtn =0 ) {

97 fprintf (stderr,”%s: localMaxSearch() failed! (rtn=%d)\n”,

98 _FUNCTION__, rtn);

99 fprintf(stderr,”\ tinflectId[%u] = %u; sAmp = %f; locMaxN = %u\n”,
100 k, inflectId [k], sAmp[inflectld [k]], locMaxN );

101 return(—6);

102 }

103 if ( isMax ) {

104 maxId [nLocMaxFound| = inflectId [k];

105 ++nLocMaxFound;

106 }
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if ( nLocMaxFound = 0 ) {

nFound = 0;

return (0);

/* find top n peaks x/

«xnFound = 0;

nSearch = ( numPeaksToFind > nLocMaxFound ) ? nLocMaxFound

for (k=0; k<nSearch;++k){

J = 0;

for (i=0;i<*nFound;++i) {

if ( outlds[i] = maxId[j] ) {
i
i = 0; /x reset search x/
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if ( j >= nLocMaxFound ) {

}

mld = maxId[j];

for (j=1; j<nLocMaxFound;++j){

if ( sAmp[maxId[j]] > sAmp[mld]

dupe = 0;

for (i=0;i<snFound;++i) {

if ( maxId[j] = outlds|[i]
dupe = 1;
break ;

}

1
if ( !dupe ) {

mld = maxId[j];

}

} /x end nLocMaxFound for
outlds [*nFound]| = mld;

++(*nFound ) ;

*/

} /* end numPeaksToFind for x/
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/+ fill output arrays x/

for ( k = 0; k < *nFound; ++k ) {
outFreq[k] = sFreq|outlds[k]];
outAmp [k | = sAmp|outlds [k]];

outPhase [k] = inPhase[outlds [k]+ tail |;

return (0);

B.2.7 inflectNeighborSearch

Listing B.12: Inflection Search within a neighborhood /

int inflectNeighborSearch( /+*outs*/ unsigned int xinflectlId , unsigned int xnkF

/*insx*/ double xsig,

unsigned int len, unsigned i

/% @brief Inflection Search within a neighborhood x/

/*x% @brief search within a neighborhood of back—differenced values for inf

first , calculates backdifferences ,
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signal (sig) are

peaks: rising from left , falling to right.

I.e. all n slopes to left of point must be positive and all n s

int
must be negative
@param inflectId: (out)
must
@param nFound: (out)
@param sig : (in)
@param len: (in)
@param n: (in)
2xn + 1)
o/
if ( linflectld || !nFound

) : bl

indices of ’sig’ which are inflection points;
be allocated to size ’'len’—1 before call
number of inflection points found (scalar)
signal to be back—differenced (sig remains un:

length of ’sig’ and ’1bl’ in samples (not byte

single —sided neighborhood for search (i.e. ful

[l tsig ) |

fprintf(stderr,”%s: inflectId , nFound and sig are required; at least on

__FUNCTION__);

return (—1);

}
if ( len =0 ) {

fprintf(stderr,”%s: len

is zero!\n”, FUNCTION_);
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fprintf(stderr,”%s: neighborhood size ’'n’ is zero!\n”, __FUNCTION_);

}

if (n=20) {
return(—3);

}

/% so named because rightSlope[i] is
double rightSlope[len —1];
unsigned int k,j, itr;

char inflectFound;

*nFound = 0;

/* backdifference x/

for (k=0; k<(len—1);++k) {

rightSlope [k] = sig[k+1]—sig[k];

/* perform neighborhood search x/

198
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k = 0;
itr =0;

while ( k < (len—1) && itr < led) {

+Hitr;
inflectFound = 1;
/* search left side x/
for ( j=1; j<=n; ++j ) {
if ( ((int)k—(int)j) < 0 ) {
if ( n =1 ) inflectFound = 0;
break ;
} else {
if ( rightSlope[k—j] < 0 ) {
/* need slopes to be positive on the left , but we’'re not %/
inflectFound = 0;

break ;

}

if ( linflectFound ) {
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-tk
continue ;

}

/* search right side

for ( j=0; j<=@n-1);

o

++ )

if ((k+j) > (len=2) ) {

/* don’t penalize for running off the end of signal to the right

break ;

}

if ( rightSlope[k+j] > 0 ) {

* need slopes to be negative on the right . but we're not =
/ P g ght |

inflectFound =

break ;

}

if ( inflectFound ) {
inflectId [*nFound]

++(*nFound ) ;

0;

k .

Y
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return (0);

B.2.8 localMaxSearch

Listing B.13: check if ’idx’ is local mazimum with 'n’ neighboring samples /

int localMaxSearch( /xouts%/unsigned int xisMax,
/*insx/double xsig , unsigned int len
unsigned int idx, unsigned int n ) {

I b

/*% @brief check if ’idx’ is local maximum with 'n’ neighboring samples x/

/* @param|[out] isMax — nonzero if ’idx’ is index of local maximum, zero othe
/* @param[in]| sig — vector of signal samples (remains unchanged) x*/

/* @param[in]| len  — length of ’sig’ and ’1bl’ x/

/* @param|[in]| idx — index of sample to check x/

/* @param[in] n — number of samples in neighborhood to each side %/
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10 /* @return zero on success, less on error x/

11

12 if ( lisMax || !sig ) {

13 fprintf(stderr,”%s: null pointer received.\n”, __FUNCTION_ );

14 return(—1);

15 }

16 if (len <2 ) {

17 fprintf(stderr,”%s: signal length is too short for search (%d)\n”,
18 _FUNCTION__, len);

19 return(—2);

20 }

21 if ( idx >= len ) {

22 fprintf(stderr,”%s: target index (%d) is beyond signal length (%d).\n”,
23 _FUNCTION__, idx, len );

24 return(—3);

25 }

26

27 unsigned int k;

28

29 xisMax = 0; /% start assuming it’s not x/
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30

31 /* NaN and Infs are ignored x/
32 if ( lisfinite (sig[idx]) ) return(0);
33

34 /* search left x/

35 for (k=1; k<= && ((int)idx—(int)k)>=0; ++k) {
36 if ( isfinite (sig[idx—k]) && sig[idx—k] >= sig[idx]| ) return (0);
37 }
38 for (k=1; k<=n && (idx+k)<len; ++k) {
39 if ( isfinite (sig[idx+k]) && sig[idx+k] > sig[idx] ) return (0);
40 }
41
42 xisMax = 1;
43 return (0);
44 }
B.2.9 smooth

Listing B.14: sliding window smoothing
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int smooth( /*xoutx/double *xoutSig, double xoutLbl,

/**x @brief

@param
@param
@param
@param
@param
@param

@param

unsigned int xoutLen,
/*inx/ double *inSig, double xinLbl,
unsigned int inLen, unsigned int win) {
sliding window smoothing
outSig[out] output signal after smoothing, must be pre—allocated
outLbl[out] output label for each signal bin, must be pre—allocate
outLen [out]| length of outputs
inSig[in] input signal prior to smoothing
inLbl[in] input signal labels
inLen[in] length of input signal

win[in] length of smoothing window

@return zero on success, less on error

if ( loutSig || !outLbl || loutLen || !inSig || !inLbl ) {

fprintf(stderr,”%s: null pointer received. \n”, __FUNCTION_.);

return(—1);

if ( inLen = 0 ) {

fprintf(stderr,”%s: inLen is too short\n”, __FUNCTION__);
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return(—2);

if ( win > inLen ) {
fprintf(stderr,”%s: sliding window size is less than length of signal.\
_FUNCTION__ );

return(—3);

if ((win %2 =20 ) {
fprintf(stderr, "%s: window size must be odd.\n”, __FUNCTION__);

return (—4);

int tail = (win—1)/2;
int k;

int j;

xoutLen = inLen — tail x2;

for ( k=tail; k<((int)inLen—tail); ++k ) {

outLbl [k—tail] = inLbl[k];
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outSig [k—tail] = 0.0;

for ( j=tail; j<=tail; ++j) {
outSig[k—tail] += inSig[k+j];

}

outSig [k—tail] /= (double)win;

return (0);

B.3 fts.c

B.3.1 fts

System xfts(domain_t xdomain ) {

System xsys = fspNewSystem( domain, "FTS”, ”Force Torque Sensor”, sizeof(ft

/* function pointers x/

sys—init = fts_init;
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sys—>drt = fts_drt;
return (sys);
}
B.3.2 fts.drt
Listing B.15: fts_drtSystemsys {
static int fts_drt( Systemx* sys) {
fts_s «FTS = (fts_sx)sys—>data;
fft_s *FFT;
unsigned int d, /#n, b,x/ k;
/*long unsigned int subWinSize;x/
double xsample;
struct timespec start_ts, end_ts;
#if 0
gsl_complex_packed_array winOutCoeffs;
#endif
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/* compute current FTS pose in servicer base from engine truth x/

Qmult_rt ( FTS—q_fts2base , FIS—>q_i2base , 1, FIS—>q_i2fts , —1 );

/*winOutCoeffs = calloc (2% (FFT—>winLen), sizeof(double));*/

for (d=0; d<NUMDOF; 4++d ) {

FFT = &(FTS—FFT[d]);

clock_gettime (CLOCK_PROCESS_ CPUTIMEID, &start_ts);

/* K 3K Sk sk ok skosk sk sk sk kR skosk skosk skosk ok skosk kR skosk R skosk sk sk skosk ok sk sk sk okoskok >l</
[ kR sk sk sk ok o kKK KRR KSR K SRR R KK KKK KRR SRRk SRRk k[
/* add latest data to buffer x/
/* 1. update circbuf pointers and count x/
++(FFT—nSamples ) ;
++(FFT—winCnt ) ;
if ( FFT—>nSamples > 1 ) {

if ( FFT—bufHead >= FFT—bufEnd ) {

FFT—bufHead = &(FFT—buf[0]);

} else {
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++(FFT—>bufHead );

}

if ( FFT-—>nSamples > FFT—>winLen) {

if ( FFT—>bufTail >= FFT—>bufEnd ) {

FFT—>bufTail = &(FFT—buf[0]);

} else {

++FFT—bufTail );

/* 2. insert new data x/

if (d<3 ) {
/* force DOF x/
FFT—bufHead [0]

} else {

FFT—bufHead [0]

FTS—forc_j[d];

FTS—torq_j [d—3];
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/* >k 3k 3k 3k 3k 3k koK sk sk sk ok sk sk skosk skosk sk sk ok sk ok sk ok skosk sk sk ok ok sk ok sk sk ok */

/* K3k 3k ok sk ok ok skosk sk ok sk Sk sk kR sk skosk sk ok sk skosk sk ok sk skosk sk ok sk skok ok ok skoskok */

if ( FFT—>winCnt >= FFT-—>winStride ) {

FFT—winCnt = 0;

FFT—newMeas [0] = 1;

memset (FFT—>fftWin , 0, FFT—>winLen*2xsizeof (double));

if ( FFT—>nSamples <= FFT—>winLen ) {

for (k=0; k< FFT-—>nSamples; ++k ) {

REAL(FFT->fftWin , k)
IMAG (FFT—>fftWin , k)
}
} else {

/* circular buffer hasn’t w

FFT->bufTail [k];

0.0;

/* circular buffer has wrapped, copy in two parts x/

k = 0;

for ( sample = FFT—>bufTail; sample <=

REAL(FFT—>fftWin , k)

IMAG (FFT—>fft Win , k)
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72 }

73 for ( sample = FFT—buf; sample < FFT—>bufTail; ++sample, ++k) {
74 REAL(FFT->fftWin , k) = #sample;

75 IMAG (FFT—>fftWin , k) = 0.0;

76 }

7 }

78

79 /* remove mean from signal prior to FFT if desired x/
80 if ( FFT-—>remMean ) {

81 double thisMean, tot =0.0;

82 for (k=0;k<FFT—>nBins;++k) {

83 tot += REAL(FFT-—>fftWin , k);

84 }

85 thisMean = tot / (double)FFT—>winLen;

86 for (k=0;k<FFT—nBins;++k) {

87 REAL(FFT->fftWin , k) —= thisMean

88 }

89 }

90

o1 #if 0
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92 if ( (FFT—fftRtn = gsl_fft_complex_radix2_forward ( FFT—>fftWin , FFI

93 inLen)) != GSL.SUCCESS) {

94 fprintf(stderr,” gsl_fft_complex_radix2_forward () failed with retu
95 n);

96 }

97 double invSqrtN = 1.0/sqrt (FFT—winLen );

98 double re, im;

99 for ( b=0; b<FFT—>nBins; ++b) {

100 re = REAL(FFT—fftWin, b) % invSqrtN;

101 im = IMAG(FFT—{ftWin, b) % invSqrtN;

102 /* absolute magnitude of the complex number x/

103 FFT—fftMag [b] = sqrt(rexre + imxim);

104 /* ignore magnitudes that are too low and would cause noisy phase
105 if ( FFT—fftMag|b] < le—=5 ) {

106 FFET—fftPhase [b] = 0.0;

107 } else {

108 FFT—fftPhase [b] = atan2(im, re);

109 }

110 }

111 #else
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#endif

#if 0

FFT—fftRtn = doFFT( FFT—fftMag, FFT—fftPhase ,
FFT—f{ftWin , FFT—>elemStride ,

FFT—winLen, FFT-—>nBins );

} else {

FFT—newMeas [0] = 0;

[ 3 kR Rk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok koK R RRRSRSRR SRRk ok %/
/* Determine max freq & amplitude * /
[ 3ok kR ks ok ok ok ok sk ok sk ok sk sk sk sk sk sk sk ok sk ok kR R RSRRSR SRRk ok ok ok /
unsigned int maxId = 1; /% bin zero is DC — ignore it x/
for ( b=maxId+1; b<FFT—>nBins; ++b) {
/* strictly less—than, favoring lower frequencies x/
if ( FFT—fftMag[b] > abs(FFT—fftMag|[maxId]) ) {

maxld = b;

}

FTS—maxFreqAmp [d] = abs (FFT—fftMag [maxId]);
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FTS—maxFreq[d] = FFT—>freqBins [maxId];
#else
[k Rk ok ok ok sk ok ok ok ok Sk KKK SR KKK KRR RRRRRR SRRk ok %/
/+* Find Peaks %/
[ 3k kR Rk sk sk sk sk ok sk sk sk sk sk sk sk sk kKKK R RRRRRR SRRk ok %/
unsigned nFound;
FFT—peaksRtn = findPeaks( &nFound, FFT—peaks.freqs , FFT—>peaks.amps,
FFT—fftMag , FFT—freqBins , FFI—>fftPhase, F

FFT—smoothSpan , FFT—inflectN , FFT-—>locMaxN

FFT—>peaks.nPeaks [0] = (double)nFound;
#endif

clock_gettime (CLOCK_PROCESS.CPUTIMEID, &end_ts);

FFT—compTime.ns = (long)(end_ts.tv_sec — start_ts.tv_sec)*x1000000000;

FFT—compTime_ns += (long)end_ts.tv_nsec — (long)start_ts.tv_nsec;

[ 3k Rk Kk sk sk sk sk sk sk sk sk sk sk sk sk sk sk koK kKRR RRRR SRRk ok %/
/% Calculate Persistence Stats * /

/* >3k 3k ok ok ok ok skook sk ok sk Sk ok sk ok sk Skok sk ok sk Skok sk ok sk ok sk sk ok skookok sk ok skosk ok */
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152 int rtn;

153 rtn = calcPersistence (& (FFT—>persistData), FFTI->freqBins, &(FFT-—>peaks
154 ams) );

155 if ((rtn !=0 ) {

156 fprintf(stderr,”%s: DOF %d persistence calculation failed! (rc = %d)
157 | rtn );

158 }

159

160 } /+ end DOF for—loop x/
161

162

163 return (FSP_.NO_ERROR ) ;

164 }

B.3.3 fts_init

Listing B.16: fts_initSystemsys {

1 static int fts_init( Systemx sys) {

2 fts_s *«FTS = (fts_sx)sys—>data;
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double Fs, delta;

unsigned winLen, winStride, elemStride, d, f

unsigned int smoothSpan, inflectN , locMaxN, remMean;

fft_s *FFT;

char *DOFLAB[] = {"FX”, "FY”, "FZ”, "MX", "MY”, "MZ” };

fft _persist_params_s *PP;

fft _persist_data_s *PD;

/* FFT parameters x/

FSPgetParamInt ( FTS—en_fft ,” MANIP.FTS.FFT.en”

FSPcopyParamld( Fs, "MANIP.FTS.FFT.Fs” |

FSPgetParamInt ( winLen "MANIP.FTS .FFT. winLen” |

FSPgetParamInt ( winStride, "MANIP.FTS.FFT.winStride”,
FT window [—]");

FSPgetParamInt ( elemStride , "MANIP.FTS.FFT. elemStride”,
")

FSPgetParamInt ( maxPeaks, "MANIP.FTS.FFT. maxNpeaks” ,

FSPgetParamInt ( smoothSpan, "MANIP.FTS.FFT.smoothSpan”,
W)

FSPgetParamInt ( inflectN | "MANIP.FTS.FFT. inflectN"” |
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, nBins, maxPeaks;

"nonzero to enable
"sampling frequenc
"# samples in each

"# samples to skip

"# samples to skip

"max # of fft peak

"# samplies in spa

"single —side neigh



23 on point search”);

24 FSPgetParamInt ( locMaxN , "MANIP.FTS.FFT.locMaxN" | "single —side neigh
25 ximum search”);

26 FSPgetParamInt ( remMean, "MANIP.FTS . FFT.remMean” , "nonzero to remove

27 k search”);

28

29 /+* FTS parameters x/

30 FSPgetParamStr ( FTS—jointName, "MANIP.FTS. joint_name”, ”"name of FTS joint
31 FSPgetParamStr ( FTS—outerBodyName, "MANIP.FTS.outerBodyName” , "name of th

32 he FTS joint in VSD”);

33

34 /% inputs x/

35 fspSetVarExpandTags( sys, 1, FTS—jointName );

36 FSPgetInputVec( FTS—>forc_j, 3, "JOINTS.%.force_j”, "force in joint frame
37 FSPgetInputVec( FTS—>torq_j, 3, "JOINTS.%.torq_j”, "torque in joint frame
38 FSPgetInputVec( FTS—q_.i2base, 4, "MPROP.base.q-i2b”, "inertial orientatio
39 se body”);

40

41 fspJointInfo_s jtInfo;

42 int n, xmatched_ids;
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45
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47

48

49
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51

52

93

o4

95

o6

o7

o8

99

60

61

62

n = fspJointFindld ( FTS—jointName, &matched_ids );

if (n=20) {
fprintf(stderr ,”\n\n\nFailed to find joint named '%s’!!!!\n”, FTS—joint
fprintf(stderr ,” Exiting!\n");

return (FSP_.PARAM_MISSING ) ;

if (n>1){

fprintf(stderr ,” \n\n\nERROR found multiple joints matching pattern ’%s’

fprintf(stderr ,” Found joint IDs: 7);
for (int i = 0; i < mn; i++ ) {
fprintf(stderr,”%d ”,matched_ids[i]);

}

fprintf(stderr ,”\n\n");

return (FSP_PARAM MISSING ) ;
}
FTS—jointld = matched_ids[0]; /+ assumes there’s only one x/
fspJointGetInfo( FITS—jointld , &jtInfo );
FTS—outerBodyld = jtInfo.outerBodylID;

/* outerBodyName = fspBodyGetName( FTS—outerBodyld ); x/

218



63

64

65

66

67

68

69

70

71

72

73

74

5

76

77

78

79

80

81

82

fprintf(stderr ,”\n\n%s: FTS outer body ID is %d and name is '%s’.\n\n”, __I

erBodyld , FTS—outerBodyName );

fspSetVarExpandTags( sys,

1, FTS—outerBodyName );

FSPgetInputVec( FTS—>q_i2fts , 4, "MPROP.%.q_i2b”, "FTS outer body inertial

/* outputs x/

FSPnewOutput ( FTS—q_fts2base , 4,

1, 7q_fts2base”, FSP_LOGIx,

om FTS measurement frame to servicer base frame”);

#if 0

FSPnewOutput ( FTS—maxFreq, NUMDOF,

FT output (if enabled) [Hz]”);

FSPnewOutput ( FTS—maxFreqAmp, NUMDOF,
freq [=]7);
#endif

fspSetDRTsampleTime( sys,

/* allocate per—DOF memory for FFTs %/

1.0 / Fs );

for ( d = 0; d < NUMDOF; ++d ) {

FFT = &(FTS—FFT[d]);

219

1, "maxFreq”, FSP_LOGI1x,

1, "maxFreqAmp” , FSP_LOGIx,

”(engin

7 per—DC

" per—DC



83 PP = &(FTS—>FFT[d]. persistParams);

84 PD = &(FTS—FFT[d]. persistData);

85

86 nBins = (unsigned)(( winLen / 2 ) + 1);

87 FFT—>nBins = nBins;

88

89 /* allocate x/

90 FFT—f{ftWin = calloc(winLenx*2, sizeof(double)); /* (input) indiv

91 lex data to be sent to FFT} x/

92 /* FFT—buf = calloc (winLen, sizeof(double)); =/

93

94 FFT—>ftftWinCopy = calloc (winLenx2, sizeof(double));

95

96 /* persistence parameters x/

97 FSPgetParamInt ( PP—dst_nBins , "MANIP.FTS.PERSIST. dst _nBins”

"number of bins in de

98 stination FFT”);

99 FSPcopyParamld ( PP—dst_dF , "MANIP.FTS.PERSIST . dst _dF ",
"destination FFT delt

100 a—frequency per bin [Hz]”);
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102

103

104

105

106

107

108

109

110

111

112

113

114

115

FSPgetParamInt ( PP—src_nBins ,

"number of bins in so

urce FFT”);

FSPcopyParamld ( PP—>src_dF ,

"source FFT delta—fre

quency per bin [Hz]”);
FSPcopyParamld( PP—>src_dt

"time between source

samples, [sec]”);

FSPcopyParamld( PP—degradeFactor

tude degradation factor [0:1]");

FSPcopyParamld ( PP—binEpsilon ,

"bin size percentage

epsilon for smearing check”);

Y

FSPgetParamInt ( PP—doSmear

"nonzero if the sourc

e peaks will be smeared across mult dest

PD—>n = PP—>dst_nBins;

/* copy locally x/

221
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120

121
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123
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125

126

127

128

129

130

131

132

FFT—winLen = winLen;
FFT—>winStride = winStride;

FFT—elemStride = elemStride;

FFT—F's = Fs / (double)elemStride;

FFT—maxNpeaks = maxPeaks;

FFT—smoothSpan = smoothSpan;

FFT—inflectN = inflectN;
FFT—locMaxN = locMaxN ;
FFT—remMean = remMean;

/* declare as telemetry / outputx/

fspSetVarExpandTags(sys, 1, DOFLAB[d]);

FSPnewOutput ( FFT—freqBins , nBins ,

FSP_LOGI1x, "% freque

ncy labels for FFT output bins [Hz]”);

FSPnewOutput ( FFT—fftMag , nBins ,

FSP_LOGI1x, "% magnit

ude of FFT output [?]7);

FSPnewOutput ( FFT—>fftPhase , nBins ,

FSP_LOGI1x, "% phase

222
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133 of FFT output [rads]”);

134 fspTelemetry ( &FFT—compTime_ns, FSPLONG, 1, "%.compTime_ns”,
FSP_LOGO, 7time req

135 uired for FFT computation, including copies, [nsec]”);

136 fspTelemetry ( &FFT—fftRtn , FSP_INT, 1, "%.fftRtn”,
FSP_LOGO, "FFT alg.

137  return status”);

138 fspTelemetry ( &FFT—peaksRtn FSP_INT, 1, 7%.peaksRtn” ,
FSP_LOGO, 7”findPeak

139 s() return status”);

140 FSPnewOutput ( FFT—buf , winLen , 1, 7%.buf”,
FSP_LOGO, 7Input bu

141 ffer to FFT”);

142 FSPnewOutput ( FFT—newMeas, 1,1, "%.newMeas” ,
FSP_LOGI1x, "nonzero

143 when new FFT output is available [bool]”);

144 FSPnewOutput ( FFT—>peaks.freqs , maxPeaks, 1, ”"%.peakFreqs”,
FSP_LOGI1x, ”Frequencie

145 s of peaks [Hz]”);

146 FSPnewOutput ( FFT—>peaks.amps, maxPeaks, 1, ”%.peakAmps”,

223



147

148

149

150

151

152

153

154

155

156

157

158

159

160

FSP_LOGI1x, ”Normalized
Amplitudes of peaks [—]7);

FSPnewOutput ( FFT—>peaks.phases, maxPeaks,1, ”%.peakPhases”
FSP_LOGI1x, ”"Phases of
peaks [Rad]”);

FSPnewOutput ( FFT—>peaks.nPeaks, 1, 1, "%.nPeaks”
FSP_LOGI1x, ”"number
of peaks found”);

FSPnewOutput ( PD—amp, PD—>n, 1, "%.PERSIST.amp” ,
FSP_LOGIl1x, " persiste
nt amplitude (n length)”);

FSPnewOutput ( PD—>time , PD—n, 1, "%.PERSIST. time” ,
FSP_LOG1x, ”persiste
nt time (n length)”);

FSPnewOutput ( PD—>deltaPhase , PD—>n, 1, "%.PERSIST. deltaPhase”,
n phase of this bin’s persistent phase (n length)”);

FSPnewOutput ( PD—>prevPhase , PD—>n, 1, "%.PERSIST. prevPhase” ,
FSP LOGO, 7”phase in
this bin from previous sample (n length)”);

FSPnewOutput( PD—>rank , PD—>n, 1, "%.PERSIST.rank”,
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162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

FSP_LOGI1x, "rank of

peak (1 being largest peak) of bins (n length)”);

/* debug */
/* fspTelemetry ( FFT—fftWinCopy, FSPDOUBLE, winLen, ”"%.fftInput”, FS

of samples sent into FFT”); x/

/* compute frequency bin labels x/
delta = 1.0/(winLen/2.0) % (Fs/2.0);
FFT—freqBins [0] = 0.0;

for ( f = 1; f < FFT->nBins; ++f ) {

FFT—freqBins [f] = (double)f % delta — 0.5xdelta; /% center freq. of

/* per-DOF initialization x/
FFT—nSamples = 0;

FFT->bufTail = &FFT>buf[0]);
FFT—>bufHead = &(FFT—>buf[0]);

FFT—bufEnd = &(FFT—buf [FFT-—>winLen —1]);
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180
181 } /% end of DOF for—loop x/

182

183 /* x/ FSP_assemble_ 10 _finished ();/x* * /
184

185

186

187 return (FSP_NO_ERROR);

188}

B.4 manip.c

B.4.1 manip

1 System smanip( domain_t xdomain )

2 {

3 System xsys = fspNewSystem (domain, "MANIP”, ”Manipulator Controller”, size

5 sys—add = NULL;
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sys—>init = &manip_init ;
sys—>r1t = &manip_rt ;
sys—>drt = &manip_drt;
sys—>exit = NULL;

sys—log = NULL;

return( sys );

B.4.2 manip_init

Listing B.17: manip_initSystemsys

static int manip_init( System x*sys )

{

manip_s xmanip = (manip_sx)sys—>data;

int i;

char str[256];

int logRate; /% computed from engine’s print interval and desired log

double printInt , logFreq;
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19
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23

24

25

26

27

/* workspace paremeters x/
FSPgetParamVec( manip—>period, 1, " period”, 7drt period, seconds”)

fspSetDRTsampleTime (sys, manip—>period [0]);

FSPgetParamInt ( manip—enHardStop, 7CONFIG.en_hard_stop”, ”flag , nonzero
stops”);
FSPgetParamInt ( manip—>enTorqLimit, "CONFIG.en_torq_lim”, 7”flag, nonzero

ue limits”);

FSPgetParamlInt ( manip—>enRateLimit , "CONFIG. en_rate_lim”, ”flag, nonzero
limits”);
FSPgetParamInt ( manip—>enOutFilt , "CONFIG. en _output_filter”, "flag , nonz

int command output filter should be used.”);

/+* FSPgetParamInt( manip—>enFts "CONFIG. en _fts” | 7 flag , nonz
torque sensor”); x/

FSPgetParamInt ( manip—>isLocked , "locked” "nonzero if

e locked”);

FSPcopyParamlf( printInt , "ENG.INTEGRATOR. printint”, ”"Integrator logging
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28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

FSPcopyParamlf( logFreq, "logFreq”, "Desired logging freq
lator module”);
logRate = (int)round(logFreqxprintlnt );

if ( logRate < 1 ) logRate = 1;

fprintf (stderr,”%s:
- )

fprintf(stderr,”%s: printIlnt = %f\n”, _FUNCTION__, printlnt );

fprintf (stderr,”%s: logFreq = %f\n”, _FUNCTION__, logFreq );

fprintf(stderr,”%s: logRate = %d (as int) and %f (as double)\n”, __FUNCTIC

eqxprintInt) );

fprintf(stderr,”%s:

— )

FSPgetParamInt ( manip—>nLinks , "n_links”, "number of actuated links i

i = fspJointFindId( "manip_joint*”, &(manip—>jid));
if ( manip—>nLinks > i ) {
fprintf(stderr,”%s: ERROR: manip n_links = %d but only found %d joint I
_FUNCTION__, manip—>nLinks, i );

return (FSP_.PARAM_MISSING ) ;
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48

49

20

51

92

93

54

95

o6

57

o8

59

60

61

62

63

64

if ( manip—>nLinks > NUMLINKS MAX ) {

fprintf(stderr,”%s: ERROR: manipulator MANIP has %d links , but

_FUNCTION__, manip—>nLinks, NUMLINKS MAX );

return ( FSP_PARAM_MISSING );

FSPgetParamVec( manip—jntTorqMax,

t
imum.\n”

ki

FSPgetParamVec( manip—Kbp,
"proportional gain, per
joint ”);

FSPgetParamVec( manip—Ki,
“integral gain, per join
t 7 ) ;

FSPgetParamVec( manip—Kd,
"derivative gain ,
int”);
m77 );

per jo

230
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65

66

67

68

69

70

71

72

73

74

5

76

77

78

79

80

7

FSPgetParamVec( manip—>jntRateMax , manip—>nLinks, ”jnt_rate_max”, ”per
/sec”);

FSPgetParamMat ( manip—>jntHardStop, 2, manip—>nLinks, ”hard_stop”,
"per—joint hard stop ang
les RADIANS [ min; max |7 );

FSPgetParamVec( manip—>jntAntiWindup, manip—>nLinks, ”antiWindup”,
"per—joint anti—windup I
imit for error integral”);

FSPgetParamVec( manip—>jntLockCmd, manip—>nLinks, ”jnt_lock_cmd”, "nor
t to LOCKED state”);

FSPgetParamVec( manip—newLockCmd, 1, "new_lock_cmd”, " fla

jntLockCmd values have changed”);

/% inputs x/

/* FSPgetInputVec( manip—>Femd, 6, "ARMCIRL. Femd_” |
"reactVel mode s
tacked force—torque command”); x/

FSPgetInputVec( manip—>ang_cmd, manip—>nLinks , "ARMCIRL. ang_cmd” ,

”commanded manipulat
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81

82

83

84

85

86

87

38

89

90

91

92

93

94

95

96

or joint angles, radians”);

FSPgetInputVec( manip—>rate_cmd , manip—>nLinks , "ARMCIRL. rate_cmd” ,
or joint rates, rad/sec”);

FSPgetInputVec( manip—>torq_cmd , manip—>nLinks ; "ARMCIRL. torq_cmd” ,
or joint torques (TORQCMD mode only), Nm”);

FSPgetInputVec( manip—>mode, 1, ”"ARMCTRL. manip_mode”

1ler (0=DISABLE,1=ANGLE)”);

manip—>driveAxis = calloc( manip—>nLinks, sizeof(int));

for ( 1 = 0; i < manip—>nLinks; i++ ) {

fspJointInfo_s jInfo;

fspJointGetInfo ( manip—jid[i], &jInfo);

fspSetVarExpandTags( sys, 1, jInfo.name );

97 #if MANIP.VSD VERBOSE

98

99

100

fprintf(stderr,”%s: manip—>nLinks = %, i = %d\n”, __FUNCTION__, manip—

fprintf(stderr,”%s: joint %d: info.name = '%s’ info.axis = ( %f %f %f )

232



101 jInfo .name, jInfo.axis_j[0], jInfo.axis_j[1], jInfo.axis_j[2] )
102 fprintf(stderr,”%s: joint %d: manip—>jid = %d; jInfo.id = %d\n”, __FUNC

103 d[i], jInfo.id );

104 #endif

105

106 if ( jInfo.axis_j[0] > 0.0 ) {

107 manip—>driveAxis[i] = 0;

108 } else {

109 if ( jInfo.axis_j[1] > 0.0 ) {

110 manip—>driveAxis[i] = 1;

111 1 oelse {

112 if ( jInfo.axis_j[2] > 0.0 ) {

113 manip—>driveAxis[i]| = 2;

114 } else {

115 fprintf (stderr,”%s: WARNING joint %d axis_j = [ %1.1f %1.1f %
116 \n”,

117 _FUNCTION__, i, jInfo.axis_j[0], jInfo.axis_j[1], jIn
118 }

119 }

120 }
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126

127

128
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130

131
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133

134

135

136

137

138

139

140

if ( manip—isLocked =— 0 ) {

snprintf(str, 256, "current joint angle (inner to outer) for manip j

, i, jInfo.name );

FSPgetInputVec( manip—ang[i], 1, "JOINTS.%.angle”, str );

snprintf(str, 256, "current joint rates for manip joint %d '%s’, [ra

FSPgetInputVec( manip—>rate[i], 3, "JOINTS.%.dw”, str );

/*debugx*/

#if MANIP_VSD_VERBOSE

fprintf(stderr,”%s: manip—>ang[%d]

fprintf (stderr,”%s: manip—>rate[%d]

fflush (stderr);

#endif

}

/* outputs x/
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142

143

144

145

146

147

148

149

150

151

152

153

FSPnewOutput ( manip—>ang_out ,

logRate, "current joint
angle , rads”);

FSPnewOutput ( manip—>ang_cmd_out ,
logRate , "commanded joi
nt angle, rads”);

FSPnewOutput ( manip—>rate_out ,
logRate, "current joint

rate , rad/sec”);

FSPnewOutput ( manip—>rate_cmd_out ,

logRate , ”"commanded joi
nt rate, rad/sec”);
FSPnewOutput ( manip—>torq,
logRate, ”"applied joint
torques , Nm”);
FSPnewOutput ( manip—>ang_err ,
logRate, ”"error in join
t angle, rads”);
FSPnewOutput( manip—>rate_err

logRate, "error in join

235

manip—>nLinks

manip—>nLinks

manip—>nLinks

manip—>nLinks

manip—>nLinks

manip—>nLinks

manip—>nLinks

7 7

ang”
"ang_cmd” |
"rate”

"rate_cmd”
"torq”,

“ang_err”
"rate_err”



154 t rate, rad/sec”);

155 FSPnewOutput ( manip—hardStopFlag, manip—>nLinks, 1, "hardStopFlag”,
logRate, 7 nonzero indi

156 cates a joint hit a hard stop limit”);

157 FSPnewOutput ( manip—>torqLimitFlag , manip—nLinks, 1, "torqLimitFlag”, log

158 ates a joint was torque limited”);

159 FSPnewOutput ( manip—>rateLimitFlag , manip—nLinks, 1, "rateLimitFlag”,6 log

160 ates a joint was rate limited”);

161 FSPnewOutput ( manip—>jntErrint , manip—>nLinks, 1, 7jntErrint”,
logRate, "per—joint err

162 or integral term”);

163 FSPnewOutput ( manip—>mode_out , 1, 1, "mode” ,

logRate, ”"current manip

164 module mode (0=DISABLE,1=JOINT)”);

165

166 #if 0

167 /* set initial joint lock state x/

168 for ( i=0; i < manip—>nLinks; ++i ) {

169 fprintf(stderr,”%s: setting joint %d, id = %d, to state %s.\n”, __FUNCIT
170 manip—>jid [i], ((manip—>jntLockCmd[i] > 0) 7 "LOCKED”:” UNLOCKEL
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171 if ( manip—>jntLockCmd[i] > 0 ) {
172 if ( 0 != (rc = fspJointModifyType( manip—jid[i], "LOCKED”)) ){
173 fprintf (stderr,”%s: fspJointModifyType (LOCKED) failed for joint %

174 TION__, i, rc);

175 }

176 } else {

177 if (0 != (rc = fspJointModifyType( manip—jid[i], "REV1”))) {

178 fprintf(stderr,”%s: fspJointModifyType (REV1) failed for joint %d

179 ON__, i, rc);

180 }

181 }

182}

183 #endif

184

185

186 return (FSP_.NO_ERROR);

187 }
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B.5 armCtrl.c

B.5.1 Quat2Rot

Listing B.18: Convert quaternion to rotation matriz /

int Quat2Rot( double DCM[3][3], double xq-in, int inv_flag ) {
/**% @brief Convert quaternion to rotation matrix =/
/* q[0]—q[2] is the vector, q[3] is the scalar =/

double  in, out[3][3], skew[3][3], TwoQ4;

if (IDCM || !q-in ) {

return(—1);

long double q[4], qnorm;

extern long double sqrtl(long double x);

gnorm = sqrtl( q_in[0]xq_in[0] +
q_in[1]*xq_in[1] +

q_in [2]*xq_in [2] +
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27

28

29

30

31

32

33

34

q-in [3]xq-in [3] );

q[0] = q-in[0]/qgnorm;
q[1] = q-in[1]/qnorm;
q[2] = q-in[2]/qnorm;
q[3] = q-in[3]/qgnorm;

TwoQ4 = 2.0%q[3];

if (inv_flag < 0 ) TwoQ4 = —TwoQ4;

in = q[3]xq[3]-Dot_rt(q,q);

Outer_rt( out, q, q );

Skewsym_rt ( skew, q );

DOM[0][0] = in + 2.0%out [0][0];

DOM[0][1] = 2.0%out [0][1] — TwoQdsskew [0][1];
DOM[0][2] = 2.0%out [0][2] — TwoQdsskew [0][2];
DOM[1][0] = 2.0%out [1][0] — TwoQdsskew [1][0];
DOM[1][1] = in + 2.0%out[1][1];

DOM[1][2] = 2.0%out [1][2] — TwoQdsskew [1][2];
DOM[2][0] = 2.0%out [2][0] — TwoQdsskew [2][0];

DCM[2][1] = 2.0xout [2][1] — TwoQdxskew [2][1];
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DCM[2][2] = in + 2.0xout[2][2];

B.5.2 armAngRateMode_exec

Listing B.19: armAngRateMode_execarmCtri_sARM{

int armAngRateMode exec(armCtrl_s *ARM){

if ( 'ARM ) return (—1);

angRate_s *DATA = &ARM—>angRateData:

unsigned int k;

/#* on new command, recalculate rate command and errors x/

if ( ARM—>new_theta_des[0] > 0 ) {

if ( ARM—>t_slew [0] <=0 ) {
fprintf(stderr ,”\e[lm\e[31nfts: Error — received t_slew event less th

f)\e[0m\e[39m\n" ,
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_FUNCTION__, ARM—t_slew [0] );
fflush (stderr);

for ( k=0; k < (unsigned int)ARM—>nLinks; k++ ) {

ARM—>ang_des [k] = ARM—>ang|[k][0];
ARM—ang_cmd [k] = ARM—ang|[k][0];
}
memset ( ARM—>rate_cmd , 0, ARM—>nLinks x sizeof(double) );

memset ( ARM—ang_cmd_delta, 0, ARM—nLinks * sizeof(double) );

memcpy ( DATA—ang_cmd_last , ARM—ang_cmd, ARM—>nLinks *xsizeof(double

} else {

fprintf(stderr, ”\e[lm\e[32nts: New Joint Command Received:\e[0Om\e[3

fprintf (stderr , "%s:\t t_slew = %f\n”, _FUNCTION__, ARM-

fflush (stderr );

for ( k=0; k < (unsigned int)ARM—nLinks; k++ ) {
ARM—ang_des [k] = ARM—>theta_des [k];
ARM—>ang_cmd _delta [k] = ARM—>theta_des[k] — ARM—ang|k]|[0];

if ( fabs(ARM—ang_cmd._delta[k]) < le—=5 ) { /x step size too sma
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ARM—>rate_cmd [k] = 0;

} else {
ARM—>rate_cmd [k] = ARM—ang_cmd _delta[k] / ARM—>t_slew [0];
}
ARM—ang_cmd [ k] = ARM—ang [k][0] + ARM—>rate_cmd [k] * ARM—

DATA—ang_cmd_last [k] = ARM—>ang_cmd [k];

fprintf(stderr, "%s:\t Joint %d : ( curr, des, rate ) : ( %2.8f,
_FUNCTION__, k+1, ARM—ang[k]|[0], ARM—ang_des[k], >

fflush (stderr );

ARM—>new _theta_des[0] = 0; /x lower the flag to prevent reuse within

} else { /x new_theta_des[0] if ’s else statement =/

for ( k=0; k < (unsigned int)ARM—=>nLinks; k++ ) {
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/* increment the desired position x/
/*ARM—ang_cmd [k] = ARM—ang [k][0] + ARM—>rate_cmd k] % ARM—>period |

ARM—ang_cmd [k] = DATA—>ang_cmd _last [k] + ARM—>rate_cmd [k] % ARM—=pc

/* don’t allow overshoot in the command x/
if ( ARM—>rate_cmd [k] > 0.0 ) {
if ( ARM—ang_cmd k]| >= ARM—>ang_des [k] ) {
ARM—ang_cmd [k] = ARM—>ang_des [k];
/* fprintf(stderr, ”"\e[lm\e[33nlts: joint %u position reached.\

CTION__, k);x/

}
} else {

if ( ARM—>rate_cmd[k] < 0.0 ) {
if ( ARM—ang cmd k] <= ARM—>ang_des k] ) {
ARM—ang_cmd [k] = ARM—>ang_des [k];
/+fprintf(stderr, ”"\e[lm\e[33nfts: joint %u position reached
UNCTION__, k);%/
}
} else {

/* rate must be zero x/
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ARM—ang_cmd [k] = ARM—>ang_des [k];

ARM—>rate_cmd [k] = 0.0;

}

DATA—>ang_cmd_last [k] = ARM—ang_cmd [k];

} /+ end for—k x/

}/+* end new_theta_des if—else—statement x/

return (0);

}

B.5.3 armAngRateMode_exit

int armAngRateMode exit(armCtrl_s *ARM) {
if ( 'ARM ) return (—1);
return (0);

}
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B.5.4 armAngRateMode_ init

int armAngRateMode_init (armCtrl_s *ARM){
if ( !ARM ) return (—1);

fprintf(stderr,”%s (): sim time = %f\n\n”, _FUNCTION__, fspGetSimTime ()

ARM—>manip_mode [0] = (double)ARM—angRateData.manip_mode;

return (0);

B.5.5 armCartMode_exec

Listing B.20: armCartMode_execarmCtri_sARM {

int armCartMode_exec(armCtrl_s *ARM) {

if ( 'ARM ) return (—1);

cart_s *DATA = &ARM—>cartData;
double ROT[3][3];

unsigned int k;
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double ang[DOF];

int

doLatch = 0;

/***>I<*******>l<********************************>I<****************************

if

check for new commands */
( DATA—>cmd _flag[0] > 0 ) {

fprintf(stderr, ”"\e[lm\e[32nfts: New Cartesian Command Received:\e[Om\e|

fprintf(stderr "%s:\t t_slew = %f\n”, _FUNCTION__, ARM—>t_

fflush (stderr);

DATA—>finalp0T [0] = DATA—>cmd_p0T [0];
DATA—>finalp0T [1]| = DATA—>cmd p0T [1];
DATA—>finalp0T [2] = DATA—>cmd p0T [2];
DATA—>finalRPY [0] = DATA—>cmd RPY [0];
DATA>finalRPY [1] = DATA>cmd RPY [1];
DATA>finalRPY [2] = DATA>cmd RPY [2];
DATA—>final SEW = DATA—>cmd SEW [0 ];
DATA—>t _slew = ARM—>t _slew [0];

/* scale the position if it’s reaching beyond limits x/
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if ( Norm_rt( DATA—>finalp0T ) > DATA—>maxReach 0]

double scale = DATA—>maxReach[0] / Norm_rt( DATA—>finalp0T );

DATA—>finalp0T [0] *= scale;

DATA—>finalp0T [1] *= scale;

DATA—>finalp0T [2] *= scale;

RPYToRot( DATA—>finalRPY , ROT );

RotToQuat( DATA—>q_final , ROT );

/% lower the flag until the next event raises

DATA—cmd _flag [0] =

0.0;

if ( DATA>t_slew > 0 ) {

DATA—>configured

DATA—>t _slew_start = fspGetSimTime ();

DATA—>startp0T [0] = ARM—pOT [0];

DATA—>startp0T [1] = ARM—p0T [1];

DATA—>startp0T [2] = ARM—p0T [2];

DATA—q_start [0]

DATA—>q_start [1]

= ARM—>q_mb2tt [0];

= ARM=>q_mb2tt [1];
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DATA—>q_start [2] = ARM—>q_mb2tt [2];

DATA—>q_start [3] = ARM—>q_-mb2tt [3];
DATA—>startSEW = ARM—>sew _deg [0] x deg2rad;
DATA—latched = 0;

} else {

DATA—>configured = 0;

}

} /* end new—command—if x/

/*****>I<>I<>|<*>I<******>I<****>|<***>I<********>|<*>|<********>I<***************************

for ( k=0; k<ARM—>nLinks; ++k) {

if

ang [k] = ARM—ang[k][0];

maintain current position if not configured x/
( DATA—>configured = 0 ) {
memcpy ( ARM—ang_cmd, ang, ARM—>nLinksxsizeof (double));

memset ( ARM—>rate_cmd, 0.0, ARM—>nLinksx*sizeof (double));

return (0);
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/*************************************************************************

/* maintain LATCHED commanded joint position if not configured x/

if ( DATA—>latched ) {
memcpy ( ARM—ang_cmd , DATA—>latchJoints , ARM—>nLinksx*sizeof (double));
memset ( ARM—>rate_cmd, 0.0, ARM—>nLinksxsizeof (double));

return (0);

/*************************************************************************

/* Compute new desired location along the trajectory x/
DATA—frac = (fspGetSimTime () — DATA>t _slew_start) / DATA>t_slew ;
if ( DATA>frac >= 1.0 ) {

DATA—>frac = 1.0;

DATA—>desp0T [0] = DATA—>finalp0T [0];

DATA—>desp0T [1] = DATA—>finalp0T [1];

DATA—>desp0T [2] = DATA—>finalp0T [2];
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DATA—>q_des [0] = DATA—>q_final [0];

DATA—>q_des [1] = DATA—>q_final [1];
DATA—>q _des [2] = DATA—>q _final [2];
DATA—>q_des [3] = DATA—>q_final [3];
DATA—>desSEW = DATA—>finalSEW ;

/* set doLatch here so we don’t under or over shoot the cartesian pose
of invkin x/

doLatch = 1;

} else {

/* difference in position desired from current x/

DATA—>desp0T [0] = ( DATA—>finalp0T [0] — DATA—>startp0T [0])+*DATA—>frac +
DATA—>desp0T [1] = ( DATA—>finalp0T [1] — DATA—>startp0T [1])+*DATA—>frac +
DATA—>desp0T [2] = ( DATA—>finalp0T [2] — DATA—>startp0T [2])+*DATA>frac +
/* quaternion interpolate attitude, determine delta from current x/
Qslerp_rt ( DATA—>q_des , DATA—>q_start , DATA—>q_final , DATA>frac );

/* don’t forget the SEW... x/

DATA—>desSEW = ( DATA—>finalSEW — DATA—>startSEW )*DATA—>frac + DATA—>st:
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DATA—>p0T _delta[0] = DATA—>desp0T [0] — ARM—p0T [0];
DATA—>pO0T _delta[1] = DATA—>desp0T [1] — ARM—=p0T [1];

DATA—>p0T _delta[2] = DATA->desp0T [2] — ARM->pOT [2]:

Qmult_rt ( DATA—>q _delta , DATA—>q _des, 1, ARM—>q._mb2tt, —1 );

Quat2Rot ( ROT, DATA—>q_delta, 0 /+«don’t inverts*/ );

DATA—>deltaSEW = DATA—>desSEW — (ARM—>sew _deg [0]* deg2rad );

/* InvKin to desired joint angles for desired point along slew x/

invKin( /% in x/ DATA—>pO0T _delta, ROT, DATA—>deltaSEW , &(ARM—armParan
/* in/out x/ ang,
/* out x/ DATA—>deltaAng , &DATA—>manip_idx , &DATA—>nullspace_id:

lar , DATA—>sigma );

memcpy ( ARM—ang_cmd, ang, ARM—>nLinks % sizeof(double));

for (k=0; k<ARM—>nLinks; ++k) {

ARM—>rate_cmd [k] = DATA—>deltaAng|[k] / ARM—>period [0];
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127 }

128

129 if ( doLatch ) {

130 memcpy ( DATA—>latchJoints , ARM—ang_cmd, ARM-—>nLinksx*sizeof (double));
131 DATA—>latched = 1;

132 }

133

134 return (0);

135 }

B.5.6 armCartMode_exit

1 int armCartMode_exit(armCtrl_s *ARM) {
2 if ( 'ARM ) return (—1);
3 return (0);

4}

B.5.7 armCartMode_init
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Listing B.21: armCartMode_initarmCtrl_sARM {

int armCartMode_init(armCtrl_s *ARM) {
if ( 'ARM ) return (—1);
fprintf(stderr,”%s (): sim time = %f\n\n”, __FUNCTION__, fspGetSimTime /()

ARM—manip_mode [0] = (double)ARM—>cartData . manip_mode;

memcpy ( ARM—>cartData . finalp0T , ARM—p0T, 3xsizeof (double));
memcpy ( ARM—>cartData . finalRPY , ARM—>rpy0T _deg, 3xsizeof(double));
ARM—>cartData . finalRPY [0] *= deg2rad;

ARM—>cartData . finalRPY [1] = deg2rad;

ARM—>cartData . finalRPY [2] *= deg2rad;

memcpy ( ARM—>cartData.q_final ;, ARM—q_-mb2tt, 4xsizeof (double));

ARM—>cartData . finalSEW = ARM—>sew_deg [0] * deg2rad;

memcpy ( ARM—>cartData.desp0T , ARM—>p0T, 3xsizeof(double));
memcpy ( ARM—>cartData .desRPY, ARM—>rpy0T_deg, 3xsizeof(double));
ARM—>cartData.desRPY [0] %= deg2rad;

ARM—>cartData.desRPY [1] %= deg2rad;

ARM—>cartData .desRPY [2] %= deg2rad;

memcpy ( ARM—>cartData.q_-des , ARM—>q_-mb2tt, 4xsizeof (double));
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20 ARM—>cartData .desSEW = ARM—>sew_deg [0] xdeg2rad;

21

22 ARM—>cartData.t_slew = 0;

23

24 memset ( ARM—=cartData.delta, 0.0, DOFxsizeof(double));
25

26 memset ( ARM—>cartData.deltaAng, 0.0, DOFxsizeof (double));

27

28 ARM—>cartData.configured = 0; /+ low until good command received x/
29

30 return (0);

31 }

B.5.8 armCtrl

1 System sxarmCtrl( domain_t xdomain )

2 {
3 System xsys = fspNewSystem (domain, "ARMCIRL”, ”Robot Arm Trajectory Contr:

4 1.s) );

254



10

11

12

13

14

sys—add = NULL;
sys—>exit = NULL;
sys—=>rt = NULL;
sys—>log = NULL;
sys—>drt = &armCtrl_drt;

sys—init = &armCtrl_init ;

return ( sys );

B.5.9 armCtrl_drt

Listing B.22: armCtri_drtSystemsys

static int armCtrl drt( System *sys )

{

armCtrl_s xarmCtrl = (armCtrl_sx)sys—>data;
unsigned int k;

static double ang_cmd_last [DOF];
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armParam _s *PARAMS=& (arm Ctrl—>armParams ) ;

double JOt [3][DOF], JOr [3][DOF], ROT[3][3], ROTnext[3][3];

double pO0s[3], pOe[3], pOw[3], pvec[3];

double ang[DOF]; /+ copy of radian joint angles to be in form suitable for

if ( armCtrl-—>armLocked > 0 ) { return (FSPNOERROR); }

for ( k=0; k<DOF; ++k ) {

ang [k] = armCtrl-—>ang[k][0];

ang_cmd _last [k] = armCtrl-—>ang_cmd [k];

}

[ TTTTTTTTTTTmmm T */
/* compute current forward kinematics x/
/S * /
fwdKin (/= inputs

pha, PARAMS—>pNT, PARAMS—>RNT,

/*

RotToRPY( /% input %/ ROT,

outputs
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/* output x/ &(armCtrl—>singular), armCtrl->rpy0T _deg );
armCtrl-—>rpy0T _deg[0] *= rad2deg;
armCtrl-—>rpy0T _deg[1] x= rad2deg;
armCtrl—>rpy0T _deg [2] *= rad2deg;
RotToQuat ( armCtrl—>q_-mb2tt, ROT );

Qmult_rt ( armCtrl—>q_sb2tt , armCtrl—>q_mb2tt, 1, armCtrl-—>q_sb2mb, 1 );

/* Calculate SEW angle x*/
fwdKin (JOINT_.SHOULDER, DOF, ang, PARAMS—a, PARAMS-—>d, PARAMS—>calpha , PAR
>pNT, PARAMS—>RNT,

pOs, ROTnext, &JOt[0][0], &JOr [0][0]);

fwdKin (JOINT_ELBOW, DOF, ang, PARAMS->a, PARAMS->d, PARAMS->calpha , PARAM
T, PARAMS->RNT,

pOe, ROTnext, &JOt[0][0], &JOr [0][0]);

fwdKin (JOINT_WRIST, DOF, ang, PARAMS—>a, PARAMS->d, PARAMS->calpha , PARAM

T, PARAMS—>RNT,

pOw, ROTnext, &JOt[0][0], &JOr[0][0]);
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sewfwdKin (p0Os, pOe, pOw, PARAMS—>vhat, pvec, armCtrl-—>sew_deg );

armCtrl—>sew_deg [0] *= rad2deg;

/* compute the end—effector to servicer base rotation from Engine truth =/

Qmult_rt ( armCtrl—q_beng2ee , armCtrl—q_i2ee, 1, armCtrl—>q_i2base, —1 );

double r_base2ee_i[3];
Subt_rt ( r_base2ee_i, armCtrl-—>r_i2ee_i , armCtrl-—>r_i2base_i );

Qtrans_rt ( armCtrl-=>r_sb2ee_sb , armCtrl—>q_i2base, 1, r_base2ee_i );

/* %%

*x mode transitions  *x*

* % * /
if ( ((int)armCtrl->newMode [0] != armCtrl-—>currMode )

&& (armCtrl-—>newMode[0] > ARMCTRL.UNDEFINED && armCtrl—>newMode[0] <

if ( armCtrl—>currMode > ARMCTRL.UNDEFINED ) armCtrl—modes[armCtrl—>cu
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armCtrl—>modes [(int )armCtrl-—>newMode [0]]. init (armCtrl);
armCtrl—>currMode = (int)armCtrl-—>newMode [0];

armCtrl—>t_mode_start = fspGetSimTime ();

}

/* *
*x increment the time * %
* % * /

armCtrl—>t_in_mode = fspGetSimTime() — armCtrl—>t_mode_start;

/* * %

*x execute the current control mode *x

* % * /

armCtrl—>modes [ armCtrl—>currMode ] . exec (armCtrl);

for ( k=0; k<armCtrl-—>nLinks; k++ ) {

armCtrl—>ang_err [k] = armCtrl-—>ang_des[k] — armCtrl-—>ang[k][0];

85 #if ARMCTRL.VSD_.VERBOSE
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fflush (stderr );
#endif

for (k=0; k<DOF; ++k) {
}

fprintf(stderr,”%s: mode = %d\n”, __FUNCTION__, (int)armCtrl-=>currMode );

armCtrl—>ang_cmd_delta k]|

= armCtrl—>ang_cmd [k] — ang_cmd_last [k];

B.5.10 armCtrl init

Listing B.23: armCtri_initSystemsys

static int armCtrl_init( System xsys )

{

armCtrl_s
int

unsigned int
char

int

xarmCtrl = (armCtrl_sx)sys—>data;

tmplInt ;
1
str[256];

enFts, n;
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int r, ¢, j;

double xinitMode;
char *DOF LAB[] = {"FX”, "FY”, "FZ”, "MX", "MY”, "MZ” };
#if 0
fft _out_s *PROPFFT = armCtrl-—>prop _fft;
fft _out_s *FISFFT = armCtrl-—>fts_fft ;
int ftsMaxPeaks, propMaxPeaks;
#endif
fft _peaks_s *PROPPEAK = armCtrl—>prop_peaks;
fft _peaks_s *xFISPEAK = armCtrl-—>fts_peaks;
/* parameters from workspace x/
FSPgetParamVec( armCtrl—>period, 1, ”"period”, 7drt period, seconds”);
fspSetDRTsampleTime( sys, armCtrl-—>period [0]);
FSPgetParamInt ( enFts, "MANIP.CONFIG. en _fts”, ”"flag , nonzero
ue sensor”);
FSPgetParamInt ( armCtrl—armLocked , "MANIP. locked”, ”"nonzero if whole arm
FSPgetParamVec( initMode , 1, 7initMode” , "initial control mode”);

261



28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

FSPgetParamVec( armCtrl—>newMode, 1, "newMode” , 7event—driven new c
FSPgetParamInt ( armCtrl—>enCartFilt , "enable_cart_filter”, ”flag , nonz
sian space filter”);
FSPgetParamInt ( armCtrl—>enJointFilt , “enable_joint _filter”, ”flag , nor
t—space torque filter”);
FSPgetParamVec( armCtrl-—>r_scm2mb_sb, 3, "MANIP.r_scm2mb _sb” |
"position of the manipulator b
ase (mb) wrt servicer center of mass (scm) in servicer body frame”);

FSPgetParamVec( armCtrl—>q_sb2mb 4, "MANIP. q_sb2mb” |
7 quaternion , scalar last , ser
vicer body frame to manipulator base frame”);
FSPgetParamVec( armCtrl—>r_sb2ttd_sb, 3, "r_sb2ttd_sb”,

"position of desired tool tip

wrt servicer body in servicer body frame”);

FSPgetParamInt ( tmplnt, "MANIP.n_links”, "number of actuated joints in the
armCtrl-—>nLinks = (unsigned int)tmplnt;

i = fspJointFindId( "manip_joint*”, &(armCtrl—jid));

if ( armCtrl-—>nLinks > i ) {

fprintf(stderr,”%s: ERROR: manip n_links = %d but only found %d joint I
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45 _FUNCTION__, armCtrl-—>nLinks, i );

46 return (FSP_.PARAM_MISSING ) ;

47 }

48

49 n = ( enFts = 0 7 armCtrl-—>nLinks : (armCtrl-—>nLinks + 1));

20

51 FSPgetParamVec( armCtrl—>ang_init , (int )armCtrl-—>nLinks, "MANIP. jnt_a

52 angles, rads”);

53 FSPgetParamVec( armCtrl—>cartData.maxReach, 1, "maxReach”, "max reach of ¢t
54

55 FSPgetParamVec( armCtrl—>velData.maxReach, 1, "maxReach”, "max reach of ¢t
56

o7

58

59 /* event parameters x/

60 FSPgetParamVec( armCtrl-—>new_theta_des, 1, "new_theta_d

61 to indicate new desired joint angles present”);
62 FSPgetParamVec( armCtrl—>theta_des , (int )armCtrl—>nLinks, ”theta_des”,
"EVENT new desi

63 red joint angles, rads”);
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FSPgetParamVec( armCtrl—t_slew , 1, "toslew”,
"EVENT time to
reach new desired joint angles, in seconds”);

FSPgetParamVec( armCtrl—>cartData.cmd_flag, 1, "new_cmd_cart”, "non—zero i

and event”);

FSPgetParamVec( armCtrl—>cartData.cmd p0T,
ion wrt shoulder [m]”);

FSPgetParamVec( armCtrl—cartData.cmd RPY,
ude wrt shoulder [rads]”);

FSPgetParamVec( armCtrl—cartData.cmd SEW,
[rads]”);

/* reactive velocity command data x/

FSPgetParamVec( armCtrl—>velData.cmd_flag,

d event”);

L,

FSPgetParamVec( armCtrl—velData.cmd_p0T, 3,

n wrt shoulder [m]”);

FSPgetParamVec( armCtrl—>velData.cmd RPY, 3,

e wrt shoulder [rads]”);
FSPgetParamVec( armCtrl—>velData .cmd SEW,

ads]”);
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84

85 /#* manipulator parameters x/

86 FSPcopyParamMf( armCtrl—link_b , n, 3, "MANIP.link_b”, ”"forward vector f

87 xt link, m”);

88 FSPcopyParamMf( armCtrl—link _q , n, 4, "MANIP. link_q”, ”forward orientat

89 quaternion”);

90 FSPcopyParamVd( armCtrl—>mass, n, "MANIP . mass” , "link mass, kg”);

91 FSPcopyParamMf( armCtrl-—>r_12c¢m_1, n, 3, "MANIP.r_12cm_1", ”position of li

92 link frame, m”);

93 #if 0

94 FSPcopyParamMf( armCtrl—Icm, (int )armCtrl-—>nLinks, 6, "MANIP. I _lcm_]
"link moment of

95 inertia at CoM, Ixx, lyy, lzz, Ixy, Ixz, Iyz”);

96 #endif

97 for ( 1 = 0; i < armCtrl->nLinks; i++ ) {

98 snprintf( str, 255, "MANIP.linkName%u”, i+1 );

99 FSPgetParamStr( armCtrl—linkName[i], str, "Link i description”);

100 }

101 FSPgetParamStr( armCtrl—>eeBodyName, "MANIP.eeBodyName”, ”"end effector bod
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102

103 if ( enFts ) {
104 /* combine links 7 & 8 parameters because the FTS ”joint” is integral t
105 /* mass x/
106 armCtrl—>mass [n—2] = armCtrl—>mass[n—2] + armCtrl—>mass|[n—1];
107 /* CM location — assumes identity transform from pre—FTS to post—FTS bc
108 /* r_12cmcombined = ( r_12cmlsml + r_12¢cm2+m2 ) / (ml + m2)
Y
109 fprintf(stderr,”%s: PRE-COMBINE:\n” , __FUNCTION__);
110 r = n—2;
111 fprintf(stderr ,” r_ 12cm_1{%d] = [ %e %e %e | mass[%d] = %e
112 r, armCtrl-—=>r_12cm_1[r]|[0], armCtrl-—>r_12cm_1[r][1], armCtrl-—>r

113 mCtrl->mass|[r]| );

114 r = n—1;
115 fprintf(stderr ,” r l2cm_1[%d] = [ %e %e %e | mass[%d] = %e
116 r, armCtrl-—>r_12cm_1[r][0], armCtrl->r_12cm_1[r][1], armCtrl->r

117 mCtrl->mass|[r] );
118 r = n—1;
119 armCtrl-—>r_12cm_1 [r —1][0] = armCtrl-—>r_12cm_1[r —1][0] % armCtrl-—>mass|r

120 m_1[r][0] * armCtrl-—>mass|[n—1];
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121 armCtrl—>r_12cm_1[r —1][1] = armCtrl->r_12cm_1[r —1][1] * armCtrl->mass|r
122 m.1[r][1] * armCtrl-—>mass|[n—1];
123 armCtrl—>r _12cm _1[r —1][2] = armCtrl->r_12cm_1[r —1][2] % armCtrl-—>mass|r

124 m.1[r][2] * armCtrl->mass|[n—1];

125 armCtrl—>r_12cm_1[r —1][0] = armCtrl->r_12cm_1[r—1][0] / ( armCtrl—>mass
126 s[n—1] );

127 armCtrl—>r_12cm_1[r —1][1] = armCtrl->r_12cm_1[r —1][1] / ( armCtrl—mass
128 s[n—1] );

129 armCtrl—>r_12cm_1[r —1][2] = armCtrl->r_12cm_1[r —1][2] / ( armCtrl-—>mass
130 s[n—1] );

131 fprintf(stderr,”%s: POST-COMBINE:\n” , _FUNCTION__);

132 r = n—2;;

133 fprintf(stderr ,” r 12cm_1{%d] = [ %e %e %e | mass[%d] = %e
134 r, armCtrl->r_12cm_1[r|[0], armCtrl->r_12cm_1[r|[1], armCtrl-—>r

135 mCtrl->mass|[r] );

136 }

137 /+* parameters for FFTs from other modules */

138 FSPgetParamInt ( armCtrl—>prop_nPeaks , "PROP.FFT.maxNpeaks” , "max # peaks t
139

140 FSPgetParamInt ( armCtrl—>fts_nPeaks , 7"MANIP.FTS.FFT.maxNpeaks”, "max # pe
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141 FT7);

142

143

144 for (i=0; i<6; ++i ) {

145 fspSetVarExpandTags(sys, 1, DOFLAB[i]);

146 #if 0

147 /* ACS/PROP actuation x/

148 FSPgetParamInt ( PROPFFT[i].nBins, "PROP.FFT.nBins”, "PROP module FFT nu
149 FSPgetParamVec( PROPFFT[i].Fs, 1, "PROP.FFT.Fs”, "PROP module FFT sa
150 FSPgetParamVec( PROPFFT([1i].df, 1, "PROP.FFT.df”, 7”PROP module FFT de
151 ]7);

152 /* FTS subsystem x/

153 FSPgetParamInt ( FTSFFT[i].nBins, "MANIP.FTS.FFT.nBins” , "MANIP module
154 FSPgetParamVec( FTSFFT[i].Fs, 1, "MANIP.FTS.FFT.Fs”, 7"MANIP module F
155 ]7);

156 FSPgetParamVec( FTSFFT[1i].df, 1, "MANIP.FTS.FFT.df”, "MANIP module F
157 n [Hz|”);

158 #endif

159 }

160
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161

162 armCtrl—>driveAxis = calloc( armCtrl-—>nLinks, sizeof(int));

163

164 /* inputs from other modules x/

165 for ( 1 = 0; i < armCtrl-=>nLinks; i++ ) {

166 fspJointInfo_s jInfo;

167

168 fspJointGetInfo( armCtrl—jid[i], &jInfo );

169 fspSetVarExpandTags( sys, 1, jInfo.name );

170

171 fprintf(stderr ,”%s: armCtrl-—>nLinks = %d, i = %d\n”, _FUNCTION__, arm(
172 fprintf(stderr,”%s: joint %d: info.name = "%s’ info.axis = ( %f %f %f )
173

174 jInfo .name, jInfo.axis_j[0], jInfo.axis_j[1], jInfo.axis_j[2] )
175 fprintf(stderr,”%s: joint %d: armCtrl—jid = %d; jInfo.id = %d\n”, _FU

176 —jid[i], jInfo.id );

177

178 if ( jInfo.axis_j[0] > 0.0 ) {
179 armCtrl—>driveAxis[i] = 0;
180 } else {
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181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

if ( jInfo.axis_j[1] > 0.0 ) {
armCtrl—driveAxis[i] = 1;
} else {
if ( jInfo.axis_j[2] > 0.0 ) {
armCtrl—>driveAxis[i] = 2;

} oelse {

fprintf(stderr,”%s: WARNING joint %d axis_-j = [ %1.1f %1.1f %

__FUNCTION__, i, jInfo.axis_j[0], jInfo.axis_j[1], jIn

}

if ( armCtrl-—>armLocked =— 0 ) {

snprintf(str, 256, "current joint angle (inner to outer) for manip j

, i, jInfo.name );

FSPgetInputVec( armCtrl—>ang[i], 1, "JOINTS.%.angle”, str );

snprintf(str, 256, "current joint rates for manip joint %d *%s’,

FSPgetInputVec( armCtrl—>rate[i], 3, "JOINTS.%.dw”, str );
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201 }

202

203 /*debugx*/

204 fprintf(stderr,”%s: armCtrl—>ang[%d] = %p\n”, __FUNCTION__, i, armCtrl
205 fprintf(stderr,”%s: armCtrl—>rate[%d] = %p\n”, __FUNCTION__, i, armCtrl
206 fflush (stderr);

207  }

208

209 FSPgetInputVec( armCtrl—acsM, 3, "PROP.torq_-b”, 7 Applied ACS torque to se
210 s7);

211 FSPgetInputVec( armCtrl—>acsF, 3, "PROP. force_b”, ”applied ACS force [N]”)
212 FSPgetInputVec( armCtrl—>q_i2base , 4, "MPROP. base . q_i2b”,

inertial orientation of the

213 servicer base body”);

214 FSPgetInputVec( armCtrl—>r_i2base_i , 3, "MPROP.base.Ro_i”, "inertial posit
215 7)),

216

217 fspSetVarExpandTags( sys, 1, armCtrl—>eeBodyName );

218 FSPgetInputVec( armCtrl—q_i2ee , 4, "MPROP.%. q_i2b "7,

inertial orientation of the
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219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

end effector body”);
FSPgetInputVec( armCtrl—>r_i2ee_i , 3, "MPROP.%.Ro_i”, ”inertial position c
n”);
fspSetVarExpandTags( sys, 1, armCtrl—linkName [2] );
FSPgetInputVec( armCtrl—>q_i2link3 , 4, "MPROP.%. q_i2b "7,
“inertial orientation of link
3 (for jacobian calcs)”);
/* inputs from other module FFTs x/
for (i=0; i<6; ++i ) {
fspSetVarExpandTags(sys, 1, DOFLAB[i]);
#if 0
/* n = PROPFFT[i].nBins; %/
/* FSPgetInputVec( PROPFFT[i]. freqBins, n, "PROP.%.freqBins”, "PROP moc
[Hz]7); =/
/* FSPgetlnputVec( PROPFFT[i]. fftMag, n, "PROP.%.fftMag” ,
"PROP module FFT magnitudes |
—17); =/
/* FSPgetlnputVec( PROPFFT[i]. fftPhase, n, "PROP.%.f{ftPhase”, "PROP moc
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237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

7)o/

FSPgetInputVec( PROPFFT[i].newMeas, 1, "PROP.%.newMeas”, "PROP modul
t flag [—]7);

FSPgetInputVec( PROPFFT[i].peakFreqs ,propMaxPeaks,” PROP.%.peakFreqs” ,”

[Hz]7);

FSPgetInputVec( PROPFFT[i].peakAmps, propMaxPeaks,” PROP.%.peakAmps”, 7
s of peaks [—]");

FSPgetInputVec( PROPFFT[i].peakPhases ,propMaxPeaks,” PROP.%.peakPhases”
ad]”);

/* n = FISFFT[i].nBins; %/

/* FSPgetInputVec( FTSFFT[i]. freqBins, n, "FTS.%.freqBins”, "FTS module

[7)5 =/
/* FSPgetlnputVec( FTSFFT][i]. fftMag, n, "FTS.%.f{ftMag”, "FTS module
); */
/* FSPgetlnputVec( FISFFT[i]. fftPhase, n, "FTS.%.fftPhase”, "FTS module
*/
FSPgetInputVec( FTSFFT[i].newMeas, 1, "FTS.%.newMeas”, 7FTS module FF
ag [=]");

FSPgetInputVec( FTSFFT[i].peakFreqs, ftsMaxPeaks ,” FTS.%.peakFreqs”,” Frec
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257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

FSPgetInputVec( FTSFFT[i].peakAmps, ftsMaxPeaks,”FTS.%.peakAmps”, ”Nori

peaks [—]7);

#endif

TJ?);

FSPgetInputVec( FTSFFT[i].peakPhases ,ftsMaxPeaks,” FTS.%.peakPhases” ,” Pl

/* PROP actuation =/
/* PROPPEAK]i |.maxPeaks = armCtrl—>prop_nPeaks; x/
n = armCtrl—>prop_nPeaks; /*x PROPPEAK]i].maxPeaks; x/

FSPgetInputVec( PROPPEAK][i].nPeaks, 1, "PROP.%.nPeaks”, "# peaks found

/* FSPgetInputVec( PROPPEAK][i].new, 1, "PROP.%.newMeas” , "nonzero i

usrement” ); */

FSPgetInputVec( PROPPEAK][i].amps, n, "PROP.%.peakAmps”, ”amplitude
FSPgetInputVec( PROPPEAK][i]. freqs , n, "PROP.%.peakFreqs”, "frequency
FSPgetInputVec( PROPPEAK][i].phases, n, "PROP.%.peakPhases”, "Phase [r
/* FTS subsystem x/

/* FTSPEAK][i].maxPeaks = armCtrl—>fts_nPeaks; x*/

/* n = FTSPEAK|[i |.maxPeaks; x*/

n = armCtrl—>fts_nPeaks;

FSPgetInputVec( FTSPEAK[i].nPeaks, 1, "FTS.%.nPeaks”, "# peaks found i
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277 ),
278 /* FSPgetInputVec( FTSPEAK[i].new, 1, "FTS.%.newMeas” , "nonzero inc

279 rement”); x/

280 FSPgetInputVec( FTSPEAK][i].amps, n, "FTS.%.peakAmps”, ”amplitude of
281 FSPgetInputVec( FTSPEAK[i]. freqs , n, "FTS.%.peakFreqs”, ”frequency |
282 FSPgetInputVec( FTSPEAK][i].phases, n, "FTS.%.peakPhases”, "Phase [rad
283 }

284

285 /% outputs x/

286 FSPnewOutput ( armCtrl—ang_des armCtrl-—>nLinks, 1, "ang_des”,

FSP_LOG1x, ”desired

287 final joint angles, rads”);

288 FSPnewOutput ( armCtrl—ang_err , armCtrl-—>nLinks, 1, "ang_err”,
FSP_LOG1x, "error b

289 etween desired and actual joint angles, rads”);

290 FSPnewOutput ( armCtrl—>ang_cmd_delta, armCtrl-—>nLinks, 1, "ang_cmd_delta”,

291 etween cmd angle and curent when received , rads”);

292 FSPnewOutput ( armCtrl—ang_cmd, armCtrl-—>nLinks, 1, "ang_cmd”,
FSP_LOGI1x, ”command

293 ed joint angles, rads”);
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294

295

296

297

298

299

300

301

302

303

304

305

306

307

FSPnewOutput( armCtrl-—>rate_cmd , armCtrl—>nLinks ,
FSP_LOGI1x, ”command
ed joint rates, rad/sec”);
FSPnewOutput( armCtrl—>torq_cmd , armCtrl—>nLinks ,
FSP_LOGI1x, ”command
ed joint torques, Nm”);
FSPnewOutput ( armCtrl—>manip_mode 1
FSP_LOGI1x,

” comman

ded manipulator joint controller mode”);

fspTelemetry ( &armCtrl—>currMode , FSP_INT,
FSP_LOGI1x, ”current
armCtrl internal mode”);

FSPnewOutput( armCtrl—acsF_tt_sb , 6,

FSP_LOGI1x, ”ACS tor

que induced forces and torques at tool tip measured in
FSPnewOutput ( armCtrl-—>acsF _tt_tt , 6,

FSP_LOGI1x, "ACS tor

que induced forces and torques at tool tip measured in

#if 0

FSPnewOutput( armCtrl—>r_mb2tt_sb , 3,

276

1, "rate_cmd”

1 7 ” torqfcmd” )

1 : ” manip,mode” 5
1, "mode” ,

1, 7acsF_tt_sb”,

the servicer body fram

1, 7acsF_tt_tt”,

the tool tip frame”);

1, "r_mb2tt_sb”,



308

309

310

311

312

313

314

315

316

317

318

319

320

FSP_LOGI1x, 7 positi
on of tool tip wrt manip base in servicer body frame”);
FSPnewOutput ( armCtrl-—>r_mb2tt_mb , 3, 1, "r_mb2tt_mb” |
FSP_LOGI1x, ”positio
n of tool tip wrt manip base in manip base frame”);
FSPnewOutput ( armCtrl—>r_scm2tt_sb , 3, 1, "r_scm2tt_sb”,
FSP_LOGI1x, ” positio
n of tool tip wrt servicer center of mass in servicer body frame”);
#endif
FSPnewOutput ( armCtrl—>r_sb2ee_sb , 3, 1, "r_sb2ee_sb”,
FSP_LOGIl1x, " positio
n of end effector wrt servicer base in servicer body frame”);
FSPnewOutput ( armCtrl—>q_mb2tt , 4, 1, 7q.mb2tt”,
FSP_LOGI1x, ”quatern
ion, scalar last, rotation from manipulator base to tool tip frame”);
FSPnewOutput( armCtrl-—>q_sb2tt , 4, 1, "q_sb2tt”,
FSP_LOGI1x, ”quatern
ion, scalar last, rotation from servicer body to tool tip frame”);
FSPnewOutput ( armCtrl—>q_beng2ee , 4, 1, "q_beng2ee”,

FSP_LOGI1x, ”"quatern
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321 ion from servicer body to end effector using engine—truth, not kinematic libr

322 if ( armCtrl—>armLocked = 0 ) {
323 /* LOCKED joints don’t have joint angles, so can’t pull for kinematics
324 FSPnewOutput ( armCtrl—p0T, 3, 1, "p0T”

FSP_LOGI1x, "curr

325 ent tool position in the arm base frame [m]”);

326 FSPnewOutput( armCtrl-—>rpy0T _deg, 3, 1, "rpy0T _deg” ,
FSP_LOGI1x, ”curr

327 ent roll—pitch—yaw of tool in arm base [deg]”);

328 FSPnewOutput ( armCtrl—>sew_deg 1, 1, "SEW _deg” ,
FSP_LOGI1x, ”curr

329 ent Shoulder—Elbow—Wrist (SEW) angle [deg]”);

330 fspTelemetry ( &(armCtrl—>singular), FSP_INT, 1, "singular”,

FSP_LOGI1x, "nonz

331 ero if arm kinematics are singular [—]");
332 }
333 fspTelemetry ( &armCtrl—t_in_mode , FSP.DOUBLE, 1, ”"t_in_mode”,

FSP_LOGI1x, "elap
334 sed time in current mode [sec]”);

335 fspTelemetry ( &armCtrl—>cartData.desp0T, FSP.DOUBLE, 3, "CART.desp0T”,
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336

337

338

339

340

341

342

343

344

345

346

347

348

FSP_LOGI1x, ”inst
antaneous position of tool throughout slew”);

fspTelemetry ( &armCtrl—>cartData.desRPY, FSP.DOUBLE, 3, "CART.desRPY”,
FSP_LOGIlx, ”[rad
17);

fspTelemetry ( &armCtrl—>cartData .desSEW, FSP DOUBLE, 1, "CART.desSEW”
FSP_LOGI1x, ”[rad
17);

fspTelemetry ( &armCtrl—>cartData.q_des, FSPDOUBLE, 4, "CART.des_q”,
FSP_LOGIx, 7[—]”
)

fspTelemetry ( &armCtrl—>cartData. frac, FSP_DOUBLE, 1, ”"CART. frac”,
FSP_LOGI1x, ”frac
tion through the slew”);

fspTelemetry ( &armCtrl—>cartData.finalp0T , FSP.DOUBLE, 3, "CART. finalp0T”,
FSP_LOGI1x, 7
instantaneous position of tool throughout slew”);

fspTelemetry ( &armCtrl—>cartData.finalRPY , FSP.DOUBLE, 3, "CART.finalRPY ",
FSP_LOGI1x, 7

[rad]”);
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349

350

351

352

353

354

355

356

357

358

359

360

361

362

fspTelemetry (
FSP_LOGIx, ”
[rad]™);

fspTelemetry (
FSP_LOG1x, 7
-1,

fspTelemetry (
FSP_LOGI1x,””
)

fspTelemetry (

fspTelemetry (
fspTelemetry (

FSP_LOGI1x,” ")

fspTelemetry (

FSP_LOGIx,

&LarmCtrl—>cartData.

&LarmCtrl-—>cartData .

&armCtrl-—>cartData .

&armCtrl-—>cartData.

&armCtrl-—>cartData .

&LarmCtrl—>cartData.

&LarmCtrl—>cartData.

finalSEW , FSP DOUBLE, 1, 7"CART.finalSEW” |

q_final , FSP.DOUBLE, 4, "CART. final_q”,

manip_idx ,FSP.DOUBLE, 1, "CART.manip_idx”

nullspace_idx ,FSP.DOUBLE, 1 ,” CART. nullspac

Jpsissingular ,FSP_INT 1 ,”CART. Jpsissingul

sigma , FSP_DOUBLE, DOF, ”CART.sigma”

p0T _delta, FSP.DOUBLE, 3, "CART.deltap0T”

”instantaneous position of tool throughout slew”);

fspTelemetry ( &armCtrl—>cartData .deltaSEW , FSP.DOUBLE, 1, ”"CART.deltaSEW”

FSP_LOGIx, ”
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363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

[rad]”);

fspTelemetry ( &armCtrl—>cartData.q_delta, FSP.DOUBLE, 4, "CART.delta_q”,
FSP_LOGI1x, ”
[=17);

fspTelemetry ( &armCtrl—>cartData.deltaAng, FSP_.DOUBLE,DOF,” CART. deltaTheta
FSP_LOGIx, 7|[r
ad]”);

fspTelemetry ( &armCtrl—>cartData.latched , FSP_INT, 1, "CART.latched”,
FSP_LOGI1x, "no
nzero if latched to final cmd angles of invkin slew”);

FSPnewOutput( armCtrl->Fcmd b, 6, 1, "Femd b”, FSP.LOGIlx, ”(base body) sta
e command for manipulator end effector [N,Nm|”);

FSPnewOutput ( armCtrl-—>Fcmd_3, 6, 1, "Femd_3”, FSP.LOGIx, ”(link 3) stacke
ommand for manipulator end effector [N,Nm]”);

FSPnewOutput ( armCtrl—>q_base2link3 , 4, 1, ”"q_base2link3”, FSP.LOGIlx, "rel

nip link 37);

/% x/ FSP_assemble IO _finished ();/x %/

/* configure mode structures x/
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380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

armCtrl—>modes [ARMCTRLDISABLED | . init = &armDisabledMode_init ;
armCtrl—>modes [ARMCTRLDISABLED | . exec = &armDisabledMode_exec;
armCtrl—>modes [ARMCTRL DISABLED | . exit = &armDisabledMode_exit ;
armCtrl—>modes [ARMCTRLDISABLED | . data = (voidx)&(armCtrl—disabledData );
armCtrl—>modes [ARMCTRLDISABLED]| . id = ARMCTRL.DISABLED;

armCtrl—disabledData . manip_.mode = MANIP_ MODE_DISABLED;

armCtrl—>modes [ARMCTRLANGRATE] . init = &armAngRateMode_init;
armCtrl—>modes [ARMCTRL ANGRATE] . exec = &armAngRateMode_exec;
armCtrl—>modes [ARMCTRLANGRATE] . exit = &armAngRateMode_exit;
armCtrl—>modes [ARMCTRL ANGRATE] . data = (voidx)&(armCtrl—>angRateData );
armCtrl—>modes [ARMCTRLANGRATE] . id = = ARMCTRL ANGRATE;

armCtrl—angRateData . manip_mode = MANIP_MODE_ANGLE;

armCtrl—>modes [ARMCTRLTORQ] . init = &armTorqMode_init ;
armCtrl—>modes [ARMCTRLTORQ] . exec = &armTorqMode_exec;
armCtrl—>modes [ARMCTRLTORQ)] . exit = &armTorqMode_exit ;
armCtrl—>modes [ARMCTRLTORQ] . data = (voidx)&(armCtrl—>torqData);
armCtrl—>modes [ARMCTRLTORQ].id = ARMCTRLTORQ;

armCtrl—>torqData . manip_mode = MANIP_MODE TORQUE;
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400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

armCtrl—>modes [ARMCIRL.CART] . init = &armCartMode_init;
armCtrl—>modes [ARMCTRL.CART] . exec = &armCartMode_exec;
armCtrl—>modes [ARMCIRL.CART] . exit = &armCartMode_exit ;
armCtrl—>modes [ARMCTRL.CART| . data = (voidx)&(armCtrl—>cartData);
armCtrl—>modes [ARMCTRLCART].id = ARMCTRL.CART;

armCtrl—cartData . manip_mode = MANIP MODE ANGLE;

armCtrl—>modes [ARMCTRL.VEL]. init = &armVelMode_init ;
armCtrl—>modes [ARMCTRL.VEL] . exec = &armVelMode_exec;
armCtrl—>modes [ARMCTRL.VEL] . exit = &armVelMode_exit ;
armCtrl—>modes [ARMCTRL.VEL] . data = (void*)&(armCtrl—>velData);
armCtrl—>modes [ARMCTRL.VEL].id = ARMCTRL.VEL;

armCtrl—>velData . manip_mode = MANIP MODE_TORQUE;

armCtrl—>modes [ARMCTRLFDFWD] . init = &armFdFwdMode_init;
armCtrl—>modes [ARMCTRLFDFWD] . exec = &armFdFwdMode_exec;
armCtrl—>modes [ARMCTRLFDFWD] . exit = &armFdFwdMode_exit ;
armCtrl—>modes [ARMCTRLFDFWD]| . data = (voidx*)&(armCtrl—>cartData );

armCtrl—>modes [ARMCTRLFDFWD].id = ARMCITRLFDFWD:;
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420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

armCtrl—>fdFwdData . manip_mode = MANIP MODE. TORQUE;

/* armCtrl—>manip_mode [0] = armCtrl->modes|[armCtrl—>currMode |. data—>manip_

if ( initMode[0] > ARMCTRLUNDEFINED && initMode [0] < ROBOTNUMMODES ) {

/* initialize the mode on the first drt cycle =/

armCtrl-—>currMode = ARMCTRL.UNDEFINED:;
armCtrl—>newMode [0] = initMode [0];
} else {

armCtrl—>currMode = ARMCTRL.UNDEFINED;

armCtrl—>newMode [0] = ARMCTRLDISABLED;

/* initialize outputs x/

for (i = 0; i < armCtrl-=>nLinks; i++ ) {

armCtrl—>ang_cmd[i] = armCtrl-—>ang_init[i];
armCtrl—>ang_des[i] = armCtrl—>ang_init[i];
armCtrl—>rate_cmd [1] = 0;
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439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

/* robot_ik initialization x/

memcpy ( armCtrl—>armParams.a, robot_a ,
memcpy ( armCtrl—armParams.d, robot_d ,

memcpy ( armCtrl—armParams.

for ( r=0; r<3; ++r){

for ( c¢=0;c<3;++c)

armCtrl—armParams .RNT[r | [ c]

}
armCtrl—armParams.
armCtrl—armParams.
}
for (j=0;j<DOF; ++i){
armCtrl—armParams.
armCtrl—armParams.
}
return (FSP.NO_ERROR));

{

pNT[r] =

vhat [r] =

calpha[j]

salpha[j]

285

alpha ,

(DOF+1)xsizeof (double));
(DOF+1)xsizeof (double));

robot_alpha , (DOF+1)xsizeof(double));

cos (armCtrl—>armParams. alpha[j]);

sin (armCtrl—>armParams. alpha[j]);



459 '}

B.5.11 armDisabledMode_exec

1 int armDisabledMode_exec(armCtrl_s *ARM) {
2 if ( !ARM ) return (—1);

3 return (0);

B.5.12 armDisabledMode_exit

1 int armDisabledMode_exit(armCtrl_s *ARM) {
2 if ( 'ARM ) return (—1);

3 return (0);

B.5.13 armDisabledMode _init
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[\]

int armDisabledMode_init (armCtrl_s *ARM) {

if ( 'ARM ) return (—1);

fprintf(stderr,”%s (): sim time = %f\n\n”, _FUNCTION__, fspGetSimTime ()

ARM—manip-mode [0] = (double )ARM—>disabledData . manip_mode;

return (0);

B.5.14 armVelMode_exec

Listing B.24: Reactive Velocity Control Execution /

int armVelMode_exec(armCtrl_s *ARM) {
/+* @brief Reactive Velocity Control Execution x*/

if ( 'ARM ) return (—1);

int d, k;
vel_s *xDATA = &ARM-—>velData;

armParam _s *PARAMS=&(ARM—armParams ) ;
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double ROT[3][3];
/# check for new commands x/
if ( DATA—>cmd _flag[0] > 0 ) {
fprintf(stderr, ”"\e[lm\e[32nfts: New Reaction Velocity Command Received:
NCTION_);
fprintf (stderr "%s:\t t_slew = %f\n”, _FUNCTION__, ARM—t_
fflush (stderr );
DATA—>finalp0T [0] = DATA—>cmd_p0T [0];
DATA—>finalp0T [1] = DATA—>cmd p0T [1];
DATA>finalp0T [2] = DATA->cmd_p0T [2];
DATA>finalRPY [0] = DATA>cmd RPY [0];
DATA—>finalRPY [1] = DATA—>cmd RPY [1];
DATA—>finalRPY [2] = DATA—>cmd RPY [2];
DATA—>final SEW = DATA>cmd SEW [0];
DATA—>t _slew = ARM—>t _slew [0];
/* scale the position if it’s reaching beyond limits x/
if ( Norm_rt( DATA—>finalp0T ) > DATA—>maxReach[0] ) {
double scale = DATA—>maxReach[0] / Norm_rt( DATA—>finalp0T );

288



28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

DATA—>finalp0T [0] *= scale;

DATA—>finalp0T [1] *= scale;

DATA—>finalp0T [2] *= scale;

RPYToRot( DATA—>finalRPY , ROT );

RotToQuat ( DATA—>q_final , ROT );

/* lower the flag until the next event raises it x/

DATA—cmd _flag [0] =

0.0;

if ( DATA>t _slew > 0 ) {

DATA—configured

?

DATA—>t _slew_start = fspGetSimTime ();

DATA—startp0T [0] = ARM—p0T [0];

DATA—>startp0T [1] = ARM—p0T [1];

DATA—>startp0T [2] = ARM—p0T [2];

DATA—>q_start [0]
DATA—>q_start [1]
DATA—q_start [2]

DATA—>q_start [3]

= ARM—>q_mb2tt [0];
= ARM—>q_mb2tt [1];
= ARM—>q_mb2tt [2];

= ARM—>q_mb2tt [3];

289



48

49

20

51

92

93

o4

95

o6

57

o8

99

60

61

62

63

64

65

66

67

DATA—>startSEW = ARM—>sew_deg [0] * deg2rad;

DATA—latched = 0;

} else {

DATA—>configured = 0;

}

} /* end new—command—if x/

double Freact [6]; /+ force stacked w/ torque x/

double A = 1.0; /% amplitude

double f = 0.0; /% reaction frequency, Hz TODO x/

double phi = 0.0; /% reaction

double freq_eps = 0.01; /x lowest frequency to react to, Hz %/

double t = fspGetSimTime ();
double ang[DOF];

double J[6][7], JT[7][6];

for (d = 0; d<6; ++d){
/* frequency reaction port
if ( d = DATA—actDOF ) {

if ( f>= freq_eps ) {

scaling , function of react frequency TODO x/

phase , rads x/

ion x/
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Freact [d] = Axsin( 2«M_PIx f % t + phi );

}
}oelse {
Freact[d] = 0.0;
}
/* ACS feed—forward portion x/
if (d<=3) {
ARM—>Fcmd b[d] = ARM—>acsF [d] + Freact [d];

} else {

ARM—>Fcmd b [d] = ARM—=acsM [d—3] + Freact[d];

for ( k=0; k<DOF; 4++k ) {
ang [k] = ARM—ang[k][0];

}

/* calculate jacobian x/

jac3_frend ( PARAMS—>d, ang, J );

/* determine frame transforms x/
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88 Qmult_rt ( ARM—q_base2link3 , ARM-—>q_i2link3 , —1, ARM—>q_i2base , —1 );
89

90 /* calc tool force in necessary frame x/

91 double *F_3 = &ARM—>Fcmd 3[0];

92 double *M_3 = &ARM—>Fcmd_3[3];

93 Qtrans_rt ( F_3, ARM—q_base2link3 , 1, &ARM—>Fcmd b[0]));
94 Qtrans_rt ( M3, ARM—>q_base2link3 , 1, &ARM—>Fcmd. b[3]));
95

96 /* calc joint torques x/

97 MatrixTranspose( JT, J, 6, 7 );

98 matmul ( *JT, ARM—>Fcmd 3, 7, 6, 1, ARM—>torq.cmd );

99

100 return (0);

101 }

B.5.15 armVelMode_exit

Listing B.25: Reactive Velocity Control Shutdown /

1 int armVelMode exit(armCtrl_s *ARM) {
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/* @brief Reactive Velocity Control Shutdown x/
if ( 'ARM ) return (—1);

return (0);

B.5.16 armVelMode_init

Listing B.26: Reactive Velocity Control initialization /

int armVelMode_init (armCtrl_s *ARM) {
/* @brief Reactive Velocity Control initialization x/

if ('ARM) return (—1);

fprintf(stderr,”%s (): sim time = %f\n\n”, __FUNCTION__, fspGetSimTime /()

ARM—>manip-mode [0] = (double)ARM—>velData.manip_mode;

memcpy ( ARM—>velData . finalp0T , ARM—p0T, 3xsizeof (double));
memcpy ( ARM—>velData . finalRPY , ARM—>rpy0T_deg, 3xsizeof(double));
ARM—>velData . finalRPY [0] %= deg2rad;

ARM—>velData . finalRPY [1] %= deg2rad;
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ARM—>velData . finalRPY [2] %= deg2rad;
memcpy ( ARM—>velData. q_final ;, ARM—>q_mb2tt, 4xsizeof (double));

ARM—>velData . finalSEW = ARM—>sew _deg [0] * deg2rad;

memcpy ( ARM—>velData .desp0T , ARM—p0T, 3xsizeof (double));

memcpy ( ARM—>velData .desRPY, ARM—>rpy0T _deg, 3xsizeof(double));

ARM—>velData .desRPY [0] %= deg2rad;

ARM—velData.desRPY [1] %= deg2rad;

ARM—>velData .desRPY [2] %= deg2rad;

memcpy ( ARM—>velData.q_-des, ARM—>q_-mb2tt, 4xsizeof (double));

ARM—>velData .desSEW = ARM—>sew _deg [0] xdeg2rad;

ARM—>velData.t_slew = 0;

memset ( ARM—velData.delta, 0.0, DOFxsizeof(double));

memset ( ARM—>velData . deltaAng, 0.0, DOFxsizeof (double));

ARM—velData.configured = 0; /* low until good command received x/
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32 return (0);

33}
B.6 acs.c
B.6.1 acs

1 System xacs(domain_t xdomain ) {

2 System xsys = fspNewSystem ( domain,

3 "ACS”

4 "Attitude Control System?”

5 sizeof (acs_s));

7 /* function pointers x/
8 sys—>init = acs_init ;

9 sys—>rt = NULL;

10 sys—>drt = acs_drt;

11

12 return (sys);

295



13}

B.6.2 acs_drt

Listing B.27: Discrete time Attitude Control System function

1 static int acs_drt( System* sys) {

2 /%%

3 @brief Discrete time Attitude Control System function
4 x/

5 acs_s xacs = (acs_sx*)sys—>data;

6 int rtn = FSP.NO_ERROR;

7 int rc, ij;

8

9 /* copy for logging x/

10 acs—>q_i2b_out [0] = acs—>q_i2b [0];

11 acs—>q_i2b_out [1] = acs—>q_i2b [1];

12 acs—>q_i2b_out [2] = acs—>q_i2b [2];

13 acs—>q_i2b_out [3] = acs—>q_i2b [3];

14 acs—>enabled_out [0] = acs—>enabled [0];
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/* calculate an error quaternion x/
Qmult_rt ( acs—>q.d2b, acs—>q.i2b, 1, acs—>q_.i2d, —1 );

/* Q3Positive_rt ( acs—>q-b2d ); x/

/* get the euler angles x/
Quat2euler_rt ( acs—>err_rpy_deg , acs—>q.d2b, "1237);

Scale_rt ( acs—err_rpy_deg , RAD2DEG, acs—>err_rpy_deg );

acs—>rate_err [0] = acs—>w_i2b_b [0] — acs—>wd.-b[0];
acs—>rate_err [1] = acs—>w_i2b_b[1] — acs—>wd. b[1];
acs—>rate_err [2] = acs—>w_i2b_b[2] — acs—>wd_b[2];

acs—>angle_err [0] = 2.0 % acs—>q_d2b[0] * RAD2DEG;
acs—>angle_err [1] = 2.0 % acs—>q-d2b[1] *x RAD2DEG;

acs—>angle_err [2] = 2.0 % acs—>q_-d2b[2] * RAD2DEG;

if ( acs—enabled [0] ) {
/* compute a control torque using Qfeedback x/

qFeedback ( acs—>torque_b_des, acs—>q.d2b, acs—>rate_err , acs—>Kp, acs—>
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rtn = FSP_DISCRETE EVENT

} else {

acs—>torque_b_des [0] =

rtn = FSP.NO_ERROR;

limit desired torque,

( acs—en_torq_lim ) {

if ( acs—>torque_b_des[0] > 0.0 && acs—>torque_b_des[0]

if

if

if

if

if

acs—>torque_b_des [0]

( acs—>torque_b_des [0] < 0.0 && acs—>torque_b_des[0]

acs—>torque_b_des [0]

( acs—>torque_b_des[1] > 0.0 && acs—>torque_b_des[1]

acs—>torque_b_des [1]

( acs—>torque_b_des[1] < 0.0 && acs—>torque_b_des[1]

acs—>torque_b_des [1]

( acs—>torque_b_des[2] > 0.0 && acs—>torque_b_des[2]

acs—>torque_b_des [2]

( acs—>torque_b_des [2] < 0.0 && acs—>torque_b_des[2]

acs—>torque_b_des [2]

if enabled x/

acs—>torq_b_max [0];

—1.0xacs—>torq_b_max [0]

acs—>torq_b_max [1];

—1.0xacs—>torq_b_max [1]

acs—>torq_b_max [2];

acs—>torq_b_max [2];
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acs—>torque_b_des[1] = acs—>torque_b_des[2] = 0.

acs—>torq_b_m

—1.0xacs—>tor

acs—>torq_b_m

—1.0xacs—>tor

acs—>torq_b_m

—1.0xacs—>tor
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memset ( acs—>torque_b_cmd, 0, 3xsizeof(double));
if ( acs—en_out_filt ) {
/* execute filter x/
for (i =0; i < 3; ++Hi ) {
rc = cascFilt( &(acs—>torque_b_des[i]),
&(acs—>torque_b_cmd [i]),
&(acs—outFilt [i]), 1 );

if (re <0 ) {

fprintf (stderr,”%s: @ %f sec, DOF %d, filter step failed.

_FUNCTION__, fspGetSimTime (), i+1,
acs—>torque_b_des[i], acs—>torque_b_cmd[1i]

fflush (stderr );

}
} else {

/* copy des to cmd x/
for (i =0; 1< 3; +i ) {

acs—>torque_b_cmd [i] = acs—>torque_b_des[i];
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/* log the root—sum—square (RSS) of the body angular rate x/

acs—>w_b_rss [0] = Norm_rt(acs—>w_i2b_b) x RAD2DEG;

return(rtn);

B.6.3 acs_init

Listing B.28: ACS module parameter/input/output initialization function

static int acs_init( Systemx sys ) {
JEEE:
@brief ACS module parameter/input/output initialization function
*/
acs_s xacs = (acs_sx*)sys—>data;
char *name;

char str[1024];
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int i;

/*

FSPgetParamVec (

FSPgetParamVec (

FSPgetParamVec (

FSPgetParamVec (

FSPgetParamlInt (

FSPgetParamVec (

Parameters

*/
acs—>Kp,

"ACS.Kp” |

"per—axis proportional gains”);

acs—>Kd,

"ACS.Kd” |

"per—axis derivative gains”);

acs—>enabled ,

?"ACS. enabled”

"positive indicates ACS can apply

)

acs—>Earth_mu

"K. Earth .mu” |

3,

L,

L,

torques to body”);

"gravitational constant of Earth 7);

acs—logRate ,

"ACS.logRate” |

"freespace logging rate”);

acs—>period ,

7 : 2
period”
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"module execution period [sec]”);

FSPgetParamVec( acs—>q_i2d , 4,

7qoi2d”,

7desired inertial attitude [—]");
FSPgetParamVec( acs—>wd_b, 3,

"wd b7,

7desired body rate [rad/sec]”);
FSPgetParamStr( name,

"name” ,

”Vehicle name” );
fprintf(stderr,”%s: found name = '%s’\n”,

__FUNCTION__, name);

FSPgetParamInt( acs—>en_torq_lim ,

"ACS.en_torq_lim” ,

"nonzero to enable torque limiting”);
FSPgetParamVec( acs—>torq-b_max, 3,

"ACS. torq_.max” ,

"maximum torque in body per axis to attempt commanding”);
FSPgetParamInt ( acs—>en _out_filt ,

"ACS.en_out _filt”
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"nonzero to enable output structural filters”);

fspSetDRTsampleTime( sys, acs—>period [0] );

/* */

snprintf(str, 1023, "MPROP. base.Rcm_i”);

Inputs

fprintf(stderr,”%s: searching for input "%s’\n”, _FUNCTION__,

FSPgetInputVec( acs—>r_i2b_i , 3, str,

str);

"meters, vector from ECI origin to body CoM in ECI”);

FSPgetInputVec( acs—>r_i2sun_i, 3, "ENV.SOLSYS.sun.r”,
"meters, vector from ECI origin to sun center
snprintf(str, 1023, "MPROP.base.q_i2b");
fprintf(stderr,”%s: searching for input '%s’\n”, FUNCTION__,
FSPgetInputVec( acs—>q_i2b 4, str,
”quaternion from inertial to body frame” );
snprintf(str, 1023, "MPROP. base.w_-b”);
fprintf(stderr,”%s: searching for input "%s’\n”, FUNCTION__,

FSPgetInputVec( acs—>w_i2b_b | 3, str,

"rad/sec, angular rate of body in body coords’

snprintf(str, 1023, "MPROP.base.Vem_i”);
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fprintf(stderr,”%s: searching for input '%s’\n”, __FUNCTION__, str);
FSPgetInputVec( acs—>v_i2b_i | 3, str,

"m/sec, velocity of satellite wrt ECI, in ECI coords”);
snprintf(str, 1023, "MPROP.base.cm_b”);
fprintf(stderr,”%s: searching for input '%s’\n”, _FUNCTION__, str);
FSPgetInputVec( acs—>r_b2cm_b, 3, str,

"vector from body origin to center of mass, in body”);
/x o/

fprintf(stderr,”%s: creating outputs...\n”, _FUNCTION__ );

Outputs

fflush (stderr );

FSPnewOutput( acs—>torque_b_des , 3, 1, "torque_b_des”,
acs—>logRate , "desired torques about body X,Y,Z in Nm”);

FSPnewOutput( acs—>torque_b_applied, 3, 1, "torque_b_applied”,

acs—>logRate , "applied torques about body XYZ in Nm”);

FSPnewOutput( acs—>torque_b_cmd , 3, 1, "torque_b_cmd”,
acs—>logRate , "commanded torques in body [Nm]”);

FSPnewOutput( acs—>u_b2sun_b 3, 1, "u_b2sun_b”,
acs—>logRate , "unit vector to sun, in body coords”);

FSPnewOutput( acs—>err_rpy_deg, 3, 1, 7err_rpy_deg”,

acs—>logRate, "degrees, Roll, Pitch, Yaw in LVLH");
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FSPnewOutput ( acs—>angle_err | 3, 1, "angle_error”,
acs—logRate ,

"roll pitch yaw error from desired, in deg”);

FSPnewOutput( acs—>rate_err , 3, 1, "rate_error”,

acs—>logRate, "rate error from desired, in rad/sec”);
FSPnewOutput ( acs—>q_d2b, 4, 1, 7q.d2b”,

acs—>logRate, "quaternion from desired to current body”);
FSPnewOutput( acs—>q-i2b_out , 4, 1, 7q-i2b”,

acs—>logRate , ”quaternion from inertial to body (copy)”);
FSPnewOutput( acs—>enabled_out , 1, 1, 7enabled”,

acs—>logRate , "nonzero means ACS can apply torques to body.”
FSPnewOutput( acs—>w_b_rss , 1, 1, "w_b_rss”,

acs—>logRate, ”"scalar , RSS of body angular rate, deg/sec”);

fprintf(stderr,”%s: completed successfully.\n”, __FUNCTION__);

fflush (stderr);

FSP_assemble_ IO _finished ();

if ( acs—en_out_filt ) {
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108 int rc;

109 /* configured output filters x/

110 for (i =0; 1 < 3; ++i ) {

111 rc = cascFilt_initFromMatlab( &(acs—outFilt[i]),

112 HIGHPASS_FS10_ITR_FPASS1.5_ ORDER3_NSEC
113 highpass_Fs10_IIR_Fpassl_5_order3_c,
114 highpass_Fs10_IIR _Fpassl_5_order3_d);
115 if (re <0 ) {

116 fprintf (stderr,”%s: failed to initialize output filter on DOF %d\
117 _FUNCTION__, i);

118 }

119 }

120 }

121

122 return (FSP_.NO_ERROR ) ;

123 }

B.6.4 qFeedback
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Listing B.29: Diagonal-matriz gain quaternion feedback with shortest path

static int qFeedback( double xtorq_b ,

JEE:

const

const

const

const

double

double

double

double

@brief Diagonal—matrix gain quaternion

*/

double dw[3], dq[3], gsign=0;

double dotq = Dot_rt(q.d2b,q-d2b);

xq-d2b ,
kWerr ,

xkq ,

skw ) {

feedback with shortest path

gqsign = (q-d2b[3] >= 0.0 7 1.0 —-1.0 );
Scale_rt ( dq, gsign, q-d2b );
Scale_rt ( dw, (1.0—dotq), werr );

/* PID control — diagonal gain matrices x/

torq_b [0]

torq_b [1]

—kq[0]*dq[0] — kw[O]+dw[O];

—kq[1]*dq[1] — kw[1]*dw][1]
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torq_b [2] = —kq[2]xdq[2] — kw[2]*xdw[2];
return (FSP_.NO_ERROR ) ;

}

B.7 prop.c

B.7.1 prop_calcM

Listing B.30: Calculate thruster mapping matriz /

static int prop_calcM(System x*sys ) {

/+* @brief Calculate thruster mapping matrix =/

prop_s

*PROP = (prop_sx)sys—>data;

int n = PROP—>nThrusters;

int c,

T

Y

nCols;

/+* working variables for pseudo—inverse law calculations x/

double =xone;

double

double

«Mtrans, «U, %S, *V, spinvVn, *VnpVn, *Vn; /% SVD products, inter

torqMmt [3]; /% temporary torque moment vector x/
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/* thrust direction & torque moments pseudo—inverse of their direction ma
PROP—>M = calloc( 6*n, sizeof(double));

PROP—arm = calloc( n, sizeof(doublex));

for ( c¢=0;c<n;++c) {

PROP—arm [c] = calloc( 3, sizeof(double));

/* construct M matrix */
/* nRows = 6; %/
nCols = n;
for ( ¢=0; c<nCols; 4++c) {
double thisArm [3];
for (r=0;r<3;r++) {
PROP—>M[ ¢ + r*nCols | = PROP—>dir_b[c][r] x PROP—>maxThrust[0];
}
thisArm [0] = (PROP—>pos_b|[c][0] — PROP—>cm_b[0]) * PROP—>maxThrust [0];
thisArm [1] = (PROP—pos_b[c][1] — PROP—>cm_b[1]) % PROP—>maxThrust[0];

thisArm [2] = (PROP—>pos_b|[c][2] — PROP—>cm_b[2]) * PROP—>maxThrust [0];
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Cross_rt ( torqMmt, thisArm, PROP—dir_b[c] );
COPY3( PROP—arm[c]|, thisArm ); /x copy for debug logging =/
for (r=0;r<3;r4++4) { /* rows 3-5 x/

PROP->M[ ¢ + (r+3)*nCols | = torqMmt|[r];

PROP—pinvM = calloc( n * 6, sizeof(double));
Mtrans = calloc( n % 6, sizeof(double));
/+* nullspace scaling factor vector x/

PROP—fPlus = calloc( n, sizeof(double));

/* SVD terms for fplus calculations, singly—indexed required for SVD
S = calloc (6, sizeof (double));

AV = calloc (n*n, sizeof(double));

U = calloc (6x6, sizeof(double));

Vn = calloc(n*(n—6), sizeof(double));

VnpVn = calloc (n*n, sizeof(double));

pinvVn = calloc ((n—6)*n, sizeof (double));

Transpose_rt ( Mtrans, PROP>M, 6, n );
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51

52

93

o4

95

56

57

o8

59

60

61

62

63

64

65

66

67

68

69

Svd_rt ( Mtrans, n, 6, V, S, U, FALSE /% economy flag x/ );

/* pseudo—inverse of M is used in the distribution law x/

Pinv_rt ( PROP—>pinvM, PROP—M, (unsigned)6, (unsigned)n );

/* calculation of the f—plus vector requires an SVD of M,
/* V.= [ V.0, V{null} |, pull out V_null
/* i.e. Vnull = V(l:n,(n—5):n);
for (r=0; r<n; +r ) {
for (¢=0; c<(n—6); ++c ) {
Vo[(r*(n—6))+c] = V[(r*n)+(6+c)];
}

} /+* end V_{null} for loops x/

Pinv_rt( pinvVn, Vn, (unsigned)n, (unsigned)(n—=6));
MatMult_rt ( VnpVn, Vn, n, (n—6), pinvVn, (n—6), n);
one = calloc( n, sizeof(double));

for (r=0; r<n; r++ ) {

one[r] = 1.0;
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70 MatMult_rt ( PROP—fPlus , VnpVn, n, n, one, n, 1 );
71
72 return (FSP_.NO_ERROR ) ;

73}

B.7.2 prop.drt

Listing B.31: prop_drtSystemsys {

1 static int prop._drt( System xsys ) {

2 /* PROP module discrete runtime function x/

3 prop._s *PROP = (prop_s*)sys—>data;

4 int i, actuation_changed;

5 double  /xdv_b[3],x/ Fact[6], Fdes[6], dp, norm, normc;

6 double  wuc[3], wa[3]; /% unit vectors of commanded and applied force/torq
7 fft_s «FFT;

8 unsigned int d, n, /% b, %/ k;

9 struct timespec start_ts, end_ts;

10 double xsample = NULL;

11
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12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

prop_calcM (sys); /% calculate M matrix, fplus vector, etc x/

PROP—forceCmd_b [0] = PROP—>forceCmd_b[1] = PROP—>forceCmd_b[2] = 0.0;

Eq_rt ( PROP—>torqCmd_b, PROP—T _b_des );

/* stack force and torque commands */
Fdes [0] = PROP—forceCmd_b[0];

Fdes|[1] = PROP—>forceCmd_b[1];

Fdes [2] = PROP—>forceCmd_b [2];

Fdes[3] = PROP—>torqCmd_b[0];

Fdes [4] = PROP—>torqCmd_b[1];

Fdes [5] = PROP—>torqCmd_b[2];

double sum = 0.0;

for (1=0;i<6;i++) sum += fabs(Fdes[i]);

if ( sum = 0.0 ) {

memset ( PROP—>tau0, 0, PROP—>nThrusters*sizeof (double));
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33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

o1

PROP—>gamma[0] = 0;
}
else {
switch ( PROP—>mapper ) {
case PROPMAPPERPINV: { /* psuedo—inverse x/

double x;

MatMult_rt ( PROP—>tau0, PROP—pinvM,

PROP—>nThrusters, 6, Fdes, 6, 1 );

/* calculate scaling coefficient for null—space bias x/
PROP—gamma[0] = —1e9; /% something very negative in case all
for (n = 0; n<(unsigned )PROP—>nThrusters; ++n ) {
x = —1.0x( PROP—>tau0 [n] — PROP—>tauMin ) / PROP—>fPlus[n];
if ( x > PROP—>gamma[0] ) {

PROP—>gamma[0] = x;

break;
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52

53

o4

95

56

o7

o8

99

60

61

62

63

64

65

66

67

68

69

70

71

/ *
* %

% %

if

case PROPPERFECT_ACTUATION: {

/* perfect actuation — don’t figure out what each thruster will do =
break ;
}
default:
fprintf(stderr ,”PROP: ERROR invalid mapper\n”);
return (FSP.ERROR);
}

* %k

adjust thrust times (bias + clamping) =*x

*/
( PROP—>mapper != PROPPERFECT ACTUATION ) {

for (n=0;n<(unsigned )PROP—>nThrusters;++n) {

/* compute thruster on—time percentages (+ null—space bias) x/

PROP—tau [n] = PROP—>tau0[n] + PROP—>gamma 0 ]
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73

74

5

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

* %

/* truncate thrust below the minimum possible x*/
if ( PROP—>tau[n] < (PROP—>tauMin — PROP—onTimeTol )) {

PROP—>tau[n] = 0.0;

/* clip thrust above maximum x/
if ( PROP—>tau[n] > 1.0 ) {

PROP—>tau[n] = 1.0;

PROP—>thrustMag [n] = PROP—>tau[n] * PROP—>maxThrust[n];

% Convert thruster magnitudes back to body force/torque to apply

* % * /

MatMult_rt ( Fact, PROP—>M, 6, PROP—>nThrusters, PROP—>tau, PROP—>nThru:

actuation_changed = FALSE;
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92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

for (i=0;i<3;i++) {

/* determine if force/torque has changed since previous cycle %/

if ( fabs(Fact[i] — PROP—>force_b[i])

if ( fabs(Fact[i+3] — PROP—>torq_-b[i])

PROP—force_b [1i] = Fact[i];
PROP—>torq_b [i] = Fact[i+3];
PROP—forceErr_b[i] = PROP—force_b|i]
PROP—>torqErr_b[i] = PROP—>torq_b[i]

}

>

>

le—9 ) actuation_changed

le—9 ) actuation_changed

PROP—>forceCmd _b [i];

PROP—torqCmd_b[i |;

PROP—forceErrMag [0] = Norm_rt (PROP—forceErr_b );

PROP—>torqErrMag[0] = Norm_rt (PROP—>torqErr_b);

if ( PROP—forceErrMag[0] < 1e—3 ) {
PROP—forceErrDir_deg [0] = 0.0;
}
else {
normc = Norm_rt( PROP—>forceCmd_b );
if ( normc > 1.0e-3 ) {
norm = Norm_rt( PROP—force_b );

if ( norm > 1.0e—3 ) {
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112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

Scale_rt ( uc, 1.0/normc, PROP—>forceCmd_b );

Scale_rt ( ua, 1.0/norm, PROP—force_b );

dp = Dot_rt( uc, ua );

if ( dp>= 1.0 )

PROP—forceErrDir_deg [0] =

else

PROP—forceErrDir_deg [0] =

}

else {

PROP—forceErrDir_deg [0] = 0.0;

if ( PROP—>torqErrMag[0] < le—3 ) {
PROP—torqErrDir_deg [0] = 0.0;

}

else {

normc = Norm_rt ( PROP—>torqCmd.b );
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131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

X %

*k

if ( normc > 1.0e-3 ) {

norm = Norm_rt( PROP—>torq_b );

if ( norm > 1.0e-3 ) {
Scale_rt ( uc, 1.0/normc, PROP—>torqCmd.b );
Scale_rt( wa, 1.0/norm, PROP—torq_b );
dp = Dot_rt( uc, ua );
if ( dp>= 1.0 )

PROP—>torqErrDir_deg [0] = 0.0;

else

PROP—>torqErrDir_deg [0] = acos( dp ) % RAD2DEG;

}

else {

PROP—>torqErrDir_deg[0] = 0.0;

X%k

monitor duty—cycle and check for deadband x*x

*/
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151 const float g0 = 9.809915; /% m/s"2 at Earth’s surface x/

152 double mdot = PROP—maxThrust [0] / (g0 *x PROP—Isp [0] );

153

154 PROP—inDeadband [0] = 1.0;

155 for (n=0;n<(unsigned )PROP—>nThrusters;++n) {

156 /* duty cycle x/

157 PROP—accumTime [n| += PROP—>sampleTime [0];

158 PROP—accumDuty [n] += PROP—>tau[n] % PROP—>sampleTime [0];

159 PROP—massflow [0] += PROP—>tau[n] % PROP—>sampleTime [0] % mdot;
160 PROP—dutyFrac[n] = PROP—accumDuty[n] / PROP—monitorPeriod [0];
161 if ( PROP—accumTime [n] >= PROP—>monitorPeriod [0] ) {

162 /* clear internal accumulation variables for duty cycle calculati
163 PROP—accumTime [n] = 0.0;

164 PROP—accumDuty [n] = 0.0;

165 }

166

167 /* deadband? x/

168 if ( PROP—>tau[n] > PROP—>tauMin ) {

169 PROP—inDeadband [0] = 0.0;

170 }
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171 }

172 } else {

173 /* PROP PERFECT ACTUATION : copy command to actuated x*/

174 COPY3( PROP—force_b , PROP—>forceCmd_b );

175 COPY3( PROP—>torq_-b , PROP—>torqCmd_b );

176 actuation_changed = FALSE;

177 for (i=0;i<3;i++) {

178 /* determine if force/torque has changed since previous cycle x/
179 if ( fabs(PROP—force_b[i]) > 1le—9 ) actuation_changed = TRUE;
180 if ( fabs(PROP—torq_b[i]) > le—9 ) actuation_changed = TRUE;
181 }

182

183 }

184 /* @AGAAAGAGAGAaNaAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa * /

185 /* @Qaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa@aaaaaaaaaaaaaaaa  /

186  /+ (Q000GGCG0GGAGAGGAGGGGAG0GGAGGAGAAGAAAAGAAAAGANAAAaAT +

187 /* QQ Q@ x/

188 /* @QQ FFEFT Qa x/

189 /+ @QQ Qa x/

190  /+ (QGA0GGGE0G0GE0G0AGAG0AGAGGAGAGEAGAGAGGAGAGGAGAGEAT + /
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191 /* QA aaaaaaaaiaiaiaaaaaaaaaiaiaaaaaaaaaaiaiaaaaaaaaaiaIiaraIao >|</

192 /+ Qaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa  /
193 if ( PROP—en_fft > 0 ) {

194 for (d=0; d<PROPDOF; 4++d ) {

195 FFT = &(PROP—FFT[d]);

196

197 clock_gettime (CLOCK_.PROCESS_.CPUTIMEID, &start_ts);
198

199 [k kR ko ok ok ok sk sk sk ok sk ok sk sk sk sk sk sk sk ok ok ok kR R R RSR SRRk ok ok ok /

200 /* circular buffer * /

201 [ 3k sk skt ok kK sk sk sk stk Rk sk sk sk ok kSRR sk sk stk SRRk sk ko R okokokok sk /

202 /* add latest data to buffer x*/

203 /* 1. update circbuf pointers and count x/

204 ++(FFT—>nSamples );

205 ++(FFT—winCnt );

206 if ( FFT—>nSamples > 1 ) {

207 if ( FFT—>bufHead >= FFT—>bufEnd ) {

208 FFT—bufHead = &(FFT—buf[0]);

209 } else {

210 ++(FFT—bufHead );
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211 }

212 }

213 if ( FFT—>nSamples > FFT-—>winLen) {

214 if ( FFT>bufTail >= FFT->bufEnd ) {
215 FFT->bufTail = &FFT>buf[0]);
216 } else {

217 ++(FFT—>bufTail );

218 }

219 }

220

221 /* 2. insert new data x/

222 if (d<3){

223 /* force DOF x/

224 FFT—bufHead [0] = PROP—force_b [d];
225 } else {

226 FFT—bufHead [0] = PROP—>torq_b [d—3];
227 }

228

229 if ( FFT—>winCnt >= FFT->winStride ) {
230 FFT—>winCnt = 0;
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232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

FFT—newMeas [0] = 1;

memset (FFT—>fftWin , 0, FFT-—>winLenxsizeof (double));

if ( FFT—>nSamples <= FFT—>winLen ) {

for ( k=0; k<FFT-—>nSamples; ++k){

REAL (FFT—>fftWin , k)
IMAG (FFT—>fftWin , k)
}
} else {

/* circular buffer hasn’

FFT->bufTail [k];

0.0;

/* circular buffer has wrapped, copy in two parts x/

k = 0;

for ( sample = FFT—>bufTail; sample <=

REAL(FFT—>fft Win , k)
IMAG (FFT—>fft Win , k)

}

xsample ;

0.0;

FFT—bufEnd; ++sample,

for ( sample = FFT—>buf; sample < FFT—>bufTail; ++sample, ++k)

REAL(FFT—>fftWin , k)

IMAG (FFT=>fftWin , k)
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251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

#if 0

#else

/* K3k 3k 3k 5k 3k ok ok ok 3k ok 3k sk sk >k ok ok Sk ok 3k sk sk sk sk ok ok ok ok ok ko ko skok ok */

/* >k 3k 3k ok ok ok Skook ok ok ok skok kR skook ok sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok ok ok skock ok ok */

FFT—fftRtn = gsl_fft complex_radix2 _forward ( FFT—>fftWin ,
FFT—elemStride ,
FFT—winLen );
if ( FFT—fftRtn != GSL.SUCCESS) {
fprintf (stderr ,
7gsl_fft _complex_radix2_forward () failed with return %
FFT-—>fftRtn );
}
for ( b=0; b<FFT—>nBins; ++b) {
FFT—fftMag [b] = fabs (REAL(FFT—{ftWin, b));

FFT—>f{ftPhase [b] = IMAG(FFT—>{ftWin, b);

FFT—fftRtn = doFFT( FFT—fftMag, FFT—fftPhase ,

FFT—fftWin , FFT-—>elemStride ,
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272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

#endif

FFT—winLen, FFT—>nBins );

} else {

FFT—newMeas [0] = 0;

Sk ok K KKK KKK KK K KK SR KRR KKK KKK KRR KRR KRR Rk ok

Find Peaks %/

Sk o KK KK KKK K KK SRR K KR K KKK KK SRR SRR R KR Rk kR %/

( FFT—>newMeas[0] > 0 ) {

unsigned int nFound = 0;

memset ( FFT—>peaks.amps, 0, FFT->maxNpeaksxsizeof (double));

FFT—>peaksRtn = findPeaks( &nFound,
FFT—peaks. freqs ,
FFT—peaks.amps,
FFT—peaks.phases,
FFT—fftMag ,
FFT—freqBins ,

FFT—fftPhase ,
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291 FFT—nBins ,

292 FFT—smoothSpan ,

293 FFT—inflectN ,

294 FFT—locMaxN ,

295 FFT—maxNpeaks );

296 FFT—peaks.nPeaks [0] = (double)nFound;

297 } /% end newMeas check if x/

298 clock_gettime (CLOCK_PROCESS.CPUTIME.ID, &end_ts);

299

300 FFT—compTime.ns = (long)(end_ts.tv_sec — start_ts.tv_sec)*x1000000C
301 FFT—compTime ns += (long)end_ts.tv_nsec — (long)start_ts.tv_nsec;
302

303 } /#* end DOF for—loop x/

304 } /+ end of en_fft if statement x/

305

306 if ( actuation_changed ) return (FSP.DISCRETEEVENT);

307 else return (FSP_.NO_ERROR ) ;

308 }
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B.7.3 prop_init

Listing B.32: Initilize the PROP module /

static int prop_init(System xsys ) {

/* @brief Initilize the PROP module x/
prop._s *PROP = (prop_s*)sys—>data;
int n;

fft_s «FFT = NULL;

Cha.r *DOFLAB [] — {WF b , 77FY77 , 2 FZ)? , 771\/D<77 , 771\/1Y77 , ’7MZ77 };

unsigned int winLen, winStride, elemStride, d, f, nBins,

unsigned int smoothSpan, inflectN , locMaxN;

double Fs, delta;

maxPeaks ;

/* */
/+ PARAMETERS FROM WORKSPACE
/* i

FSPgetParamVec( PROP—>sampleTime , 1,

"cyclePeriod”
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16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

”"sample time of AOCS’s DRT function”);

FSPgetParamStr ( PROP—>mapperStr ,

” mappern ’

"name of thruster distribution method (e.g., ’pinv’”

FSPgetParamInt ( PROP—errSeed ,

“errSeed”

”"seed for random number generator 7);

FSPgetParamVec( PROP—minOnTime, 1,

"minOnTime” |

"minimum on time of a single thruster

FSPgetParamInt ( PROP—>thrusterDistro ,

"thrusterDistro”,

"nonzero indicates force/torque will be applied by THRUSTE

FSPgetParamInt ( PROP—>nThrusters ,

"nthrusters”,

"number of thrusters”);

FSPgetParamVec( PROP—Isp ,
79 Isp 7 ,
"specific

n = PROP—>nThrusters;

1

?

impulse of fuel
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36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

o1

52

33

o4

95

FSPgetParamMat ( PROP—>pos_b , n,3,

"pos_b”,

"position of each thruster in body frame [m]”);
FSPgetParamMat ( PROP—dir_b , n,3,

"dir_b”,

"direction of thrust per thruster, unit vectors”);
FSPgetParamVec( PROP—>maxThrust , n,

"maxThrust” ,

"maximum thrust per thruster [N]”);
FSPgetParamVec( PROP—>quantum 1,

7quantum?” |

“on—time quantization [sec]”);
FSPgetParamMat ( PROP—Icm , 3,3,

"MPROP. Iem” |

"moments of inertia (about CM) estimate for RSV [kg-m 2]”)
FSPgetParamVec( PROP—>mass , 1,

"MPROP. m0” |

current mass estimate from RSV [kg]|”);
FSPgetParamVec( PROP—>monitorPeriod ,1,

"monitorPeriod”
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o6

o7

o8

99

60

61

62

63

64

65

66

67

68

69

70

71

72

73

4

75

"period over which to monitor individual thruster (on—time

/+* FFT parameters x/

FSPgetParamInt ( PROP—en _fft |

FSPcopyParamld (

FSPgetParamlInt (

FSPgetParamlInt (

FSPgetParamlInt (

FSPgetParamlInt (

"FFT.en” |

"nonzero to enable FFT output”);

Fs,

"FFT.Fs” |

”sampling frequency [Hz]”);

winLen ,

"FFT.winLen” |

"# samples in each FFT window [—]");
winStride ,

"FFT.winStride”,

"# samples to skip between executing FFT window |

elemStride |,

"FFT.elemStride”

"# samples to skip within a window |
maxPeaks ,

"FFT.maxNpeaks” |
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76

77

78

79

80

81

82

33

84

85

86

87

88

89

90

91

92

93

"max # of fft peaks to report”);
FSPgetParamInt ( smoothSpan,

"FFT.smoothSpan” |

7# samplies in span of smoothing window” );
FSPgetParamInt ( inflectN |

"FFT.inflectN"” |

7single —side neighborhood for inflection point search”);
FSPgetParamInt ( locMaxN ,

"FFT.locMaxN" |

7single —side neighborhood for local maximum search”);

/ ¥ DODSDEDDDDDSDSDDDDDDDDDDD DD DD DD DD DSOS K /

/+* DYNAMIC INPUTS & STATES

*/

/ kDSOS K /
FSPgetInputVec( PROP—q_i2b , 4, "MPROP. base . q_i2b"” |

"engine truth for base bod

y inertial attitude [—]");
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94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

FSPgetInputVec( PROP—T _b_des, 3, "ACS.torque_b_cmd”,
"desired torques about bod
y [Nm]”);

FSPgetInputVec( PROP—>cm_b, 3, "MPROP. base.Rbary_b” ,
"barycenter (COM)of all bo

dies in vehicle [m]”);

/ LIRS CECCCCECCECCCCEC CECECCE CEE CE G CCCCC S CCCCC O /
/* DYNAMIC OUTPUTS
y

/ LIRSS ECCCCECCE CCCCEC CEC O E O E C O C O CCCCCCC g /
FSPnewOutput ( PROP—>gamma, 1, 1,

"gamma’ |

FSP_LOGIx,

"thrust correction for SSL’s pseudo—inverse method 7);
FSPnewOutput ( PROP—>thrustMag , n, 1,

"thrustMag” ,

FSP_LOGIx,

"magnitude of thrust for each thruster [N]”);

FSPnewOutput ( PROP—>tau0 , n, 1,
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111 "taul” |

112 FSP_LOGIx,

113 "thruster on—time fraction of control—cycle (prior to bias o
114

115 FSPnewOutput ( PROP—>tau, n, 1,

116 "tau”

117 FSP_LOGIx,

118 7actual thruster on—time fraction of control—cycle (after bi
119

120 FSPnewOutput ( PROP—>dutyFrac n, 1,

121 "dutyFrac”,

122 FSP_LOGIx,

123 "thruster duty—cycle fraction over monitoring—peroid [—]" );
124 FSPnewOutput ( PROP—>forceCmd_b , 3, 1,

125 "forceCmd_b” |

126 FSP_LOG1x,

127 ”commanded delta—V as force in body frame [N]”);

128 FSPnewOutput ( PROP—>torqCmd_b 3, 1,

129 "torqCmd_b” ,

130 FSP_LOGIx,
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131 7commanded delta—omega as torque in body frame [N-m]”);

132 FSPnewOutput ( PROP—>force_b , 3, 1,

133 "force_b”,

134 FSP_LOG1x,

135 "force in body frame, actually applied [N]”);

136 FSPnewOutput ( PROP—>torq_b , 3, 1,

137 "torq_b”

138 FSP_LOG1x,

139 "torque in body frame, actually applied [N-m]”);

140 FSPnewOutput ( PROP—>forceErr_b | 3, 1,

141 "forceErr_b”,

142 FSP_LOG1x,

143 7error between actuated forces and TCS desired [N]”);
144 FSPnewOutput ( PROP—>torqErr_b , 3, 1,

145 "torqErr_b” |

146 FSP_LOG1x,

147 7error between actuated torques and ACS desired [N-m]”);
148 FSPnewOutput ( PROP—>forceErrMag , 1, 1,

149 "forceErrMag” |

150 FSP_LOG1x,
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151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

"magnitude of applied force error [N]”);
FSPnewOutput ( PROP—>forceErrDir_deg ,1, 1,

"forceErrDir_deg”,

FSP_LOGIx,

”?direction of applied force error [degl”);
FSPnewOutput ( PROP—>torqErrMag , 1, 1,

"torqErrMag” ,

FSP_LOGIx,

"magnitude of applied torque error [N-m]”);
FSPnewOutput ( PROP—>torqErrDir_deg, 1, 1,

"torqErrDir_deg”,

FSP_LOGIx,

7direction of applied torque error [degl”);
FSPnewOutput ( PROP—>res _torq_b , 3, 1,

"res_torq_b”,

FSP_LOGIx,

"residual torque on body from fspApplyForce()
FSPnewOutput ( PROP—>inDeadband , 1, 1,

"inDeadband” ,

FSP_LOGIx,
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171 "nonzero indicates all commanded on—times were below the min

172 );

173 FSPnewOutput ( PROP—>massflow , 1, 1,

174 "massflow”,

175 FSP_LOGI1x,

176 "accumulated amount of mass expended by all thrusters based
177

178

179 if ( PROP—>en_fft > 0 ) {

180 /* allocate per-DOF memory for FFTs x/

181 for ( d = 0; d < PROPDOF; ++d ) {

182 FFT = &(PROP—FFT[d]);

183

184 nBins = (unsigned)(( winLen / 2 ) + 1);

185 FFT—nBins = nBins; /% a local variable makes later calls shorter :/
186

187 /* allocate x*/

188 FFT—fftWin = calloc(winLen, sizeof(double));

189

190

337



191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

/* copy locally x/

FFT—winLen = winLen;
FFT—winStride = winStride;

FFT—elemStride = elemStride;

FFT—F's = Fs / (double)elemStride;

FFT—>maxNpeaks = maxPeaks;
FEFT—smoothSpan = smoothSpan;
FFT—inflectN = inflectN ;

FFT—locMaxN = locMaxN ;

snprintf (FFT—>name, FFTNAMEMAXLEN—1, "%s”, DOFLAB[d]);

/* declare as telemetry x/

fspSetVarExpandTags(sys, 1, DOFLAB[d]);

FSPnewOutput ( FFT—freqBins ,
"%.freqBins” ,
FSP_LOGO,
"frequency labels

FSPnewOutput ( FFT—fftMag ,

"%. fftMag” ,
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nBins ,

for FFT output bins

nBins ,

1

)

L,

[Hz]");



211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

FSP_LOGIx,

"magnitude of FFT output [?]”);

FSPnewOutput ( FFT—fftPhase ,

"%. fftPhase” ,

FSP_LOGIx,

nBins, 1,

"phase of FFT output [rads]”);

fspTelemetry ( &FFT—>compTime_ns, FSP_LONG,

"%.compTime_ns” ,

FSP_LOGO,

"time required for FFT computation ,

fspTelemetry ( &FFT—fftRtn ,

"0 fftRtn”

FSP_LOGO,

FSP_INT,

"FFT alg. return status”);

fspTelemetry ( &FFT—peaksRtn

"%.peaksRtn” |

FSP_LOGO,

FSP_INT,

"findPeaks () return status”);

FSPnewOutput( FFT—buf

77%.buf77 ,
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winLen , 1,

1

1

1

)

b

?

including copies ,



231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

FSP_LOGO,

"Input buffer to FFT”);

FSPnewOutput ( FFT—>newMeas,
"% .newMeas”

FSP_LOGIx,

"nonzero when new FFT output

1,1,

1s

FSPnewOutput ( FFT—>peaks.freqs , maxPeaks, 1,

"%.peakFreqs”

FSP_LOGx,

”Frequencies of peaks [Hz|”);

FSPnewOutput ( FFT—>peaks .amps,
" %.peakAmps” ,

FSP_LOGIx,

maxPeaks ,

L,

"Normalized Amplitudes of peaks

FSPnewOutput ( FFT—>peaks.phases, maxPeaks, 1,

"%.peakPhases” |

FSP_LOGIx,

”"Phases of peaks [Rad]”);

FSPnewOutput ( FFT—>peaks.nPeaks,

"%.nPeaks” ,

340

L,

L,

available

[bool]”);



251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

FSP_LOGIx,

"number of peaks found”);

/* compute frequency bin labels x/

delta = 1.0/((double)winLen/2.0) * (Fs/2.0);

FFT—freqBins

[0] = 0.0;

for ( f =1; f < FFT—>nBins; ++f ) {

FFT—freqBins [f] = (double)f * delta —0.5xdelta; /+ center freq c

/* per-DOF initialization x/

FFT—nSamples
FFT—>bufTail
FFT-—>bufHead

FFT—>bufEnd

= 0;
= &(FFT—>buf [0]);
= &(FFT—=buf [0]);

= &(FFT—buf [FFT—>winLen —1]);

} /+* end of DOF for—loop x*/

} /% end of en_fft

if statement =/

341



271 /* x/ FSP_assemble_ 10 _finished ();/x* * |

272

273 if ( strcasecmp( PROP—>mapperStr, ”pinv” )== )

274 PROP—mapper = PROP_MAPPER_PINV;

275 else

276 if ( strcasecmp( PROP—>mapperStr, ”perfect” )==0 )

277 PROP—>mapper = PROP_PERFECT ACTUATION ;

278

279 PROP—tauMin = PROP—minOnTime [0] / PROP—>sampleTime [0]; /*x NB: this as

280 have same minimum on time — BD %/

281 PROP—>onTimeTol = PROP—>quantum [0] / PROP—>sampleTime [0];

282 PROP—errTol = PROP—quantum [0] % PROP—>maxThrust [0];
283
284 /* for per—thruster duty cycle calculations x/

285 PROP—accumDuty = calloc(n, sizeof(double));

286 PROP—accumTime = calloc (n, sizeof(double));

287

288 int xmatches, 1i;

289 char bodyName [] = "$DOMAIN/base”;

290 int found = fspBodyFindld( bodyName, &matches );
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291 if ( !found ) {

292 fprintf(stderr ,” prop_init (): Failed to find VSD body ID for '%s’\n”, bo
293 fprintf(stderr,”\tnumber of body—matches found = %d; [ 7, found);

294 for (i=0;i<found;i++) {

295 fprintf(stderr,”%d”, matches[i]);

296 if (i < (found-1)) { fprintf(stderr,”, 7); }

297 }

298 return (FSP.ERROR ) ;

209}

300 PROP—busBodyID = matches [0];

301

302 fspSetDRTsampleTime( sys, PROP—>sampleTime [0] );

303

304 PROP—>maxErrThrust = 0.0;

305 PROP—>maxErrTorque = 0.0;

306

307 prop_calcM (sys); /+ calculate M matrix, fplus vector, etc x/
308

309 return (FSP_.NO_ERROR ) ;

310 }
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B.7.4 prop_rt

1 static int prop._rt( System *sys )

2 {

10
11
12
13
14
15

16

prop_s *PROP = (prop_sx)sys—>data;

if ( PROP—>thrusterDistro = 0 ) {
/* apply force/torque locally —— ignore thruster module %/
fspBodyApplyForce ( PROP—busBodylD ,
PROP—force_b ,
PROP—cm_b ,
PROP—>res_torq.b );
fspSysApplyTorque( sys,
PROP—>torq_b ,
PROP—busBodylD ,

0 );
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17 return (FSP_.NO_ERROR ) ;

18 }
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