
ABSTRACT

Title of dissertation: MACHINE LEARNING APPROACHES
FOR DATA-DRIVEN ANALYSIS
AND FORECASTING OF
HIGH-DIMENSIONAL CHAOTIC
DYNAMICAL SYSTEMS

Jaideep Pathak
Doctor of Philosophy, 2019

Dissertation directed by: Professor Edward Ott
Department of Physics

We consider problems in the forecasting of large, complex, spatiotemporal

chaotic systems and the possibility that machine learning might be a useful tool

for significant improvement of such forecasts. Focusing on weather forecasting as

perhaps the most important example of such systems, we note that physics-based

weather models have substantial error due to various factors including imperfect

modeling of subgrid-scale dynamics and incomplete knowledge of physical processes.

In this thesis, we ask if machine learning can potentially correct for such knowledge

deficits.

First, we demonstrate the effectiveness of using machine learning for model-

free prediction of spatiotemporally chaotic systems of arbitrarily large spatial extent

and attractor dimension purely from observations of the system’s past evolution.

We present a parallel scheme with an example implementation based on the reser-

voir computing paradigm and demonstrate the scalability of our scheme using the

Kuramoto-Sivashinsky equation as an example of a spatiotemporally chaotic system.

We then demonstrate the use of machine learning for inferring fundamental

properties of dynamical systems, namely the Lyapunov exponents, purely from ob-

served data. We obtain results of unprecedented fidelity with our novel technique,

making it possible to find the Lyapunov exponents of large systems where previously

known techniques have failed.

Next, we propose a general method that combines a physics-informed knowledge-

based model and a machine learning technique to build a hybrid forecasting scheme.

We further extend our hybrid forecasting approach to the difficult case where only

partial measurements of the state of the dynamical system are available. For this

purpose, we propose a novel technique that combines machine learning with a data

assimilation method called an Ensemble Transform Kalman Filter (ETKF).

MACHINE LEARNING APPROACHES FOR
DATA-DRIVEN ANALYSIS AND FORECASTING OF

HIGH-DIMENSIONAL CHAOTIC
DYNAMICAL SYSTEMS

by

Jaideep Satyajit Pathak

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Edward Ott, Chair/Advisor
Professor Michelle Girvan, Co-Advisor
Professor Brian Hunt
Professor Rajarshi Roy
Professor Thomas Antonsen

c© Copyright by
Jaideep Satyajit Pathak

2019

Dedication

Dedicated to my mother, who first taught me math, and my father, who has

always given me his unwavering support.

ii

Acknowledgments

I owe a tremendous debt of gratitude to my advisor, Dr. Edward Ott, who has

guided and mentored me with a lot of kindness and patience. I have enjoyed working

on incredibly interesting and challenging projects under his very able guidance. I

consider myself very fortunate to have had the opportunity to work with and learn

from such a remarkable person.

My co-advisor, Dr. Michelle Girvan has always made sure she was available

for scientific and professional advice when I have needed it despite her many respon-

sibilities. Her scientific acumen and work ethic is inspirational and I thank her for

guiding my research.

I would also like to thank Dr. Brian Hunt. Without his helpful insights,

brilliant ideas, hard work and expertise, this thesis would not have been possible.

Thanks to Dr. Rajarshi Roy, Dr. Bill Dorland, Dr. Tom Antonsen, and Dr.

Daniel Lathrop for helpful discussions and feedback during various stages of my

research.

I have been very fortunate to have been part of a thriving culture of col-

laboration within the graduate student body at the University of Maryland. My

friends Sarthak Chandra, Sarah Burnett, Zhixin Lu, Alex Wikner and Joe Hart have

been unwavering in their help, support and motivation every time I have needed it.

Thanks are due to my collaborators Dr. Istvan Szunyogh, Dr. Garrett Katz and

Troy Arcomano.

I am very grateful to the team maintaining the Deepthought-2 High-Performance

iii

Computing (HPC) cluster which enabled a large part of my research. I thank the

administrative staff at IREAP and the Department of Physics, particularly Josiland

Chambers and Jessica Crossby.

I owe my most profound thanks to my mother, Dr. Padmini Pathak and my

father, Dr. Satyajit Pathak for their tremendous support through every stage of my

life. Thanks to my sister, Dr. Priya Pathak for always being there for me.

I would like to thank my girlfriend, Sasha Mehan, for all her love, support and

encouragement. Thanks to Kaustubh, Ani and Arushi whose friendship has truly

meant a lot to me through graduate school.

iv

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents v

List of Tables viii

List of Figures ix

List of Abbreviations xiv

1 Introduction 1
1.1 Overview . 1
1.2 Model-Free Prediction of Large Spatiotemporally Chaotic Dynamical

Systems . 4
1.3 Using Machine Learning for Data-Driven Analysis of Chaotic Dynam-

ical Systems . 4
1.4 Model-Assisted Prediction of Chaotic Dynamical Systems 5
1.5 Reservoir Observers: Model-free Inference of Unmeasured Variables

in Chaotic Dynamical Systems . 6
1.6 Reconstruction and Forecasting of Chaotic Dynamical Systems us-

ing Partial Measurements, Imperfect Modeling and Machine Learning
Assisted Data Assimilation . 7

2 Model-Free Prediction of Large Spatiotemporally Chaotic Systems: A Reser-
voir Computing Approach 9
2.1 Introduction . 9
2.2 Reservoir Computing Configuration 10

3 Using Machine Learning for Data-Driven Analysis of Dynamical Systems 27
3.1 Reservoir Computers, Short Term Prediction and Attractor Climate . 29
3.2 Climate Replication in the Lorenz System 33
3.3 Determining a Large Number of Lyapunov Exponents of a High Di-

mensional Spatiotemporal Chaotic System from Data 42
3.3.1 Homogeneous KS System (µ = 0) 49
3.3.2 Inhomogeneous KS System (µ = 0.1) 52

v

3.3.3 Effect of Measurement Noise 53
3.3.4 Effect of Training Data Length 53

3.4 Discussion and Conclusion . 55

4 Model-Assisted Prediction of Chaotic Dynamical Systems 57
4.1 Introduction . 58
4.2 Prediction Methods . 60

4.2.1 Knowledge-Based Model . 62
4.2.2 Reservoir-Only Predictor . 63
4.2.3 Hybrid Scheme . 65

4.3 Implementation . 67
4.3.1 Reservoir-Only and Hybrid Implementations 68
4.3.2 Training Reusability . 71
4.3.3 Assessments of Prediction Methods 72

4.4 Lorenz system . 74
4.5 Kuramoto-Sivashinsky equations . 78
4.6 Conclusions . 82

5 Reservoir observers: Model-free inference of unmeasured variables in chaotic
system 84
5.1 Introduction . 85
5.2 Setup . 86
5.3 Examples . 93

5.3.1 Kuramoto-Sivashinsky Equations 93
5.4 Conclusions . 96
5.5 Acknowledgment . 98

6 Reconstruction and Forecasting of Dynamical Systems using Partial Mea-
surements, Imperfect Modeling and Machine Learning Assisted Data Assim-
ilation 99
6.1 Introduction . 99
6.2 Method . 100

6.2.1 Data Assimilation . 101
6.2.2 Kalman Filter: Linear Case 102
6.2.3 Kalman Filter: Nonlinear Case 103

6.3 Machine Learning Assisted Ensemble Transform Kalman Filtering . . 107
6.3.1 Reservoir Computer . 107
6.3.2 Algorithm . 108

6.3.2.1 Training . 109
6.3.2.2 Prediction . 110

6.4 Results . 113
6.4.0.1 Baseline ETKF Forecast: 113
6.4.0.2 ML-ETKF Forecast: 114
6.4.0.3 RMS error . 114
6.4.0.4 Valid Time . 114

vi

6.4.1 Lorenz 63 . 115
6.4.1.1 Results: Optimizing the Covariance Inflation 116

6.4.2 Kuramoto-Sivashinsky (KS) system 118
6.4.2.1 Results: Dependence on Model Error 119

Bibliography 121

vii

List of Tables

2.1 Largest Lyapunov Exponent (Λmax) and Kaplan-Yorke Dimension
(DKY) of the attractor (λ = 100, µ = 0.01) along with the num-
ber of parallel reservoirs (g) and the total number (NT) of all nodes
in the g reservoirs of the parallelized reservoir scheme used. 24

3.1 Standard reservoir parameters used for a successful climate replica-
tion of the Lorenz system (referred to in the text as the R1 reservoir).
The R2 reservoir uses the same parameters with a different spectral
radius, ρ = 1.45. 34

3.2 Three largest Lyapunov exponents Λ1 ≥ Λ2 ≥ Λ3 for the Lorenz
system (Eq. (3.5)), and for the reservoir set up in the configuration of
Fig. 3.1(b) for R1 and R2. Since the reservoir system that we employ
is a discrete time system, while the Lorenz system is a continuous
system, for the purpose of comparison, Λ1, Λ2, and Λ3 are taken to
be per unit time; that is, their reservoir values (columns 2 and 3) are
equal to the reservoir Lyapunov exponents calculated on a per iterate
basis divided by ∆t. 40

3.3 Reservoir parameters used for the successful replication of the climate
of the Kuramoto-Sivashinsky system shown in Fig. 3.4. 44

4.1 Reservoir parameters ρ, 〈d〉, σ, ∆t, training time T , hybrid parameter
γ, and evaluation parameters τ , ξ for the Lorenz system prediction. . 75

4.2 Reservoir parameters ρ, 〈d〉, σ, ∆t, training time T , hybrid parameter
γ, and evaluation parameters τ , ξ for the KS system prediction. . . . 81

6.1 Chronologically indexed analysis states of the imperfect model (xa
j),

imperfect model forecasts (x̃j), reservoir states (rj) and observations
(yj). The time index j = 0 represents the present time. The time
interval −T ≤ j ≤ 0 represents the past during which observations
(and thus, analysis states) are available. All time steps j > 0 are
considered to be in the future. No observations are available from
the future and thus, cannot be part of our training data set. 110

6.2 Reservoir Hyperparamenters . 114

viii

List of Figures

2.1 I/R : (Input-Reservoir Coupler); R : (Reservoir); R/O : (Reservoir-
Output Coupler). (a) Training data gathering phase. (b) Predicting
phase. It is assumed that the parameters of the reservoir are cho-
sen such that the “echo state property” is satisfied [1]: all of the
conditional Lyapunov exponents of the training reservoir dynamics
conditioned on u(t) are negative so that, for large t, the reservoir
state r(t) does not depend on initial conditions. 14

2.2 Prediction of a KS equation with L = 22, µ = 0 using a single reser-
voir of size Dr = 5000. (a) Actual data from the KS model. (b)
Reservoir prediction. (c) Error (panel (b) minus panel (a)) in the
reservoir prediction. We multiply t by the largest Lyapunov expo-
nent (Λmax) of the model, so that each unit on the horizontal axis
represents one Lyapunov time, i.e., the average amount of time for
errors to grow by a factor of e. 16

2.3 Illustration of the parallellized reservoir scheme (q = 2, l = 1). The
pink shaded vector above Ri represents its output g̃i. The green
shaded vector below Ri represents its input hi (during training) and
h̃i (during prediction). The dashed arrow shows the feedback con-
nection applied during the autonomous prediction phase (t ≥ 0). . . . 19

2.4 Prediction of KS equation (L = 200, Q = 512, µ = 0.01, λ = 100)
with the parallelized reservoir prediction scheme using g = 64 reser-
voirs. (a) Actual KS equation data. (b) Reservoir prediction (ũ(t)).
(c) Error in the reservoir prediction. (d) Error in a prediction made
by integrating the KS equation when it uses the reservoir output at
t = 0, ũ(0), as its initial condition. 21

2.5 (a) RMS error in the predictions of the KS system as function of
time for different system sizes L = 200, 400, 800, 1600 with L/g held
fixed at 200/64 for all four curves. (b) Improvement of the prediction
performance as the number (g) of reservoirs employed is increased;
L = 200, Q = 512, µ = 0.01, λ = 100. 22

ix

2.6 Reservoir prediction performance for the KS equation with L = 200, λ =
100 (a): µ = 0 and (b) µ = 0.01. The red curve shows the RMSE
curve when all g = 64 reservoirs are identical and have the same out-
put weights. The blue curve shows the RMSE when the g parallel
reservoirs are independently trained. 25

3.1 (a) Configuration of the reservoir in the training phase corresponding
to Eqs. 3.1 and 3.2. (b) Reservoir configuration in the prediction
phase corresponding to Eq. 3.4. I/R and R/O denote the input-to-
reservoir and reservoir-to-output couplers respectively. R denotes the
reservoir. 31

3.2 (a) The state prediction (red) of the R1 reservoir and the actual
trajectories (blue) of the Lorenz system for 0 < t ≤ 25. The spectral
radius of the reservoir is 1.2. (b) The state prediction (red) of the R2
reservoir and the actual trajectories (blue) of the Lorenz system for
0 < t ≤ 25. The spectral radius of the reservoir is 1.45. 36

3.3 The return map of the actual and the predicted z-coordinate of the
Lorenz system. This plot is made with time series of length 1000,
where the blue dots are from the actual Lorenz system, and the red
dots overlaying the blue dots are from the prediction. The left panel
shows the return map of the long term prediction of the R1 reservoir
with ρ = 1.2, while the right panel is from the R2 reservoir with
ρ = 1.45. 37

3.4 Top panel: True state, y(x, t), of the standard KS system after t = 0.
Middle panel: Reservoir prediction. Bottom panel: Difference be-
tween the true state and the reservoir prediction. The parameters of
the KS equation are L = 60, µ = 0. Λ1 denotes the largest Lyapunov
exponent. 46

3.5 Top panel: True state, y(x, t), of the standard KS system after t = 0.
Middle panel: Reservoir prediction with a reservoir of size Dr =
5000 and ρ = 3.1. The rest of the parameters are as given in Table
3.3. Bottom panel: Difference between the reservoir prediction and
the true KS state. We see that in this case, the reservoir gives us
an accurate short term prediction (i.e., the ‘weather’) but the long
term ‘climate’ of the autonomous reservoir dynamical system does
not resemble the climate of the true KS system for this poorly chosen
set of parameters. Λ1 denotes the largest Lyapunov exponent. 47

3.6 Power spectrum of the KS training data (blue), of the reservoir pre-
diction with the same parameters as in Fig. 3.4 (red), and of the
reservoir prediction with parameters as in Fig. 3.5 (green). All power
spectra have been computed at a single spatial gridpoint from a time
series of length 15000 ∆t time steps. The power spectra are smoothed
by dividing a time series into 30 intervals, computing the power spec-
trum of each interval and then averaging over all the intervals. 48

x

3.7 (a) Estimating the Lyapunov exponents of the homogeneous (µ = 0)
KS equation. First 26 Lyapunov exponents of the trained reservoir
dynamical system running in autonomous prediction mode (blue ‘+’
markers) and the standard (i.e., µ = 0) KS system (red ‘×’ markers).
The parameters of Eq. (3.7) are L = 60, µ = 0. (b) The same plot as
(a), except, the two near-zero exponents of the KS system (Λ7 and
Λ8) are removed from the spectrum. Inset: a close up of the spectra
around the zero crossing. All Lyapunov exponents in this figure and
Fig. 3.8 were computed from a trajectory of length 10000 ∆t time
steps, which we found to be sufficiently long for convergence. 49

3.8 Estimating the Lyapunov exponents of the inhomogeneous (µ > 0)
KS equation. First 26 Lyapunov exponents of the trained reservoir
dynamical system running in autonomous prediction mode (blue ‘+’
markers) and the modified (i.e., µ > 0) KS system (red ‘×’ markers).
The parameters of Eq. (3.7) are L = 60, µ = 0.1 and λ = 15. 50

3.9 (a) Single scalar component u(t) of the time series u(t) generated
from the KS system (Eq. (3.7)) with L = 60, λ = 15 and µ = 0.1.
The time series in (a) with added noise, u(t)+n(t), of noise strengths
f = 0.05 and f = 0.2 are shown in (b) and (c) respectively. 54

3.10 Lyapunov exponents of the reservoir trained on noisy data from the
KS system (L = 60, λ = 15, µ = 0.1). The strength of the noise
added to the training data is indicated in the legend. 54

3.11 The Lyapunov spectrum of the reservoir trained using varying lengths
of training data from Eq. (3.7) with parameters L = 60, λ = 15 and
µ = 0.1. The legend indicates the length of the training time series
in number of ∆t steps (i.e., T/∆t). For a comparison with a natural
time scale of the KS system, we note that 10000 ∆t time steps equals
approximately 200 Lyapunov times. 55

4.1 Schematic diagram of reservoir-only prediction setup. 61
4.2 Schematic diagram of the hybrid prediction setup. 65
4.3 Prediction of the Lorenz system using the hybrid prediction setup.

The blue line shows the true state of the Lorenz system and the red
dashed line shows the prediction. Prediction begins at t = 0. The
vertical black dashed line marks the point where this prediction is
no longer considered valid by the valid time metric with f = 0.4.
The error in the approximate model used in the knowledge-based
component of the hybrid scheme is ε = 0.05. 75

4.4 Normalized error E(t) versus time of the Lorenz prediction trial shown
in Fig. 4.3. The prediction error remains below the defined threshold
(E(t) < 0.4) for about 12 Lyapunov times. 76

xi

4.5 Reservoir size (Dr) dependence of the median valid time using the
hybrid prediction scheme (red upper plot), the reservoir-only (black
middle plot) and the knowledge-based model only methods. The
model error is fixed at ε = 0.05. Since the knowledge based model
(blue) does not depend on Dr, its plot is a horizontal line. Error bars
span the range between the 1st and 3rd quartiles of the trials. 77

4.6 Valid times for different values of model error (ε) with f = 0.4. The
reservoir size is fixed at Dr = 50. Plotted points represent the median
and error bars span the range between the 1st and 3rd quartiles. The
meaning of the colors is the same as in Fig. 4.5. Since the reservoir
only scheme (black) does not depend on ε, its plot is a horizontal line.
Similar to Fig. 4.5, the small reservoir alone cannot predict well for
a long time, but the hybrid model, which combines the inaccurate
knowledge-based model and the small reservoir performs well across
a broad range of ε. 77

4.7 The topmost panel shows the true solution of the KS equation (Eq. (4.14)).
Each of the six panels labeled (a) through (f) shows the difference be-
tween the true state of the KS system and the prediction made by
a specific prediction scheme. The three panels (a), (b), and (c), re-
spectively, show the results for a low error knowledge-based model
(ε = 0.01), a reservoir-only prediction scheme with a large reser-
voir (Dr = 8000), and the hybrid scheme composed of (Dr = 8000,
ε = 0.01). The three panels, (d), (e), and (f) respectively show the
corresponding results for a highly imperfect knowledge-based model
(ε = 0.1), a reservoir-only prediction scheme using a small reservoir
(Dr = 500), and the hybrid scheme with (Dr = 500, ε = 0.1). 79

4.8 Each of the three panels (a), (b), and (c) shows a comparison of
the KS system prediction performance of the reservoir-only scheme
(black), the knowledge-based model (blue) and the hybrid scheme
(red). The median valid time in Lyapunov units (λmaxtv) is plotted
against the size of the reservoir used in the hybrid scheme and the
reservoir-only scheme. Since the knowledge-based model does not use
a reservoir, its valid time does not vary with the reservoir size. The
error in the knowledge-based model is ε = 1 in panel (a), ε = 0.1 in
panel (b) and ε = 0.01 in panel (c). 81

5.1 A reservoir computer consisting of three parts, an input layer, a reser-
voir layer with state r(t), and an output layer. For t > T , the input
to the system is u(t) and our goal is that the output ŝ(t) is a good
approximation to the unmeasured quantity s(t). 88

5.2 Correlation between observer inferred data and the actual data for the
Kuramoto-Sivashinsky state versus the number of measured variables
M . 95

5.3 RMS error in the inference of the Kuramoto-Sivashinsky state vari-
ables versus the number of measured variables M 95

xii

5.4 Results from two simulations, (a,b,c) and (d,e,f), where (a,b,c) have
M = 2 inputs, and (d,e,f) have M = 4 inputs, whose locations are
indicated by the black arrows. The top panels, (a) and (d), show the
actual state evolution y(x, t) of the Kuramoto-Sivashinsky system.
The middle panels, (b) and (e), show the evolution of the state in-
ferred by the reservoir observer from the measurements. The bottom
panels, (c) and (f), show the difference between the inferred data and
the actual data. 97

6.1 Dependence of the Forecast Valid Time for the Lorenz 63 model on
the covariance inflation factor (ρ). We find that the forecast valid time
depends on choosing the correct covariance inflation parameter and
it is thus essential to tune the parameter correctly. We see that the
ML-ETKF (blue markers) outperforms the baseline ETKF forecast
significantly and has a much higher forecast valid time. 117

6.2 Forecast Valid Time of the ML-ETKF (blue markers) and ETKF
(red markers) schemes at different values of the Model Error (ε). The
ML-ETKF scheme vastly outperforms the baseline ETKF scheme at
larger values of the model error. 120

xiii

List of Abbreviations

IREAP Institute for Research in Electronics and Applied Physics
RC Reservoir Computing
KS Kuramoto-Sivashinsky
RMSE Root Mean Square Error
ML Machine Learning
LSTM Long Short-Term Memory
ESN Echo State Network
KF Kalman Filter
ETKF Ensemble Transform Kalman Filter

xiv

Chapter 1: Introduction

1.1 Overview

This thesis is motivated by the crucial problem of forecasting chaotic dynami-

cal systems. This problem has a long and rich history, starting with Edward Lorenz’s

seminal paper titled “Deterministic Nonperiodic Flow” [2]. Lorenz’s paper was mo-

tivated by an accidental discovery he made when running computer simulations of a

weather model. He noted that a small change in the initial conditions of the weather

model changed the outcome of the simulation drastically. His discovery gave rise to

the science of predictability and the understanding that deterministic systems could

be unpredictable on long enough time scales. Lorenz’s discovery has had huge im-

plications for science, particularly, weather forecasting. In the decades that followed

Lorenz’s paper in 1963, a large number of scientists have contributed to the devel-

opment of the science of nonlinear systems that are deterministic yet unpredictable,

including James Yorke (who first referred to such deterministic unpredictable sys-

tems as ‘chaotic’ [3]), Robert May (who studied unpredictable behavior in ecological

models [4]), and Stephen Smale [5] among many others. Several pioneering contri-

butions were made in the field of chaotic dynamics by my thesis advisor, Edward

Ott, most notable of them being the study of controlling chaotic dynamical systems

1

with his colleagues Grebogi and Yorke [6].

With the understanding that some highly important dynamical systems are

chaotic and thus, inherently unpredictable on long enough time scales, it is crucial

to develop mathematical models that can push the envelope of predictablilty as far

as theoretically possible. We note that the state of the Earth’s atmosphere, or the

weather, is perhaps the most important examples of a chaotic dynamical system

Developing accurate forecasting models of the weather is therefore of crucial im-

portance. Weather forecasts impact the lives of many millions of people, e.g., by

providing warnings of destructive events, like hurricanes or snowstorms. Currently

used weather forecasting employs physics-based models (the equations of fluid dy-

namics, radiative heat transfer, etc.), plus geographical knowledge of mountains,

oceans, etc. The models in, however, have substantial error, which, for example,

may arise due to imperfect modeling of crucial subgrid-scale dynamics (like clouds,

turbulent atmospheric motions, and interactions with small-scale geographic fea-

tures).

Beginning in the late 1900s, the field of machine learning has seen a revolution.

Starting, perhaps, from the invention of the perceptron [7] (an early version of a

neural network that could recognize and classify patterns) in 1958, machine learning

has advanced rapidly and boasts impressive achievements in a number of fields.

Machine learning algorithms today have defeated the best human Go players [8],

are capable of facial recognition [9] and image classification [10] at unprecedented

scale and accuracy, and are a core component of many technological developments.

Due to the impressive results machine learning has achieved in modeling and

2

data analysis, one might be inclined to ask if it might be helpful in understanding

and analyzing chaotic dynamical systems and if it would be possible to use ma-

chine learning as a tool to push the envelope of predictability of chaotic dynamical

systems. One of the most important early results in this field came from Herbert

Jaeger and Harald Haass [11]. In this paper, they showed that it was possible to

use a particular kind of neural network, called a reservoir computer, to forecast the

Mackey-Glass dynamical system, a system very similar in nature to the dynamical

system from Lorenz’s seminal paper that gave rise to the science of predictability.

The key elements of Jaeger and Haass’ paper were (1) they could forecast the chaotic

system using only knowledge of the past measurements of the state of the system

so that no knowledge of the dynamical system or its mathematical description was

required; (2) The technique could be easily generalized to other low-dimensional

chaotic systems. This machine learning technique was thus better than any pre-

viously known equation-free modeling techniques for chaotic dynamical systems.

Jaeger and Haass’ reservoir computer forecasting technique, as presented, could

only forecast low-dimensional chaotic systems. Chaotic systems of interest such as

the weather are incredibly high-dimensional and have vastly greater complexity than

the simplistic Lorenz or Mackey-Glass equations.

In this thesis, we consider the use of machine learning for forecasting and

analyzing large, highly complex spatiotemporal dynamical systems with a view to-

wards developing techniques that could ultimately improve weather forecasts to a

significant extent. This thesis is divided into the following chapters, each of which

considers a crucial aspect of data-driven forecasting and analysis of chaotic dynam-

3

ical systems.

1.2 Model-Free Prediction of Large Spatiotemporally Chaotic Dy-

namical Systems

In Chapter 2, We demonstrate the effectiveness of using machine learning for

model-free prediction of spatiotemporally chaotic systems of arbitrarily large spatial

extent and attractor dimension purely from observations of the system’s past evo-

lution. We present a parallel scheme with an example implementation based on the

reservoir computing paradigm and demonstrate the scalability of our scheme using

the Kuramoto-Sivashinsky equation as an example of a spatiotemporally chaotic

system.

1.3 Using Machine Learning for Data-Driven Analysis of Chaotic

Dynamical Systems

In Chapter 3, we use recent advances in the machine learning area known as

‘reservoir computing’ to formulate a method for model-free estimation from data of

the Lyapunov exponents of a chaotic process. The technique uses a limited time

series of measurements as input to a high-dimensional dynamical system called a

‘reservoir’. After the reservoir’s response to the data is recorded, linear regression

is used to learn a large set of parameters, called the ‘output weights’. The learned

output weights are then used to form a modified autonomous reservoir designed to

be capable of producing arbitrarily long time series whose ergodic properties ap-

4

proximate those of the input signal. When successful, we say that the autonomous

reservoir reproduces the attractor’s ‘climate’. Since the reservoir equations and

output weights are known, we can compute derivatives needed to determine the

Lyapunov exponents of the autonomous reservoir, which we then use as estimates

of the Lyapunov exponents for the original input generating system. We illustrate

the effectiveness of our technique with two examples, the Lorenz system, and the

Kuramoto-Sivashinsky (KS) equation. In particular, we use the Lorenz system to

show that achieving climate reproduction may require tuning of the reservoir param-

eters. For the case of the KS equation, we note that as the system’s spatial size is

increased, the number of Lyapunov exponents increases, thus yielding a challenging

test of our method, which we find the method successfully passes.

1.4 Model-Assisted Prediction of Chaotic Dynamical Systems

A model-based approach to forecasting chaotic dynamical systems utilizes

knowledge of the mechanistic processes governing the dynamics to build an approx-

imate mathematical model of the system. In contrast, machine learning techniques

have demonstrated promising results for forecasting chaotic systems purely from

past time series measurements of system state variables (training data), without

prior knowledge of the system dynamics. The motivation for this chapter is the

potential of machine learning for filling in the gaps in our underlying mechanistic

knowledge that cause widely-used knowledge-based models to be inaccurate. Thus

we here propose a general method that leverages the advantages of these two ap-

5

proaches by combining a knowledge-based model and a machine learning technique

to build a hybrid forecasting scheme. Potential applications for such an approach

are numerous (e.g., improving weather forecasting). We demonstrate and test the

utility of this approach using a particular illustrative version of a machine learn-

ing known as reservoir computing, and we apply the resulting hybrid forecaster to

a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal

chaotic system. These tests yield extremely promising results in that our hybrid

technique is able to accurately predict for a much longer period of time than either

its machine-learning component or its model-based component alone.

1.5 Reservoir Observers: Model-free Inference of Unmeasured Vari-

ables in Chaotic Dynamical Systems

Deducing the state of a dynamical system as a function of time from a limited

number of concurrent system measurements is an important problem of great prac-

tical utility. A scheme that accomplishes this is called an “observer”. We consider

the case in which a model of the system is unavailable or insufficiently accurate, but

“training” time series data of the desired state variables are available for a short

period of time, and a limited number of other system variables are continually mea-

sured. We propose a solution to this problem using networks of neuron-like units

known as “reservoir computers.” The measurements that are continually available

are input to the network, which is trained with the limited-time data to output

estimates of the desired state variables. We demonstrate our method, which we call

6

a “reservoir observer”, using the spatiotemporally chaotic Kuramoto-Sivashinsky

equation. Subject to the condition of observability (i.e., whether it is in principle

possible, by any means, to infer the desired unmeasured variables from the measured

variables), we show that the reservoir observer can a very effective and versatile tool

for robustly reconstructing unmeasured dynamical system variables.

1.6 Reconstruction and Forecasting of Chaotic Dynamical Systems

using Partial Measurements, Imperfect Modeling and Machine

Learning Assisted Data Assimilation

In Chapter 6, we consider the problem of data-driven forecasting of chaotic dy-

namical systems when the available data is sparse. Recently there have been several

promising data-driven approaches to forecasting of chaotic dynamical systems using

machine learning. Particularly promising among these are hybrid approaches that

combine machine learning with a knowledge-based model where a machine learn-

ing technique is used to correct the imperfections in the knowledge-based model.

Such a bybrid approach is promising when a knowledge-based model is available

but is imperfect due to incomplete understanding of the physical processes in the

underlying dynamical system. However, previously proposed data-driven forecasting

approaches assume knowledge of the full state of the dynamical system. We seek to

relax this assumption by using an Ensemble-based Kalman Filter along with machine

learning in a novel technique that greatly improves forecasting results. We demon-

strate this technique using the simple 3-variable Lorenz dynamical system and the

7

Kuramoto-Sivashinsky system. We demonstrate that using partial measurements of

the state of the dynamical system we can train a machine learning model to correct

an imperfect knowledge-based model and greatly improve the prediction quality.

8

Chapter 2: Model-Free Prediction of Large Spatiotemporally Chaotic

Systems: A Reservoir Computing Approach

This chapter is based on the paper, Model-Free Prediction of Large Spatiotem-

porally Chaotic Systems: A Reservoir Computing Approach, by Jaideep Pathak,

Brian Hunt, Michelle Girvan, Zhixin Lu and Edward Ott, Phys. Rev. Lett. 120,

024102 (2018). c©by the American Physical Society.

2.1 Introduction

Recently, machine learning techniques have proven useful for a wide variety

of tasks, from speech recognition [12] to playing Go [8]. In this chapter we show

that machine learning can be used for model-free prediction of the evolution of the

state of a large spatiotemporally chaotic system. The accomplishment of this task is

of great potential application, e.g., for prediction of geophysical dynamical systems.

Specifically, we consider a situation where a mechanistic description of the dynamics

is unavailable or insufficient for the desired purpose, but reasonably accurate and

complete observational data for the evolution of the state of the system of interest

can be obtained. Assuming this situation, the goal of this chapter is to formulate an

effective technique for predicting the future evolution of very large spatiotemporally

9

chaotic systems from data, an especially difficult problem presently without a robust

solution using existing techniques. We note that model-free techniques for prediction

based on delay coordinate embedding are well established [13]. These techniques

are effective for low dimensional chaos, and extensions have been proposed for large

spatiotemporally chaotic systems [14]. Within the machine learning community,

there have been a number of rapid advances in prediction using the technique known

as reservoir computing [1, 15, 16]. In particular, Jaeger and Haas [11] have applied

reservoir computing to predict low dimensional chaotic systems with good results.

Although we focus on reservoir computing, we expect that other machine learning

techniques, e.g., deep learning [17,18], might also be useful for the task we address.

On the other hand, we speculate that, because of their essential dynamical character

(see below), artificial neural networks with recurrent connections [19–21], such as

reservoir computers, may be inherently well-suited for tasks which are themselves

dynamical in character such as prediction or inference of unmeasured state variables

of a deterministic system [22]. We find that our reservoir-based spatiotemporal

prediction technique yields excellent prediction results of unprecedented quality at

reasonable expense.

2.2 Reservoir Computing Configuration

We now briefly introduce the basic ideas of reservoir computing. An input

vector u(t) of dimension Din (Fig. 2.1(a)) is coupled through an I/R (input-to-

reservoir) coupler to a high dimensional dynamical system (labeled R in Fig. 2.1(a))

10

called the “reservoir”, from which an output vector v(t) of dimension Dout is cou-

pled through an R/O (reservoir-to-output) coupler. The R/O coupler is assumed

to depend on many (Dp) adjustable parameters p, and to create outputs v(t) that

depend linearly upon the parameters p. Denoting the state of the Dr dimensional

reservoir by the vector r(t), the I/R, reservoir, and R/O functions can be repre-

sented in discrete time (t = 0,∆t, 2∆t, . . .) by r(t+∆t) = G[r(t),Win(u(t))],v(t) =

Wout[r(t),p], where Win (respectively Wout) is a mapping from the Din (Dr) di-

mensional input state space (reservoir state space) to the Dr (Dout) dimensional

reservoir state space (output state space). We note that while, in this chapter, we

consider time to be discrete (and will subsequently take ∆t to be small), the analo-

gous continuous time reservoir is also commonly employed. The goal is to train this

system to make v(t) closely approximate the desired outputs vd(t) appropriate to

the inputs u(t) (e.g., if the function of the system is speech recognition [12], u(t)

might be an electronic signal derived from a person speaking, while vd(t) would

represent the words being spoken). To accomplish this, one uses training data con-

sisting of pre-recorded and stored measurements of u(t) and the resulting r(t) in

some time interval, −T ≤ t ≤ 0, and chooses the output parameters p so as to

minimize the least squares difference between vd(t) and v(t) over the time interval

−T ≤ t ≤ 0. Since v = Wout[r,p] is assumed to be linear in the parameters p, the

problem of determining p, and hence Wout, is a simple linear regression [23]. With

p determined, if all goes well, the reservoir system can be used to fulfill its intended

task for t ≥ 0. Indeed, for large enough Dp and Dr, this framework has proven to

be extremely successful for a variety of tasks [1].

11

Here we are interested in the task of predicting the future, t > 0, evolution of

u(t) from training data in −T ≤ t ≤ 0. The prediction task via reservoir computing

has been previously addressed with excellent results for a situation where u(t) comes

from the state of a low dimensional chaotic system [11]. In that reference, the desired

output condition was that v(t) be a good approximation to u(t) (i.e., vd(t) = u(t)).

After “training” v(t) to approximate u(t), the future evolution of u(t) for t > 0 is

predicted by replacing the input u(t) in Fig. 2.1(a) by v(t), as shown in Fig. 2.1(b).

As we will demonstrate, prediction with a single reservoir becomes computationally

unfeasible as Din increases. We will propose and illustrate a solution to this problem

for spatiotemorally chaotic systems using parallel reservoirs assigned to different

spatial regions.

In this chapter, we focus on the following specific implementation choices,

which are similar to those in Ref. [11]. (We emphasize here that our choices are

illustrative and that many others are possible.) The I/R coupler is Win(u) = Winu

(where Win is a Dr ×Din matrix whose input elements are drawn from a uniform

distribution in [−σ, σ]). The reservoir is a large, low degree (κ), directed Erdös-

Rényi network with a Dr×Dr adjacency matrix A, appropriately scaled so that its

largest eigenvalue is equal to ρ. The state of each network node j is a scalar rj(t)

which, in the set-up of Fig. 2.1(a), evolves according to

r(t+ ∆t) = tanh [Ar(t) + Winu(t)] , (2.1)

where, for a vector q = [q1, q2, . . .]
T , tanh(q) is the vector [tanh(q1), tanh(q2), . . .]T .

12

The R/O coupler is Wout(r) = P1r+P2r
2, where P1 and P2 are Dout×Dr matrices,

p = (P1,P2), and r2 is the Dr dimensional vector whose jth component is r2
j .

(We found that the simpler choice Wout(r) = P1r typically did not work for our

illustrative example 1.) While, for illustration, we use the specific reservoir dynamics

of Eq. (2.1), we emphasize that there is great versatility in the scheme of Fig. 2.1.

E.g., for tasks other than prediction, very fast processing has been achieved by using

high dimensional photonic systems as the reservoir [24–27] (see also Ref. [28]).

1We believe that this may be due to the odd symmetry of the tanh function: With P2 = 0,
the setup in Fig. 2.1(b) is such that, if r(t) is an attracting reservoir orbit with output v(t) for
y(x, t), then −r(t) is also an attracting reservoir orbit and corresponds to an output −v(t). Thus
with P2 = 0 the reservoir dynamics has a symmetry in conflict with the KS equation which is not
invariant to the change y → −y. Having P2 6= 0 breaks this unwanted reservoir symmetry

13

I/R R

(a)

u (t) v (t)
R/O I/R R

(b)

v (t)
R/O

Figure 2.1: I/R : (Input-Reservoir Coupler); R : (Reservoir); R/O : (Reservoir-
Output Coupler). (a) Training data gathering phase. (b) Predicting phase. It is
assumed that the parameters of the reservoir are chosen such that the “echo state
property” is satisfied [1]: all of the conditional Lyapunov exponents of the training
reservoir dynamics conditioned on u(t) are negative so that, for large t, the reservoir
state r(t) does not depend on initial conditions.

In the prediction phase, t > 0, u(t) in Eq. (2.1) is replaced by v(t) =

Wout(r(t)). Regardless of the short-term quality of the predictions v(t), they will

eventually diverge from the true state u(t) due to the exponential separation of

trajectories that is a characteristic of chaotic systems. Consider now the situation

where at some future time θ > 0, one wants to predict u(t) for t > θ based on mea-

surements of u up to time θ. The reservoir can then be reinitialized using Eq.(2.1)

for a short period of time preceding θ, i.e., (θ − ε ≤ t ≤ θ), to determine r(θ), and

then used to predict for t > θ. (Once the training is done, it need not be repeated

for predictions of subsequent time intervals.)

As an illustrative model for a spatiotemporally chaotic system, we consider

the Kuramoto-Sivashinsky (KS) equation modified by the addition (last term in Eq.

(2.2)) of a spatial inhomogeneity term,

yt = −yyx − yxx − yxxxx + µ cos

(
2πx

λ

)
. (2.2)

The scalar field y(x, t) is periodic in the interval [0, L) and L is an integer multiple

14

of λ. Note that the attractor dimension depends directly on the dimensionless

parameter L and scales linearly with L for large L [29]. For later comparison, we note

that for L ≥ 100, the RMS value of yt is about 0.34, which can be compared to the

value of µ to roughly assess the strength of the inhomogeneity on the dynamics. This

equation reduces to the standard KS equation when µ = 0. The cosine perturbation

breaks the translation symmetry when µ 6= 0. In this chapter, we will consider

both µ = 0 and µ 6= 0 in order to probe the effect of spatial homogeneity on our

predictions. Equation (2.2) is integrated on a grid of Q equally spaced points with

∆t = 0.25, giving a simulated data set with Q time series, which we denote by

the vector u(t) and use as the reservoir input. Figure 2.2(a) shows our numerical

solution of Eq. (2.2) for a KS system with L = 22, Q = 64, and µ = 0, while figure

2.2(b) shows a reservoir performed prediction using the scheme described above

(Fig. 2.1). Figure 2.2(c) shows the difference between the prediction and the actual

solution (we remark that this error metric may overemphasize errors due to spatial

shifting of the patterns).

15

5

10

15

20

5

10

15

20

-2

0

2

2 4 6 8 10 12

5

10

15

20

(a)

(b)

(c)

Figure 2.2: Prediction of a KS equation with L = 22, µ = 0 using a single reservoir
of size Dr = 5000. (a) Actual data from the KS model. (b) Reservoir prediction. (c)
Error (panel (b) minus panel (a)) in the reservoir prediction. We multiply t by the
largest Lyapunov exponent (Λmax) of the model, so that each unit on the horizontal
axis represents one Lyapunov time, i.e., the average amount of time for errors to
grow by a factor of e.

Although the results of Fig. 2.2 indicate the potential for reservoir-computer-

based prediction of spatiotemporal chaos, we note that, as L increases, the size Dr

of the reservoir network required to predict the system using a single reservoir (as

described by Fig. 2.1) increases. We find that this makes prediction with a single

reservoir intractable for much larger values of L. In order to treat large systems, we

take advantage of the local nature of interactions in typical spatiotemporally chaotic

systems, as was done in Ref. [14] in the context of delay co-ordinates. We propose

a parallelized scheme consisting of a large set of reservoirs of moderate size, each of

which predicts a local region of the spatio-temporal system. We comment that a

16

somewhat similar structure is employed by convolutional neural networks (CNN’s),

e.g., see chapter 9 of Ref. [18]. CNN’s are widely used in deep learning for image

processing tasks, and employ a translationally invariant structure (as we will later

discuss for our KS example with µ = 0).

Consider a spatiotemporal system on a one dimensional grid of size Q with

periodic boundary conditions, giving us a multivariate data set with Q time series

which we denote by the vector u(t). The Q variables uj(t) are split into g groups,

each group consisting of q spatially contiguous variables such that gq = Q. We

denote the states of the spatial points in each of the g groups by the vectors gi(t):

g1(t) = (u1(t), u2(t), · · ·uq(t))T , g2(t) = (uq+1(t), uq+2(t), · · ·u2q(t))
T , and so on.

Each group of time series, gi, is predicted by a reservoir Ri with adjacency matrix Ai,

internal state ri(t) and input weights Win,i. We denote the input to the ith network

by hi(t), where hi(t) is such that each reservoir accepts inputs from all of the spatial

points in the ith group as well as from two contiguous buffer regions of l spatial points

on its left and right hand sides, hi(t) = (u(i−1)q−l+1(t), u(i−1)q−l+2(t), · · · , uiq+l(t))
T

(the subscript j in uj is taken modulo Q). Thus, adjacent reservoir networks have

overlapping inputs with the size of the overlap set by the locality parameter l (see

Fig. 2.3).

The data from t = −T to t = 0 is used to train the reservoir network, while the

data from t > 0 is used to evaluate the quality of the reservoir predictions. Similar to

Eq. (2.1), in the training phase, each of the g reservoirs evolves in parallel according

to ri(t+ ∆t) = tanh(Airi(t) + Win,ihi(t)), 1 ≤ i ≤ g, from t = −T to t = 0. The g

reservoirs are then trained by finding a set of output weights pi = (P1,i,P2,i) for each

17

reservoir such that P1,iri(t) + P2,ir
2
i (t) ' gi(t). The trained reservoirs with their

output weights are now used to predict the time series, g̃i(t) = P1,iri(t) + P2,ir
2
i (t),

ri(t+ ∆t) = tanh(Airi(t) +Winh̃i(t)), where h̃i(t) is determined from g̃i(t) and the

output of the neighboring reservoirs, and we use a superscribed tilde to denote a

predicted quantity.

18

Figure 2.3: Illustration of the parallellized reservoir scheme (q = 2, l = 1). The pink
shaded vector above Ri represents its output g̃i. The green shaded vector below Ri

represents its input hi (during training) and h̃i (during prediction). The dashed
arrow shows the feedback connection applied during the autonomous prediction
phase (t ≥ 0).

We now present numerical results; unless otherwise specified, the reservoir

parameters used are Dr = 5000, T = 70000 steps, ρ = 0.6, σ = 1.0, l = 6 and

κ = 3. Once the reservoir is trained and the output weights are determined, the

resulting autonomous reservoir is used to make a series of predictions, which are

then compared with the evaluation data set. We perform predictions on K = 30

non-overlapping time intervals, θk ≤ t < θk + τ , each of length τ = 1000 in the

evaluation data set. Here θk = (k−1)τ denotes the start of each prediction interval.

Before the start of each prediction interval, all reservoir states are reset to ri = 0

and the reservoirs are then evolved with the true measurements u(t) for ε = 10

time steps, i.e., from t = θk − ε to θk, according to ri(t + ∆t) = tanh(Airi(t) +

Win,ihi(t)), 1 ≤ i ≤ g. This gives the reservoir appropriate initial conditions to

begin predicting autonomously for the next τ steps. The RMS error between u(t)

and ũ(t) = (g̃1(t), . . . , g̃g(t)) is averaged over the K independent predictions to give

an estimate of the typical quality of prediction. We perform the same prediction 10

19

times, for different random reservoir realizations, and calculate the average RMSE

over all the trials.

20

-2

0

2
50

100

150

200

50

100

150

200

50

100

150

200

2 4 6 8 10 12 14 16 18 20 22 24

50

100

150

200

(a)

(b)

(c)

(d)

Figure 2.4: Prediction of KS equation (L = 200, Q = 512, µ = 0.01, λ = 100) with
the parallelized reservoir prediction scheme using g = 64 reservoirs. (a) Actual KS
equation data. (b) Reservoir prediction (ũ(t)). (c) Error in the reservoir prediction.
(d) Error in a prediction made by integrating the KS equation when it uses the
reservoir output at t = 0, ũ(0), as its initial condition.

21

0 5 10 15

R
M

S
E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L = 200

L = 400

L = 800

L = 1600

(a)

0 5 10 15

R
M

S
E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

g = 8

g = 16

g = 32

g = 64

(b)

Figure 2.5: (a) RMS error in the predictions of the KS system as function of time
for different system sizes L = 200, 400, 800, 1600 with L/g held fixed at 200/64 for
all four curves. (b) Improvement of the prediction performance as the number (g)
of reservoirs employed is increased; L = 200, Q = 512, µ = 0.01, λ = 100.

22

Figure 2.4 shows the results for a KS equation (L = 200, µ = 0.01, Q = 512)

where panel (a) is the numerical solution of Eq. (2.2), panel (b) is the reservoir

prediction using g = 64 reservoirs of size Dr = 5000 each, and panel (c) is the

prediction error (panel (a) minus panel (b)). We see that low prediction error is

obtained for about 8 Lyapunov times. As a performance benchmark, panel (d)

shows the error of the prediction made by integrating the KS equation (with the

same solution method as panel (a)) using the output of the reservoir at t = 0 as its

initial condition. Thus, panels (c) and (d) have the exact same error at t = 0. We

see that the prediction time in panel (d) is only slightly longer than that for panel

(c), indicating good reproduction of the true dynamics by the reservoir system.

Figure 2.5(a) shows that we can obtain predictions comparable to Fig. 2.4

independent of the system size L. Table 2.1 indicates the largest Lyapunov exponent

Λmax and estimated Kaplan-Yorke dimension [30] of the KS system along with the

number of reservoirs (g) and the total number of nodes NT in the g reservoirs used

for Fig. 2.5(a).

23

L Λmax DKY g NT (×105)
100 0.09 23 32 1.6
200 0.09 43 64 3.2
400 0.09 85 128 6.4
800 0.1 167 256 12.8
1600 0.1 338 512 25.6

Table 2.1: Largest Lyapunov Exponent (Λmax) and Kaplan-Yorke Dimension (DKY)
of the attractor (λ = 100, µ = 0.01) along with the number of parallel reservoirs
(g) and the total number (NT) of all nodes in the g reservoirs of the parallelized
reservoir scheme used.

24

0 5 10 15

R
M
S
E

0

0.5

1

1.5

2

0 5 10 15

R
M
S
E

0

0.5

1

1.5

2
(a) (b)

Figure 2.6: Reservoir prediction performance for the KS equation with L = 200, λ =
100 (a): µ = 0 and (b) µ = 0.01. The red curve shows the RMSE curve when all
g = 64 reservoirs are identical and have the same output weights. The blue curve
shows the RMSE when the g parallel reservoirs are independently trained.

25

When the strength of the cosine perturbation term is set to µ = 0, the KS

equation (Eq. (2.2)) has translation symmetry which can be exploited to drastically

reduce the computational cost of training the output weights. We find that it is then

sufficient to train a single reservoir (say R1) by evolving it according to r1(t+∆t) =

tanh(A1r1(t)+Win,1h1(t)) and then calculating (P1,1,P2,1). We then use g identical

reservoir systems with Win,i = Win,1, Ai = A1, and (P1,i,P2,i) = (P1,1,P2,1) for

1 ≤ i ≤ g in the prediction phase equations. As shown by the agreement between

the red (identical weights) and blue (individually trained weights) curves in Fig

2.6(a), this works well. However, when µ = 0.01, the method of identical weights

fails as expected (Fig. 2.6(b)). Note that the Lyapunov spectrum for µ = 0.01 is

very close to the spectrum for µ = 0 (see supplement).

Further details on the specific reservoir computer parameters, implementation

and methods are given in the supplemental material of Ref. [31] which includes

Refs. [32,33]. The additional material illustrates that the performance shown above

is very robust, in that it changes little over wide ranges in the various parameters.

In conclusion, our results suggests that machine learning, and in particular

reservoir computing, offers an effective potential means for model-free prediction of

large spatiotemporally chaotic systems.

26

Chapter 3: Using Machine Learning for Data-Driven Analysis of Dy-

namical Systems

This chapter is based on the paper, ‘Using machine learning to replicate chaotic

attractors and calculate Lyapunov exponents from data’, Chaos 27, 121102 (2017);

https://doi.org/10.1063/1.5010300 by Jaideep Pathak, Zhixin Lu, Brian R. Hunt,

Michelle Girvan, and Edward Ott. c©by the American Institute of Physics

We consider the frequently occurring situation in which limited duration time

series data from some dynamical process is available, but a first-principles-based

model of how that data is produced is either unavailable or too inaccurate to be

useful. Thus, if one is interested in diagnosing ergodic properties of the underlying

processes producing the data, one is restricted to do so based only on the data

itself. We call such a method “model-free.” Model-free analysis of dynamical time

series is a long-standing subject of study in nonlinear dynamics [34–36]. Perhaps the

most wide-spread approach uses delay-coordinate embedding [34–42]. In this article,

we discuss a very promising, entirely different approach to model-free analysis of

dynamical time series. Our approach is based upon recent significant advances in

the area known as machine learning. In particular, we will apply a type of machine

learning known as reservoir computing [43], and, for definiteness, we focus on the

27

problem of determining the Lyapunov exponents of the data-generating system. For

this application, the key ability we require from machine learning is to replicate the

ergodic properties of the system generating the input, and we call this replicating

the “climate.”

The rest of this article is organized as follows. Section 3.1 reviews reservoir

computing and its use for short-term prediction of chaotic time series. Section 3.2

illustrates our method using the well-known Lorenz 1963 model [2], and discusses

the ability of reservoir computers to replicate the (long-term) climate. Section 3.3

uses our approach to evaluate the Lyapunov exponents of the Kuramoto-Sivashinsky

(KS) equation [44–46] with periodic boundary conditions. This system provides an

example of extensive spatiotemporal chaos [47–50], for which the attractor dimen-

sion and number of positive Lyapunov exponents increases linearly with the period-

icity length L. In particular, Sec. 3.3 considers cases with many positive Lyapunov

exponents. The chapter concludes with further discussion in Sec. 3.4.

The main conclusion of this chapter is that our machine learning approach

offers a very attractive model-free method for obtaining Lyapunov exponents from

data. Particularly notable are our results from Sec. 3.3 where we obtain excellent

agreement for all of the positive Lyapunov exponents and many of the negative

exponents for a moderately high-dimensional system. In comparison with delay

coordinate embedding, we remark that our method appears to be simpler to imple-

ment, and does not appear to suffer from the problem of yielding spurious positive

Lyapunov exponents [[51]],[[52]] (these papers and references therein discuss a

mechanism responsible for spurious positive Lyapunov exponents in delay coordi-

28

nate embedding; this mechanism is inherently absent in our method). More broadly,

our chapter suggests that machine learning is useful for analysis of data from chaotic

systems (e.g., previous work has treated model-free machine learning for prediction

of future evolution of the states of a dynamical system [53] and for inference of

unmeasured dynamical variables [22]).

3.1 Reservoir Computers, Short Term Prediction and Attractor Cli-

mate

Reservoir computers [43] originate from an idea independently put forth about

16 years ago in two papers [54,55]. The general approach is illustrated in Fig. 3.1(a),

which shows an input vector u(t) fed into a “reservoir” (labeled R in Fig. 3.1(a))

through an input-to-reservoir coupler (labeled I/R), with an output vector v coupled

from the reservoir through an output coupler (labeled R/O). We regard the couplers

as acting instantaneously and without memory (i.e., their output depends solely on

their current input). Importantly, the reservoir has memory (i.e., it has internal

dynamics so its state depends on its history). We assume that it receives input at

discrete times t, and that its input Winu(t) is combined with the reservoir state r(t)

to produce its output r(t+ ∆t). In general, the reservoir is an appropriate complex

dynamical system; here we follow Refs. [[54], [55]] and consider the reservoir to

be a large random network with Dr nodes and an Dr × Dr adjacency matrix A.

Specifically, we will henceforth consider the particular implementation (similar to

29

Ref. [[53]]) of Fig. 3.1(a) given by

r(t+ ∆t) = tanh[Ar(t) + Winu(t)], (3.1)

v(t+ ∆t) = Wout(r(t+ ∆t),P), (3.2)

where r(t) represents the scalar states ri(t) of the Dr network reservoir nodes, r =

[r1, r2, ..., rDr]
T ; in Eq. (3.1), Win is a Dr × D matrix, where D is the dimension

of u; also, in Eq. (3.1), for a vector q = (q1, q2, . . .)
T the quantity tanh(q) is the

vector (tanh(q1), tanh(q2), . . .)T . In Eq. (3.2), Wout maps the Dr dimensional vector

r to the output v, which, for the situations considered in this article, has the same

dimension D as u. In addition, we assume that Wout depends on a large number of

adjustable parameters given by the elements of the matrix P, and that Wout(r,P)

depends linearly on P (e.g., in past work the choice Wout(r,P) = Pr has often been

used).

30

(a)

(b)

Figure 3.1: (a) Configuration of the reservoir in the training phase corresponding to
Eqs. 3.1 and 3.2. (b) Reservoir configuration in the prediction phase corresponding
to Eq. 3.4. I/R and R/O denote the input-to-reservoir and reservoir-to-output
couplers respectively. R denotes the reservoir.

In general, the goal of the system in Fig. 3.1(a) is for the outputs v(t) to

approximate the desired outputs, vd(t), appropriate to the inputs u(t) (e.g., in a

pattern recognition task u(t) might represent a sequence of patterns, and vd(t)

would represent classifications the patterns). To this end, during a training period,

−T ≤ t ≤ 0, an input u(t) is fed into the reservoir and the resulting reservoir

state evolution r(t), along with u(t), are recorded and stored as “training data.”

Then the parameters P are chosen (“trained”) so as to approximately minimize the

mean squared difference between v(t) and its desired value vd(t). As is common in

reservoir computing, we use the Tikhonov regularized regression procedure [32] to

31

find an output matrix P, that minimizes the following function,

∑
−T≤t≤0

||Wout(r(t),P)− vd(t)||2 + β||P||2, (3.3)

where ||P||2 denotes the sum of the squares of elements of P. The regularization

constant β > 0 discourages overfitting by penalizing large values of the fitting pa-

rameters (In Sec. 3.3 we used a value β > 0, but for Sec. 3.2 we found that using

β = 0 was sufficient). For a given task, one hopes that for large enough Dr and

T , the system in Fig. 3.1(a) will yield subsequent (t > 0) outputs v(t) that closely

approximate the desired vd(t). Because Wout(r,P) is taken to be linear in P, the

problem of determining the parameters P that minimize Eq. (3.3) is one of linear

regression for which there are well-established techniques [23]. This approach has

been shown to work extremely well for a wide variety of tasks [43].

We now consider the task of prediction for the case where u(t) depends on

the state of some deterministic dynamical system. This problem was originally

considered in the reservoir computer framework by Jaeger and Haas [53]. The idea

is to take the desired output to be the same as the input, vd(t + ∆t) = u(t + ∆t).

When one wishes to commence prediction at t = 0, the configuration is switched

from that in Fig. 3.1(a) to that in Fig. 3.1(b), and the reservoir system is run

autonomously according to the following equation.

r(t+ ∆t) = tanh [Ar(t) + WinWout(r(t),P)] . (3.4)

32

The output of the autonomous reservoir, v(t) = Wout(r(t),P), gives the predicted

value u(t) for t > 0. Jaeger and Haas [53], using the example of the Lorenz sys-

tem [2], indeed verified that this prediction scheme works and gives good short term

predictions. As expected, the chaotic amplification of small errors leads to eventual

breakdown of the prediction, limiting the prediction time. However, as shown in the

next two sections, following this breakdown of short-term prediction, the evolution

of v(t) often provides an accurate approximation for the climate corresponding to

u(t), and can be used in particular to compute Lyapunov exponents of the process

that generated u(t).

3.2 Climate Replication in the Lorenz System

In this section we illustrate the capability of our technique to replicate the

“climate” of the Lorenz 1963 system [2],

ẋ = 10(y − x), ẏ = x(28− z)− y, ż = xy − 8z/3. (3.5)

We construct and train reservoir computers with input u = (x, y, z)T ∈ R3

and output v ∈ R3, following Sec. 3.1. The reservoir network is built from a sparse

random Erdős-Rényi network whose average degree is d = 6. Each non-zero element

in the adjacency matrix is drawn independently and uniformly from [−a, a], and

a > 0 is adjusted so that the spectral radius of A (the largest magnitude of its

eigenvalues) has a desired value ρ. During the training phase, −T ≤ t ≤ 0 (where

T = 100), the reservoir computer evolves following Eq. (3.1) with ∆t = 0.02. In

33

Parameter Value Parameter Value
Dr 300 d 6
T 100 ∆t 0.02

T/∆t 5000 β 0
ρ 1.2 σ 0.1

Table 3.1: Standard reservoir parameters used for a successful climate replication
of the Lorenz system (referred to in the text as the R1 reservoir). The R2 reservoir
uses the same parameters with a different spectral radius, ρ = 1.45.

this Lorenz example, the reservoir output v(t) = Wout(r(t),P) is defined as

v(t) =

v1(t)

v2(t)

v3(t)

 =

p1r(t)

p2r(t)

p3r̃(t)

 (3.6)

where p1, p2, and p3 are the rows of the 3 × Dr matrix P. The quantity r̃ in the

third line of Eq. (5.2) is defined in a way such that the first half of its elements are

the same as that of r, i.e., r̃i = ri for half (Dr/2) of the reservoir nodes, while r̃i = r2
i

for the remaining half of the reservoir node (Our use here of r̃(t), rather than r(t),

to predict z(t) is related to the x→ −x, y → −y symmetry of the Lorenz equations

as discussed in Ref. [22]).

After we compute r(t) for the training period, −T ≤ t ≤ 0, we calculate the

output weight parameters P that minimize the function in Eq. (3.3) with the desired

output being the state variables from the Lorenz system, vd(t) = [x(t), y(t), z(t)]T

(in an actual physical experiment, we assume u(t) = vd(t) to have been measured

for −T ≤ t ≤ 0). After we find the output weights, we evolve the reservoir with the

reconfigured reservoir system (Fig. 3.1(b)).

34

Following the above described procedure, We now report and compare results

for two simulations using reservoir configurations with ρ = 1.2 (denoted R1) and

ρ = 1.45 (denoted R2). The prediction for 0 < t ≤ 25 for both trained reservoirs

are shown in Fig. 3.2(a) (R1 with ρ = 1.2) and Fig. 3.2(b) (R2 with ρ = 1.45).

Both reservoirs R1 and R2 generate correct short-term predictions and then deviate

from the actual Lorenz trajectories, which is expected since any small error grows

exponentially due to the chaotic dynamics of the Lorenz system. However, after the

failure of the short-term prediction, the two reservoirs show qualitatively different

dynamical patterns. In Fig. 3.2(a), it seems that, after t ≈ 7, although the R1

prediction deviates from the actual trajectory, the long-term dynamics appears to

resemble that of the original Lorenz system. In contrast, as shown by Fig. 3.2(b),

this is clearly not the case for R2.

35

-15

0

15

x

Actual

Predicted

-20

0

20

y

0 5 10 15 20 25

t

0

20

40

z

t-T

-15

0

15
x

Actual

Predicted

t-T

-20

0

20

y

0 5 10 15 20 25

t

0

20

40

z
(a)

(b)

Figure 3.2: (a) The state prediction (red) of the R1 reservoir and the actual tra-
jectories (blue) of the Lorenz system for 0 < t ≤ 25. The spectral radius of the
reservoir is 1.2. (b) The state prediction (red) of the R2 reservoir and the actual
trajectories (blue) of the Lorenz system for 0 < t ≤ 25. The spectral radius of the
reservoir is 1.45.

36

30 35 40 45

30

35

40

45

(a)

30 35 40 45

30

35

40

45
(b)

Figure 3.3: The return map of the actual and the predicted z-coordinate of the
Lorenz system. This plot is made with time series of length 1000, where the blue
dots are from the actual Lorenz system, and the red dots overlaying the blue dots
are from the prediction. The left panel shows the return map of the long term
prediction of the R1 reservoir with ρ = 1.2, while the right panel is from the R2
reservoir with ρ = 1.45.

37

In Fig. 3.3 we present a more accurate test than visual inspection of Figs. 3.2(a)

and 3.2(b) for correctness of the climate. To do this, we follow Lorenz’s procedure

of plotting the return map of successive maxima of z(t). We first obtain z(t) for a

long period of time, 0 < t < 1000, for both the actual and the predicted time series.

We then locate all local maxima of the actual and predicted z(t) in time order

and denote them [z1, z2, ..., zm]. Then, we plot consecutive pairs of those maxima

[zi, zi+1] for i = 1, ...,m − 1 as dots in Figs. 3.3. The blue dots in both panels

of Figs. 3.3 are from the actual Lorenz system, while the red dots printed over

the blue dots are from the reservoir output prediction (v3) of z(t). As confirmed

by Fig. 3.3(a) the red dots produced by the R1 reservoir continue to fall on top

of the blue dots (from the actual Lorenz system) throughout the entire run time

(0 < t < 1000). In contrast, Fig. 3.3(b) shows that the blue dots remain largely

uncovered, because, as indicated in the third panel of Fig. 3.2(b), the maximum

value of z(t) for t > 5 is at a fixed point zmax ≈ 30. Thus the R1 reservoir very

accurately succeeds in reproducing the long-time climate of the attractor, while the

R2 reservoir does not, and this is so even though both setups are apparently capable

of producing useful short term predictions. (We have also obtained similar results

for many other simulations.) Thus some parameter adjustment may be necessary

to avoid unsuccessful reproduction of the climate. Fortunately, we usually find that

when the climate is not reproduced it is fairly evident (as in Fig. 3.2(b), as well

as Fig. 3.5 of the next section). More quantitatively, a promising general means of

assessing whether the reservoir system has succeeded in mimicking the climate is

to first use the training data to obtain finite-time estimates of the system’s ergodic

38

properties (e.g., frequency-power spectra, time correlations, moments etc.). Once

this is done, one can test whether those estimates are consistent with determinations

of the same quantities obtained from the long-term reservoir dynamics. Section 3.3

provides such an assessment for the Kuramoto-Sivashinsky system.

39

Actual Lorenz System R1 System R2 System
Λ1 0.91 0.90 0.01
Λ2 0.00 0.00 −0.1
Λ3 −14.6 −10.5 −9.9

Table 3.2: Three largest Lyapunov exponents Λ1 ≥ Λ2 ≥ Λ3 for the Lorenz system
(Eq. (3.5)), and for the reservoir set up in the configuration of Fig. 3.1(b) for R1
and R2. Since the reservoir system that we employ is a discrete time system, while
the Lorenz system is a continuous system, for the purpose of comparison, Λ1, Λ2,
and Λ3 are taken to be per unit time; that is, their reservoir values (columns 2 and
3) are equal to the reservoir Lyapunov exponents calculated on a per iterate basis
divided by ∆t.

The reservoir in the autonomous configuration of Fig. 3.1(b) represents a

known discrete-time, Dr-dimensional dynamical system (since we know Win, A,

and the output parameters P determined by the training). We compute the equa-

tions for the evolution of the tangent map corresponding to Eq. (3.4) and evolve a

set of m mutually orthogonal tangent vectors R(t) = {δrj}mj=1 along with Eq. (3.4).

We then compute the largest m Lyapunov exponents of the reservoir dynamical sys-

tem in the the configuration shown in Fig. 3.1(b) using a standard algorithm based

on QR decomposition (e.g., see Ref. [[36]]) of the matrix R(t). The two right-most

columns of Table 3.2 show the three largest Lyapunov exponents, Λ1 ≥ Λ2 ≥ Λ3,

of the reservoir system in the autonomous configuration, Fig. 3.1(b), for the R1

reservoir (for which climate reproduction succeeds), and for the R2 reservoir (for

which climate reproduction fails).

Comparing the Lyapunov exponents of the Lorenz system (first column of

Table 3.2) with those of the R1 reservoir, we see that the largest Lyapunov exponent

of the R1 reservoir is a good approximation to the largest Lyapunov exponent of the

Lorenz system. Also, consistent with the small value of ∆t, the reservoir dynamics

40

approximates that of a flow for which Λ2 should be (and is) approximately zero.

On the other hand, we see that the third Lyapunov exponent of the R1 system

is less negative than the negative Lyapunov exponent of the true Lorenz system.

In contrast with the good agreement of the Λ1 values for the Lorenz system and

the R1 reservoir, the positive Lyapunov exponent of the Lorenz system fails to be

reproduced by the R2 system whose largest Lyapunov exponent is approximately

zero; this is consistent with the observation from Fig. 3.2(b) that the long term

reservoir attractor for R2 appears to be a periodic orbit.

The significant conclusion from the above is that the R1 system, as a result of

successfully reproducing the climate, can be utilized to obtain an approximation to

the positive and zero Lyapunov exponents of the process generating its input. We

note, however, that the R1 system does not accurately reproduce the true negative

Lyapunov exponent of the Lorenz attractor.

The inaccurate R1 reservoir estimation of Λ3, noted above, can be understood

by noting that, although the return map in Fig. 3.3 appears to be a curve, this

apparent “curve” must, as noted by Lorenz [2], actually have some small width.

The R1 reservoir succeeds in approximating the attractor of the Lorenz system as

reflected by its apparent good reproduction of the return map shown in Fig. 3.3(a).

In order to do this, however, the reservoir need not reproduce the very thin trans-

verse structure within the apparent curve. Since, this very thin structure, as we

next discuss, is the primary orbital evidence of the value of Λ3, one might not ex-

pect the reservoir to accurately reproduce this very negative Lyapunov exponent.

Specifically, using the Kaplan-Yorke formula for the information dimension [30] of

41

the fractal Lorenz attractor, we obtain a dimension of [2 + (Λ1/|Λ3|)] = 2.06, corre-

sponding to 1.06 for the dimension of the structure in the return map (Fig. 3.3(a)).

This dimension is very close to one, in agreement with the approximate curve-like

character of the return map. However, close examination of the return map “curve”

of the Lorenz attractor has previously shown that, within its thickness, there is

a fractal set of small transverse dimension (presumably Λ1/|Λ3| = 0.06). On the

other hand, the Kaplan-Yorke dimension for the return map for the climate of the

R1 reservoir attractor is about 1.09. Since the primary orbital difference reflected

by differing values of Λ3 is the difference in very thin structure features of the re-

turn map that have only a small effect on the climate dynamics, it is not surprising

that the R1 reservoir, while giving a good approximation to the true climate of the

Lorenz system, gives only a rough approximation of Λ3.

3.3 Determining a Large Number of Lyapunov Exponents of a High

Dimensional Spatiotemporal Chaotic System from Data

We now consider a modified version of the Kuramoto-Sivashinsky (KS) system

defined by the partial differential equation for the function y(x, t)

yt = −yyx −
[
1 + µ cos

(
2πx

λ

)]
yxx − yxxxx, (3.7)

in the region 0 ≤ x < L with periodic boundary conditions, y(x, t) = y(x + L, t),

and λ chosen so that L is an integer multiple of λ. This equation reduces to the

42

standard KS equation when µ = 0. The cosine term makes the equation spatially

inhomogeneous. We will subsequently consider the cases µ = 0 and µ 6= 0 in order

to discuss the effect of the symmetries of the KS equation on the learning dynamics

of the reservoir computer.

By numerically integrating Eq. (3.7) on an evenly spaced one-dimensional grid

of size Q, we obtain a discretized multivariate data set of Q time series,

u(t) = [y(∆x, t), y(2∆x, t), . . . , y(Q∆x, t)]T ,∆x = L/Q.

As in the case of the Lorenz equations discussed in Sec. 3.2, we consider the situation

where we have access to the time series data but do not have information about the

dynamical equation that generated the time series. In the absence of a model, we

will use the data to train a reservoir computer to emulate the behavior of the true

dynamical system, in this case Eq. (3.7).

43

Parameter Value Parameter Value
Dr 9000 d 3
T 20000 ∆t 0.25

T/∆t 80000 β 0.0001
ρ 0.4 σ 0.5

Table 3.3: Reservoir parameters used for the successful replication of the climate of
the Kuramoto-Sivashinsky system shown in Fig. 3.4.

The reservoir network is as described in Sec. 3.1 with the parameters listed in

Table 3.3. In the training phase, Fig. 3.1(a), we evolve the reservoir according to

Eq. (3.1) from t = −T to t = 0. Next, we use Tikhonov regularized regression (see

Eq. (3.3)) to compute the output parameters, P such that Wout(r,P) = Pr̃(t) '

u(t) for −T ≤ t < 0. Here r̃ is a Dr-dimensional vector such that the ith component

of r̃ is r̃i = ri for half the reservoir nodes and r̃i = r2
i for the remaining half. With

the output parameters determined, we let the reservoir evolve autonomously for

t > 0 as shown in Fig. 3.1(b) according to Eq. (3.4).

The predictions made by the reservoir system for t > 0 are given by, Wout(r(t),P).

Figure 3.4 shows the time evolution of one such reservoir prediction for t > 0 (middle

panel), along with the true state (top panel) of the KS equation and the deviation

(bottom panel) of the reservoir prediction from the true state (i.e., the difference

between the top panel and the middle panel) Note that in Fig. 3.4 time (the hori-

zontal axis) is in units of the Lyapunov time (Λ−1
1 , where Λ1 is the largest Lyapunov

exponent of the KS attractor). We see that the reservoir gives good short term pre-

diction for about 5 multiples of the Lyapunov time. A visual inspection of Fig. 3.4

suggests that the reservoir prediction may have also learned the correct ‘climate’ of

the KS system even after the state of the reservoir dynamical system has diverged

44

from the true state of the KS system.

Figure 3.5 shows an example of an alternate scenario for another set of the

reservoir parameters (ρ = 3.1, Dr = 5000 with the rest of the parameters as shown

in Table 3.3). In this case, the reservoir still predicts accurately for a short period

of time. However, the long term climate of the signal generated by the reservoir is

no longer similar to that of the true KS climate.

A more quantitative assessment of the climate reproduction can be obtained

by calculating the power spectrum of the reservoir prediction and comparing it with

the power spectrum of the training data. Figure 3.6 shows the power spectrum of

the training data, along with the power spectrum of the dynamics of the autonomous

reservoir system in Figs. 3.4 and 3.5. We see that the reservoir system corresponding

to Fig. 3.4 succeeds in reproducing the training data power spectrum, thus indicating

that the long term system orbit reproduces the climate of the training data. On the

other hand, the power spectrum of the reservoir system corresponding to Fig. 3.5

confirms our visual assessment that this reservoir system fails to reproduce the

climate of the training data.

45

-2

0

2

50 10 15 20

20

0

0

0

40

60

20

40

60

20

40

60

True State

Prediction

Error

Figure 3.4: Top panel: True state, y(x, t), of the standard KS system after t = 0.
Middle panel: Reservoir prediction. Bottom panel: Difference between the true
state and the reservoir prediction. The parameters of the KS equation are L = 60,
µ = 0. Λ1 denotes the largest Lyapunov exponent.

46

20

0

40

60

20

0

40

60

1050 15 20

20

0

40

60

-2

0

2
Prediction

Error

True State

Figure 3.5: Top panel: True state, y(x, t), of the standard KS system after t = 0.
Middle panel: Reservoir prediction with a reservoir of size Dr = 5000 and ρ = 3.1.
The rest of the parameters are as given in Table 3.3. Bottom panel: Difference
between the reservoir prediction and the true KS state. We see that in this case, the
reservoir gives us an accurate short term prediction (i.e., the ‘weather’) but the long
term ‘climate’ of the autonomous reservoir dynamical system does not resemble the
climate of the true KS system for this poorly chosen set of parameters. Λ1 denotes
the largest Lyapunov exponent.

47

Frequency (Hz)

P
o

w
e

r/
F

re
q

u
e

n
c
y
 (

d
B

)

-5

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2

Figure 3.6: Power spectrum of the KS training data (blue), of the reservoir prediction
with the same parameters as in Fig. 3.4 (red), and of the reservoir prediction with
parameters as in Fig. 3.5 (green). All power spectra have been computed at a
single spatial gridpoint from a time series of length 15000 ∆t time steps. The power
spectra are smoothed by dividing a time series into 30 intervals, computing the
power spectrum of each interval and then averaging over all the intervals.

Similar to what was done in Sec. 3.2, we use our complete knowledge of

the dynamics of the reservoir computer to evaluate its Lyapunov exponents. By

independently evaluating the Lyapunov exponents directly from the KS equation,

Eq. (3.7), we obtain the true Lyapunov exponents and compare them with the

corresponding Lyapunov exponents of the reservoir dynamical system.

48

-0.6

-0.4

-0.2

0

0.2

-0.6

-0.4

-0.2

0

0.2

0 10 20 30 0 10 20 30

(a) (b)

1210864
-0.1

0

0.1

-0.1

0

0.1

1210864

Figure 3.7: (a) Estimating the Lyapunov exponents of the homogeneous (µ = 0) KS
equation. First 26 Lyapunov exponents of the trained reservoir dynamical system
running in autonomous prediction mode (blue ‘+’ markers) and the standard (i.e.,
µ = 0) KS system (red ‘×’ markers). The parameters of Eq. (3.7) are L = 60, µ = 0.
(b) The same plot as (a), except, the two near-zero exponents of the KS system (Λ7

and Λ8) are removed from the spectrum. Inset: a close up of the spectra around the
zero crossing. All Lyapunov exponents in this figure and Fig. 3.8 were computed
from a trajectory of length 10000 ∆t time steps, which we found to be sufficiently
long for convergence.

3.3.1 Homogeneous KS System (µ = 0)

Figure 3.7(a) shows the Lyapunov spectrum of the standard (µ = 0) KS system

with L = 60 (red ‘×’ markers), where, by definition the subscript k is such that

Λk ≥ Λk+1. The Lyapunov exponents of the reservoir trained to emulate this system

are shown on the same axes (blue ‘+’ markers). We observe that the positive

Lyapunov exponents of the reservoir system match the corresponding exponents of

the KS system very well. However, the negative exponents of the two systems do

not seem to agree with each other at first glance. We argue below that the standard

KS system has three zero Lyapunov exponents, and we posit that the reservoir is

unable to reproduce two of them. Indeed, Fig. 3.7(b) shows that if we remove the

two of the computed exponents closest to zero (Λ7 and Λ8) for the KS system, the

49

5 10 15 20 25

-0.6

-0.4

-0.2

0

Figure 3.8: Estimating the Lyapunov exponents of the inhomogeneous (µ > 0) KS
equation. First 26 Lyapunov exponents of the trained reservoir dynamical system
running in autonomous prediction mode (blue ‘+’ markers) and the modified (i.e.,
µ > 0) KS system (red ‘×’ markers). The parameters of Eq. (3.7) are L = 60,
µ = 0.1 and λ = 15.

50

negative Lyapunov exponents of the reservoir system match those of the KS system

very well.

We show now that when µ = 0 (as for Fig. 3.7), the standard KS equation (3.7)

has three zero Lyapunov exponents associated with three continuous symmetries,

namely time-translation invariance, space-translation invariance and the so-called

Gallilean invariance. Time and space translation invariance imply that if y(x, t) is

a solution, then so are y(x, t + t0) and y(x + x0, t). By Gallilean invariance, we

mean that for every solution y(x, t) of the KS equation and an arbitrary constant

v, y(x − vt, t) + v is also a solution. This can be verified by direct substitution in

Eq. (3.7) with µ = 0. Replacing t0, x0, and v by differentials (t0 → δt0, x0 → δx0,

v → δv), we have that, δy(x, t) = ∂y(x,t)
∂t

δt0, δy(x, t) = ∂y(x,t)
∂x

δx0 and δy(x, t) =[
1− t∂y(x,t)

∂x

]
δv all represent perturbations, y(x, t) + δy(x, t), of Eq. (3.7) that are,

to linear order in the differentials, solutions of Eq. (3.7). That is, all three of these

δy(x, t) are solutions of the variational equation, δyt+δyyx+yδyx+δyxx+δyxxxx = 0.

Furthermore, since the original solution y(x, t) does not decay exponentially to zero,

nor increase exponentially to infinity, we conclude that these three expressions for

δy represent Lyapunov vectors with zero Lyapunov exponents.

To see why the reservoir does not reproduce the Gallilean symmetry-associated

zero Lyapunov exponent in the µ = 0 case, notice that there is a corresponding

conserved quantity c =
∫
y(x, t)dx. A particular KS system trajectory in phase

space is thus restricted to a hypersurface with a constant value of c (say, c = c0).

Since the reservoir is trained with data from a single trajectory, it does not learn

the dynamics of perturbations that take the trajectory off the c0 hypersurface. We

51

are not certain why the reservoir does not reproduce both of the other two zero

exponents.

3.3.2 Inhomogeneous KS System (µ = 0.1)

As a further example that does not have additional symmetries beyond time-

translation, we consider (Fig. 3.8) a KS equation with a nonzero value of µ (L =

60, λ = 15, µ = 0.1). As before, we train the reservoir using the time series data

from the symmetry broken KS equation. After training, we run the reservoir in

autonomous prediction mode (Fig. 3.1(b)) and calculate its Lyapunov spectrum.

Figure 3.8 shows that the reservoir reproduces the Lyapunov spectrum of the true

KS system accurately in this case. Notably, in contrast with the case µ = 0, this good

agreement is obtained without the need of discarding two zero Lyapunov exponents.

We continue to use this modified KS system in the experiments described below.

For the cases shown in Figs. 3.7(b) and 3.8, the information dimension of the

attractor, as computed from the Kaplan-Yorke conjecture [[30]], is about DKY ≈ 15

(roughly, the value of k at which
∑k

j=1 Λj first becomes negative). We see from

Fig. 3.7(b) and Fig. 3.8 that the reservoir continues to give reasonable estimates of

Λk even for k > DKY . This was somewhat surprising to us, especially in view of the

inaccurate reservoir estimate of Λ3 in Sec. 3.2.

52

3.3.3 Effect of Measurement Noise

We now consider the effect of additive measurement noise on our Lyapunov

exponent calculation scheme. We simulate measurement noise by adding a random

vector n(t) to the training data set u(t) for all values of t. That is, at every time

step ∆t, we replace u in Eq. (3.1) by u + n, and we replace vd = u used in Eq.

(3.3) by vd = u + n. The scalar elements nj(t) of the vector n(t), for each value

of j and t, are independent, identically distributed uniform random variables in the

interval [−α, α]. The constant α is chosen so that the RMS value of the noise is f

times the RMS value of the noise-free signal u(t). Figure 3.9(a) shows the noise-free

time series at a single grid point, while Figs. 3.9(b) and 3.9(c) show the same time

series with added noise of strength f = 0.05 and f = 0.2, respectively. We calculate

the Lyapunov exponents of the reservoir as described above. Figure 3.10 shows the

Lyapunov spectrum when the noise level f is varied from 0.05 to 0.20 along with the

true Lyapunov spectrum of the KS equation. We see that the reservoir results for

the positive Lyapunov exponents are quite robust to noise for f ≤ 0.2, but that the

negative exponents are increasingly depressed to more negative values as f increases.

3.3.4 Effect of Training Data Length

We find that the amount of data used to train the reservoir computer can

significantly affect the accuracy of the Lyapunov spectrum. The negative Lyapunov

exponents are more sensitive than the positive exponents to errors due to insufficient

training data. Figure 3.11 demonstrates this result through a plot of the Lyapunov

53

-2

0

2

-2

0

2

0 100 200

-2

0

2

(a)

(b)

(c)

Figure 3.9: (a) Single scalar component u(t) of the time series u(t) generated from
the KS system (Eq. (3.7)) with L = 60, λ = 15 and µ = 0.1. The time series in (a)
with added noise, u(t) + n(t), of noise strengths f = 0.05 and f = 0.2 are shown in
(b) and (c) respectively.

0 5 10 15 20

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
True KS Equation

Figure 3.10: Lyapunov exponents of the reservoir trained on noisy data from the KS
system (L = 60, λ = 15, µ = 0.1). The strength of the noise added to the training
data is indicated in the legend.

54

0 5 10 15 20

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
10000

20000

40000

80000

True KS

Figure 3.11: The Lyapunov spectrum of the reservoir trained using varying lengths
of training data from Eq. (3.7) with parameters L = 60, λ = 15 and µ = 0.1. The
legend indicates the length of the training time series in number of ∆t steps (i.e.,
T/∆t). For a comparison with a natural time scale of the KS system, we note that
10000 ∆t time steps equals approximately 200 Lyapunov times.

spectrum of the reservoir trained on varying lengths of data from Eq. (3.7) with

parameters L = 60, λ = 15 and µ = 0.1. In this example we find that we need a

training time series of greater than 20000 time steps in order to obtain a reasonably

accurate estimate of the negative Lyapunov exponents (20000 time steps equals

about 400 multiples of the Lyapunov time (Λ−1
1) which can be considered to be a

natural time scale of the KS system).

3.4 Discussion and Conclusion

We conclude that a suitably trained reservoir computing system is capable of

approximating the ergodic properties of the true system that it was trained on. In

the case of the Lorenz equations (Sec. 3.2), our method is successful in calculating the

positive and zero Lyapunov exponents with good accuracy. The negative Lyapunov

exponent of the true Lorenz system has a high magnitude, and our method is not as

successful in accurately calculating the numerical value of this exponent, although it

55

does successfully capture that its magnitude is substantially larger than that of the

positive exponent. Remarkably, as shown in Sec. 3.3 for the Kuramoto-Sivashinsky

system, it is possible to use the trained reservoir to calculate a large number of

positive and negative Lyapunov exponents of a high dimensional spatio-temporal

chaotic system with good accuracy.

In Fig. 3.11 we demonstrated that we can reproduce the Lyapunov exponents

of an approximately 15-dimensional attractor from a “training” time series of 40000

points (T/∆t = 40000). By contrast, delay coordinate embedding methods that

approximate the system Jacobian from nearest neighbors have been argued to require

a time series of length 10D or longer [56,57] (where D is the attractor dimension).

From a more general point of view, our chapter suggests that the development

of machine learning techniques for model-free analysis of measured data from chaotic

systems may be a fruitful subject for further research.

56

Chapter 4: Model-Assisted Prediction of Chaotic Dynamical Systems

This chapter is based on the paper, ‘Hybrid forecasting of chaotic processes:

Using machine learning in conjunction with a knowledge-based model’, Chaos 28,

041101 (2018); https://doi.org/10.1063/1.5028373 by Jaideep Pathak, Alexander

Wikner, Rebeckah Fussell, Sarthak Chandra, Brian R. Hunt, Michelle Girvan, and

Edward Ott c©by the American Institute of Physics

Prediction of dynamical system states (e.g., as in weather forecasting) is a

common and essential task with many applications in science and technology. This

task is often carried out via a system of dynamical equations derived to model the

process to be predicted. Due to deficiencies in knowledge or computational capacity,

application of these models will generally be imperfect and may give unacceptably

inaccurate results. On the other hand data-driven methods, independent of derived

knowledge of the system, can be computationally intensive and require unreason-

ably large amounts of data. In this chapter we consider a particular hybridization

technique for combining these two approaches. Our tests of this hybrid technique

suggest that it can be extremely effective and widely applicable.

57

4.1 Introduction

One approach to forecasting the state of a dynamical system starts by using

whatever knowledge and understanding is available about the mechanisms governing

the dynamics to construct a mathematical model of the system. Following that,

one can use measurements of the system state to estimate initial conditions for

the model that can then be integrated forward in time to produce forecasts. We

refer to this approach as knowledge-based prediction. The accuracy of knowledge-

based prediction is limited by any errors in the mathematical model. Another

approach that has recently proven effective is to use machine learning to construct

a predictor purely from extensive past measurements of the system state evolution

(training data). Because the latter approach typically makes little or no use of

mechanistic understanding, the amount of training data and the computational

resources required can be prohibitive, especially when the system to be predicted

is large and complex. The purpose of this chapter is to propose, describe, and test

a general framework for combining a knowledge-based approach with a machine

learning approach to build a hybrid prediction scheme with significantly enhanced

potential for performance and feasibility of implementation as compared to either

an approximate knowledge-based model acting alone or a machine learning model

acting alone. The results of our tests of our proposed hybrid scheme suggest that it

can have wide applicability for forecasting in many areas of science and technology.

Another view motivating our hybrid approach is that, when trying to predict

the evolution of a system, one might intuitively expect the best results when making

58

appropriate use of all the available information about the system. Here we think

of both the (perhaps imperfect) knowledge-based model and the past measurement

data as being two types of system information which we wish to simultaneously and

efficiently utilize. Our hybrid technique combines the information in a way that does

not presume either type to have greater predictive power. We note that hybrids of

machine learning with other approaches have previously been applied to a variety

of other tasks, but here we consider the general problem of forecasting a dynamical

system with an imperfect knowledge-based model, the form of whose imperfections

is unknown. Examples of such other tasks addressed by machine learning hybrids

include network anomaly detection [58], credit rating [59], and chemical process

modeling [60], among others. We also note a recent preprint 1 that employs a

hybrid dynamical state forecasting scheme that is related to the one we present

here.

To illustrate the hybrid scheme, we focus on a particular type of machine learn-

ing known as ‘reservoir computing’ [15,16,61], which has been previously applied to

the prediction of low dimensional systems [11] and, more recently, to the prediction of

large spatiotemporal chaotic systems [31,62]. We emphasize that, while our illustra-

tion is for reservoir computing with a reservoir based on an artificial neural network,

we view the results as a general test of the hybrid approach. As such, these results

should be relevant to other versions of machine learning [18] (such as Long Short-

Term Memory networks [21]), as well as reservoir computers in which the reservoir

1Z. Y. Wan, P. R. Vlachas, P. Koumoutsakos, and T. P. Sapsis, Data-assisted reduced-order
modeling of extreme events in complex dynamical systems, arXiv preprint arXiv:1803.03365v1
(2018). This work employs Long Short-Term Memory networks [21] rather than reservoir comput-
ing.

59

is implemented by various physical means (e.g., electro-optical schemes [63–65] or

Field Programmable Gate Arrays [28]). A particularly dramatic example illustrat-

ing the effectiveness of the hybrid approach is shown in Figs. 4.7(d,e,f) in which,

when acting alone, both the knowledge-based predictor and the reservoir machine

learning predictor give fairly worthless results (prediction time of only a fraction

of a Lyapunov time), but, when the same two systems are combined in the hybrid

scheme, good predictions are obtained for a substantial duration of about 4 Lya-

punov times. (By a ‘Lyapunov time’ we mean the typical time required for an e-fold

increase of the distance between two initially close chaotic orbits; see Secs. 4.4 and

4.5.)

The rest of this chapter is organized as follows. In Sec. 4.2, we provide an

overview of our methods for prediction by using a knowledge-based model and for

prediction by exclusively using a reservoir computing approach (henceforth referred

to as the reservoir-only predictor). We then describe the hybrid scheme that com-

bines the knowledge-based model with the reservoir-only predictor. In Sec. 4.3,

we describe our specific implementation of the reservoir computing scheme and the

proposed hybrid scheme using a recurrent-neural-network implementation of the

reservoir computer. In Secs. 4.4 and 4.5, we demonstrate our hybrid prediction ap-

proach using two examples, namely, the low-dimensional Lorenz system [66] and the

high dimensional, spatiotemporal chaotic Kuramoto-Sivashinsky system [67,68].

4.2 Prediction Methods

60

Input Layer

Training

Prediction

Reservoir

Output Layer

PredictionPrediction

Figure 4.1: Schematic diagram of reservoir-only prediction setup.

61

We consider a dynamical system for which there is available a time series of

a set of M measurable state-dependent quantities, which we represent as an M

dimensional vector u(t). As discussed earlier, we propose a hybrid scheme to make

predictions of the dynamics of the system by combining an approximate knowledge-

based prediction via an approximate model with a purely data-driven prediction

scheme that uses machine learning. We will compare predictions made using our

hybrid scheme with the predictions of the approximate knowledge-based model alone

and predictions made by exclusively using the reservoir computing model.

4.2.1 Knowledge-Based Model

We obtain predictions from the approximate knowledge-based model acting

alone assuming that the knowledge-based model is capable of forecasting u(t) for

t > 0 based on an initial condition u(0) and possibly recent values of u(t) for t < 0.

For notational use in our hybrid scheme (Sec. 4.2.3), we denote integration of the

knowledge-based model forward in time by a time duration ∆t as,

uK(t+ ∆t) = K [u(t)] ≈ u(t+ ∆t). (4.1)

We emphasize that the knowledge-based one-step-ahead predictorK is imperfect and

may have substantial unwanted error. In our test examples in Secs. 4.4 and 4.5 we

consider prediction of continuous-time systems and take the prediction system time

step ∆t to be small compared to the typical time scale over which the continuous-

time system changes. We note that while a single prediction time step (∆t) is small,

62

we are interested in predicting for a large number of time steps.

4.2.2 Reservoir-Only Predictor

For the machine learning approach, we assume the knowledge of u(t) for times

t from −T to 0. This data will be used to train the machine learning model for the

purpose of making predictions of u(t) for t > 0. In particular we use a reservoir

computer, described as follows.

A reservoir computer (Fig. 4.1) is constructed with an artificial high dimen-

sional dynamical system, known as the reservoir whose state is represented by the

Dr dimensional vector r(t), Dr �M . We note that ideally the forecasting accuracy

of a reservoir-only prediction increases with Dr, but that Dr is typically limited by

computational cost considerations. The reservoir is coupled to an input through an

Input-to-Reservoir coupling R̂in [u(t)] which maps the M -dimensional input vector,

u, at time t, to each of the Dr reservoir state variables. The output is defined

through a Reservoir-to-Output coupling R̂out [r(t),p], where p is a large set of ad-

justable parameters. In the task of prediction of state variables of dynamical systems

the reservoir computer is used in two different configurations. One of the config-

urations we call the ‘training’ phase, and the other one we called the ‘prediction’

phase. In the training phase, the reservoir system is configured according to Fig. 4.1

with the switch in the position labeled ‘Training’. In this phase, the reservoir state

evolves from t = −T to t = 0 according to the equation,

r(t+ ∆t) = ĜR

[
R̂in [u(t)] , r(t)

]
, (4.2)

63

where the nonlinear function ĜR and the (usually linear) function R̂in depend on

the choice of the reservoir implementation. Next, we make a particular choice of the

parameters p such that the output function R̂out [r(t),p] satisfies,

R̂out [r(t),p] ≈ u(t), (4.3)

for −T < t ≤ 0. We achieve this by minimizing the error between ũR(t) =

R̂out [r(t),p] and u(t) for −T < t ≤ 0 using a suitable error metric and optimization

algorithm on the adjustable parameter vector p.

In the prediction phase, for t ≥ 0, the switch is placed in position labeled

‘Prediction’ indicated in Fig. 4.1. The reservoir state now evolves autonomously

with a feedback loop according to the equation,

r(t+ ∆t) = ĜR

[
R̂in [ũR(t)] , r(t)

]
, (4.4)

where, ũR(t) = R̂out [r(t),p] is taken as the prediction from this reservoir-only

approach. It has been shown [11] that this procedure can successfully generate a

time series ũR(t) that approximates the true state u(t) for t > 0. Thus ũR(t) is our

reservoir-based prediction of the evolution of u(t). If, as assumed henceforth, the

dynamical system being predicted is chaotic, the exponential divergence of initial

conditions in the dynamical system implies that any prediction scheme will only be

able to yield an accurate prediction for a limited amount of time.

64

Based
Knowledge-

Model

Input Layer
Output Layer

Training

Prediction

Reservoir

ngaining

onPredictionPrediction

Figure 4.2: Schematic diagram of the hybrid prediction setup.

4.2.3 Hybrid Scheme

The hybrid approach we propose combines both the knowledge-based model

and the reservoir-only predictor. Our hybrid approach is outlined in the schematic

diagram shown in Fig. 4.2.

65

As in the reservoir-only approach, the hybrid scheme has two phases, the

training phase and the prediction phase. In the training phase (with the switch in

position labeled ‘Training’ in Fig. 4.2), the training data u(t) from t = −T to t = 0

is fed into both the knowledge-based predictor and the reservoir. At each time t, the

output of the knowledge-based predictor is the one-step ahead prediction K [u(t)].

The reservoir evolves according to the equation

r(t+ ∆t) = ĜH

[
r(t), Ĥin [K [u(t)] ,u(t)]

]
(4.5)

for −T ≤ t ≤ 0, where the (usually linear) function Ĥin couples the reservoir

network with the inputs to the reservoir, in this case u(t) and K [u(t)]. As earlier,

we modify a set of adjustable parameters p in a predefined output function so that

Ĥout [K [u(t−∆t)] , r(t),p] ≈ u(t) (4.6)

for −T < t ≤ 0, which is achieved by minimizing the error between the right-

hand side and the left-hand side of Eq. (4.6), as discussed earlier (Sec. 4.2.2) for

the reservoir-only approach. Note that both the knowledge-based model and the

reservoir feed into the output layer (Eq. (4.6) and Fig. 4.2) so that the training

can be thought of as optimally deciding on how to weight the information from the

knowledge-based and reservoir components.

For the prediction phase (the switch is placed in the position labeled ‘Pre-

diction’ in Fig. 4.2) the feedback loop is closed allowing the system to evolve au-

tonomously. The dynamics of the system will then be given by

66

r(t+ ∆t) = ĜH

[
r(t), Ĥin [K [ũH(t)] , ũH(t)]

]
, (4.7)

where ũH(t) = Ĥout [K [ũH(t−∆t)] , r(t),p], is the prediction of the prediction of

the hybrid system.

4.3 Implementation

In this section we provide details of our specific implementation and discuss the

prediction performance metrics we use to assess and compare the various prediction

schemes. Our implementation of the reservoir computer closely follows Ref. [11].

Note that, in the reservoir training, no knowledge of the dynamics and details of the

reservoir (the network within the circles in Figs. 4.1 and 4.2) is used (this contrasts

with other machine learning techniques [18]): only the −T ≤ t ≤ 0 training data

is used (u(t), r(t), and, in the case of the hybrid, K[u(t)]). This feature implies

that reservoir computers, as well as the reservoir-based hybrid are insensitive to the

specific reservoir implementation. In this chapter, our illustrative implementation

of the reservoir computer uses an artificial neural network for the realization of the

reservoir. We mention, however, that alternative implementation strategies such as

utilizing nonlinear optical devices [63–65] and Field Programmable Gate Arrays [28]

can also be used to construct the reservoir component of our hybrid scheme (Fig. 4.2)

and offer potential advantages, particularly with respect to speed.

67

4.3.1 Reservoir-Only and Hybrid Implementations

Here we consider that the high-dimensional reservoir is implemented by a

large, weighted, directed, low degree Erdős-Rènyi network of Dr nonlinear, neuron-

like units in which the network is described by an adjacency matrix A (we stress

that the following implementations are somewhat arbitrary, and are intended as

illustrating typical results that might be expected). The network is constructed to

have an average degree denoted by 〈d〉, and the nonzero elements of A, representing

the edge weights in the network, are initially chosen independently from the uniform

distribution over the interval [−1, 1]. All the edge weights in the network are then

uniformly scaled via multiplication of the adjacency matrix by a constant factor

to set the largest magnitude eigenvalue of the matrix to a quantity ρ, which is

called the ‘spectral radius’ of A. The state of the reservoir, given by the vector

r(t), consists of the components rj for 1 ≤ j ≤ Dr where rj(t) denotes the scalar

state of the jth node in the network. When evaluating prediction based purely on a

reservoir system alone, the reservoir is coupled to the M dimensional input through

a Dr×M dimensional matrix Win, such that in Eq. (4.2) R̂in [u(t)] = Winu(t), and

each row of the matrix Win has exactly one randomly chosen nonzero element. Each

nonzero element of the matrix is independently chosen from the uniform distribution

on the interval [−σ, σ]. We choose the hyperbolic tangent function for the form of

the nonlinearity at the nodes, so that the specific training phase equation for our

68

reservoir setup corresponding to Eq. (4.2) is

r(t+ ∆t) = tanh [Ar(t) + Winu(t)] , (4.8)

where the hyperbolic tangent applied on a vector is defined as the vector whose com-

ponents are the hyperbolic tangent function acting on each element of the argument

vector individually.

We choose the form of the output function to be R̂out(r,p) = Woutr
?, in which

the output parameters (previously symbolically represented by p) will henceforth

be take to be the elements of the matrix Wout, and the vector r? is defined such

that r?j equals rj for odd j, and equals r2
j for even j (it was empirically found that

this choice of r? works well for our examples in both Sec. 4.4 and Sec. 4.5, see

also [22, 31]). We run the reservoir for −T ≤ t ≤ 0 with the switch in Fig. 4.1 in

the ‘Training’ position. We then use Tikhonov regularized linear regression [32] to

train ũR(t) = Woutr
?(t) to approximate u(t). That is, we minimize the quantity∑T/∆t

m=1 ‖ u(−m∆t) − ũR(−m∆t)‖2 + β‖Wout‖2, where ‖Wout‖2 is the sum of the

squares of the matrix elements of Wout and the regularization parameter β is a small

positive number introduced to avoid overfitting. Since ũR depends linearly on the

elements of Wout, this minimization is a standard linear regression problem.

Once the output parameters (the matrix elements of Wout) are determined,

we run the system in the configuration depicted in Fig. 4.1 with the switch in the

69

‘Prediction’ position according to the equations,

ũR(t) = Woutr
?(t)r(t+ ∆t) = tanh [Ar(t) + WinũR(t)] , (4.9)

corresponding to Eq. (4.4). Here ũR(t) denotes the prediction of u(t) for t > 0 made

by the reservoir-only model.

Next, we describe the implementation of the hybrid prediction scheme. The

reservoir component of our hybrid scheme is implemented in the same fashion as in

the reservoir-only model given above. In the training phase for −T < t ≤ 0, when

the switch in Fig. 4.2 is in the ‘Training’ position, the specific form of Eq. (4.5) used

is given by

r(t+ ∆t) = tanh

Ar(t) + Win

K [u(t)]

u(t)

 (4.10)

As earlier, we choose the matrix Win (which is now Dr×(2M) dimensional) to have

exactly one nonzero element in each row. The nonzero elements are independently

chosen from the uniform distribution on the interval [−σ, σ]. Each nonzero element

can be interpreted to correspond to a connection to a particular reservoir node.

These nonzero elements are randomly chosen such that a fraction γ of the reservoir

nodes are connected exclusively to the raw input u(t) and the remaining fraction

are connected exclusively to the the output of the model based predictor K[u(t)].

Similar to the reservoir-only case, we choose the form of the output function

70

to be

Ĥout [K [u(t−∆t)] , r(t),p] = Wout

K [u(t−∆t)]

r?(t)

 , (4.11)

Where, as in the reservoir-only case, Wout now plays the role of p. Again, as in the

reservoir-only case, Wout is determined via Tikhonov regularized regression.

In the prediction phase for t > 0, when the switch in Fig. 4.2 is in position

labeled ‘Prediction’, the input u(t) is replaced by the output at the previous time

step and the equation analogous to Eq. (4.7) is given by,

ũH(t) = Wout

K [u(t)]

r?(t)

 , r(t+ ∆t) = tanh

Ar(t) + Win

K [ũH]

ũH

 . (4.12)

The vector time series ũH(t) denotes the prediction of u(t) for t > 0 made by our

hybrid scheme.

4.3.2 Training Reusability

In the prediction phase, t > 0, chaos combined with a small initial condition

error, ‖ũ(0) − u(0)‖ � ‖u(0)‖, and imperfect reproduction of the true system

dynamics by the prediction method lead to a roughly exponential increase of the

prediction error ‖ũ(t) − u(t)‖ as the prediction time t increases. Eventually, the

prediction error becomes unacceptably large. By choosing a value for the largest

acceptable prediction error, one can define a “valid time” tv for a particular trial.

As our examples in the following sections show, tv is typically much less than the

necessary duration T of the training data required for either reservoir-only prediction

71

or for prediction by our hybrid scheme. However, it is important to point out

that the reservoir and hybrid schemes have the property of training reusability.

That is, once the output parameters p (or Wout) are obtained using the training

data in −T ≤ t ≤ 0, the same p can be used over and over again for subsequent

predictions, without retraining p. For example, say that we now desire another

prediction starting at some later time t0 > 0. In order to do this, the reservoir

system (Fig. 4.1) or the hybrid system (Fig. 4.2) with the predetermined p, is first

run with the switch in the ‘Training’ position for a time, (t0 − ξ) < t < t0. This

is done in order to resynchronize the reservoir state r(t0) to the dynamics of the

true system. Then, at time t = t0, the switch (Figs. 4.1 and 4.2) is moved to the

‘Prediction’ position, and the output ũR or ũH is taken as the prediction for t > t0.

We find that with p predetermined, the time required for re-synchronization ξ turns

out to be very small compared to tv, which is in turn small compared to the training

time T .

4.3.3 Assessments of Prediction Methods

We wish to compare the effectiveness of different prediction schemes (knowledge-

based, reservoir-only, or hybrid). As previously mentioned, for each independent

prediction, we quantify the duration of accurate prediction with the corresponding

“valid time”, denoted tv, defined as the elapsed time before the normalized error

72

E(t) first exceeds some value f , 0 < f < 1, E(tv) = f , where

E(t) =
||u(t)− ũ(t)||
〈||u(t)||2〉1/2

, (4.13)

and the symbol ũ(t) now stands for the prediction [either ũK(t), ũR(t) or ũH(t)

as obtained by either of the three prediction methods (knowledge-based, reservoir-

based, or hybrid)].

In what follows we use f = 0.4. We test all three methods on 20 disjoint

time intervals of length τ in a long run of the true dynamical system. For each

prediction method, we evaluate the valid time over many independent prediction

trials. Further, for the reservoir-only prediction and the hybrid schemes, we use

32 different random realizations of A and Win, for each of which we separately

determine the training output parameters Wout; then we predict on each of the

20 time intervals for each such random realization, taking advantage of training

reusability (Sec. 4.3.2). Thus, there are a total of 640 different trials for the reservoir-

only and hybrid system methods, and 20 trials for the knowledge-based method.

We use the median valid time across all such trials as a measure of the quality of

prediction of the corresponding scheme, and the span between the first and third

quartiles of the tv values as a measure of variation in this metric of the prediction

quality.

73

4.4 Lorenz system

The Lorenz system [66] is described by the equations,

dx

dt
= −ax+ ay,

dy

dt
= bx− y − xz, dz

dt
= −cz + xy,

For our “true” dynamical system, we use a = 10, b = 28, c = 8/3 which we

use to generate simulated data in −T ≤ t ≤ 0 and to generate true orbits in t > 0

for comparison with our predictions. For our knowledge-based predictor, we use an

‘imperfect’ version of the Lorenz equations to represent an approximate, imperfect

model that might be encountered in a real life situation. Our imperfect model differs

from the true Lorenz system given in Eq. (6.20) only via a change in the system

parameter b in Eq. (6.20) to b(1 + ε). The error parameter ε is thus a dimensionless

quantification of the discrepancy between our knowledge-based predictor and the

‘true’ Lorenz system. We emphasize that, although we simulate model error by a

shift of the parameter b, we view this to represent a general model error of unknown

form. For example we can view our parameter mismatch ε as a surrogate for a

situation where the best available model differs by order ε from the dynamics due

to factors such as imperfect knowledge basis of the system, too crude subgrid-scale

modeling, etc. (e.g., see Ref. 1, where the knowledge-based system is a Galerkin

approximation of a higher dimensional true system). This view is reflected by the

fact that our reservoir and hybrid methods do not incorporate knowledge that the

system error in our experiments results from an imperfect parameter value of a

74

system with Lorenz form. Next, for the reservoir computing component of the

hybrid scheme, we construct a network-based reservoir as discussed in Sec. 4.2.2 for

various reservoir sizes Dr and with the parameters listed in Table 4.1.

Parameter Value Parameter Value
ρ 0.4 T 100
〈d〉 3 γ 0.5
σ 0.15 τ 250

∆t 0.1 ξ 10

Table 4.1: Reservoir parameters ρ, 〈d〉, σ, ∆t, training time T , hybrid parameter γ,
and evaluation parameters τ , ξ for the Lorenz system prediction.

Figure 4.3 shows an illustrative example of one prediction trial using the hy-

brid method. The horizontal axis is the time in units of the Lyapunov time λ−1
max,

where λmax denotes the largest Lyapunov exponent of the system, Eqs. (6.20). The

vertical dashed lines in Fig. 4.3 indicate the valid time tv (Sec. 4.3.3) at which E(t)

(Eq. (4.13)) first reaches the value f = 0.4. The valid time determination for this

example with ε = 0.05 and Dr = 500 is illustrated in Fig. 4.4. Notice that we get

low prediction error for about 10 Lyapunov times.

-20

0

20

-20

0

20

20

40

1086420 12 14 16 18 20

Figure 4.3: Prediction of the Lorenz system using the hybrid prediction setup. The
blue line shows the true state of the Lorenz system and the red dashed line shows
the prediction. Prediction begins at t = 0. The vertical black dashed line marks the
point where this prediction is no longer considered valid by the valid time metric
with f = 0.4. The error in the approximate model used in the knowledge-based
component of the hybrid scheme is ε = 0.05.

75

1086420 12 14 16 18 20

0.5

1.0

1.5

0

Figure 4.4: Normalized error E(t) versus time of the Lorenz prediction trial shown
in Fig. 4.3. The prediction error remains below the defined threshold (E(t) < 0.4)
for about 12 Lyapunov times.

The red upper curve in Fig. 4.5 shows the dependence on reservoir size Dr

of results for the median valid time (in units of Lyapunov time, λmaxt, and with

f = 0.4) of the predictions from a hybrid scheme using a reservoir system combined

with our imperfect model with an error parameter of ε = 0.05. The error bars

span the first and third quartiles of our trials which are generated as described in

Sec. 4.3.3. The black middle curve in Fig. 4.5 shows the corresponding results for

predictions using the reservoir-only scheme. The blue lower curve in Fig. 4.5 shows

the result for prediction using only the ε = 0.05 imperfect knowledge-based model

(since this result does not depend on Dr, the blue curve is horizontal and the error

bars are the same at each value of Dr). Note that, even though the knowledge-based

prediction alone is very bad, when used in the hybrid, it results in a large prediction

improvement relative to the reservoir-only prediction. Moreover, this improvement

is seen for all values of the reservoir sizes tested. Note also that the valid time

for the hybrid with a reservoir size of Dr = 50 is comparable to the valid time for

a reservoir-only scheme at Dr = 500. This suggests that our hybrid method can

substantially reduce reservoir computational expense even with a knowledge-based

model that has low predictive power on its own.

Figure. 4.6 shows the dependence of prediction performance on the model error

76

ε with the reservoir size held fixed at Dr = 50. For the wide range of the error ε we

have tested, the hybrid performance is much better than either its knowledge-based

component alone or reservoir-only component. Figures 4.5 and 4.6, taken together,

suggest the potential robustness of the utility of the hybrid approach.

Figure 4.5: Reservoir size (Dr) dependence of the median valid time using the hybrid
prediction scheme (red upper plot), the reservoir-only (black middle plot) and the
knowledge-based model only methods. The model error is fixed at ε = 0.05. Since
the knowledge based model (blue) does not depend on Dr, its plot is a horizontal
line. Error bars span the range between the 1st and 3rd quartiles of the trials.

Figure 4.6: Valid times for different values of model error (ε) with f = 0.4. The
reservoir size is fixed at Dr = 50. Plotted points represent the median and error
bars span the range between the 1st and 3rd quartiles. The meaning of the colors is
the same as in Fig. 4.5. Since the reservoir only scheme (black) does not depend on
ε, its plot is a horizontal line. Similar to Fig. 4.5, the small reservoir alone cannot
predict well for a long time, but the hybrid model, which combines the inaccurate
knowledge-based model and the small reservoir performs well across a broad range
of ε.

77

4.5 Kuramoto-Sivashinsky equations

In this example, we test how well our hybrid method, using an inaccurate

knowledge-based model combined with a relatively small reservoir, can predict

systems that exhibit high dimensional spatiotemporal chaos. Specifically, we use

simulated data from the one-dimensional Kuramoto-Sivashinsky (KS) equation for

y(x, t),

yt = −yyx − yxx − yxxxx (4.14)

Our simulation calculates y(x, t) on a uniformly spaced grid with spatially periodic

boundary conditions such that y(x, t) = y(x + L, t), with a periodicity length of

L = 35, a grid size of Q = 64 grid points (giving a intergrid spacing of ∆x = L
Q
≈

0.547), and a sampling time of ∆t = 0.25. For these parameters we found that the

maximum Lyapunov exponent, λmax, is positive (λmax ≈ 0.07), indicating that this

system is chaotic. We define a vector of y(x, t) values at each grid point as the input

to each of our predictors:

u(t) =

[
y

(
L

Q
, t

)
, y

(
2L

Q
, t

)
, . . . , y (L, t)

]T
. (4.15)

78

(a) Low Error Knowledge-based Predictor

(b) Large Reservoir

(c) Hybrid (a+b)

(d) High Error Knowledge-based Predictor

(e) Small Reservoir

(f) Hybrid (d+e)

Lo
w

 E
rr

o
r

K
n

o
w

le
d

g
e

-b
a

se
d

 M
o

d
e

l

a
n

d
 L

a
rg

e
 R

e
se

rv
o

ir

H
ig

h
 E

rr
o

r
K

n
o

w
le

d
g

e
-b

a
se

d
 M

o
d

e
l

a
n

d
 S

m
a

ll
 R

e
se

rv
o

ir

Figure 4.7: The topmost panel shows the true solution of the KS equation
(Eq. (4.14)). Each of the six panels labeled (a) through (f) shows the difference
between the true state of the KS system and the prediction made by a specific pre-
diction scheme. The three panels (a), (b), and (c), respectively, show the results for
a low error knowledge-based model (ε = 0.01), a reservoir-only prediction scheme
with a large reservoir (Dr = 8000), and the hybrid scheme composed of (Dr = 8000,
ε = 0.01). The three panels, (d), (e), and (f) respectively show the corresponding
results for a highly imperfect knowledge-based model (ε = 0.1), a reservoir-only
prediction scheme using a small reservoir (Dr = 500), and the hybrid scheme with
(Dr = 500, ε = 0.1).

79

For our approximate knowledge-based predictor, we use the same simulation

method as the original Kuramoto-Sivashinsky equations with an error parameter ε

added to the coefficient of the second derivative term as follows,

yt = −yyx − (1 + ε)yxx − yxxxx. (4.16)

For sufficiently small ε, Eq. (4.16) corresponds to a very accurate knowledge-based

model of the true KS system, which becomes less and less accurate as ε is increased.

Illustrations of our main result are shown in Figs. 4.7 and 4.8, where we use the

parameters in Table 4.2. In the top panel of Fig. 4.7, we plot a computed solution

of Eq. (4.14) which we regard as the true dynamics of a system to be predicted; the

spatial coordinate x ∈ [0, L] is plotted vertically, the time in Lyapunov units (λmaxt)

is plotted horizontally, and the value of y(x, t) is color coded with the most positive

and most negative y values indicated by red and blue, respectively. Below this top

panel are six panels labeled (a-f) in which the color coded quantity is the prediction

error ỹ(x, t) − y(x, t) of different predictions ỹ(x, t). In panels (a), (b) and (c), we

consider a case (ε = 0.01, Dr = 8000) where both the knowledge-based model (panel

(a)) and the reservoir-only predictor (panel (b)) are fairly accurate; panel (c) shows

the hybrid prediction error. In panels (d), (e), and (f), we consider a different case

(ε = 0.1, Dr = 500) where both the knowledge-based model (panel (d)) and the

reservoir-only predictor (panel (e)) are relatively inaccurate; panel (f) shows the

hybrid prediction error. In our color coding, low prediction error corresponds to the

green color. The vertical solid lines denote the valid times for this run with f = 0.4.

80

(a) (b)

(c)

Figure 4.8: Each of the three panels (a), (b), and (c) shows a comparison of the KS
system prediction performance of the reservoir-only scheme (black), the knowledge-
based model (blue) and the hybrid scheme (red). The median valid time in Lyapunov
units (λmaxtv) is plotted against the size of the reservoir used in the hybrid scheme
and the reservoir-only scheme. Since the knowledge-based model does not use a
reservoir, its valid time does not vary with the reservoir size. The error in the
knowledge-based model is ε = 1 in panel (a), ε = 0.1 in panel (b) and ε = 0.01 in
panel (c).

Parameter Value Parameter Value
ρ 0.4 T 5000
〈d〉 3 γ 0.5
σ 1.0 τ 250

∆t 0.25 ξ 10

Table 4.2: Reservoir parameters ρ, 〈d〉, σ, ∆t, training time T , hybrid parameter γ,
and evaluation parameters τ , ξ for the KS system prediction.

81

This latter remarkable result is reinforced by Fig. 4.8(a), which shows that

even for very large error, ε = 1, such that the model is totally ineffective, the hybrid

of these two methods is able to predict for a significant amount of time using a

relatively small reservoir. This implies that a non-viable model can be made viable

via the addition of a reservoir component of modest size. Further Figs. 4.8(b,c)

show that even if one has a model that can outperform the reservoir prediction, as

is the case for ε = 0.01 for most reservoir sizes, one can still benefit from a reservoir

using our hybrid technique.

4.6 Conclusions

In this chapter we present a method for the prediction of chaotic dynamical

systems that hybridizes reservoir computing and knowledge-based prediction. Our

main results are:

1. Our hybrid technique consistently outperforms its component reservoir-only

or knowledge-based model prediction methods in the duration of its ability to

accurately predict, for both the Lorenz system and the spatiotemporal chaotic

Kuramoto-Sivashinsky equations.

2. Our hybrid technique robustly yields improved performance even when the

reservoir-only predictor and the knowledge-based model are so flawed that

they do not make accurate predictions on their own.

3. Even when the knowledge-based model used in the hybrid is significantly

flawed, the hybrid technique can, at small reservoir sizes, make predictions

82

comparable to those made by much larger reservoir-only predictors, which can

be used to save computational resources.

4. Both the hybrid scheme and the reservoir-only predictor have the property

of “training reusability” (Sec. 4.3.2), meaning that once trained, they can

make any number of subsequent predictions (without retraining each time) by

preceding each such prediction with a short run in the training configuration

(see Figs. 4.1 and 4.2) in order to resynchronize the reservoir dynamics with

the dynamics to be predicted.

83

Chapter 5: Reservoir observers: Model-free inference of unmeasured

variables in chaotic system

This chapter is based on work in the paper, ‘Reservoir observers: Model-free

inference of unmeasured variables in chaotic systems’, Chaos 27, 041102 (2017);

https://doi.org/10.1063/1.4979665, by Zhixin Lu, Jaideep Pathak, Brian Hunt, Michelle

Girvan, Roger Brockett, and Edward Ott, c©by the American Institute of Physics

Knowing the state of a dynamical system as it evolves in time is important for a

variety of applications. This chapter proposes a general-purpose method for inferring

unmeasured state variables from a limited set of ongoing measurements. Our method

is intended for situations in which mathematical models of system dynamics are

unavailable or are insufficiently accurate to perform the desired inference. We use the

machine-learning technique called “reservoir computing,” with which we construct

a system-independent means of processing the measurements. A key point is the

extent to which this approach is “universal.” That is, our examples show that the

same reservoir can be trained to infer the state of different systems. It is the training

that relates to a specific system, not the “hardware.” The reservoir hardware plays

a similar role to an animal’s brain, which retrains itself as the system represented

by its body and environment changes.

84

5.1 Introduction

Frequently, when studying the dynamics of a physical system, one only has

access to a limited set of measurements of the state variables and desires to deduce

unmeasured state variables. In principle, it might be possible to accomplish this

goal if, in addition to the measurements, one also has knowledge of the system dy-

namics. In control theory, a successful deduction method of this type this is called

an observer. Observers are of great utility for control and prediction of dynamics.

The observer problem for the case in which the dynamical system is linear was fully

solved in the classic work of Kalman, who also formulated conditions for “observ-

ability” under which it is possible to achieve the goal of deducing the full state of

a linear system from a given partial set of state measurements (see textbooks on

control theory, e.g., Ref. [69]). Observers and observability have also been exten-

sively investigated for nonlinear dynamical systems (e.g., Ref. [70]). For example,

in situations of chaotic dynamics, an approach using synchronization of chaos has

been exploited [71,72].

In this chapter we consider the observer problem for situations in which one

does not have a sufficient accurate mathematical model of the nonlinear system of

interest. In place of such a model, we assume that there exists an initial period of

time for which measurements of all the desired system variables are available, and

we seek to use these initial measurements in the initial period of time to deduce the

full set of desired variables for the subsequent time, for which we assume that mea-

surements of only a limited subset of the desired variables are possible. Our method

85

utilizes a machine learning technique, called reservoir computing (see Ref. [1]). This

technique uses an input/output neural network with randomly generated parame-

ters, and uses linear regression to choose “output weights” that fit the raw network

output to a set of “training data”. We use the data from the initial period of full

measurement as the training data. Then we continue to input the subsequent partial

set of continually measured variables, and regard the weighted network output as

the estimated values of the variables that are no longer measured.

The main result of this chapter is that this kind of “reservoir observer,” subject

to certain limitations, can be extremely effective. In what follows we first describe

a specific illustrative implementation and review relevant reservoir computing con-

cepts. We then discuss three examples of chaotic systems that highlight the strength

and limitations of our method: (1) the Rössler system [73], for which we have done

an intensive study of how results depend on design parameters of the reservoir ob-

server; (2) the Lorenz system [66], which we use to illustrate an instance of the issue

of observability for our method; and (3) the Kuramoto-Sivashinsky partial differen-

tial equation [67, 68, 74], which we use to illustrate the possible effectiveness of our

method in cases of spatiotemporal chaos.

5.2 Setup

We consider a dynamical system dφ/dt = f(φ) together with a pair of φ-

dependent, vector valued variables, u = h1(φ) ∈ RM and s = h2(φ) ∈ RP . We are

interested in the situation in which u and s can both be measured over a specific

86

period, [0, T], but that only u can be measured from that time forward; we seek a

method for using the continued knowledge of u to determine s as a function of time

when direct measurement of s is not available, t > T . In contrast with most of the

engineering literature devoted to problems of this kind, we do not assume knowledge

of f but rather seek to infer the necessary information from the trajectories recorded

on the interval [0, T].

87

input	
layer	

output	
layer	

u(t) ŝ(t)

r(t) 2 RN

Figure 5.1: A reservoir computer consisting of three parts, an input layer, a reservoir
layer with state r(t), and an output layer. For t > T , the input to the system is
u(t) and our goal is that the output ŝ(t) is a good approximation to the unmeasured
quantity s(t).

88

For this purpose we use “reservoir computing” [1], which has previously been

advocated for application to many tasks (e.g., prediction of time series, pattern

recognition, etc. []). There are many variations in implementation; in this chapter

we adopt the reservoir technique proposed by Jaeger [11]. The reservoir computer

has three components (Fig. 5.1), a linear input layer with M input nodes (one for

each component of u), a recurrent, nonlinear reservoir network with N dynamical

reservoir nodes whose state vector is r ∈ RN , and a linear output layer with P output

nodes, as shown in Fig. 5.1. For the specific reservoir computing implementation

we use in this chapter, the reservoir dynamics is defined as

r(t+ ∆t) = (1− α)r(t) + α tanh(Ar(t) + Winu(t) + ξ1), (5.1)

where A is the (typically sparse) weighted adjacency matrix of the reservoir layer,

and the M -dimensional input u(t) is fed in to the N reservoir nodes via a linear

input weight matrix denoted by Win ∈ RN×M (Note that, in Sec. 5.3.1, M ≥ 1 and

the input u is a vector). The parameter 0 < α ≤ 1 is a “leakage” rate [75] that

controls the time-scale of the reservoir dynamics. We also use a bias term ξ1, where

1 is the N -by-1 vector of ones and ξ is a scalar constant. The notation tanh(·) with

a vector argument is defined as the vector whose components are the hyperbolic

tangents of the corresponding components of the argument vector. The output,

which is a P -dimensional vector, is taken to be a linear function of the reservoir

state,

ŝ(t) = Woutr(t) + c. (5.2)

89

As compared to other artificial neural network approaches, the advantage of reservoir

computing is that training is made computationally feasible for relatively large N ,

since only the output weights Wout and the vector c are adjusted by the training

process. (The input weight matrix Win and the reservoir adjacency matrix A are

initially randomly drawn and then fixed.) A key point is that the reservoir layer

serves as an active medium driven by inputs u(t) where each reservoir node has a

different nonlinear response to its inputs, so that for N � 1 we can hope that almost

a wide variety of desired outputs can be approximated by a linear combination of

the N -dimensional reservoir nodal response states.

In addition to the parameters ∆t, α, and ξ in Eq. (5.1), and the reservoir

size N , the reservoir dynamics depend on the parameters p, ρ, and σ, which govern

the random generation of A and Win as follows. The adjacency matrix A is built

from a sparse random Erdős-Rényi matrix in which the fraction of nonzero matrix

elements is p. The values of non-zero elements are randomly drawn independently

from a uniform distribution between −1 and 1. We then uniformly rescale all the

elements of A (i.e., multiply A by a positive scalar) so that the largest value of the

magnitudes of its eigenvalues becomes ρ, which we refer to as the “spectral radius”

of A. For the input layer, the ith of the M input signals is connected to N/M

reservoir nodes with connection weights in the ith column of Win. Each reservoir

node receives input from exactly one input signal. The non-zero elements of Win

are randomly chosen from a uniform distribution in [−σ, σ].

For the convenience of comparing the reservoir performances, we preprocess

all the components of u(t) and s(t) so that they have zero mean and unit variance.

90

Starting from a random initial state r(−τ), the reservoir evolves following Eq. (5.1)

with input u(t). Here τ is a transient time, chosen large enough to make the reservoir

state essentially independent of its initial state by time t = 0. We then record the

K = T/∆t reservoir states for 0 < t ≤ T ,

{r(∆t), r(2∆t), ..., r(T)}, (5.3)

and the concurrent measurements of the state variables that are unmeasured for

t > T ,

{s(∆t), s(2∆t), ..., s(T)}. (5.4)

We then train the network by choosing the output layer quantities Wout and c

by choosing them so that the reservoir output approximates the measurement for

0 < t ≤ T . We do this by minimizing the following quadratic form with respect to

Wout and c,

{
K∑
k=1

‖Woutr(k∆t) + c− s(k∆t)‖2}+ β[Tr(WoutW
T
out)], (5.5)

where ‖q‖2 = qTq for q a vector. The second term of Eq. (5.5), β[Tr(WoutW
T
out)],

is a regularization term included to avoid overfitting Wout, where β > 0 (typically

a small number) is the “ridge regression parameter”.

If the training is successful, the readout of the reservoir output should yield

a good approximation (denoted ŝ(t)) to the desired unmeasured quantity s(t) for

91

t > T . Referring to Eq. (5.2),

ŝ(t) = W∗
outr(t) + c∗, (5.6)

where W∗
out and c∗ denote the solutions for the minimizers of Eq. (5.5),

W∗
out = δSδRT (δRδRT + βI)−1, (5.7)

c∗ = −[W∗
outr̄− s̄], (5.8)

r̄ =
1

K

K∑
k=1

r(k∆t), s̄ =
1

K

K∑
k=1

s(k∆t) (5.9)

where I is the N ×N identity matrix, δR (respectively, δS) is the matrix whose kth

column is r(k∆t)− r̄ (respectively, s(k∆t)− r̄).

We remark that Eq. (5.1) represents a special choice for the form of the reser-

voir that is convenient for our purposes. More generally Eq. (5.1) can be expressed

as

r(t+ ∆t) = g(r(t),u(t)), (5.10)

and other forms of g, different from the choice Eq. (5.1), have been employed for

reservoir methods designed to implement goals different from the observer goal that

we address here. For example, experimental reservoir implementations have been

reported where the dynamics Eq. (5.10) were from an optical network of semiconduc-

tor lasers [76], a delay system with a single nonlinear node [77], a field-programmable

gate array (FPGA) [78], phase-delay electro-optic devices [79], and even a bucket

92

of water [80], among others. Such choices might also work for a reservoir-based ob-

server and may offer advantages such as the potential for huge increase in speed [79].

The main requirement on the observer dynamics Eq. (5.10) seems to be that it is

sufficiently complex and that the dimension of the reservoir state vector r is suffi-

ciently large that the output Eq. (5.2) can be made to approximate the desired time

series (for our goal, s(t)) by adjustment of Wout and c.

5.3 Examples

5.3.1 Kuramoto-Sivashinsky Equations

We now investigate the possibility of using the reservoir-based observation method

of Sec. 5.2 to infer estimates of the state of a spatiotemporally chaotic system from

spatially sparse measurements without the use of a model.

For this purpose, we test our model-free observation method on simulated data

from the Kuramoto-Sivashinsky equation [81] for the scalar variable y(x, t),

yt = −yyx − yxx − yxxxx. (5.11)

We impose spatially periodic boundary conditions, i.e., y(x + L, t) = y(x, t) on

a domain {x ∈ (0, L)} of size L = 22 and integrate Eq. (5.11) from a randomly

chosen initial condition. The integration was performed on an evenly spaced grid

of size Q = 65. The simulated data consists of Q time series with a time step

∆t = 0.25 units. We denote this set of time series at the Q grid points by the

93

vector y(t) = (y1(t), y2(t), · · · , yQ(t))T with yi(t) = y(i∆x),∆x = L/(Q − 1). Let

u(t) = (u1(t), u2(t), · · ·uM(t))T be a vector containing M out of the Q time series

in y(t). In terms of the variables s(t) and u(t) introduced in Sec. 5.2, the vector

u(t) represents spatially sparse measurements performed at evenly spaced points on

the grid. We denote the rest of the time series by s(t). We will vary the number of

measurements M in the interval 1 ≤M ≤ 8. We assume that we have access to the

full set of state measurements y(t) for the ‘training period’, 0 ≤ t ≤ T . We further

assume that after the training period, i.e., for t > T , the observer can only access

the partial set of system state variables u(t). The goal is to infer the set of variables

s(t) from the partial measurements u(t) for t > T .

The reservoir observer setup is described in Sec. 5.2 with the identification Q =

M + P . For the results in this subsection, we use the following set of reservoir

parameters,

number of reservoir nodes: N = 3000,

spectral radius: ρ = 0.9,

fraction of non-zero links: p = 0.02,

scale of input weights: σ = 0.5,

bias constant: ξ = 0.0,

leakage rate: α = 0.3,

time interval: ∆t = 0.25,

length of training phase: T = 15000.

(5.12)

94

Number of Measured Variables

1 2 3 4 5 6 7 8

C
o

rr
e

la
ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spline Interpolation

Reservoir Inference

Figure 5.2: Correlation between observer inferred data and the actual data for the
Kuramoto-Sivashinsky state versus the number of measured variables M .

Number of Measured Variables

1 2 3 4 5 6 7 8

R
M

S
 E

rr
o

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Spline Interpolation

Reservoir Inference

Figure 5.3: RMS error in the inference of the Kuramoto-Sivashinsky state variables
versus the number of measured variables M .

To test the quality of the inference for t ≥ T , we compare the inferred data from

the reservoir ŝ(t) with the data series s(t) obtained from integrating Eq. (5.11). We

calculate the correlation between the real and inferred data, defined by

C =

(∑
i,t(si(t)− 〈s〉)(ŝi(t)− 〈ŝ〉)

)
√(∑

i,t(si(t)− 〈s〉)2
)(∑

i,t(ŝi(t)− 〈ŝ〉)2
) (5.13)

and the spatially averaged RMS error, defined by

R =

√√√√∑i,t [si(t)− ŝi(t)]2∑
i,t[si(t)]

2
. (5.14)

95

Since the performance of the reservoir may depend on the particular random instance

of the reservoir network that is used, we report the mean RMS error and the cor-

relation between the inferred and actual data obtained from 20 observer trials each

performing the inference task on the the same data using an independent random

realization of the reservoir observer setup. As a baseline comparison, we also report

the RMS error and correlation coefficient values for an inference of the unmeasured

variables obtained by cubic spline interpolation from the measured variables. Figure

5.2 shows the correlation between the reservoir inference and the actual data as we

vary the number of measured variables. The correlation coefficient for the reservoir

observer inference is compared with the corresponding value for the cubic spline

interpolation scheme. Figure 5.3 shows the RMS error obtained by the reservoir

setup as we vary the number of measured variables. Figure 5.4 show comparisons

between the actual data and the reservoir inference for M = 2 and M = 4. These

figures demonstrate that, as expected, spline interpolation yields good results at

high measurement densities, but that, at lower measurement densities, where spline

interpolation yields poor results, the reservoir observer can continue to function well.

5.4 Conclusions

In this chapter we investigate the application of reservoir computing to infer

unmeasured state variables of a chaotic dynamical system from a limited set of

continually measured state variables for situations in which a mathematical model

of the dynamical system is unavailable or is insufficiently accurate. Our main result

96

50 100 150 200 250
Time

20

40

60

G
rid

 P
oi

nt

20

40

60

G
rid

 P
oi

nt

50 100 150 200 250
Time

20

40

60

G
rid

 P
oi

nt

0 1-1

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.4: Results from two simulations, (a,b,c) and (d,e,f), where (a,b,c) have
M = 2 inputs, and (d,e,f) have M = 4 inputs, whose locations are indicated by
the black arrows. The top panels, (a) and (d), show the actual state evolution
y(x, t) of the Kuramoto-Sivashinsky system. The middle panels, (b) and (e), show
the evolution of the state inferred by the reservoir observer from the measurements.
The bottom panels, (c) and (f), show the difference between the inferred data and
the actual data.

97

is that the use of reservoir computers for inference of spatiotemporally chaotic states

from spatially sparse data was proposed and validated by application to an example

(Sec. 5.3.1).

5.5 Acknowledgment

We are thankful to Daniel Gauthier and Alex Hartemink for their useful com-

ments and discussions. This work was supported by the Army Research Office under

grant W911NF-12-1-0101.

98

Chapter 6: Reconstruction and Forecasting of Dynamical Systems

using Partial Measurements, Imperfect Modeling and Ma-

chine Learning Assisted Data Assimilation

6.1 Introduction

This chapter describes a technique for improving forecasts of a chaotic dy-

namical system when only partial measurements of the system are available. We

consider simple toy dynamical models of chaotic systems and make a number of

simplifying assumptions and intend this chapter as an exploratory foray into the

combination of Data Assimilation and Machine Learning. While some of the simpli-

fying assumptions may not hold true in real-life scenarios such as weather prediction,

we believe that this study will pave the way for a better understanding of machine

learning architectures that will support weather forecasting applications. We em-

phasize that a number of advances will be required before such a technique can be

operationally used. We hope that this chapter and the promising results contained

therein provides the impetus for research into this highly challenging task.

99

6.2 Method

We consider a dynamical system represented by the equation,

dx(t)

dt
= F[x(t)]. (6.1)

In Eq. (6.1), x(t) represents the full state of the dynamical system. We assume that

we are only able to obtain partial measurements of the full state x at regular time

intervals. We denote the measurements (or observations) by y(k), so that

y(k) = Hx(k∆t) + ηk. (6.2)

In Eq. (6.2), H denotes the measurement operator. In the experiments performed

in this chapter we will assume that H takes the form of a projection operator,

linearly projecting out a subset of the set of full state variables x. A nonlinear

measurement operator could be allowed, if supported by the Data Assimilation

method. The variable ηk represents normally distributed random noise with mean

0 and covariance matrix R. We assume that T past observations are available and

denote them by {yk}−T≤k<0.

In a practical scenario, Eq. (6.1) would represent a real-world dynamical sys-

tem (such as the Earth’s atmosphere), and y would represent partial noisy measure-

ments of the full state obtained at regular time intervals. However, most often we do

not have full knowledge of the dynamical system and as such, Eq. (6.1) is unknown.

100

What is available is an imperfect model of the dynamical equations which contains

unavoidable model error. This model error is typically due to lack of knowledge of

all the physical processes that govern the dynamical system. We assume that we

have access to such an imperfect knowledge-based model denoted by G so that the

dynamical equation

dx(t)

dt
= G[x(t)] (6.3)

can be used to forecast the future state of the dynamical system x. In practice, the

initial state of the dynamical system, x, is estimated from current observation y0

and all past observations {yk}−T≤k<0.

6.2.1 Data Assimilation

Data assimilation is a technique that seeks to construct the ‘best’ possible

estimate of a dynamical system based on past observations, a dynamical evolution

model and the current observation. Given a dynamical model (Eq. 6.3) and a set of

observations {yk}−T≤k≤0, the goal of data assimilation is to find a trajectory x(t)

of the model G that minimizes the cost function given by

J(x(t)) =
0∑

j=−T

[yj −Hx(j∆t)]R−1 [yj −Hx(j∆t)] . (6.4)

We need to algorithmically compute or approximate the value of x(0) corresponding

to the trajectory that minimizes J. In the situation where the measurement/observation

101

errors (ηk) are Gaussian, the model G is a perfect representation of the dynamical

system and the dynamical system is linear, minimizing Eq. 6.4 will give us the tra-

jectory of the model x(t) that is the most likely trajectory of the dynamical system

in the Bayesian sense.

6.2.2 Kalman Filter: Linear Case

We now consider the case where the model G is linear and a perfect repre-

sentation of the dynamical system and the measurement noise ηk has a Gaussian

distribution η ∼ N (0,R). A Kalman Filter recursively determines the best fit

trajectory described in Sec. 6.2.1. One starts with an initial guess for the state

x−T . The guess is refined using the observation y−T . At each subsequent time j in

−T ≤ j ≤ 0, we use the current best guess xj and refine it using the observation

yj. The process can be mathematically described as follows.

Let xa
j−1 be the best guess of the state of the dynamical system at time j − 1.

Thus, xa
j−1 is the mean of a Gaussian probability distribution that represents the

likelihood of the states given the observations upto (and including) time j − 1. Let

Pa
j−1 be the covariance of this probability distribution. Following the assumption

of linearity, a Gaussian distribution
(
xa
j−1,P

a
j−1

)
propagates to another Gaussian

distribution
(
xb
j,P

b
j

)
when the model acts on it, where,

xb
j = Gxa

j−1 (6.5)

Pb
j = GPa

j−1G
T . (6.6)

102

It can be shown that the distribution that best represents the state of the dynamical

system at time j is then given by a Gaussian distribution
(
xa
j ,P

a
j

)
, where

Pa
j = (I + Pb

jH
TR−1H)−1Pb

j (6.7)

xa
j = xb

j + Pa
jH

TR−1(yj −Hxb
j) (6.8)

6.2.3 Kalman Filter: Nonlinear Case

If the model G is nonlinear, then the assumptions made in arriving at Eqs. (6.7,6.8)

do not hold. Particularly, one can no longer propagate the distributions between

times j−1 and j using Eqs. (6.5, 6.6). Several approaches have been studied for ex-

tending the Kalman Filter to the case where the dynamical system is nonlinear. One

approach known as the Extended Kalman Filter linearizes the model G and uses the

linearized model in the state propagation equations (Eqs. 6.5, 6.6). The calculations

involved in the linearization of G as well as in the computation and propagation

of the covariance matrix from such a linearization are usually not feasible unless

the model is low-dimensional. The Ensemble Kalman Filter (EnKF) [82] was pro-

posed To overcome this computational difficulty. Several improvements have been

made to the EnKF since it was first proposed. Particularly, the Ensemble Trans-

form Kalman Filter (ETKF) [83,84] is a major computational improvement over the

EnKF. The ETKF can be computationally parallelized using the Local Ensemble

Transform Kalman Filter (LETKF) algrithm of Refs [85,86] which evolved from the

Local Ensemble Kalman Filter algorithm [87]. We will first discuss the core idea

103

of the EnKF and then go on to describe the ETKF algorithm. In this chapter, we

will be use the ETKF algorithm as the baseline for determining forecast quality. In

Sec. 6.3, we will modify the ETKF using Machine Learning.

In the EnKF, one keeps track of an ensemble of states {xa,i
j }1≤i≤E that repre-

sent a sampling from the probability distribution of the ‘best’ state at time j. The

ensemble is propagated using the model dynamics so that

xb,i
j = Ĝj−1x

a,i
j−1. (6.9)

Here, Ĝj represents the nonlinear operator that propagates a state vector at time

j to the state vector at time j + 1 according to the model dynamics. Further,

the covariance of the probability distribution corresponding to an ensemble can be

estimated as,

Pb
j = (E − 1)−1

E∑
i=1

(xb,i
j − x̄b

j)(x
b,i
j − x̄b

j)
T (6.10)

Where, x̄b
j represents the mean of the ensemble members {xb,i

j }1≤i≤E. Thus, the

covariance matrix is evolved implicitly. The ensemble {xa,i
j } (which represents a

sample from the probability distribution of the best guess for the state at time j)

is called the analysis ensemble at time j. The ensemble {xb,i
j } (which represents a

sample from the probability distribution of the forecast at time j from the analysis

ensemble at the previous time step j− 1) is called the background ensemble at time

j. Similarly Pa
j (Pb

j) is called the analysis (background) covariance. As in Sec. 6.2.2

104

that our goal is to find the analysis ensemble and the from the background ensem-

ble. In the earliest version of the EnKF, the analysis mean and covariance were

obtained from the background mean and covariance using Eqs. (6.7, 6.8). However,

it was shown in Ref. [88] that, for theoretical consistency, an ensemble of observa-

tions needs to be created by perturbing the observations with random noise. The

Kalman updates then need to be applied to each individual ensemble member using

a perturbed observation.

We now describe the steps involved in the ETKF analysis step without the-

oretical analysis or justification. These steps follow Ref. [85] and the reader is

encouraged to follow the theoretical derivation of the ETKF in that reference.

1. Create the matrix

Xb
j =

[
xb,1
j − x̄b

j|x
b,2
j − x̄b

j| . . . |x
b,E
j − x̄b

j

]
, (6.11)

whose columns represent deviations of the ensemble members from the ensem-

ble mean.

2. Compute the matrix Yb
j = HXb

j

3. Create a matrix

P̃a
j =

[
(E − 1)I/ρ+ CYb

j

]
(6.12)

where C = (Yb
j)

TR−1 and ρ is a parameter called the ‘covariance inflation’.

105

This parameter is a multiplicative factor greater than unity that expands the

covariance of the analysis ensemble in an ad-hoc manner. It is essential since

the theoretical analysis which guarantees that the analysis ensemble covariance

represents the true covariance of the model state are true only in the case of

the linear Kalman filter. The covariance inflation has to be tuned to optimize

the accuracy of the ETKF according to some forecast quality metric.

4. Compute Wa
j =

[
(E − 1)P̃a

j

]1/2

, where the [.]1/2 denotes the symmetric square

root.

5. Compute w̄a
j = P̃aC(yj−yb

j) and add it to each column of Wa
j . Each column

of Wa
j is now denoted by wa,i

j

6. Compute xa,i
j = Xb

jw
a,i
j + xb

j. The analysis ensemble is given by {xa,i
j }1≤i≤E

The steps above represent the analysis step, i.e., obtaining the analysis ensemble

from the background ensemble. The analysis ensemble obtained at the end of the

above steps is then evolved using the model dynamics to obtain the background

ensemble at the next time step after which the analysis step is repeated using the

observation at that time step. The analysis ensemble is initialized in a fairly arbi-

trary manner by perturbing any state on the dynamical attractor of the model with

gaussian random noise.

106

6.3 Machine Learning Assisted Ensemble Transform Kalman Filter-

ing

In Sec. 6.2.2 and Sec. 6.2.3 we assume that the model G represents the actual

dynamics of the system (Eq. 6.1) fairly accurately. In other words, we assume

that the model error is small. If, however, we are unable to construct a good

enough model, then the forecast quality will suffer. In Chapter 4, we described a

machine learning technique for correcting imperfections in a model. However we

assumed that we were able to observe to the full state of the dynamical system

i.e., the measurement operator H was assumed to be an identity matrix. In this

section, we relax that assumption and let H be a projection operator so that our

measurements are a subset of the system variables. We now describe our algorithm

for our Machine Learning Assisted Ensemble Transform Kalman Filter. In Sec. 6.4

we will compare the performance of the ML-ETKF with the traditional ETKF

algorithm and compare forecasts made by the model from the optimized analysis

state in both cases.

6.3.1 Reservoir Computer

The reservoir computer implementation is similar to Chapter 4. The reservoir

network adjacency matrix, denoted A, is a Dr×Dr sized sparse randomly generated

matrix. The network is constructed to have an average degree denoted by 〈d〉, and

the nonzero elements of A, representing the edge weights in the network, are initially

107

chosen independently from the uniform distribution over the interval [0, 1]. All the

edge weights in the network are then uniformly scaled via multiplication of the

adjacency matrix by a constant factor to set the largest magnitude eigenvalue of the

matrix to a quantity ω, which is called the ‘spectral radius’ of A. The state of the

reservoir, given by the vector r(t), consists of the components rj for 1 ≤ j ≤ Dr

where rj(t) denotes the scalar state of the jth node in the network. The reservoir is

coupled to the M dimensional input through a Dr ×M dimensional matrix Win.

Each row of the matrix Win has exactly one randomly chosen nonzero element. Each

nonzero element of the matrix is independently chosen from the uniform distribution

on the interval [−ζ, ζ].

6.3.2 Algorithm

As outlined in Sec. 6.2, we assume that the true dynamical system is given

by Eq. (6.1). We have T measurements given by {yj}, in the interval −T ≤ j ≤ 0

which are related to the true state of the dynamical system by Eq. 6.2. We further

assume that the model G (Eq. 6.3) is imperfect. Using the model G and the ETKF

algorithm outlined in Sec. 6.2.3, we can obtain an analysis state xa
j at each time

step j, −T ≤ j ≤ 0. We thus create a set of analysis states {xa
j}−T≤j≤0. We are

interested in forecasting the state of the dynamical system for j > 0. In the standard

ETKF setup, one would predict the future state of the dynamical system (Eq. 6.1)

using xa
0 as the initial condition and Eq. 6.3 as the dynamical model. We will call

this forecast the ETKF forecast. The ETKF forecast is the baseline against which

108

we will evaluate the forecast made by our ML-ETKF algorithm which we will now

describe.

6.3.2.1 Training

1. Use the model G to create a set of forecasts from each of the analysis states xa
j ,

−T ≤ j ≤ 0. We will denote these forecasts by x̃j, −T + 1 ≤ j ≤ 1. Table 6.1

provides an easy way to visualize the states and the forecasts indexed by time

j.

2. Initialize the reservoir state to a random value. We will index this reservoir

state to the time index j = −T and denote this initial reservoir state r−T .

3. Evolve the reservoir computer using the following equation

rj+1 = tanh[Arj + Winx̃j+1] (6.13)

for −T ≤ j ≤ 0.

4. Find a set of output weights Wout so that

Wout

rj
x̃j

 ' yj (6.14)

for −T + 1 ≤ j ≤ 0. The matrix Wout is computed using regularized least

squares regression. Thus, we find the Wout that minimizes the following L2

109

j −T −T + 1 −T + 2 −T + 3 · · · -2 -1 0 1
analysis xa

−T xa
−T+1 xa

−T+2 xa
−T+3 · · · xa

−2 xa
−1 xa

0

forecast x̃−T+1 x̃−T+2 x̃−T+3 · · · x̃−2 x̃−1 x̃0 x̃1

reservoir r−T r−T+1 r−T+2 r−T+3 · · · r−2 r−1 r0 r1

observations y−T y−T+1 y−T+2 y−T+3 · · · y−2 y−1 y0

Table 6.1: Chronologically indexed analysis states of the imperfect model (xa
j),

imperfect model forecasts (x̃j), reservoir states (rj) and observations (yj). The time
index j = 0 represents the present time. The time interval −T ≤ j ≤ 0 represents
the past during which observations (and thus, analysis states) are available. All
time steps j > 0 are considered to be in the future. No observations are available
from the future and thus, cannot be part of our training data set.

norm

`(Wout) =
0∑

j=−T+1

‖Wout

rj
x̃j

− yj‖2 + β‖Wout‖2 (6.15)

6.3.2.2 Prediction

We now describe the ML-ETKF prediction algorithm that uses the trained

reservoir along with ETKF to forecast the state of the dynamical system from time

j = 0 onward.

Initial Prediction

1. compute the ML forecast of the observation at time j = 1. Note that since

the current time is j = 0, the actual observation at t = 1 is unavailable. The

110

ML forecast of the observation, ỹ1 is given by

yML
1 = Wout

r1

x̃1

 (6.16)

2. Propagate the analysis ensemble {xa,i
0 }, to obtain the background ensemble

{xb,i
1 } at time j = 1 by using the model dynamics G.

3. Perform steps 1 to 4 of the ETKF algorithm.

4. Perform step 5 of the ETKF algorithm with yML
1 instead of y1 (y1 is unavail-

able at time j = 0).

5. Perform step 6 of the ETKF algorithm to obtain the analysis ensemble at

time j = 1. Since this step is not truly an analysis step we call it pseudo-

assimilation. This is due to the fact that a real observation was not used.

Instead we relied on an ML predicted observation. We denote this analysis

ensemble by {sa,i1 }1≤i≤E. The mean of this ensemble sa1 is our ML-ETKF

forecast of the dynamical system at time j = 1.

Subsequent Predictions At the end of step 5 above, we have the pseudo-analysis

ensemble {sa,i1 } and the pseudo-analysis mean sa1. At time j ≥ 2 we assume that we

have the pseudo-analysis ensemble {sa,ij−1} and the pseudo-analysis mean saj−1

1. Use the model G to propagate the pseudo-analysis mean saj−1 to s̃j.

111

2. Perform the reservoir update

rj = tanh[Arj−1 + Wins̃j] (6.17)

3. compute the ML forecast of the observation at time j, yML
j , given by

yML
j = Wout

rj
s̃j

 (6.18)

4. Propagate the ensemble {sa,ij−1} to the ensemble {sb,ij } using the model dynam-

ics G.

5. Perform steps 1 to 4 of the ETKF algorithm on the ensemble {sb,ij−1}.

6. Perform step 5 of the ETKF algorithm substituting yML
j instead of yj (The

real observation yj is unavailable at time j = 0).

7. Perform step 6 of the ETKF algorithm to obtain the pseudo-analysis ensemble

at time j. Thus, we have obtained {sa,ij }. The pseudo-analysis mean s̄aj is the

ML-ETKF forecast at time j. At the end of this step we have {sb,ij }. We also

obtained s̃j in step 1. We can now increment j by one and repeat steps 1 to

7.

112

6.4 Results

We demonstrate the performance of the ML-ETKF algorithm in comparison

with the baseline ETKF algorithm for forecasting the state of a dynamical system.

We consider two dynamical systems as our examples, the Lorenz ‘63 system [66]

and the Kuramoto-Sivashinsky (KS) system [67, 68]. Simulated data is generated

from the true model dynamics in the time interval −T ≤ j ≤ P . The data in the

interval 1 ≤ j ≤ P is set aside to test the quality of forecasts made by the ETKF

and ML-ETKF schemes but is not otherwise used since this data is considered to be

part of the future. We further assume that we only have access to the observations

{yj}−T≤j≤0 and do not know the perfect model equations (Eq. 6.1). We assume

that we have access to an imperfect model G (Eq. 6.3). We will use this imperfect

model to test the ETKF and ML-ETKF schemes and compare forecasts made by

the two schemes for j > 0.

6.4.0.1 Baseline ETKF Forecast:

Using the ETKF scheme as described in Sec. 6.2.3, we use the observations yj

(−T ≤ j ≤ 0) and the model G to arrive at the analysis state xa
0. Using xa

0 as the

initial condition, obtain a forecast using the model G from time j = 1 to j = P .

We call this forecast xf,base
j , 1 ≤ j ≤ P .

113

Hyperparameter Lorenz 63 KS
Dr 1000 2000
〈d〉 3 3
ω 0.9 0.6
ζ 0.1 1.0

Table 6.2: Reservoir Hyperparamenters

6.4.0.2 ML-ETKF Forecast:

We follow the ML-ETKF scheme detailed in Sec. 6.3 using a reservoir com-

puter with the parameters listed in Table 6.2 for the Lorenz ‘63 and the Kuramoto

Sivashinsky dynamical systems. We use the observations yj (−T ≤ j ≤ 0) and

the imperfect model G corresponding to the Lorenz and KS systems respectively to

train the reservoir computer. The exact form of the observations and of the imper-

fect model is described in Sections 6.4.1, 6.4.2 We then forecast using the ML-ETKF

scheme from j = 1 to j = P . We call this forecast xf,ml
j , 1 ≤ j ≤ P .

6.4.0.3 RMS error

The RMS error in the baseline ETKF forecast (ebasej) and the RMS error in

ML-ETKF forecast (eml
j) are calculated as follows:

e
base(ml)
j =

‖xf,base(ml)
j − xj‖
〈‖xj‖〉

1 ≤ j ≤ P (6.19)

6.4.0.4 Valid Time

We define the Valid Time (VT) as the time j at which the RMS error (e
base(ml)
j)

exceeds a threshold κ chosen to be 0.9.

114

6.4.1 Lorenz 63

The Lorenz system is described by the equations,

dX1

dt
= −aX1 + aX2 (6.20)

dX2

dt
= bX1 −X2 −X1X3 (6.21)

dX3

dt
= −cX3 +X1X2 (6.22)

where a = 10, b = 8/3, and c = 28. In this example, we let the true dynamical

system of Eq. 6.1 be the system given by Eqs. (6.20). We obtain simulated data by

integrating Eqs. (6.20) using a fourth order Runge-Kutta solver. We sample the time

series at intervals ∆t = 0.1. This data represents the truth x(j∆t), −T ≤ j ≤ P .

We use the data in the interval −T ≤ j ≤ 1 to create simulated observations

yj = H1xj + ηj. (6.23)

Here H1 represents the operator that projects out the variable X1 from [X1;X2;X3]

so that

H1 =

[
1 0 0

]
(6.24)

The imperfect model, G, is assumed to differ from the true dynamics in a

single parameter value. We let the imperfect model equations be given by,

115

dX1

dt
= −aX1 + aX2, (6.25)

dX2

dt
= b(1 + ε)X1 −X2 −X1X3, (6.26)

dX3

dt
= −cX3 +X1X2. (6.27)

Thus, the imperfect model G differs from the perfect model F in the parameter

b by a multiplicative factor (1 + ε).

6.4.1.1 Results: Optimizing the Covariance Inflation

The forecast quality of both the ETKF and ML-ETKF algorithms is strongly

dependent on the covariance inflation parameter ρ. It is thus crucial that the covari-

ance inflation factor is optimized independently for both the ETKF and ML-ETKF

forecast schemes. In Fig. 6.1, we demonstrate the dependence of the forecast Valid

Time on the Ensemble Covariance Inflation factor ρ. We perform 20 independent

predictions each using a dataset generated from a different initial condition. We do

this at different values of the covariance inflation parameter ρ. We demonstrate this

dependence on ρ when the Model Error ε = 0.1. Figure 6.1 shows the valid time

for a set of forecasts made with the baseline ETKF scheme (red markers) and the

ML-ETKF scheme (blue markers). We also plot the median valid time for both of

the schemes and denote the median valid time with a larger marker. Thus, Fig. 6.1

shows that the ML-ETKF scheme dramatically improves forecast valid time when

the model has substantial error.

116

1 1.5 2 2.5 3

Covariance Inflation

0

1

2

3

4

5

6

V
a
lid

 t
im

e
 (

L
y
a
p
u
n
o
v
)

Model Error % = 10 Noise = 0.1

Figure 6.1: Dependence of the Forecast Valid Time for the Lorenz 63 model on
the covariance inflation factor (ρ). We find that the forecast valid time depends on
choosing the correct covariance inflation parameter and it is thus essential to tune
the parameter correctly. We see that the ML-ETKF (blue markers) outperforms
the baseline ETKF forecast significantly and has a much higher forecast valid time.

117

6.4.2 Kuramoto-Sivashinsky (KS) system

In this section we consider an example of a spatiotemporal chaotic dynamical

system called the the Kuramoto-Sivashinsky (KS) system defined by the Partial

Differential Equation (PDE),

∂u(x, t)

∂t
= u

∂u(x, t)

∂x
+
∂2u(x, t)

∂x2
+
∂4u(x, t)

∂x4
. (6.28)

Equation (6.28) defines the evolution of a one-dimensional spatiotemporal

scalar field u(x, t) defined in the spatial domain x ∈ [0, L). We assume periodic

boundary conditions so that u(x+L, t) = u(x, t). In this example we let Eq. (6.28)

represent the true dynamical system F corresponding to Eq. (6.1). We obtain sim-

ulated data by integrating Eq. (6.28) using a pseudo-spectral PDE solver [33]. The

domain [0, L) is discretized into Q grid-points. We sample the time series at intervals

of ∆t = 0.25. Thus, our simulated data takes the form of a Q-dimensional vector

x(j∆t), −T ≤ j ≤ P . As in the previous example of the Lorenz ‘63 dynamical

system (Sec. 6.4.1), we use the data in the interval −T ≤ j ≤ 0 as the training

data for the ML-ETKF scheme as well as for and set aside the data in the interval

1 ≤ j ≤ P for forecast verification.

We assume that we have access to an imperfect model, G, of the KS dynamical

118

system given by the equations,

∂u(x, t)

∂t
= u

∂u(x, t)

∂x
+ (1 + ε)

∂2u(x, t)

∂x2
+
∂4u(x, t)

∂x4
. (6.29)

Thus, if ε = 0, then the model represents the true dynamics perfectly and a nonzero

value of ε indicates an imperfect model. We also assume that our measurements are

of the form given by Eq. (6.2) The measurement operator H is a projection operator

that projects out Θ uniformly spaced variables (of the Q total variables) in xj.

6.4.2.1 Results: Dependence on Model Error

To demonstrate the effectiveness of the ML-ETKF technique, we consider a

KS system with L = 35, Q = 64 and a measurement operator H that measures at

Θ = 16 uniformly spaced grid points. Figure 6.2 shows the prediction valid time

for 20 independent predictions made with the ML-ETKF and ETKF schemes at

four different values of the Model Error ε. We see that the ML-ETKF scheme is

far superior to the traditional ETKF scheme when the error in the imperfect model

is high. On the other hand, as expected, the ETKF algorithm performs about as

well as the ML-ETKF algorithm when the Model Error is small. This result is in

line with our expectations since the ML-ETKF algorithm is trained to improve the

forecast valid time by correcting for model inaccuracies.

119

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Model Error (epsilon)

0

1

2

3

4

5

6

7

V
a

lid
 T

im
e

 (
L

y
a

p
u

n
o

v
)

Figure 6.2: Forecast Valid Time of the ML-ETKF (blue markers) and ETKF (red
markers) schemes at different values of the Model Error (ε). The ML-ETKF scheme
vastly outperforms the baseline ETKF scheme at larger values of the model error.

120

Bibliography

[1] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to
recurrent neural network training. Computer Science Review, 3(3):127–149,
2009.

[2] Edward N Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric
Sciences, 20(2):130–141, 1963.

[3] Tien-Yien Li and James A Yorke. Period three implies chaos. The American
Mathematical Monthly, 82(10):985–992, 1975.

[4] Robert M May. Simple mathematical models with very complicated dynamics.
Nature, 261(5560):459–467, 1976.

[5] Stephen Smale. Differentiable dynamical systems. Bulletin of the American
mathematical Society, 73(6):747–817, 1967.

[6] Edward Ott and Mark Spano. Controlling chaos. In AIP Conference Proceed-
ings, volume 375, pages 92–103. AIP, 1996.

[7] Frank Rosenblatt. The perceptron: a probabilistic model for information stor-
age and organization in the brain. Psychological review, 65(6):386, 1958.

[8] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

[9] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface:
Closing the gap to human-level performance in face verification. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1701–
1708, 2014.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

121

[11] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication. Science, 304(5667):78–
80, 2004.

[12] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic modeling in speech recog-
nition: The shared views of four research groups. IEEE Signal Processing
Magazine, 29(6):82–97, 2012.

[13] Holger Kantz and Thomas Schreiber. Nonlinear time series analysis, volume 7.
Cambridge university press, 2004.

[14] Ulrich Parlitz and Christian Merkwirth. Prediction of spatiotemporal time
series based on reconstructed local states. Physical review letters, 84(9):1890,
2000.

[15] Herbert Jaeger. The echo state approach to analysing and training recurrent
neural networks-with an erratum note. Bonn, Germany: German National Re-
search Center for Information Technology GMD Technical Report, 148(34):13,
2001.

[16] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time com-
puting without stable states: A new framework for neural computation based
on perturbations. Neural computation, 14(11):2531–2560, 2002.

[17] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[19] Sarah Marzen. Difference between memory and prediction in linear recurrent
networks. Physical Review E, 96(3):032308, 2017.

[20] Masanobu Inubushi and Kazuyuki Yoshimura. Reservoir computing beyond
memory-nonlinearity trade-off. Scientific Reports, 7(1):10199, 2017.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[22] Zhixin Lu, Jaideep Pathak, Brian Hunt, Michelle Girvan, Roger Brockett, and
Edward Ott. Reservoir observers: Model-free inference of unmeasured variables
in chaotic systems. Chaos: An Interdisciplinary Journal of Nonlinear Science,
27(4):041102, 2017.

[23] Xin Yan and Xiaogang Su. Linear regression analysis: theory and computing.
World Scientific, 2009.

122

[24] Kristof Vandoorne, Joni Dambre, David Verstraeten, Benjamin Schrauwen, and
Peter Bienstman. Parallel reservoir computing using optical amplifiers. IEEE
transactions on neural networks, 22(9):1469–1481, 2011.

[25] Daniel Brunner, Miguel C Soriano, Claudio R Mirasso, and Ingo Fischer. Par-
allel photonic information processing at gigabyte per second data rates using
transient states. Nature communications, 4:1364, 2013.

[26] Laurent Larger, Antonio Baylón-Fuentes, Romain Martinenghi, Vladimir S.
Udaltsov, Yanne K. Chembo, and Maxime Jacquot. High-speed photonic reser-
voir computing using a time-delay-based architecture: Million words per second
classification. Phys. Rev. X, 7:011015, Feb 2017.

[27] Lennert Appeltant, Miguel Cornelles Soriano, Guy Van der Sande, Jan Danck-
aert, Serge Massar, Joni Dambre, Benjamin Schrauwen, Claudio R Mirasso,
and Ingo Fischer. Information processing using a single dynamical node as
complex system. Nature communications, 2:468, 2011.

[28] Nicholas D Haynes, Miguel C Soriano, David P Rosin, Ingo Fischer, and
Daniel J Gauthier. Reservoir computing with a single time-delay autonomous
boolean node. Physical Review E, 91(2):020801, 2015.

[29] Paul Manneville. Liapounov exponents for the kuramoto-sivashinsky model.
Macroscopic Modelling of Turbulent Flows, pages 319–326, 1985.

[30] James L Kaplan and James A Yorke. Chaotic behavior of multidimensional
difference equations. In Functional Differential equations and approximation of
fixed points, pages 204–227. Springer, 1979.

[31] Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott.
Model-free prediction of large spatiotemporally chaotic systems from data: A
reservoir computing approach. Phys. Rev. Lett., 120:024102, Jan 2018.

[32] Nikolaevich Tikhonov, Andrĕı, Vasilĭı Iakovlevich Arsenin, and Fritz John. So-
lutions of ill-posed problems, volume 14. Winston Washington, DC, 1977.

[33] Aly-Khan Kassam and Lloyd N Trefethen. Fourth-order time-stepping for stiff
pdes. SIAM Journal on Scientific Computing, 26(4):1214–1233, 2005.

[34] Holger Kantz and Thomas Schreiber. Nonlinear time series analysis, volume 7.
Cambridge University Press, 2004.

[35] Edward Ott, Tim Sauer, and James A Yorke. Coping with chaos. analysis of
chaotic data and the exploitation of chaotic systems. Wiley Series in Nonlinear
Science, New York: John Wiley, 1994.

[36] Henry Abarbanel. Analysis of observed chaotic data. Springer Science & Busi-
ness Media, 2012.

123

[37] Floris Takens. Lecture notes in mathematics. by DA Rand and L.-S. Young
Springer, Berlin, 898:366, 1981.

[38] Tim Sauer, James A Yorke, and Martin Casdagli. Embedology. Journal of
Statistical Physics, 65(3):579–616, 1991.

[39] Dr S Broomhead and Gregory P King. Extracting qualitative dynamics from
experimental data. Physica D: Nonlinear Phenomena, 20(2-3):217–236, 1986.

[40] Anke Brandstater and Harry L Swinney. Strange attractors in weakly turbulent
couette-taylor flow. Physical Review A, 35(5):2207, 1987.

[41] J-P Eckmann, S Oliffson Kamphorst, David Ruelle, and S Ciliberto. Liapunov
exponents from time series. Physical Review A, 34(6):4971, 1986.

[42] Valery Petrov, Vilmos Gaspar, Jonathan Masere, and Kenneth Showalter. Con-
trolling chaos in the belousovzhabotinsky reaction. Nature, 361(6409):240–243,
1993.

[43] Mantas Lukosevivcius and Herbert Jaeger. Reservoir computing approaches
to recurrent neural network training. Computer Science Review, 3(3):127–149,
2009.

[44] Bruce Ira Cohen, JA Krommes, WM Tang, and MN Rosenbluth. Non-linear
saturation of the dissipative trapped-ion mode by mode coupling. Nuclear
Fusion, 16(6):971, 1976.

[45] Yoshiki Kuramoto and Toshio Tsuzuki. Persistent propagation of concentration
waves in dissipative media far from thermal equilibrium. Progress of Theoretical
Physics, 55(2):356–369, 1976.

[46] GI Sivashinsky. Large cells in nonlinear marangoni convection. Physica D:
Nonlinear Phenomena, 4(2):227–235, 1982.

[47] Mark C Cross and Pierre C Hohenberg. Pattern formation outside of equilib-
rium. Reviews of Modern Physics, 65(3):851, 1993.

[48] R Livi, A Politi, and S Ruffo. Distribution of characteristic exponents in
the thermodynamic limit. Journal of Physics A: Mathematical and General,
19(11):2033, 1986.

[49] David A Egolf and Henry S Greenside. Relation between fractal dimension and
spatial correlation length for extensive chaos. Nature, 369(6476):129–131, 1994.

[50] Arkady Pikovsky and Antonio Politi. Dynamic localization of lyapunov vectors
in spacetime chaos. Nonlinearity, 11(4):1049, 1998.

124

[51] Holger Kantz, Gunter Radons, and Hongliu Yang. The problem of spurious lya-
punov exponents in time series analysis and its solution by covariant lyapunov
vectors. Journal of Physics A: Mathematical and Theoretical, 46(25):254009,
2013.

[52] Timothy D Sauer, Joshua A Tempkin, and James A Yorke. Spurious lyapunov
exponents in attractor reconstruction. Physical Review Letters, 81(20):4341,
1998.

[53] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication. Science, 304(5667):78–
80, 2004.

[54] Herbert Jaeger. The echo state approach to analysing and training recurrent
neural networks-with an erratum note. Bonn, Germany: German National Re-
search Center for Information Technology GMD Technical Report, 148(34):13,
2001.

[55] Wolfgang Maass, Thomas Natschlager, and Henry Markram. Real-time com-
puting without stable states: A new framework for neural computation based
on perturbations. Neural Computation, 14(11):2531–2560, 2002.

[56] Leonard A Smith. Intrinsic limits on dimension calculations. Physics Letters
A, 133(6):283–288, 1988.

[57] J-P Eckmann and David Ruelle. Fundamental limitations for estimating dimen-
sions and lyapunov exponents in dynamical systems. In Turbulence, Strange
Attractors And Chaos, pages 447–449. World Scientific, 1995.

[58] Taeshik Shon and Jongsub Moon. A hybrid machine learning approach to
network anomaly detection. Information Sciences, 177(18):3799–3821, 2007.

[59] Chih-Fong Tsai and Ming-Lun Chen. Credit rating by hybrid machine learning
techniques. Applied soft computing, 10(2):374–380, 2010.

[60] Dimitris C Psichogios and Lyle H Ungar. A hybrid neural network-first princi-
ples approach to process modeling. AIChE Journal, 38(10):1499–1511, 1992.

[61] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to
recurrent neural network training. Computer Science Review, 3(3):127–149,
2009.

[62] Jaideep Pathak, Zhixin Lu, Brian R Hunt, Michelle Girvan, and Edward Ott.
Using machine learning to replicate chaotic attractors and calculate lyapunov
exponents from data. Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 27(12):121102, 2017.

125

[63] Laurent Larger, Miguel C Soriano, Daniel Brunner, Lennert Appeltant, Jose M
Gutiérrez, Luis Pesquera, Claudio R Mirasso, and Ingo Fischer. Photonic infor-
mation processing beyond turing: an optoelectronic implementation of reservoir
computing. Optics express, 20(3):3241–3249, 2012.

[64] Laurent Larger, Antonio Baylón-Fuentes, Romain Martinenghi, Vladimir S
Udaltsov, Yanne K Chembo, and Maxime Jacquot. High-speed photonic reser-
voir computing using a time-delay-based architecture: Million words per second
classification. Physical Review X, 7(1):011015, 2017.

[65] Piotr Antonik, Marc Haelterman, and Serge Massar. Brain-inspired photonic
signal processor for generating periodic patterns and emulating chaotic systems.
Physical Review Applied, 7(5):054014, 2017.

[66] Edward N Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric
sciences, 20(2):130–141, 1963.

[67] Yoshiki Kuramoto and Toshio Tsuzuki. Persistent propagation of concentration
waves in dissipative media far from thermal equilibrium. Progress of theoretical
physics, 55(2):356–369, 1976.

[68] GI Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar
flamesi. derivation of basic equations. Acta astronautica, 4(11-12):1177–1206,
1977.

[69] Katsuhiko Ogata and Yanjuan Yang. Modern control engineering. Prentice-
Hall, Upper Saddle River, NJ, 1970.

[70] Robert Hermann and Arthur J Krener. Nonlinear controllability and observ-
ability. IEEE Transactions on automatic control, 22(5):728–740, 1977.

[71] Paul So, Edward Ott, and WP Dayawansa. Observing chaos: Deducing and
tracking the state of a chaotic system from limited observation. Physical Review
E, 49(4):2650, 1994.

[72] John C Quinn, Paul H Bryant, Daniel R Creveling, Sallee R Klein, and
Henry DI Abarbanel. Parameter and state estimation of experimental chaotic
systems using synchronization. Physical Review E, 80(1):016201, 2009.

[73] Otto E Rössler. An equation for continuous chaos. Physics Letters A, 57(5):397–
398, 1976.

[74] Bruce Ira Cohen, JA Krommes, WM Tang, and MN Rosenbluth. Non-linear
saturation of the dissipative trapped-ion mode by mode coupling. Nuclear
fusion, 16(6):971, 1976.

[75] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. Opti-
mization and applications of echo state networks with leaky-integrator neurons.
Neural networks, 20(3):335–352, 2007.

126

[76] Daniel Brunner, Stephan Reitzenstein, and Ingo Fischer. All-optical neuro-
morphic computing in optical networks of semiconductor lasers. In Rebooting
Computing (ICRC), IEEE International Conference on, pages 1–2. IEEE, 2016.

[77] Yvan Paquot, Joni Dambre, Benjamin Schrauwen, Marc Haelterman, and Serge
Massar. Reservoir computing: a photonic neural network for information pro-
cessing. In SPIE Photonics Europe, pages 77280B–77280B. International Soci-
ety for Optics and Photonics, 2010.

[78] Nicholas D Haynes, Miguel C Soriano, David P Rosin, Ingo Fischer, and
Daniel J Gauthier. Reservoir computing with a single time-delay autonomous
boolean node. Physical Review E, 91(2):020801, 2015.

[79] Laurent Larger, Antonio Baylón-Fuentes, Romain Martinenghi, Vladimir S.
Udaltsov, Yanne K. Chembo, and Maxime Jacquot. High-speed photonic reser-
voir computing using a time-delay-based architecture: Million words per second
classification. Phys. Rev. X, 7:011015, Feb 2017.

[80] Chrisantha Fernando and Sampsa Sojakka. Pattern recognition in a bucket. In
European Conference on Artificial Life, pages 588–597. Springer, 2003.

[81] James M Hyman and Basil Nicolaenko. The kuramoto-sivashinsky equation: a
bridge between pde’s and dynamical systems. Physica D: Nonlinear Phenom-
ena, 18(1-3):113–126, 1986.

[82] Geir Evensen. The ensemble kalman filter: Theoretical formulation and prac-
tical implementation. Ocean dynamics, 53(4):343–367, 2003.

[83] Craig H Bishop, Brian J Etherton, and Sharanya J Majumdar. Adaptive sam-
pling with the ensemble transform kalman filter. part i: Theoretical aspects.
Monthly weather review, 129(3):420–436, 2001.

[84] Xuguang Wang, Craig H Bishop, and Simon J Julier. Which is better, an
ensemble of positive–negative pairs or a centered spherical simplex ensemble?
Monthly Weather Review, 132(7):1590–1605, 2004.

[85] Brian R Hunt, Eric J Kostelich, and Istvan Szunyogh. Efficient data assimilation
for spatiotemporal chaos: A local ensemble transform kalman filter. Physica
D: Nonlinear Phenomena, 230(1-2):112–126, 2007.

[86] Istvan Szunyogh, Eric J Kostelich, Gyorgyi Gyarmati, Eugenia Kalnay, Brian R
Hunt, Edward Ott, Elizabeth Satterfield, and James A Yorke. A local ensemble
transform kalman filter data assimilation system for the ncep global model.
Tellus A: Dynamic Meteorology and Oceanography, 60(1):113–130, 2008.

[87] Edward Ott, Brian R Hunt, Istvan Szunyogh, Aleksey V Zimin, Eric J
Kostelich, Matteo Corazza, Eugenia Kalnay, DJ Patil, and James A Yorke.
A local ensemble kalman filter for atmospheric data assimilation. Tellus A:
Dynamic Meteorology and Oceanography, 56(5):415–428, 2004.

127

[88] Gerrit Burgers, Peter Jan van Leeuwen, and Geir Evensen. Analysis scheme in
the ensemble kalman filter. Monthly weather review, 126(6):1719–1724, 1998.

128

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Overview
	Model-Free Prediction of Large Spatiotemporally Chaotic Dynamical Systems
	Using Machine Learning for Data-Driven Analysis of Chaotic Dynamical Systems
	Model-Assisted Prediction of Chaotic Dynamical Systems
	Reservoir Observers: Model-free Inference of Unmeasured Variables in Chaotic Dynamical Systems
	Reconstruction and Forecasting of Chaotic Dynamical Systems using Partial Measurements, Imperfect Modeling and Machine Learning Assisted Data Assimilation

	Model-Free Prediction of Large Spatiotemporally Chaotic Systems: A Reservoir Computing Approach
	Introduction
	Reservoir Computing Configuration

	Using Machine Learning for Data-Driven Analysis of Dynamical Systems
	Reservoir Computers, Short Term Prediction and Attractor Climate
	Climate Replication in the Lorenz System
	Determining a Large Number of Lyapunov Exponents of a High Dimensional Spatiotemporal Chaotic System from Data
	Homogeneous KS System (= 0)
	Inhomogeneous KS System (= 0.1)
	Effect of Measurement Noise
	Effect of Training Data Length

	Discussion and Conclusion

	Model-Assisted Prediction of Chaotic Dynamical Systems
	Introduction
	Prediction Methods
	Knowledge-Based Model
	Reservoir-Only Predictor
	Hybrid Scheme

	Implementation
	Reservoir-Only and Hybrid Implementations
	Training Reusability
	Assessments of Prediction Methods

	Lorenz system
	Kuramoto-Sivashinsky equations
	Conclusions

	Reservoir observers: Model-free inference of unmeasured variables in chaotic system
	Introduction
	Setup
	Examples
	Kuramoto-Sivashinsky Equations

	Conclusions
	Acknowledgment

	Reconstruction and Forecasting of Dynamical Systems using Partial Measurements, Imperfect Modeling and Machine Learning Assisted Data Assimilation
	Introduction
	Method
	Data Assimilation
	Kalman Filter: Linear Case
	Kalman Filter: Nonlinear Case

	Machine Learning Assisted Ensemble Transform Kalman Filtering
	Reservoir Computer
	Algorithm

	Results
	Lorenz 63
	Kuramoto-Sivashinsky (KS) system

	Bibliography

