
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 9, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Implementation of 2D turn-based strategy game with AI

 Student: Ivan Štěpánek

 Supervisor: Ing. Eliška Šestáková

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

The goal of this bachelor thesis is to create a prototype of 2D turn-based strategy game that is inspired by
the game Advance Wars. In single-player mode, the strategy of the computer will be an AI that was trained
to play through self-play, using a minimum of human input.

Requirements:
- It should be implemented as a desktop application using the C++ language.
- The play must support a mode for several players and playing against artificial intelligence (AI).
- Provide at least 4 various pre-created game levels.

Research part:
- The AI component in the requirements above constitutes the research part.
- Evaluate different algorithms for developing the AI strategy.
- Design a strategy that relies mostly on self-play and uses a minimum of human input.
- Implement the strategy within the game.
- Evaluate the quality of the game played by the AI by evaluating its success rate against players of varying
skills.

References

Will be provided by the supervisor.

Bachelor’s thesis

Implementation of 2D Turn-based Strategy
Game with Artificial Intelligence

Ivan Štěpánek

Department of Software Engineering
Supervisor: Ing. Eliška Šestáková

January 9, 2020

Acknowledgements

Firstly I would like to thank my former supervisor Juan Pablo Maldonado
Lopez for accepting me and my work when I was struggling to find a su-
pervisor. Secondly, I would like to thank my present supervisor Ing. Eliška
Šestáková for helping me with writing. Both of them are very kind and eager
to help. My thanks go to my former classmates as well. Namely Minh Trieu,
Marek Kodr, Jan Fara, Adam Jirovský, and Lukáš Renc for encouraging me
to finish my work. They and many others were also a great help during my
whole studies. Also, I am grateful to my parents for allowing me to concen-
trate on studying without much worries about money and living. Last but
not least, I would like to thank my girlfriend for her patience and help with
the English grammar.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on January 9, 2020 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Ivan Štěpánek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Štěpánek, Ivan. Implementation of 2D Turn-based Strategy Game with Arti-
ficial Intelligence. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2020.

Abstrakt

Práce se zabývá tvorbou strategické hry a umělé inteligence, která se ji naučí
hrát. Je prozkoumán žánr strategických her, ale i důležité části pro umělou
inteligenci. Dále práce analyzuje několik profesionálně vytvořených her a pro-
gramů hrající tahové strategie. Závěrem hodnotí kvalitu jak implementované
umělé inteligence, tak implementované hry a navrhuje možná zlepšení.

Klíčová slova umělá inteligence, strategie, genetický algoritmus, neuronové
sítě

Abstract

The thesis deals with creating a strategy game and artificial intelligence learn-
ing the game via self-play. It looks into a strategy game genre as well as im-
portant components of artificial intelligence. It analyzes several examples of
real-world games and programs playing strategy games. In the end, the thesis
discusses the quality of implemented artificial intelligence but also the game
and suggests possible improvements.

Keywords artificial intelligence, strategy, genetic algorithm, neural network

vii

Contents

Introduction 1
Thesis Goal . 2
Thesis Structure . 3

1 Theoretical Background 5
1.1 Game Genres . 5
1.2 Strategy Game . 6

1.2.1 Categories of Strategy Game 6
1.2.2 Common Features of Strategy Game 7

1.2.2.1 Different Types of Units 7
1.2.2.2 Game Map . 7

1.2.3 Fog of War . 8
1.2.4 Aim of Strategy . 8

1.3 Artificial Intelligence for Turn-based Strategy 9
1.3.1 Pathfinding Algorithms 10

1.3.1.1 Depth First Search 10
1.3.1.2 Dijkstra Algorithm 11

1.3.2 Minimax . 11
1.3.3 Heuristic . 14
1.3.4 Artificial Neural Network 16

1.3.4.1 Neuron . 16
1.3.4.2 Activation Function 17
1.3.4.3 Feed-forward Neural Network 18
1.3.4.4 Learning of Artificial Neural Network 18

1.3.5 Optimizations . 20
1.3.5.1 Hill Climbing 20
1.3.5.2 Simulated Annealing 21

1.3.6 Genetic Algorithm . 22
1.3.6.1 Genetic Operators 23

ix

1.3.6.2 Niching Methods 23
1.3.6.3 Applications 24

2 Analysis and Design 25
2.1 Examples of Turn-based Strategy Games 25

2.1.1 Advance Wars . 25
2.1.2 Wargroove . 26
2.1.3 Tanks of Freedom . 27

2.2 Examples of Artificial Intelligence Playing Turn-based Strategy 28
2.2.1 Blondie24 . 28
2.2.2 Hero Academy . 29

2.3 Game Requirements . 30
2.4 Game Wireframes . 32
2.5 Game Design . 32
2.6 Artificial Intelligence Design . 33
2.7 Used Technology . 34

3 Realisation 35
3.1 Game Architecture . 35

3.1.1 Game Class . 35
3.1.2 GameBoard Class . 35
3.1.3 GameBoardOperation Class 36
3.1.4 MLP1 Class . 38
3.1.5 AIGeneral Class . 38

3.2 Architecture of the Optimization Algorithms 38
3.2.1 Classic Optimization Algorithms 38
3.2.2 Genetic Algorithm . 43

4 Testing and Measurement 45
4.1 Testing Optimization Algorithms With MNIST Data Set 45

4.1.1 Structure of Neural Network 45
4.1.2 Fitness . 46
4.1.3 Genetic Algorithm Testing 46
4.1.4 Hill Climbing and Simulated Annealing 46
4.1.5 Genetic Algorithm With Fitness Sharing 48
4.1.6 Results . 49

4.2 Learning Artificial Inteligence with Minimum Human Input . . 50
4.2.1 Fitness . 50
4.2.2 Structure of Neural Network 50
4.2.3 Genetic Algorithm . 52
4.2.4 Result . 53

4.3 Quality of the Game Played by Artificial Inteligence 54
4.3.1 Heuristic Created By Human 54
4.3.2 Heuristic Created By Machine 55

x

Conclusion 59
Future Work . 60

Bibliography 63

Figure References 69

A Acronyms 71

B Contents of Enclosed SD Card 73

C Game Manual 75
C.1 Software Requirements . 75
C.2 Getting Required Software . 75
C.3 Building the Source Code . 76
C.4 Launching the Game . 76
C.5 Game . 76

xi

List of Figures

0.1 Screenshot of EDSAC simulator with OXO running on Mac OS [1] 2
0.2 Comics making fun of The Elder Scrolls V [2] 2

1.1 A diagram of the Rock paper scissors [3] 8
1.2 Minimax diagram with evaluated leaves 14
1.3 Minimax diagram with propagated values from leaves 14
1.4 An initial state of the puzzle . 14
1.5 The goal state of the puzzle . 14
1.6 A state of the puzzle . 15
1.7 A state of the puzzle . 15
1.8 Diagram of the artificial neuron . 16
1.9 Graph of activation functions . 17
1.10 Diagram of the feed-forward neural network 18
1.11 Genetic algorithm diagram . 22

2.1 A screenshot from Advance Wars: Days Of Ruin [4] 26
2.2 Screenshot of the Wargroove [5] . 27
2.3 Screenshot of the Tanks of Freedom [6] 28
2.4 Graphic visualization of Blondie24 [7] 30
2.5 Crossover of moves [8] . 31
2.6 Wireframes for menus and the actual game. 32
2.7 Domain model of Genetic algorithm. 34

3.1 Diagram of Game class components 36
3.2 Diagram of AI hierarchy . 40
3.3 Diagram of classes for local optimization algorithms 41
3.4 Diagram of classes for genetic algorithms 42

4.1 Genetic algorithms tested on MNIST dataset. 48
4.2 Hill climbing and simulated annealing tested on MNIST dataset. . 49
4.3 Comparison between genetic algorithm with niching and without. . 51

xiii

4.4 The game map used in fitness function. 52
4.5 Genetic algorithm simulating game tournaments for over 40 hours. 53
4.6 Red human player vs. blue computer player considering cost of

units and buildings . 55
4.7 Red human player vs. blue computer player considering distances

among units . 56
4.8 Green rectangle represent position of centroid for both players . . 56
4.9 Red human player vs. blue computer player using a neural network. 57

4.10 Game situation narrowing number of reasonable choices. 61

xiv

List of Algorithms

1.1 Depth First Search . 11
1.2 Dijkstra’s algorithm . 12
1.3 Minimax algorithm . 13
1.4 Hill Climbing . 20
1.5 Simulated Annealing . 21

xv

List of Tables

4.1 Accuracy of the algorithms on the entire MNIST dataset. 50
4.2 Unit cost table. 52
4.3 Building cost table. 52

xvii

Introduction

The significance of videogames is growing considerably every day. According
to the ESA (Entertainment Software Association) survey from 2019, every
third household in the USA has at least one videogame player. Moreover, in
2018 the consumers spent 43.4 billion dollars on videogames [1]. Continual
progress in electronics enables us to create more complex and remarkable
games. Nowadays, playing videogames is not even bound to desktops and
consoles anymore, as they are performed on devices such as smartphones,
tablets, and virtual reality headsets as well. There are several milestones in
the early stages of videogame development. One of them is the game OXO.
The very first game was created by student Alexander S. Douglass during his
dissertation work in 1952 [2].

Videogames took a big leap in their graphic adaptation since the OXO of
A. S. Douglass as can be seen in Figure 0.1. Nowadays, with each upgrade,
videogames look more realistic. However, an impression from virtual reality
can be disrupted by abnormal and absurd behavior of a game world, especially
if artificial intelligence is controlling NPC (Non-player Character).

Development can be a big challenge for video game developers, especially
in genres such as strategy and RPG, where players interact with their sur-
roundings on a large scale. For example, there is a known error in RPG game
The Elder Scrolls V: Skyrim. If you put a bucket on NPC’s head, you can
rob it without it noticing. Some people made fun of the error as illustrated
by Figure 0.2. Hence the development of artificial intelligence should be con-
sidered as necessary as the development of graphic adaptation in the game
industry for some genres.

1

Introduction

Figure 0.1: Screenshot of EDSAC simulator with OXO running on Mac OS [1]

Figure 0.2: Comics making fun of The Elder Scrolls V [2]

Thesis Goal

The thesis aims to implement a prototype of a 2D turn-based strategy game.
However, it does not suggest to create a full-fledged game competing with
other game titles often made by an entire studio. The thesis implements a
program learning to play the game via self-play. Furthermore, it discusses
some design patterns and algorithms that are useful not only for the imple-
mentation of artificial intelligence but also for the implementation of the 2D
game. Research will be conducted by studying samples of actual strategies.
The thesis also examines some programs playing turn-based games. In de-
tail, it focuses on an algorithm called Blondie24 that was capable of learning
checkers with minimal human input.

2

Thesis Structure

Thesis Structure
The thesis is organized in a way that does not require a deep knowledge of
games or artificial intelligence. The text tends to go from simpler to more
complex ideas. Though it still assumes some technical knowledge from the
reader since the thesis aims to program a game and artificial intelligence.
Chapter 1 describes several concepts needed for the implementation of the
game as well as artificial intelligence. It introduces subjects like pathfinding
algorithms, heuristic, etc. Chapter 2 shows real-world examples of strategy
games and artificial intelligence playing strategy games. These examples are
used as input for specifying game requirements or creating a design of the
learning algorithm. Chapter 3 presents some parts of the actual implementa-
tion. It also reasons for some design pattern usage. Chapter 4 looks into the
testing of the implemented learning algorithm. It also evaluates the quality of
created artificial intelligence. The last part of the thesis summarizes achieved
goals and discuss possible future work.

3

Chapter 1
Theoretical Background

This chapter addresses the necessary subjects that need to be examined to
implement a strategy game as well as the artificial intelligence playing the
game. It describes the strategy game genre in more detail and introduces
the common features of strategies. Also, it explains fundamental algorithms
that are often useful in the genre. The chapter looks into basic algorithms
on how to teach computer programs play games as well. It shows a link with
optimization problems and introduces classic optimization algorithms.

1.1 Game Genres
Unlike books and movies, the usual categorization of games does not heavily
rely on their story and narration. Videogames are often categorized based on
their interaction with players, what experience they made to players or game
objectives. Some of the common videogame genres are:

• Action Game
The main objective of an action game is usually the elimination of ene-
mies using combat skills. The genre contains fast, exciting and dynamic
actions. Therefore action videogames require quick decisions and reac-
tions from players.

• Sports Game
The subject of this genre is any kind of sport, often directly simulating
real life sport situations. An opponent in the game can be either a
computer or another person, the latter being more popular among the
players. As a result, the games are programmed so that multiple human
players play the game on a shared device.

5

1. Theoretical Background

• Role-playing Game
In RPG (Role-playing Game), players often identify themselves as heroes
taking quests in a world full of adventures. Good storytelling, massive
game world and extensive interaction with the player are typical char-
acteristics of the genre. Generally, there are lots of NPC in the game
world which are not controlled by a player. Their purpose is to make
the game more interactive. The games are often set in the Middle Ages
or a fantasy world.

• Strategy Game
Players often perform the role of a leader with the ability to control a
group of game units. The game world is affected by player commands
in each game unit. The objective of the strategy genre is typically the
domination of enemies with the fastest growing economy, the biggest
military, or the most developed infrastructure.

Apart from the videogames genre mentioned above, there are other types
of game genres, such as adventure, racing, puzzles, and so on. Moreover,
videogame genres can have their subgenres. So the categorization can be
much more complex. On the other hand, videogames do not have to abide by
their categories. Developers are often trying to put several genres together to
bring new experience to players.

1.2 Strategy Game
Common strategy games have no personification of a player, unlike RPGs or
action games, where every player typically represents a certain character. Nor-
mally, the player of a strategy game affects a game world indirectly. He only
gives orders for some game units to take action. Then the game units perform
these actions by themselves. These actions are usually simple and do not re-
quire any planning nor coordination. After all, planning and coordination is
the responsibility of a player.

Success in strategy games depends on tactical decisions and on the ability
to plan. Players need to reasonably manage their resources and use them to
accomplish the assigned tasks or optimize their state in a game. Resources in
strategy games represent money, raw material, number of game units, and so
on.

1.2.1 Categories of Strategy Game
Strategy games can be divided into 2 basic categories:

6

1.2. Strategy Game

1. Turn-based Strategy

Players alternate between 2 stages in TBS (Turn-based strategy). In
the first stage, the player is waiting until the other players finish their
moves. During the second stage, the player is making his moves, and
the others are waiting for him to finish.

2. Real-time Strategy

There is no switching turns between players in RTS (Real-time strategy).
Moves of players are not made one after another anymore. In fact, the
moves can be executed simultaneously. Consequently, the final result of
the game is affected by additional factors like constant player attention,
speed of player moves or the ability to react to unexpected situations.

1.2.2 Common Features of Strategy Game

The following sections show some basic characteristics of strategy games. All
these characteristics are not obligatory for every strategy, on the other hand,
they can be found in most of the games.

1.2.2.1 Different Types of Units

A classic feature of strategy games is the different types of game units. Every
unit type has its own abilities and interactions with other units. As a result,
different types of units enable the player to play the game in several different
ways. Players can create their own specific strategy on how to approach the
opponents based on a selection of types of game units.

However, to create different types of units with different interactions and
effectiveness between each other can be a potential problem. The types need
to be well balanced. One type should not overwhelm all the others to avoid
the degradation. For example using only one powerful strategy with only one
powerful type. Strategies should be balanced like the rock, paper, scissors
game as illustrated by Figure 1.1.

1.2.2.2 Game Map

A game map of a strategy game is often drawn or shown as a 2D area. A good
map can extend the number of possible strategies the player can choose from.
The map usually consists of different types of terrains. One game unit could
have an advantage over the others on a terrain. As a result, players have to
take not only different types of units into consideration but also their position
on the map. The game map is usually shown to a player from a bird’s-eye
view for a clearer perspective and efficient control of the game.

7

1. Theoretical Background

Figure 1.1: A diagram of the Rock paper scissors [3]

1.2.3 Fog of War
Fog of War is a common concept, especially for RTS combat games. In the
beginning, players are able to observe only a small portion of the map. Little
by little, players uncover the unknown parts of the map with their units. Once
a location is discovered, the player will be able to see its location on the map.

However, to get present information about an already explored location,
the player needs to place their units in the location. That information is
only temporary. Once the player removes his units from the location, the
map does not show the present state anymore. The player is exposed to an
uncertain situation when Fog of War comes into play. He does not know where
his opponents are or what they are doing. Therefore, the player is forced to
explore the game map actively.

1.2.4 Aim of Strategy
The general goal of a strategy is to eliminate all game units of an enemy.
Singleplayer games often offer sets of a mission or a campaign the player needs
to finish. These missions are mostly similar to each other. The objectives of
the missions can be for example:

• defend a town from an enemy

• build 30 factories

• destroy the base of an enemy

To make the missions more interesting, they are commonly connected with
a story. The story develops as the player is finishing his missions. Another
common approach is to challenge the player to complete his missions under
specific additional conditions. These conditions could run as follows:

8

1.3. Artificial Intelligence for Turn-based Strategy

• defend a town from an enemy and make no loss of your units

• build 30 factories under 25 minutes

• destroy the base of an enemy and do not use your special units

When the player accomplishes a task with these additional requirements,
he usually receives a special reward. In multiplayer, we often do not need any
story-telling or additional mission requirements since playing against a human
opponent is already challenging and interesting by itself, unlike playing with
an emotionless computer.

1.3 Artificial Intelligence for Turn-based Strategy
TBS includes classic board games such as tic-tac-toe, checker, chess, or go.
With the rapid development of computing technology, the effort to create
computer programs capable of playing the games on human level was increas-
ing. The programs were trying to not only reach the level of expert human
players but also to overcome them. That effort is quite the opposite of the
common effort in the game industry. The usual aim of game developers is to
create an opponent that is at its most equal to a human player.

The game world of TBS is usually deterministic. A victory in TBS depends
mainly on experience and tactical planning. As a result, success is earned
fairly because random variables have a minimum impact on the outcome of
the game.

Even though TBS games have convenient properties with minimum ran-
domness and complete information about game board, it is quite dificult to
play them perfectly. After all, the experience of most games is based on the
inability to play them perfectly

It is not possible for the human mind, or even a computer to think about
all the possible developments of the game. A simple game of chess has 10120

valid configurations [3]. The number is painful to figure out for a human just
as much as for machine computing capabilities.

A human player handles combinatorial explosion of possible game states
with intuition, experience from previous matches or trying to plan several
moves ahead.1 In spite of rapid advances in computer technology, it is still
tough to explore all the possible moves. From a practical point of view, com-
puter programs must use different kinds of approximations in order to play
complicated games. For example, the quality of specific configuration in chess
can be simply calculated as a ratio of one’s chess pieces to the opponent’s chess

1Expert chess players can memorize a valid board configuration immediately. On the
other hand, they are no better than beginners at memorizing random board configurations. It
appears that expert players are better at intuitively recognizing patterns for solving problems
and eliminate pointless moves. [5]

9

1. Theoretical Background

pieces. The question is, how good the results produced by the approximation
are.

TBS games can be easily represented by a game tree. To be more precise
such games are called games in extensive form [4]. The game tree consists of:

• root representing an initial game state

• edges representing game moves

• vertices representing other game states

• leaves representing terminal game states

1.3.1 Pathfinding Algorithms
Considering the nature of strategy games pathfinding algorithms play a key
role in strategy game implementation. They are an answer for questions such
as what distance unit can reach, what the shortest path is to the base or how
many units can attack in a specific range. Answering these questions helps not
only in developing artificial intelligence but also computing valid game moves.
Sometimes pathfinding algorithms can be extremely crucial when developing
a game. For example, they took over 60 percent of processor time for AI
(Artificial intelligence) in an RTS game called Age of Empire 2 [6].

Pathfinding algorithms operate on a graph. A graph is usually represented
by a set of vertices and a set of edges. An edge represents a connection between
2 vertices. The algorithms explore a graph via its edges starting at an initial
vertex. Usually, some pieces of information are stored as the algorithm is
exploring a graph.

There are lots of algorithms in graph theory. Some of the fundamental
algorithms are BFS (Breadth First Search) and DFS (Depth First Search) [7].
Although BFS is very useful in finding the shortest path, it can be replaced
with a more general algorithm called Dijkstra. The thesis focuses only on DFS
and Dijkstra algorithm. DFS was chosen because it emerges from another
algorithm called minimax.

1.3.1.1 Depth First Search

As the name suggests the algorithm searches the graph as “deep” as possible.
Firstly the algorithm starts at a vertex. Secondly, it visits its adjacent vertex.
Then it visits another adjacent vertex of the previous adjacent vertex. The
process continues deeper and deeper as long as there are unvisited vertices.

DFS is a simple algorithm to implement as we can see in Algorithm 1.1. Its
memory requirements are low since it expands only one neighbor of a vertex
at a time. DFS does not guarantee to find the shortest path from one vertex
to another.

10

1.3. Artificial Intelligence for Turn-based Strategy

Algorithm 1.1 Depth First Search
Input: an undirected graph 𝐺=(𝑉 ,𝐸), 𝑉 – list of vertices, 𝐸 – list of edges,

all vertex colors are WHITE, all vertex parents are NIL
Input: a vertex 𝑢 of 𝐺
Output: visited vertices have color attribute set to BLACK

1: function DFS(𝐺, 𝑢)
2: 𝑢.𝑐𝑜𝑙𝑜𝑟 = GRAY
3: for all vertex 𝑣 adjacent to 𝑢 do
4: if 𝑣.𝑐𝑜𝑙𝑜𝑟 == WHITE then
5: 𝑣.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢
6: DFS(𝐺, 𝑣)
7: 𝑢.𝑐𝑜𝑙𝑜𝑟 = BLACK

1.3.1.2 Dijkstra Algorithm

Dijkstra algorithm is able to find the shortest path as the BFS algorithm is.
However, it takes into account the “cost” of every move, unlike BFS. Every
movement from a vertex to an adjacent vertex is the same for BFS.

Common features of TBS games are different types of terrains. A game
unit can move through the terrains variously. One unit could travel longer
distances via a terrain than the others. Which is why the Dijkstra algorithm
fits TBS games better. BFS would treat all different terrains as they are the
same.

The cost of a move is represented by a function in graph theory. The
function takes an edge of the graph as an input and outputs a real number.
However, the algorithm works properly only if every edge is evaluated as a
positive number.

1.3.2 Minimax
One of the simplest program generating a non-random move in TBS would be
based on comparing different game states. The program would need to have
a function to evaluate a game state. The function would take a game state as
an input and would output a number telling how promising the game state is
for a player. Bigger the number, the more promising a game state for a player
and the lesser promising game state for an opponent.

The algorithm would generate all possible player moves from a given game
state. Then it would evaluate all generated game states with the function
and pick a move that leads to the highest computed value. In summary, the
program picks a move based on looking a move ahead.

However, looking only a move ahead is the biggest disadvantage of the
program because it does not consider an opponent’s response. Luckily the
program can be improved.

11

1. Theoretical Background

Algorithm 1.2 Dijkstra’s algorithm
Input: an undirected graph 𝐺 = (𝑉 , 𝐸), 𝑉 – list of vertices, 𝐸 – list of

edges, all vertex colors are WHITE, all vertex parents are NIL, all vertex
distances are set to +∞

Input: a function 𝑙: E →ℝ≥𝟘
Input: a vertex 𝑢 of 𝐺
Output: visited vertices have color attribute set to BLACK and computed

distances from the initial vertex 𝑢
1: function Dijkstra(𝐺,𝑢)
2: 𝑢.𝑐𝑜𝑙𝑜𝑟 = GRAY
3: 𝑢.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0
4: while exists a vertex 𝑣 such that 𝑣.𝑐𝑜𝑙𝑜𝑟 == GRAY do
5: choose a vertex 𝑣 with the smallest 𝑣.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
6: for all 𝑤 adjacent to 𝑣 do
7: if 𝑤.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑣.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑙((𝑣, 𝑤)) then
8: 𝑤.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑣.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑙((𝑣, 𝑤))
9: 𝑤.𝑐𝑜𝑙𝑜𝑟 = GRAY

10: 𝑤.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑣

Instead of calling evaluation function on all player’s generated game states,
the program generate all possible opponent’s response to all player’s generated
game states. In the end, the program evaluates game states from an oppo-
nent’s point of view since it looks two moves ahead. Moreover, the opponent
picks a game state with the lowest value.

The program could be improved again to look three moves ahead. The
general idea would be a program capable of looking 𝑛 moves ahead universally.
The program is called the minimax.

There are MAX and MIN players alternating moves in the minimax as can
be seen in Algorithm 1.3. The minimax is building a game tree as players are
making a turn. It stops at a leaf vertex or at the chosen depth. After that,
a function evaluates the last game states and outputs a value. High values
are good for the MAX player and bad for the MIN player. MAX’s effort is to
maximize the value of a game state and the MIN’s effort is to minimize it.

Minimax searches a game tree recursively in a similar manner as DFS does.
Then it executes the evaluation function on the last game state. As recursion
unwraps it propagates up the computed value via the game tree.

The function starts evaluating at the second depth in Figure 1.2. At the
first look, MAX’s best option is to turn right to get 9 as the highest evaluated
leaf. However, the MIN player will make a turn after the MAX and MIN
would choose leaf evaluated with 2. As the minimax algorithm propagates
computed values up, it is clear from Figure 1.3 that the MAX player should
turn left.

12

1.3. Artificial Intelligence for Turn-based Strategy

Algorithm 1.3 Minimax algorithm
Input: 𝑠𝑡𝑎𝑡𝑒 representing a vertex from a game tree
Input: 𝑑𝑒𝑝𝑡ℎ representing at what depth algorithm shall stop, 𝑑𝑒𝑝𝑡ℎ must

be bigger than 0
Input: an evaluation function 𝑒𝑣𝑎𝑙: 𝑠𝑡𝑎𝑡𝑒→ℝ
Output: best move based on the function 𝑒𝑣𝑎𝑙

1: function Minimax(𝑠𝑡𝑎𝑡𝑒, 𝑑𝑒𝑝𝑡ℎ)
2: 𝑏𝑒𝑠𝑡𝑀𝑜𝑣𝑒 = NIL
3: 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = -∞
4: for all 𝑚𝑜𝑣𝑒 in all possible moves of MAX player do
5: 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒 = generateNewState(𝑚𝑜𝑣𝑒, 𝑠𝑡𝑎𝑡𝑒)
6: 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑖𝑛𝑃𝑙𝑎𝑦𝑒𝑟(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒, 𝑑𝑒𝑝𝑡ℎ − 1)
7: if 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒 > 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 then
8: 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒
9: 𝑏𝑒𝑠𝑡𝑀𝑜𝑣𝑒 = 𝑚𝑜𝑣𝑒

10: return 𝑏𝑒𝑠𝑡𝑀𝑜𝑣𝑒
11: function MinPlayer(𝑠𝑡𝑎𝑡𝑒, 𝑑𝑒𝑝𝑡ℎ)
12: if 𝑑𝑒𝑝𝑡ℎ == 0 then
13: return 𝑒𝑣𝑎𝑙(𝑠𝑡𝑎𝑡𝑒)
14: else if isStateTerminal(𝑠𝑡𝑎𝑡𝑒) then
15: return 𝑒𝑣𝑎𝑙(𝑠𝑡𝑎𝑡𝑒)
16: 𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑆𝑐𝑜𝑟𝑒 = +∞
17: for all 𝑚𝑜𝑣𝑒 in all possible moves of MIN player do
18: 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒 = generateNewState(𝑚𝑜𝑣𝑒, 𝑠𝑡𝑎𝑡𝑒)
19: 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑎𝑥𝑃𝑙𝑎𝑦𝑒𝑟(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒, 𝑑𝑒𝑝𝑡ℎ − 1)
20: 𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑆𝑐𝑜𝑟𝑒 = MIN(𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒,𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑆𝑐𝑜𝑟𝑒)
21: return 𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑆𝑐𝑜𝑟𝑒
22: function MaxPlayer(𝑠𝑡𝑎𝑡𝑒, 𝑑𝑒𝑝𝑡ℎ)
23: if 𝑑𝑒𝑝𝑡ℎ == 0 then
24: return 𝑒𝑣𝑎𝑙(𝑠𝑡𝑎𝑡𝑒)
25: else if isStateTerminal(𝑠𝑡𝑎𝑡𝑒) then
26: return 𝑒𝑣𝑎𝑙(𝑠𝑡𝑎𝑡𝑒)
27: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑆𝑐𝑜𝑟𝑒 = -∞
28: for all 𝑚𝑜𝑣𝑒 in all possible moves of MAX player do
29: 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒 = generateNewState(𝑚𝑜𝑣𝑒, 𝑠𝑡𝑎𝑡𝑒)
30: 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑖𝑛𝑃𝑙𝑎𝑦𝑒𝑟(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒, 𝑑𝑒𝑝𝑡ℎ − 1)
31: 𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑆𝑐𝑜𝑟𝑒 = MAX(𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒,𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑆𝑐𝑜𝑟𝑒)
32: return 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑆𝑐𝑜𝑟𝑒

13

1. Theoretical Background

Figure 1.2: Minimax diagram with
evaluated leaves

Figure 1.3: Minimax diagram with
propagated values from leaves

Figure 1.4: An initial state of the
puzzle

Figure 1.5: The goal state of the
puzzle

1.3.3 Heuristic
The book Swarm Intelligence defines heuristics as shortcuts in the search
strategy that reduce the size of the space that needs to be examined [9].

Space can be searched with an uninformed search such as BFS/DFS if no
extra information about the space is provided. However, when space contains
information that made to be used of, it can be possibly embedded into the
original uninformed search to make it more efficient. Uninformed searches us-
ing the extra information are called informed searches or heuristic searches. [8]

One of the earliest heuristic search problems was the 8-puzzle. It is a 3×3
board with 8 tiles and an empty tile. The objective of the puzzle is to slide
the tiles horizontally or vertically into the empty tile until all tiles match the
goal configuration. [8]

To find solution of the puzzle efficiently a proper heuristic is needed. Ac-
cording to [8], commonly used heuristics are:

14

1.3. Artificial Intelligence for Turn-based Strategy

Figure 1.6: A state of the puzzle Figure 1.7: A state of the puzzle

• ℎ1 – a number of misplaced tiles

• ℎ2 – a sum of Manhattan distances 2 of the tiles from their goal positions

By definition ℎ2 seems to be more sophisticated than ℎ1. If both of the
heuristics evaluate states of a puzzle in Figure 1.6 and Figure 1.7, the heuristics
will differ. ℎ2 computes values of the boards shown in Figure 1.6 and Figure 1.7
as 6 and 4 respectively. Thus a state from Figure 1.7 seems to be more
promising to get to the final goal state. On the other hand, ℎ1 is unable to
tell the difference between the boards because the evaluation for both states
is 2. It appears that ℎ2 is more sensitive as ℎ1 is unable to tell a difference
between the states.

When the goal state of the puzzle is 22 moves from an initial state an
informed search with ℎ1 must explore 18 094 possible states. If the informed
search uses ℎ2, then it must explore only 1219 possible states to find a solution
or a goal state. If one heuristic is better than the other, it is said the heuristic
dominates the other. The result shows that a good heuristic can dramatically
improve the performance of an algorithm. [8]

In practice, uninformed searches are useful mostly for trivial problems as
they require exploring larger space. For practical problems often informed
searches with some heuristics are needed. On the other hand, uninformed
searches are more general as they do not make use of any specific piece of in-
formation and can be used on various problems. Usually, for a domain-specific
problem, a domain-specific heuristic is needed such as heuristics for solving
a maze, the 8-puzzle or game tree with minimax. Each of these problems
requires different domain knowledge. However, the requirements to provide
heuristic can be unwanted. Heuristic invented by a human is not equal to arti-
ficial intelligence. Artificial intelligence itself should come up with a heuristic
instead of a man. [11]

To let the machine create a heuristic itself seems challenging. One of the
possible solutions is to learn from experience. In this context, experience

2It is a distance measured along axes at right angles. There are no diagonal movements
in Manhattan metrics. In two dimensions the Manhattan distance between coordinates
(𝑥1, 𝑥2), (𝑦1, 𝑦2) is defined as |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|. [10]

15

1. Theoretical Background

Figure 1.8: Diagram of the artificial neuron

means letting a machine solve a problem again and again until it starts to
produce desired results. It requires a method of telling the machine if it does
well or bad. For instance, providing examples of states with correct output
that a machine heuristic should produce. Hopefully, from these examples, a
machine should be able to create heuristics that compute reasonable outputs of
other states. One of the techniques to learn from experience uses an artificial
neural network. [8]

1.3.4 Artificial Neural Network
ANN (Artificial Neural Network) is a computational model inspired by the
structure of a brain. It consists of units representing a simplified biological
neuron. The units are connected with directed links. They transfer signals
between each other and transform the signals with an activation function.
Moreover, each link is amplified or unamplified with a numerical weight.

ANN can be simply considered as a black-box taking sets of inputs and
transforming them into sets of outputs. It is often hard to reason and interpret
specific settings of weights and biases for a given problem. There are researches
specifically aiming to understand more ANN such as studying the role of
memorization and generalization in ANN [14, 15].

1.3.4.1 Neuron

It is a basic unit of ANN. In general, a neuron has an arbitrary number
of inputs. A model of the neuron is given in Figure 1.8. The inputs are
transformed into a single output. At first, neuron computes a weighted sum
of its inputs:

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚 =
𝑁

∑
𝑖=1

𝑤𝑖𝑎𝑖 + 𝑏

16

1.3. Artificial Intelligence for Turn-based Strategy

Figure 1.9: Graph of activation functions

where:

• 𝑁 – number of neuron inputs

• 𝑎𝑖 – 𝑖th neuron input

• 𝑤𝑖 – numeric weight of 𝑖th neuron input

• 𝑏 – threshold, bias representing how willing is a neuron fire its signal

Then an activation function 𝑓 is applied to get a final output:

𝑓𝑖𝑛𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓 (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚) = 𝑓 (
𝑁

∑
𝑖=0

𝑤𝑖𝑎𝑖 + 𝑏)

1.3.4.2 Activation Function

An activation function affects a network output and performance of opti-
mization to get the desired value of weights and biases. For example, one
activation function can be more computationally expensive than others, thus
a convenient approximation might be applied instead [13].

There are many functions that can be used in ANN [16]. Typically pre-
sented functions are sigmoid function and step function (hard threshold).
They are shown in Figure 1.9

17

1. Theoretical Background

Figure 1.10: Diagram of the feed-forward neural network

1.3.4.3 Feed-forward Neural Network

There are many ways to connect neurons to form a network [17]. One of
the most basic structures that are used in almost every complex network is
feed-forward neural networks.

Neurons are arranged in layers in a feed-forward neural network as detailed
in Figure 1.10. Their connections are only in one direction. Neuron inputs
are strictly connected with neuron outputs from the previous adjacent layer.
The layers are distinguished into 3 types:

• input layer – the first layer of the network

• output layer – the last layer of the network

• hidden layer – layers between the input layer and the output layer

1.3.4.4 Learning of Artificial Neural Network

As stated in the previous chapter about heuristic, an algorithm learning from
experience needs examples of correct outputs and a method telling how wrong
or right it works. The function quantifying how well an algorithm is achieving
the desired goal is called the cost function. A smaller value of cost function
means a better solution. One of the cost functions is the MSE (Mean Square
Error). It is defined as:

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − ̂𝑌𝑖)
2

where:

18

1.3. Artificial Intelligence for Turn-based Strategy

• 𝑛 – number of predictions

• 𝑌𝑖 – vector of actual values (these are examples of correct outputs)

• ̂𝑌𝑖 – vector of predicted values (these are outputs predicted by an ma-
chine)

• 𝑤𝑖 – numeric weight of 𝑖th neuron input

• 𝑏 – threshold, bias representing how willing is a neuron fire its signal

In the context of ANN, the algorithm needs to set weights and biases in
a way to minimize the cost function. In other words, the algorithm needs
to minimize multivariable function since cost function depends on a vector of
weights and vector of biases.

A powerful method to minimize an multivariable function 𝑓 is gradient3

descent algorithm. It starts at a point 𝑎0. Then it computes other point with
following formula:

𝑎𝑛+1 = 𝑎𝑛 − 𝛼 ∇𝑓(𝑎𝑛)

where:

• 𝛼 ∈ ℝ≥𝟘 – a learning rate

• ∇𝑓(𝑎𝑛) – a gradient of 𝑓 at a point 𝑎𝑛

Since a negative gradient indicates a direction of steepest descent in a
point then the gradient descent algorithm can get to a local minimum using
the formula recursively with small enough 𝛼.

In terms of weights and biases, the gradient of a cost function is computed
with an algorithm called backpropagation. More about backpropagation can
be learned at [19], [20].

The success of the gradient descent depends on a cost function and a
learning rate of 𝛼. If a function is not differentiable at a point, the gradient
cannot be computed using classic methods. Moreover changing gently the
weights and biases may not show any improvements in the cost function [21].
It is similar to the heuristics of 8-puzzle since one heuristics is not able to tell
the difference and is dominated by the other. Thus gradient descent might be
inapplicable for some problems and other algorithms that need to be used.

3Not rigorously, gradient of an 𝑓 is a vector of all partial derivatives of 𝑓. Partial
derivative is just like “usual” derivative with respect to only one variable since all the other
variables are considered as constants. The partial derivatives of 𝑓(𝑥, 𝑦) = 3𝑥2 + 𝑥𝑦2 are
𝜕𝑓
𝜕𝑥 (𝑥, 𝑦) = 6𝑥 + 𝑦2 and 𝜕𝑓

𝜕𝑦 (𝑥, 𝑦) = 0 + 2𝑥𝑦. Thus the gradient is [6𝑥 + 𝑦2, 2𝑥𝑦].

19

1. Theoretical Background

1.3.5 Optimizations

Optimization is a task minimizing or maximizing a function 𝑓(𝑥) by changing
𝑥 [20]. Some optimization methods work with well-known or well-defined
problems such as a method of least squares, linear programming [22].

When the optimization problem is not well-defined, more general methods
need to be used. One of the methods are iterative optimization algorithms.
They solve the problem by trial and error. Moreover, the algorithms often
require minimum knowledge about an optimized function.

1.3.5.1 Hill Climbing

To optimize function 𝑓 the algorithm starts at a point 𝑎. Then it generates a
new adjacent point 𝐵. If 𝑓(𝑏) > 𝑓(𝑎) holds then original 𝑎 is replaced with the
point 𝑏. The process is repeated until specified criteria is met. Hill climbing
pseudocode is presented in Algorithm 1.4.

Hill climbing does not have any inner states or memory. It simply takes
the first good solution without looking ahead. Thus hill climbing is sometimes
called greedy local search. Even though the hill climbing initial point could
be a poor solution, it often quickly moves towards a better solution. [8]

Generate neighbors differ among various problems. If the point 𝑎 would
be a vector, then the adjacent point could be a vector with a specific distance
from the 𝑎. For a binary vector, {0, 1}𝑛, 𝑛 ∈ ℕ, the adjacent vector could be
generated by flipping 𝑘 ∈ ℕ bits.

According to [8], drawbacks of hill climbing are:

• local maxima – if hill climbing finds a point that is better than all its
neighbors then the algorithm get stuck since it always looks for the best
local maxima.

• flat area – if hill climbing searches space where all points are evaluated
equally, then it gets lost because no local uphill from the flat space exists.

Algorithm 1.4 Hill Climbing
Input: an initial point 𝑎
Input: a function 𝑓
Output: a local or global maxima of 𝑓

1: function HillClimbing(𝑎,𝑓)
2: while 𝑠ℎ𝑜𝑢𝑙𝑑𝑆𝑡𝑜𝑝() == false do
3: 𝑏 = generateNeighbour(𝑎)
4: if 𝑓(𝑏) > 𝑓(𝑎) then
5: 𝑎 = 𝑏
6: return 𝑎

20

1.3. Artificial Intelligence for Turn-based Strategy

1.3.5.2 Simulated Annealing

Simulated annealing is an alternative to hill climbing. Problem with hill climb-
ing is that it never makes a move towards less promising areas temporarily to
escape from small local maxima. Simulated annealing is very similar to hill
climbing. It starts at a point and tries to improve a solution via a continual
generation of new points.

Simulated annealing pseudocode can be seen in Algorithm 1.5. The main
difference from hill climbing is when simulated annealing accepts the adjacent
point. It picks a new solution with probability 𝑝. The probability depends
on how much worse or better neighbor solution is. Better the neighbor bigger
the probability to pick it. The probability also depends on the variable 𝑇
called temperature. Higher the temperature bigger the probability to pick
neighbor solution as well. The temperature is dynamically changing during
algorithm iterations. According to [23], the probability 𝑝 can be computed by
the following function:

𝑃(𝑎, 𝑏) = 1
1 + 𝑒 −∆𝐸

𝑇

where:

• 𝑏 is a point generated from 𝑎

• Δ𝐸 = 𝑓(𝑏) − 𝑓(𝑎) and 𝑓 is a maximized function

• 𝑇 – temperature at a current iteration

A challenging area in simulated annealing is how to change the temperature
step by step during the iteration and what initial temperature shall be set.
There are lots of temperature schedules for changing it. One of the simplest
ways is to compute temperature at 𝑘th iteration as 𝑇𝑘 = 𝑇0 × 𝛼𝑘, 𝑘 ∈ ℕ, 𝛼 ∈
ℝ. [24]

Algorithm 1.5 Simulated Annealing
Input: an initial point 𝑎
Input: a function 𝑓

1: function SimulatedAnnealing(𝑎,𝑓)
2: while 𝑠ℎ𝑜𝑢𝑙𝑑𝑆𝑡𝑜𝑝() == false do
3: 𝑏 = generateNeighbourFrom(𝑎)
4: Δ𝐸 = 𝑓(𝑏) − 𝑓(𝑎)
5: 𝑇 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐹𝑟𝑜𝑚𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒()
6: 𝑃 = (1 + 𝑒 −∆𝐸

𝑇)
−1

7: change value of 𝑎 to value of 𝑏 with probability 𝑃
8: return 𝑎

21

1. Theoretical Background

Figure 1.11: Genetic algorithm diagram

1.3.6 Genetic Algorithm

The genetic algorithm belongs to a much wider group of Evolutionary algo-
rithms. Evolutionary algorithms are based on natural evolution where only
the fittest individuals survive. In a natural evolution, survival is achieved
through reproduction. With a little luck, the most favorable characteristics
are passed from parents to offspring and good genetic information is pre-
served. Individuals inheriting bad characteristics most likely lose the battle
to survive. [25]

Algorithms like hill climbing or simulated annealing often deal with a single
promising solution. The evolutionary algorithm works with several solutions.
Moreover, they are introducing interactions between solutions. Candidate
solutions can influence each other and create a final solution with collective
effort. Solutions of evolutionary algorithms are represented by genotype like
binary strings, a vector of numbers, etc. Evolution algorithms maintain a pop-
ulation of candidate solutions. The algorithms need to have a criterion func-
tion, called a fitness function to determine the quality of solutions. [22]

Evolution algorithms are a compromise between exploration and exploita-
tion principles. Exploitation refers to local search improving already found
solutions and exploration relates to random search in a wider area to explore
different promising regions. [22]

22

1.3. Artificial Intelligence for Turn-based Strategy

1.3.6.1 Genetic Operators

The genetic algorithm searches a space via genetic operators. Its general flow
can be seen in Figure 1.11. According to [26], the main driving operators of
the genetic algorithm are:

1. Selection operator
At the end of each iteration or generation selection operator chooses
individuals for a new population. There are many possibilities for se-
lection operators. One of the best-known is roulette-wheel selection,
tournament selection, and rank-based selection.

2. Reproduction operator
The new solution is created with reproduction algorithms combining
two or more parents together. Commonly used operators are one-point
crossover, uniform crossover.

3. Mutation operator
A mutation changes parts of a solution genotype. The basic mutation
operator is for instance bit-flip. The probability of mutation is a typically
small number.

1.3.6.2 Niching Methods

The common problem of evolutionary algorithms is premature convergence.
It happens when individuals are too similar in population. Although exploita-
tion and exploration can be affected by genetic operators, the result is often
insufficient. If the population is not varying enough, then the evolution oper-
ators do not work well. For instance when two identical individuals crossover
without any mutation, then the offspring are similar to the parents in every
detail. Thus classic evolution algorithms are extended with niching methods
trying to prevent premature convergence. [26]

One of the popular methods is fitness sharing. The main idea is that
too many similar individuals share the same fitness value. A typical sharing
function can be expressed by the following formulas:

𝑓 ′
𝑖 = 𝑓𝑖

𝑚𝑖
(1.1)

𝑚𝑖 =
𝑁

∑
𝑗=1

𝑠ℎ(𝑑𝑖𝑗) (1.2)

𝑠ℎ(𝑑𝑖𝑗) = {1 − 𝑑𝑖𝑗
𝜎𝑠

, if 𝑑𝑖𝑗 < 𝜎𝑠
0, otherwise

(1.3)

23

1. Theoretical Background

In Equation 1.1, 𝑓𝑖 represents an actual fitness of 𝑖th individual in a pop-
ulation. Similarly 𝑓 ′

𝑖 represents a shared fitness. Variable 𝑚𝑖 is a niche count
measuring with how many individuals the current fitness is shared. In Equa-
tion 1.2, 𝑁 denotes size of a population and 𝑑𝑖𝑗 refers to distance between
the 𝑖th individual and the 𝑗th individual. In Equation 1.3, the function 𝑠ℎ
measures the similarity between two population elements. It returns to zero
if the elements are different enough. Variable 𝜎𝑠 represents a threshold telling
if two individuals are too similar. [27]

1.3.6.3 Applications

Evolution algorithms are more efficient in non-differentiable, discontinuous
problems than classic optimizations. Genetic algorithm, in particular, has
many real-world applications from robotics to investment strategies. [28]

For instance, the genetic algorithm was used in the FPS (First-person
shooter) game Quake 3. The genetic algorithm optimized logic controllers
of a game bot. The controllers indicate how much the bot “wants” to do
something such as 78% liking for picking a gun or 56% liking for picking the
armor. [29]

24

Chapter 2
Analysis and Design

In the beginning, any software project should define its functions and re-
quirements. Requirements often served as an agreement with a client. They
describe what the client wants and what needs to be done. Hence developer
work more likely meets the client’s requests. On the other hand, defining re-
quirements is important regardless of a client. It helps developers to create a
general mental picture of a project and clears goals that need to be achieved.
Moreover, these definitions are used later as input for the implementation.
Analysis of similar projects can help to specify reasonable requirements and
functions as well.

2.1 Examples of Turn-based Strategy Games

Since the thesis focuses on TBS games, the selection is narrowed just to one
specific genre. However, only a small sample of games was chosen due to a
big amount of produced games of any genre.

This sample reflects the author’s opinion. Apart from that, choice take
other factors into consideration like popularity and age. This sample contains
an open-source game, a newly released game from 2019, and a popular game
at its time.

2.1.1 Advance Wars

It is a game created for a pocket console Game Boy Advance. The game was
developed by a Japanese studio called Intelligent System. It was released in
2001. This strategy game is set in a military environment. The aim of the
game is to defeat enemy units. It can be done in 2 ways: destroying all enemy
units or capturing an enemy base. The game is designed for 2–4 players with
an option to compete with artificial intelligence. The project provides more

25

2. Analysis and Design

Figure 2.1: A screenshot from Advance Wars: Days Of Ruin [4]

than 100 game maps, broad and a very user-friendly tutorial. A player learns
the basic game mechanics via entertaining and easy missions.4

The player can choose from several characters. The characters do not only
provide a visual representation of the player as a commander but also they
can change game statistics of their game units and introduce special abilities.
Advance Wars got very positive ratings for its game mechanics, multiplayer
and graphic visualization taking full advantage of a game console hardware at
that time [30]. The game is presented in Figure 2.1

2.1.2 Wargroove
Wargroove is a commercial project from a British studio called Chucklefish.
The strategy is situated in a fantasy environment with dragons, knights and

4Advance Wars was originally sold only in the Japanese market because of disbelief that
a complicated game would success outside of the market. Thus developers made a detailed
tutorial to make the game more user-friendly and to avoid reading any manual. [31]

26

2.1. Examples of Turn-based Strategy Games

Figure 2.2: Screenshot of the Wargroove [5]

catapults. The game was released in 2019. It supports platforms like PC, Nin-
tendo Switch, Xbox One, and PS4. Additionally, it has an online multiplayer
for up to 4 players [32].

Besides TBS characteristics, the project takes some of the RPG features.
Every player chooses a game hero. The hero is placed in a game map like
any regular game unit. The difference from Advance Wars is that a chosen
character is the only visual representation of commander but does not appear
directly on a map in Advance Wars. This game world is presented as a 2D pixel
art. The structure of game maps has a square grid format. Game battles end
under a common condition like destroying all opponent’s units, taking over the
opponent’s base. The additional condition is only destroying the opponent’s
hero.

Wargroove got mostly positive ratings with the conclusion, that it is a
respectable successor to the Advance Wars game that some players wanted
for a long time [33]. The game has very appealing audiovisual content. There
are animated cutscenes that develop the story of the game. The game can
be seen in Figure 2.2. Developers claim they wanted to revive the charm and
accessibility of games that inspired Wargroove. The game is focused on high-
resolution pixel art, online playing or modding capability. Developers do not
even hide that their game is based on Advance Wars series [32].

2.1.3 Tanks of Freedom
It is an open-source game from Polish studio p1x. The game is different from
the others with an isometric game map as illustrated by Figure 2.3. It uses old-
fashioned graphic visualization using pixel art as well. The project supports
operating systems such as Linux, Windows, OSX and Android. Although it
is only a free and open-source project with minimum advertising, the game

27

2. Analysis and Design

Figure 2.3: Screenshot of the Tanks of Freedom [6]

reached over 30 000 downloads for PC and Android. The game was released in
2015. Since the game is open source, several other ports were made by their
community to play the game on other systems like FreeBSD, F-Droid, Pandora
or Mageia. It is also possible to play the game through web browsers [34].

The game is designed for 2 players and with an option to compete with
artificial intelligence. The game contains a campaign with 14 missions and
a map editor. The player wins the moment he captures all of the enemy’s
strategic buildings [35].

2.2 Examples of Artificial Intelligence Playing
Turn-based Strategy

The section introduces two programs playing the TBS game. Each program
deals with a different problem. A program called Blondie24 addresses the
problem of learning games with minimal human expertise. The second pro-
gram Hero Academy is solving a great branching factor of a specific TBS game.
Both programs make use of an evolution algorithm but each of them applies
the algorithm in a very different way.

2.2.1 Blondie24
It is a computer program playing checker as shown in Figure 2.4. Blondie245

is based on the minimax algorithm with a special evaluation function. The
5The first name was David1101 but no one wanted to play with him online. The second

name was ObiwanTheJedi. People wanted to play with ObiwanTheJedi. On the other hand,
some players swear to its mother. Last but not least was Blondie24. Blondie24 does not
have any problem with swearing or lack of players. Blondie24 was actually asked to date
several times. [36]

28

2.2. Examples of Artificial Intelligence Playing Turn-based Strategy

function was created using a feed-forward neural network and evolution algo-
rithm. The program was tested in 165 games against human opponents via
website www.zone.com. Blondie24 was better than 99.61 percent of all rated
zone players. [37]

A control experiment showed that a trained neural network provides an
advantage over a classic heuristic depending merely on the checker piece differ-
ential. The neural network was tested in 14 games against the classic heuristic.
The network won 2 games and the other 12 games ended in a draw. Apart
from that, the neural network held more pieces over the classic heuristic most
of the time, specifically 10 of 12 draw games. [38]

The neural network was trained via an evolution algorithm with population
size 15. Each individual represents a neural network in the population. The
entire population was initialized randomly. The structure of the network was
fixed and the algorithm optimized only weights and biases. To compute an
individual’s fitness, it plays 1 game against 5 random opponents from the
population. An individual could earn −2 points for a loss, +1 point for a win
or 0 points for a draw. [38]

The input of the trained neural network is the checkerboard. It is repre-
sented as a vector of 32 numbers from a set {𝐾, −𝐾, 0, 1, −1}. When there
is no piece in a board tile, the tile is transformed to 0. A positive value rep-
resents a player’s piece and a negative value represents an opponent’s piece.
Variable 𝐾 refers to a checker king piece. The appropriate value of the king
was optimized by the evolution algorithm as well. The initial value was 2.0.
The neural network has 3 hidden layers. They consist of 91, 40 and 10 neurons
respectively. The output was a single neuron. Bigger the number of the out-
put neuron, the more promising board for a player and more disadvantageous
to an opponent. [38]

The evolution algorithm was executed on the Pentium II 400 Mhz. Thus
the depth of the minimax algorithm was adjusted to 4 in order to get rea-
sonable execution time. The algorithm ran for 8 weeks and iterated over 230
generations. [38]

2.2.2 Hero Academy
The game was created in order to study different approaches to the searching
game tree. Hero Academy is a regular TBS game. It tries to solve the huge
branching factor of games where a player can move with all its units at one
turn. Apart from classic board games like chess with branching factor 30 or
Go with branching factor 300, the multi-action games could have branching
factor over 1 000 0006. [39]

The basic idea for Hero Academy is to use an evolutionary algorithm to
evolve sequences of moves. So the game tree is not explored by a standard

6If a player handles 6 game units and each unit has 10 possible moves, then there are
106 possible moves in a player turn. [39]

29

www.zone.com

2. Analysis and Design

Figure 2.4: Graphic visualization of Blondie24 [7]

algorithm like minimax. Unlike Blondie24 using an evolutionary algorithm for
training minimax evaluation function, the evolutionary algorithm is directly
used to create player’s moves. Creating a sequence of moves directly does not
take into consideration opponent’s actions. However, the result shows that
evolutionary algorithms outperform classic searches. [39]

2.3 Game Requirements
The requirements specify basic features of the game and what it is able to do.
Following requirements were created taking into account the analysis of game
examples. It uses some common characteristics of all the examples like their
game objective.

1. Functional Requirements

F1 Graphics
F1.1 Game elements with pixel art style.
F1.2 Overall game retro design.

F2 Multiplayer
F2.1 The game can be played by several players sharing a keyboard.
F2.2 User can play against computer as well as human player.

30

2.3. Game Requirements

Figure 2.5: Crossover of moves [8]

F2.3 User is able to let computer players play with themselves.

F3 Game maps

F2.1 The game provides at least 4 pre-created maps.
F2.2 Game map has a form of 2D grid.

F4 Game mechanics

F2.1 There are different kinds of units and buildings to enhance
tactical planning.

F2.2 The game objective is to destroy enemy base or all enemy units.

2. Non-functional Requirements

NF1 The game uses the English language.

NF2 The game supports at least Linux operating system.

NF3 Game is extensible with minimum changes in the source code.

31

2. Analysis and Design

RGB Wars

START GAME

EXIT

RGB WARS

(a) Main menu.

RGB Wars

MAP_1

NEXT

BACK

RGB WARS

(b) Menu for chosing maps.
RGB Wars

RGB WARS

COMPUTER

HUMAN

NEXT

BACK

(c) Specifying types of players.

RGB Wars

:90
:30
:50

RGB WARS

MOVE

ATTACK

WAIT

CAPTURE

HEALTH
FUEL
AMMO

CAPT
DEF

:00
:00

(d) Game widget layouts.

Figure 2.6: Wireframes for menus and the actual game.

2.4 Game Wireframes
Figure 2.6 illustrates basic widget layout for 4 different screens. They also
show elementary navigation from a main menu to playing the game. At first
user has to choose one of the pre-defined maps. Afterwards user sets types of
players for the game. In the end it is switched to another screen to play. As can
be seen in Figure 2.6d, below widgets shows unit status like health and ammo.
The neighbouring widget displays information about a terrain. Both statuses
correspond with a tile where a cursor is placed. Menu of possible actions is
dynamically changing according to units abilities and nearby objects. So the
menu is not showed permanently as indicated in Figure 2.6d

2.5 Game Design
Since the thesis goal is to create functional game prototype, the design is
aiming for simplicity. Thus the game does not rely on multithreading archi-
tecture avoiding complications such as thread synchronization, concurrency or
unpredictable results. It also does not overuse abstraction or polymorphism

32

2.6. Artificial Intelligence Design

using hierarchy of classes. Since polymorphism with classes usually involves
calling indirect methods via pointers and using operators new and delete 7,
the game tends to not rely on the concepts in critical path like needed com-
putation for AI. On the other hand, abstraction for AI player is needed to
provide different implementation of program playing the game without large
code repetition. Template programming gives the essential abstraction rather
than polymorphism with virtual calls.

2.6 Artificial Intelligence Design
To implement strategy decision-making, minimax is a convenient algorithm.
It allows looking arbitrary moves ahead and taking into consideration enemy
moves. On the other hand it needs a decent evaluation function in terms of
limited search depth. Thus minimax could be a favourable AI component
taking into acounts possible enemy moves with good enough evaluation, or
heuristic function. In order to create AI with minimum human input, neural
networks are one of the possible ways how to achieve the goal as stated in
Chapter 1.3.3. They will be used to create the very evaluation function of
minimax. The neural network representing evaluation function will be trained
via self-play in a similar manner as Blondie24 program. The algorithm training
Blondie24 ran on Pentium II 400 mhz, yet it was possible to create a very
good competetive program.

The idea is to use the same approach for more complex games unlike
checker. Since nowadays computers are much faster than the old Pentium,
it might compensate the complexity of the game while training the program.
Hopefully, the trained evaluation function will make up for a large branching
factor during minimax search just like better heuristic function helps to solve
the 8-puzzle with smaller amount of visited states. The algorithm for the
neural network training needs to be easily extensible and allowing different
tweaks. Also, it should enable being used for different kinds of problems
other than training neural network playing a game. A way of dealing with
that is to create general genetic algorithm class as a core of the optimization
algorithm. Then possible tweaking and extensibility is done by means of
different genetic operators as illustrated by Figure 2.7. The algorithm can
solve different problems by defining new fitness function.

7The operators are used for dynamic memory allocation in C++. However, they consume
a big amount of time. Memory can be fragmented when different objects are allocated in
random order. Moreover, compiler cannot easily optimize code with pointers. [40]

33

2. Analysis and Design

Genetic Algorithm Mutation

Initialization

Selection

Crossover

Fitness

RandomInit

RankSelection

BitFlipMutation

1P-Crossover

UniformCrossover

TrainANNSelfPlay

Figure 2.7: Domain model of Genetic algorithm.

2.7 Used Technology
C++ language will be used for the implementation of the game and AI. C++
allows wide variety of programming paradigm like object-oriented program-
ming, generic programming and procedural programming. Moreover C++
compilers provide non-trivial error detection and code optimization. [41]

For graphic input SDL (Simple Direct Media Layer) will be used since it
natively works with C++. [42]

Definition of game objects or game maps should not be hardcoded directly
inside a source code in order to maintain adding new maps and units easily.
Thus definitions will be loaded from a file. The program will use json file
format and library JsonCpp for easier manipulation [43]. Unit testing will be
done with Catch2 library [44].

34

Chapter 3
Realisation

In this chapter, concrete implemented classes are described. It looks into the
main components of the created game as well as the core of optimization algo-
rithms. The chapter also shows usage of some design patterns like command
or data locality and clarifies their correct application.

3.1 Game Architecture

As the implemented game includes dozens of classes, only some key parts of
the program will be described.

3.1.1 Game Class

The Game class main components are GameBoard, GameBoardGraphics and
vector of Players as can be seen in Figure 3.1. It handles an entire game flow
such as alternating players, ending game, game animation via its components.
The graphic input is represented by GameBoardGraphics class. Players can
alter gameboard via two different controllers. One controller is for human
player and the other for AI. The entire game flow takes place in a simple
game loop method. Game loop is a simple pattern. The loop runs continuously
processing user input, updating game state and displaying the game [45].

3.1.2 GameBoard Class

GameBoard class consists of arrays globally shared with each instances of it.
The arrays store information about damages between units or move cost of
all unit. Objective of a GameBoard is to hold enough information to describe
complete individual game state. It holds information about player units and
buildings or their positions.

35

3. Realisation

Figure 3.1: Diagram of Game class components

3.1.3 GameBoardOperation Class

Unlike chess or checker a board representation of TBS is a bit more complex.
Nor chess nor checker do not have various terrains, different buildings and
units with various game states. Creating a copy of the board is more heavy
operation because it holds more information.

However the copy is needed for evaluation of each move in minimax algo-
rithm. A straightforward solution is to make each game operation reversible.
It enables to execute an operation in gameboard and then takes it back. There-
fore copy of a board is not necessary since undoing previous moves turn board
to its origin state.

Key technique for implementing it is called command pattern. The neces-
sary information for executing the operation are stored in an object that also
execute the operation. The object can also hold enough information to revert
the operation [46]. As a matter of fact, similar principle can be seen in graph-

36

3.1. Game Architecture

Listing 3.1: Sample code of command pattern
1 class GameBoardOperation
2 {
3 public:
4 OperationType operation;
5
6 MyInt moveCost;
7 //==========================
8 //performer
9 CVector2D prevCoorPerf;

10 CVector2D newCoorPerf;
11 CVector2D coorAttackPerf;
12 MyInt prevHpPerf, prevAmmoPerf;
13 MyInt newHpPerf, newAmmoPerf;
14 MyInt prevFuelPerf, newFuelPerf;
15
16 //==========================
17 //defender
18 CVector2D prevCoorDef;
19 CVector2D newCoorDef;
20 CVector2D coorAttackDef;
21 MyInt prevHpDef, prevAmmoDef;
22 MyInt newHpDef, newAmmoDef;
23
24 //==========================
25
26 MyInt prevCapturePoint1, prevCapturePoint2;
27 MyInt newCapturePoint1, newCapturePoint2;
28 ...
29 };

ical or text editors that allow users to take back unintentional operations 8.
The actual code of GameBoardOperation class is given in Listing 3.1

8For graphic editor Photoshop it is actualy the opposite. Obsolete version of the editor
had only one level undo operation. However Photoshop developers could not use the com-
mand object for technical reasons in order to implement multiple undos. Instead the editor
makes entire copy of graphic document between every new user operation. [47]

37

3. Realisation

3.1.4 MLP1 Class

MLP1 is a class representing feed-forward neural network with one hidden layer
and sigmoid activation function. As neural network is heavily used in game
tree search, the implementation gave up on more abstract object–oriented
design. Instead, it will use simple plain array storing weights and biases rather
than creating layers of abstraction such as class for a neuron. In fact nowadays
computers benefit of contiguous memory and data locality rather than strict
object-oriented design.9 The implementation of the network is based on small
library TINN (Tiny Neural Network) [48]. TINN saves weights and biases in
two separates one–dimensional arrays. Unlike TINN, the implementation is
using faster static arrays. However size of a static array needs to be known
at a compile time, so that an generic programming is used to reduce the
disadvantage. A sample of MLP1 is given in Listing 3.2.

3.1.5 AIGeneral Class

AIGeneral is one of the simplest class in the game. It has a single method
used to generate moves for computer player. But how it is done is a concern
for the next generation of AIGeneral classes. Which is why the class is very
simple.

One of the possible implementation is provided by AI2 generic class. It
implements minimax algorithm. Although the class does not take responsibil-
ity for actual execution of moves. It is done in other class called AIComponent.
AIComponent simulates player moves. At first glance the hierarchy seems to
be complicated. On the other hand, it offers better reusability of code. Reason
for simulating moves indirectly in bottom classes is more general abstraction.
Hierarchy of the classes is shown in Figure 3.2.

For instance smart AIComponent can recompute only part of the board
since it controls possible game moves. Imperfect yet simple AIComponent
recomputes an entire game board and not taking individual move into consid-
eration. At last game board is evaluated with GameBoardHeuristic class.

3.2 Architecture of the Optimization Algorithms

3.2.1 Classic Optimization Algorithms

Since simulated annealing and hill climbing are at their core almost identical,
a shared abstract class OptimizatorInterface was created for them. The

9Modern processors are much faster in processing data than retrieving that data from
memory. Without using caches and loading data ahead processor would wait for needed
data most of its time. [49]

38

3.2. Architecture of the Optimization Algorithms

Listing 3.2: A sample code of neural network
1 template<class Type, size_t nIn, size_t nHid, size_t nOut>
2 class MLP1
3 {
4 public:
5 static constexpr size_t nInputs = nIn;
6 static constexpr size_t nHiddens = nHid;
7 static constexpr size_t nOutputs = nOut;
8 static constexpr size_t nWeights = nHiddens * (

nInputs + nOutputs);
9 static constexpr size_t nBiases = nHiddens+nOutputs;

10
11 static constexpr size_t weightIndexOffset = nHiddens

* nInputs;
12 static constexpr size_t biasIndexOffset = nHiddens;
13
14 using wArray = std::array<Type, nWeights>;
15 using bArray = std::array<Type, nBiases>;
16 using NumberType = Type;
17
18 std::array<Type, nWeights> weights;
19 std::array<Type, nBiases> biases;
20
21 std::array<Type, nHiddens> hiddenNeurons;
22 std::array<Type, nOut> outputNeurons;
23 ...
24 };

class needs to be generic in order to support any type of neural network from
MLP1 class.

OptimizatorBase inherits from OptimizatorInterface. The class speci-
fies how to create a neighbour solution in more detail. Finally concrete classes
inherit from it and implement in their own way how new solution will be
accepted. General diagram of those classes is shown in Figure 3.3.

To allow better abstraction, the class includes a generic type for computing
fitness. As a result the optimization algorithms can be used on different kinds
of problems by implementing only different kinds of fitness functions.

39

3. Realisation

Figure 3.2: Diagram of AI hierarchy

40

3.2. Architecture of the Optimization Algorithms

Figure 3.3: Diagram of classes for local optimization algorithms

41

3. Realisation

Figure 3.4: Diagram of classes for genetic algorithms

42

3.2. Architecture of the Optimization Algorithms

3.2.2 Genetic Algorithm
Genetic algorithms were implemented in similar manner as hill climbing and
simulated annealing. Main idea is to separate genetic operators from ge-
netic algorithm in order to reuse different kinds of genetic operators in differ-
ent kinds of genetic algorithms. Genetic operators are held in generic class
GeneticFunctorContainer that enable to take arbitrary genetic operators.
Components of the genetic algorithm can be seen in Figure 3.4.

Genetic algorithm and genetic operators are initialized by generic type
GeneticInformationT. Genetic information contains information about per-
centage of crossovers and mutations, size of an population and other informa-
tion necessary for launching genetic algorithm.

43

Chapter 4
Testing and Measurement

This chapter shows an experimental evaluation of the implemented optimiza-
tion algorithms. The first measurement serves as a test deciding what algo-
rithm is going to be used for learning the game. The measurements demon-
strate differences between various optimization parameters and their impact
on measurement score. After that, the best-suited algorithm is selected ac-
cording to the measurements. To begin with the actual learning algorithm,
structure of ANN and fitness function are defined. Lastly, the final result is
assessed and the quality of the machine, as well as human created AI, is tested
in a real play. All tests run on Intel Core i3–3220 with 2 cores.

4.1 Testing Optimization Algorithms With
MNIST Data Set

MNIST (Modified National Institute of Standards and Technology) data set
is a database of handwritten digits. Every digit image corresponds to a label
telling what number is represented by the image. The image size is 28 ×
28. The database is split into training set of 60 000 examples and test set
containing 10 000 examples. It is a convenient database for testing pattern
recognition technique since the data required only minimal effort on processing
and formatting. [50]

MnistReader class was created so that the data can be loaded properly
into feed-forward neural network. All optimizations were tested with the first
8000 digits from training set.

4.1.1 Structure of Neural Network
Every implemented optimization uses feed-forward neural network with im-
mutable structure changing only weights and biases. The structure consists
of one hidden layer with 15 neurons. The input layer has 28 × 28 = 784

45

4. Testing and Measurement

neurons. Output layer consists of 10 neurons. There is an output neuron for
every digit. For instance, the first neuron represents number zero, the second
neuron represents number one, etc. Output neuron firing the most express
neural network prediction. The structure is sufficient to reach 95% accuracy
of classifying images with stochastic gradient descent [21]. Reason for not
using more layers and neurons is simplicity and easier optimization of param-
eters. On the other hand there are still 784 × 15 + 15 × 10 = 11 910 weight
parameters to tweak.

4.1.2 Fitness
The algorithms use two different fitnes metrics. The first fitness computes only
percentage of correct classified images. The second one uses MSE described
in Chapter 1.3.4.4. MSE is able to tell difference how bad is a neural network
digit prediction from its expected output. The first fitness cannot do that
since it only computes final result for the entire set. Algorithms using the first
fitness has the suffix LowSense and algorithms using the second fitness with
MSE has the suffix HighSense.

Even though the first fitness is much worse than the second one, it plays
a key role for improvement of the algorithm learning the game with minimal
human input. The problem is that there is no clear way for creating expected
output for evaluation of different gameboard situation. Thus MSE cannot be
computed without the expected output.

4.1.3 Genetic Algorithm Testing
Following operators were implemented for the genetic algorithm: rank-based
selection, uniform crossover, one-point crossover, mutation with zeroing pa-
rameters out of specified bounds, mutation without zeroing and elitism mech-
anism, initialize function using normal distribution. All implemented genetic
algorithms use the uniform crossover since the one-point crossover does not
seem to make any difference in results.

As can be seen in graph in Figure 4.1, the genetic algorithm without
zeroing quickly converges to a local maxima around 40 percent of correct
classified images. There is only a small improvement in the fitness since 20
minutes. The genetic algorithm with zeroing converges a little slowly. On the
other hand, it reached worse results showing minimal improvements after 80
minutes. Detailed parameter settings can be seen in Listings 4.1.

4.1.4 Hill Climbing and Simulated Annealing
Due to initial inefficiency of genetic algorithm, hill climbing and simulated
annealing were implemented as well. However the local search algorithms
perform even worse as ilustrated in graph in Figure 4.2.

46

4.1. Testing Optimization Algorithms With MNIST Data Set

Listing 4.1: Parameter Settings 1
1 ./GA_MNIST_LowSense_CrossUni
2 dirName=GA_MNIST_LowSense_CrossUni_NoNiching endIteration

=5000000 endTimeInMinutes=120 outputFrequency=150
popSize=10 elitismSize=3 functorMutRate=0.3 crossRate
=0.15 mutRate=0.3 mutWeightsBound=0.01 mutBiasBound=0.01

3
4 ./GA_MNIST_LowSense_CrossUniWithReseting
5 dirName=GA_MNIST_LowSense_CrossUni_NoNiching_NoReseting

endIteration=5000000 endTimeInMinutes=120
outputFrequency=150 popSize=10 elitismSize=3
functorMutRate=0.3 crossRate=0.15 mutRate=0.3
mutWeightsBound=0.01 mutBiasBound=0.01

Listing 4.2: Parameter Settings 2
1 ./HillClimb_HighSense dirName=HillClimbTestHighSense

endIteration=999999 endTimeInMinutes=60 outputFrequency
=2000

2
3 ./HillClimb_LowSense dirName=HillClimbTestLowSense02

endIteration=999999 endTimeInMinutes=60 outputFrequency
=2000 mutWeightsBound=0.05 mutBiasBound=0.05

4
5 ./SimulatedAnnealing_LowSense endIteration=999999 dirName=

SALowSense01 endTimeInMinutes=60 outputFrequency=2000
mutWeightsBound=0.05 mutBiasBound=0.05

Hill climbing with low sense converges even faster than previous genetic
algorithms. Even though simulated annealing converged quite slowly, it was
not able to reach even 0.4 limit.

See also hill climbing with high sense using MSE fitness in Figure 4.2. It
is dramatically better compared to the other algorithms. It reached almost
80% accuracy on trained data after 10 minutes. Moreover it is exactly the
same algorithm as hill climbing with low sense. The only difference is the
used fitness function. Parameter settings for this measurement can be seen in
Listings 4.2.

47

4. Testing and Measurement

0 20 40 60 80 100 120
minutes

0.0

0.1

0.2

0.3

0.4

pe
rc

en
ta

ge
of

rig
ht

cla
ss

ifi
ed

im
ag

es

No zeroing weights and biases
Zeroing weights and biases

Figure 4.1: Genetic algorithms tested on MNIST dataset.

4.1.5 Genetic Algorithm With Fitness Sharing

The problem with genetic algorithm is premature convergence. It appears
that genetic algorithm population differ too little in order to come up with
new inividuals via genetic operators.

One possible solution is dynamically change rate of mutation trying to
make population more various and possibly escaping from local maxima. The
technique would be quite similar to simulated annealing temperature. How-
ever the problem is to come up with efficient temperature schedule since in
graph in Figure 4.2 simulated annealing was outperformed by even simpler
hill climbing. Another possible solution is to use niching method, more specif-
ically fitness sharing described in Chapter 1.3.6.2. To avoid possible problems
with defining dynamic mutation schedule a fitness sharing was implemented
instead. Euclidean distance for genetic algorithm individuals was used. The
value was set to 320 empirically.

Using the fitness sharing method, the genetic algorithm obtained dramat-
ically better result. As illustrated by graph in Figure 4.3, the fitness from
genetic algorithm with niching slightly oscilates, unlike hill climbing or ge-
netic algorithm without niching showing quite steady lines. That is the very
fitness sharing method causing the oscilation. When there is a drop in a fit-

48

4.1. Testing Optimization Algorithms With MNIST Data Set

0 10 20 30 40 50 60
minutes

0.0

0.2

0.4

0.6

0.8

pe
rc

en
ta

ge
of

rig
ht

cla
ss

ifi
ed

im
ag

es

Hill Climbing with high sense
Hill Climbing with low sense
Simulated annealing

Figure 4.2: Hill climbing and simulated annealing tested on MNIST dataset.

ness, more individuals share the same fitness. Then they can be more replaced
by different individuals even with smaller fitness.

After 120 minutes, genetic algorithm with niching was able to reach almost
90 percent of accuracy. On the other hand, hill climbing with MSE fitness still
outperforms that. To see parameter settings for this test navigate Listings 4.3.

4.1.6 Results

The results suggest that the optimization algorithms are heavily affected by
their fitness functions. With appropriate fitness function, even simple algo-
rithm like hill climbing can be used to train neural networks and gain reason-
able results. Genetic algorithm without niching methods works similarly to
hill climbing because of premature convergence. It makes genetic population
not much diverse, and therefore genetic algorithm searches only narrow local
space just like hill climbing does. Using more advance algorithms such as
simulated annealing is inefficient without good temperature schedule.

Table 4.1 presents accuracy of the all implemented algorithms on the entire
testing and training MNIST data set. The algorithms do not overfit training
data since testing and training accuracy differs only in a few percent.

49

4. Testing and Measurement

Listing 4.3: Parameter Settings 3
1 ./GA_MNIST_LowSense_CrossUni
2 dirName=GA_MNIST_LowSense_CrossUni_Niching endIteration

=5000000 endTimeInMinutes=120 outputFrequency=150
popSize=10 elitismSize=3 functorMutRate=0.3 crossRate
=0.15 mutRate=0.3 mutWeightsBound=0.01 mutBiasBound=0.01
niching=320

3
4 ./GA_MNIST_LowSense_CrossUni
5 dirName=GA_MNIST_LowSense_CrossUni_NoNiching_1 endIteration

=5000000 endTimeInMinutes=120 outputFrequency=150
popSize=10 elitismSize=3 functorMutRate=0.3 crossRate
=0.15 mutRate=0.3 mutWeightsBound=0.01 mutBiasBound=0.01

6
7 ./HillClimb_HighSense dirName=HillClimbTestHighSense

endIteration=999999 endTimeInMinutes=60 outputFrequency
=2000

Algorithm Testing Data Set Training Data Set
Simulated Annealing Low Sense 34.21 % 35.27 %

Hill Climbing Low Sense 35.58 % 35.88 %
Genetic Algorithm With Zeroing 38.78 % 39.68 %

Genetic Algorithm Without Zeroing 40.63 % 42.93%
Genetic Algorithm With Niching 84.64 % 87.63 %

Hill Climbing High Sense 90 % 94.91 %

Table 4.1: Accuracy of the algorithms on the entire MNIST dataset.

4.2 Learning Artificial Inteligence with Minimum
Human Input

4.2.1 Fitness
Since there are no expected outputs for an evaluation of a gameboard, the MSE
metric cannot be used for fitness function. Thus fitness will be represented
by points earning by players in each played game. Player can gain 0, 1, and
2 points for a draw, loss and win respectively. Every player will compete in 4
matches with 4 different players that are randomly selected from population.

4.2.2 Structure of Neural Network
An individual neural network will be trained for every individual new game
map. As a result, an ANN does not have to generalize for every possible map,

50

4.2. Learning Artificial Inteligence with Minimum Human Input

0 20 40 60 80 100
minutes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pe
rc

en
ta

ge
of

rig
ht

cla
ss

ifi
ed

im
ag

es

Hill Climbing with high sense
Genetic Algorithm with fitness sharing
Genetic Algorithm without fitness sharing

Figure 4.3: Comparison between genetic algorithm with niching and without.

thus it can consist of less neurons. It makes optimization of weights and biases
easier as well.

Single neuron input will represent single map tile with unit or single tile
with building. Hence we need 2 input neurons for a map tile. Input represent-
ing tile with unit will be computed as 𝑢𝑛𝑖𝑡𝐻𝑒𝑎𝑙𝑡ℎ × 𝑢𝑛𝑖𝑡𝐶𝑜𝑠𝑡. Unit cost is
listed in Table 4.2. Input representing tile with building will be computed as
𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑃 𝑜𝑖𝑛𝑡𝑠 × 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐶𝑜𝑠𝑡 playersCapturePoints * buildingCost.
Building cost can be seen in Table 4.3. The results will be multiplied with −1
if unit or building belongs to an enemy player. If there are no units and no
buildings in a tile, the computed input will be simply zero.

Input layer contains 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑀𝑎𝑝𝑇 𝑖𝑙𝑒𝑠 × 2 neurons. Hidden layer has
30 neurons for maps with 150 tiles. Hidden neurons will be connected to single
output neuron. The bigger the value of the output neuron, the more promising
board for the player. The neural network consists of 300 × 30 + 30 × 1 = 9030
weights to tweak. There are no special reasons for choosing 30 neurons in the
hidden layer. The current settings are rather based on intuition. The task
seems to be more challenging than training neural network with MNIST, thus
more hidden neurons are probably needed. On the other hand, a hidden layer,
which is too big, might complicate the optimization by too many parameters.

51

4. Testing and Measurement

Unit Type Unit Cost
Infantry 0.1

Mech 0.3
Light Tank 0.7
Artillery 0.6

AntiAirTank 0.8
Battle Copter 0.85

Table 4.2: Unit cost table.

Building Type Building Cost
City 0.3

Airport 0.3
Headquarters 1

Table 4.3: Building cost table.

Figure 4.4: The game map used in fitness function.

4.2.3 Genetic Algorithm

Since MSE cannot be applied, genetic algorithm with fitness sharing will be
used. Genetic algorithm with niching method proved to gain the best result for
MNIST data set without the MSE. It will be set with similar genetic operators
and parameters. The only difference will be execution time. Genetic algorithm
will be tested on a map given in Figure 4.4.

52

4.2. Learning Artificial Inteligence with Minimum Human Input

0 500 1000 1500 2000 2500 3000
minutes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

po
in

ts
ea

rn
ed

in
4

pl
ay

ed
ga

m
es

Figure 4.5: Genetic algorithm simulating game tournaments for over 40 hours.

4.2.4 Result

In spite of initial effort to improve genetic algorithm in general, it is unable
to make even a small improvement, as shown in graph in Figure 4.5. Every
population individual got fitness equal 4 for each iteration. It means all played
games end up in draw. Draw is set if any player does not win and number of
turns exceed 20.

Changing population size, mutation rate, cross over rate does not seem to
make any difference. Moreover setting bigger population or turn game limit
slows down an already lengthy algorithm. For instance, genetic algorithm
solving MNIST data set go over 3000 iteration, or generation after 3 minutes.
On the other hand genetic algorithm solving the game simulation go roughly
over 13 iteration after 3 minutes. The second algorithm is too slow because
of time consuming fitness computation simulating small tournaments for the
entire population.

There could be plenty of reasons why the learning algorithm failed. A
straightforward argument is too slow evolution. Another reason could be
quality of fitness function that does not satisfy enough the genetic algorithm.
The same problem can be seen while training a neural network on MNIST
data set. Another reason excluding the genetic algorithm is the structure of

53

4. Testing and Measurement

a neural network. The structure could be too simple to learn playing the
game. Number of neurons could just limit a neural network to play the game
reasonably. Even if the number of neurons was sufficient, the representation of
the board for neural network might be wrong. Finally training neural network
on MNIST data set and learning it to play game are fairly different problems.
Parameters like mutation rate, population size or type of genetic operators
can work on one problem efficiently but it could be completely inefficient for
the other. However trying sets of different genetic operators and parameters
is challenging since the genetic algorithm runs quite slowly.

4.3 Quality of the Game Played by Artificial
Inteligence

4.3.1 Heuristic Created By Human

The first implemented heuristic takes into consideration only values of individ-
ual units and buildings. Due to a big branching factor and shallow minimax,
the computer player is not able to move with its units almost anywhere and
they are staying still. The player is only keen on moving units with wider
range such as helicopter and tanks. The result suggests that minimax with
the heuristic has a similar flaw as hill climbing. Since minimax is shallow it
searches only a small portion of a map. Which is why only units with wide
range are able to take some actions. In order to find a better game position,
the algorithm needs to look deeper into the game tree or has more advanced
heuristic. Unfortunately the branching factor is too high and it is computa-
tionaly very difficult to look more moves ahead. Therefore the effort is going
to be put into better heuristic.

The second implemented heuristic uses cost of individual units and build-
ings as well. In addition, it takes into consideration distances between units.
It computes a centroid 10 for all units in a same team. Smaller distance be-
tween centroids means more promising game state for a player. This strategy
forces player to take at least some actions. It is important that significance of
distances does not overrule the rest of the heuristic. For instance, it is usually
safer and more beneficial to capture nearby buildings than draw enemy closer
at all costs. With the second heuristic computer player makes moves with all
its units. Even though the heuristic does not use very advanced technique, it
definitely helps improving the minimax result. As can be seen in Figure 4.7,
the second heuristic is able to make use of infantry unit to capture nearby
buildings. Using centroid metric tends to make unit more closer between each
other, which can be convenient rather than attack with individual units and

10The centroid is the arithmetic mean of points. For a finite set of 𝑘 points 𝑥1, 𝑥2, … , 𝑥𝑘,
it is defined as: 1

𝑘 ∑𝑘
𝑛=1 𝑥𝑛 [51].

54

4.3. Quality of the Game Played by Artificial Inteligence

(a) Initial state (b) The first blue turn

(c) The second blue turn (d) The third blue turn

Figure 4.6: Red human player vs. blue computer player considering cost of
units and buildings

split unit power. The observation is not absolute since the blue player lost
unnecessarily the helicopter in Figure 4.6 and Figure 4.7.

A poor characteristic was discovered in the second heuristic while testing.
If the game reaches a certain state where all centroids met in the same co-
ordinates, the second heuristics degrades into the first implemented heuristic.
Moreover computer player tends to stay in the position since it is a best op-
tion according the metric based on centroids. The situation is illustrated by
Figure 4.8.

4.3.2 Heuristic Created By Machine
A computer player using the heuristic seems to play randomly rather than
making reasonable moves on the basis of some patterns. The player does
make a move toward capturing a building as shown in Figure 4.9. However, it
is not able to take it. A game with both neural network players hints a possible
reason why the implemented genetic algorithm was inefficient. The players are
rearranging their units and after several turns, they are stuck and unwilling
to make a different move. Which is probably why every game simulation ends
with an equal score in the genetic algorithm.

55

4. Testing and Measurement

(a) Initial state (b) The first blue turn

(c) The second blue turn (d) The third blue turn

Figure 4.7: Red human player vs. blue computer player considering distances
among units

Figure 4.8: Green rectangle represent position of centroid for both players

56

4.3. Quality of the Game Played by Artificial Inteligence

(a) Initial state (b) The first blue turn

(c) The second blue turn (d) The third blue turn

Figure 4.9: Red human player vs. blue computer player using a neural net-
work.

57

Conclusion

One of the objectives of the thesis was creating a prototype of a TBS game
with some given features. The final implemented prototype met all the require-
ments. The game can be played by human as well as computer players. There
are 4 different maps to be played. Moreover, new maps and even units can be
added by modifying several json files rather than writing C++ code. Analysis
of several TBS game was made as well to create a game based on common
features of strategies. The source code was written with some compromises.
The code uses object-oriented design as well as C++ template programming
and data-oriented design. Thus code is somewhat trade-off between under-
standability and performance. Also, it makes use of design patterns such as
command, game loop or flyweight. On the other hand, they are not overused
and they make sense of their usage.

The second goal was creating an AI playing the game with minimum hu-
man input, including a research part of different algorithms. Unfortunately,
the goal was fulfilled only partially. The thesis looks into several optimization
algorithms and covers the basic theoretical background required for creating
the AI. It also studies two different AI programs playing turn-based games
making use of evolutionary algorithms. Afterward, some of the algorithms de-
scribed in the research part were implemented with emphasis on abstraction,
reusability, and extension. Then the algorithms were tested with MNIST data
set using a mainly poor fitness function. Based on the experimental evalua-
tion the genetic algorithm was chosen to be used as an AI learning algorithm.
Furthermore, it was improved using one of the niching methods. The final
genetic algorithm was teaching AI to play games via self-play. Apart from
that, there are several AI programs, that are manmade. Last but not least,
the quality of all AI programs was tested both by man as well as the com-
puter itself. Unfortunately, the program trained via self-play was unable to
play games efficiently since its moves look rather randomly.

59

Conclusion

Future Work
The implemented game prototype can be improved in several ways. There
could be some sound effects since the current version lacks them. The GUI
(Graphical User Interface) might be more interactive rather than using simple
dark boxes. On the other hand, dark boxes serve as a decent retro design.
More animation would make a better player experience as well as a mouse
controller. From the game mechanics perspective, buildings are currently used
for supplying and healing. Expansion using buildings as factories for tanks
and infantry could create some new interesting game situations.

There are many approaches on how to fix the learning algorithm. At
first, testing the genetic algorithm with another optimization task apart from
MNIST data set might help to find a reasonable setting for further genetic
algorithm improvement. Also, the genetic algorithm could be improved by
implementing new operators. For instance, current crossover operators do not
take into consideration the structure of a neural network. It could benefit
from creating a genetic operator using weights and biases based on neurons.
The current crossover simply selects weights from an array.

Another improvement could be changing the properties of the operators
throughout generation rather than using static parameters. To partially solve
the problem with the speed of the genetic algorithm caused mainly by the
fitness function, it could be implemented using multithreading. As a result,
every player would compete against the others in their thread. On the other
hand, it would require at least a processor with four cores rather than the
processor with two cores in order to get some noticeable speedup. Apart from
that, the neural network with different numbers of neurons could be trained.
Secondly, changing neural network input might help too. One possible way
would be translating only some significant parts of the game map as a neural
network input rather than taking it entirely [52].

Also, focussing purely on fitness might work. As shown in Chapter 4.3.2
the fitness simulating the game always ends in a tie. Simulating an entire game
seems to be problematic, thus simulations for only some parts of a game could
break endings in a tie. One of the examples is shown in Figure 4.10. There
is only one way how the red player can win. He needs to capture the enemy
base since the blue player possesses more units and a tank. Furthermore, he
needs to block the blue tank in front of the bridge. Unlike simulating the
entire game, there is only one straightforward way to solve a map in Figure
4.10. On the other hand, this solution would require creating many different
game situations in order to evolve a neural network that generalizes from the
genetic algorithm training.

60

Future Work

Figure 4.10: Game situation narrowing number of reasonable choices.

61

Bibliography

[1] The Entertainment Software Association: 2019 Essential Facts About the
Computer and Video Game Industry [online]. 2019, [cit. 2019-11-23]. Avail-
able at: https://www.theesa.com/wp-content/uploads/2019/05/ESA_
Essential_facts_2019_final.pdf

[2] Historie vývoje počítačových her. In: Root.cz – informace nejen ze
světa Linuxu [online] [cit. 2019-11-23]. https://www.root.cz/clanky/
historie-vyvoje-pocitacovych-her-1-cast-prvni-milniky/

[3] Shannon, C. E. Programming a computer for playing chess. In: Philosoph-
ical Magazine. 1950, p. 256–275.

[4] Bonanno Giacomo Game Theory [online]. California, 2018 [2019-12-09].
http://faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html

[5] Coon, Dennis, et al. Introduction to Psychology: Gateways to Mind and
Behavior. Cambridge, Belmont, Calif: Wadsworth Cengage Learning,
2010. ISBN 978-0495599111

[6] David C. Pottinger Terrain Analysis in Realtime Strategy Games. In Game
Developers Conference Proceedings, 2000.

[7] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clif-
ford Introduction to Algorithms. Cambridge, Mass: MIT Press, 2009. ISBN
978-0-262-03384-8

[8] Russell, Stuart J.; Norvig Peter; Ernest Davis Artificial intelligence:
a modern approach. Upper Saddle River, New Jersey: Prentice Hall, 2010.
ISBN 978-0-13-604259-4

[9] Kenedy, James; Russel, Eberhart C.; Shi, Yuhui Swarm Intelligence. San
Francisco, Morgan Kaufmann Publishers, 2001. ISBN 1-55860-595-9

63

https://www.theesa.com/wp-content/uploads/2019/05/ESA_Essential_facts_2019_final.pdf
https://www.theesa.com/wp-content/uploads/2019/05/ESA_Essential_facts_2019_final.pdf
https://www.root.cz/clanky/historie-vyvoje-pocitacovych-her-1-cast-prvni-milniky/
https://www.root.cz/clanky/historie-vyvoje-pocitacovych-her-1-cast-prvni-milniky/
http://faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html

Bibliography

[10] Manhattan distance. In: Dictionary of Algorithms and Data Struc-
tures [online] [cit. 2019-12-14]. https://xlinux.nist.gov/dads/HTML/
manhattanDistance.html

[11] Řehořek, Tomáš. Základy umělé inteligence: Automatické plánování
[online]. 2016 [cit. 2019-11-23]. https://courses.fit.cvut.cz/BI-ZUM/
@B172/media/lectures/06-planning-v5.0-anim.pdf [Accessed from
CVUT network after login]

[12] Řehořek, Tomáš. Základy umělé inteligence: Hry v exten-
zivní formě, Algoritmus Minimax [online]. 2016 [cit. 2019-11-23].
https://courses.fit.cvut.cz/BI-ZUM/@B172/media/lectures/09-
minimax-v5.0-noanim.pdf [Accessed from CVUT network after login]

[13] LeCun Yann; Bottou Leon; Orr, Genevieve B.; Müller Klaus-Robert. Effi-
cient BackProp. In: Neural Networks: tricks of the trade. Berlin: Springer,
1998, p. 9–50. ISBN 978-3-540-49430-0 http://yann.lecun.com/exdb/
publis/pdf/lecun-98b.pdf

[14] Devansh Arpit; Stanisław Jastrzebski; Nicolas Ballas; David Krueger;
Emmanuel Bengio; Maxinder S. Kanwal; Tegan Maharaj; Asja Fischer;
Aaron Courville; Yoshua Bengio; Simon Lacoste-Julien. A Closer Look at
Memorization in Deep Networks. 2017 [online] [cit. 2019-12-14] https:
//arxiv.org/pdf/1706.05394.pdf

[15] Chiyuan Zhang; Samy Bengio; Moritz Hardt; Benjamin Recht;
Oriol Vinyals. Understanding Deep Learning Requires Re-thinking Gen-
eralization. 2017 [online] [cit. 2019-12-14] https://arxiv.org/pdf/
1611.03530.pdf

[16] Understanding Activation Functions in Depth. In: GeeksForGeeks:
A computer science portal for geeks [online] [cit. 2019-12-14].
https://www.geeksforgeeks.org/understanding-activation-
functions-in-depth/

[17] The Neural Network Zoo - The Asimov Institute. [online]. [cit. 2019-12-
14]. https://www.asimovinstitute.org/neural-network-zoo/

[18] Partial derivative. Wikipedia, The Free Encyclopedia [online]. 2019 [cit.
2019-12-14]. https://en.wikipedia.org/wiki/Partial_derivative

[19] Sanderson Grant. Backpropagation calculus. In: Youtube [online] [cit.
2019-12-14]. https://www.youtube.com/watch?v=tIeHLnjs5U8. Channel
of user 3Blue1Brown.

[20] Goodfellow Ian; Bengio Yoshua; Courville Aaron. Deep Learning [online].
2016 [cit. 2019-12-14]. http://www.deeplearningbook.org/

64

https://xlinux.nist.gov/dads/HTML/manhattanDistance.html
https://xlinux.nist.gov/dads/HTML/manhattanDistance.html
https://courses.fit.cvut.cz/BI-ZUM/@B172/media/lectures/06-planning-v5.0-anim.pdf
https://courses.fit.cvut.cz/BI-ZUM/@B172/media/lectures/06-planning-v5.0-anim.pdf
https://courses.fit.cvut.cz/BI-ZUM/@B172/media/lectures/09-minimax-v5.0-noanim.pdf
https://courses.fit.cvut.cz/BI-ZUM/@B172/media/lectures/09-minimax-v5.0-noanim.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/pdf/1706.05394.pdf
https://arxiv.org/pdf/1706.05394.pdf
https://arxiv.org/pdf/1611.03530.pdf
https://arxiv.org/pdf/1611.03530.pdf
https://www.geeksforgeeks.org/understanding-activation-functions-in-depth/
https://www.geeksforgeeks.org/understanding-activation-functions-in-depth/
https://www.asimovinstitute.org/neural-network-zoo/
https://en.wikipedia.org/wiki/Partial_derivative
https://www.youtube.com/watch?v=tIeHLnjs5U8
http://www.deeplearningbook.org/

Bibliography

[21] Nielsen, Michael A. Neural Networks and Deep Learning [online].
2016 [cit. 2019-12-14]. http://neuralnetworksanddeeplearning.com/
chap1.html

[22] Řehořek, Tomáš. Základy umělé inteligence: Algoritmy iterativní
optimalizace, Populačníı metody [online]. 2016 [cit. 2019-12-14].
https://courses.fit.cvut.cz/BI-ZUM/@B172/media/lectures/
03-optimization-v5.0-anim.pdf [Accessed from CVUT network after
login]

[23] Khemani Deepak. Optimization - I (Simulated Annealing). In:
Youtube [online] [cit. 2019-12-14]. https://www.youtube.com/watch?v=
tIeHLnjs5U8. Channel of user nptelhrd.

[24] A Comparison of Cooling Schedules for Simulated Annealing (Ar-
tificial Intelligence) In: what-when-how – In Depth Tutorials and
Information [online] [cit. 2019-12-14]. http://what-when-how.com/
artificial-intelligence/a-comparison-of-cooling-schedules-
for-simulated-annealing-artificial-intelligence/

[25] Engelbrecht, Andries P. Computational Intelligence: An Introduction.
Wiley Publishing, 2007. ISBN 978-0470035610

[26] Řehořek, Tomáš. Základy umělé inteligence: Evoluční výpočetní tech-
niky, Genetický algoritmus, Genetické programování [online]. 2016
[cit. 2019-12-14]. https://courses.fit.cvut.cz/BI-ZUM/@B172/media/
lectures/04-evolution-v5.0.pdf [Accessed from CVUT network after
login]

[27] Sareni Bruno; Krähenbühl Laurent. Fitness Sharing and Niching Methods
Revisited. In: IEEE Transactions on Evolutionary Computation. Berlin:
Springer, 1998, p. 97–106. https://doi.org/10.1109/4235.735432

[28] 15 Real-World Applications of Genetic Algorithms. In: Brainz – Learn
Something [online] [cit. 2019-12-14]. https://www.brainz.org/15-real-
world-applications-genetic-algorithms/

[29] Buckland, Mat. AI Techniques For Game Programmers. Boston: Premier
Press, 2002. ISBN 1-931841-08-X

[30] Video Game News, Reviews, and Walkthroughs – IGN.com. [online].
2001, [cit. 2019-11-23]. https://www.ign.com/articles/2001/09/10/
advance-wars/

[31] Advance Wars. In: Wikipedia, The Free Encyclopedia [online] [cit. 2019-
11-23]. https://en.wikipedia.org/wiki/Advance_Wars

65

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
https://courses.fit.cvut.cz/BI-ZUM/@B172/media/lectures/03-optimization-v5.0-anim.pdf
https://courses.fit.cvut.cz/BI-ZUM/@B172/media/lectures/03-optimization-v5.0-anim.pdf
https://www.youtube.com/watch?v=tIeHLnjs5U8
https://www.youtube.com/watch?v=tIeHLnjs5U8
http://what-when-how.com/artificial-intelligence/a-comparison-of-cooling-schedules-for-simulated-annealing-artificial-intelligence/
http://what-when-how.com/artificial-intelligence/a-comparison-of-cooling-schedules-for-simulated-annealing-artificial-intelligence/
http://what-when-how.com/artificial-intelligence/a-comparison-of-cooling-schedules-for-simulated-annealing-artificial-intelligence/
https://courses.fit.cvut.cz/BI-ZUM/@B172/media/lectures/04-evolution-v5.0.pdf
https://courses.fit.cvut.cz/BI-ZUM/@B172/media/lectures/04-evolution-v5.0.pdf
https://doi.org/10.1109/4235.735432
https://www.brainz.org/15-real-world-applications-genetic-algorithms/
https://www.brainz.org/15-real-world-applications-genetic-algorithms/
https://www.ign.com/articles/2001/09/10/advance-wars/
https://www.ign.com/articles/2001/09/10/advance-wars/
https://en.wikipedia.org/wiki/Advance_Wars

Bibliography

[32] WarGroove – Official Site. [online]. 2018, [cit. 2019-11-23]. https://
wargroove.com/faq/

[33] Video Game News, Reviews, and Walkthroughs - IGN.com. [online].
2019, [cit. 2019-11-23]. https://www.ign.com/articles/2019/01/30/
wargroove-review

[34] Tanks of Freedom. [online]. [cit. 2019-11-23]. https://tof.p1x.in/

[35] Tanks of Freedom Manual. [online]. [cit. 2019-11-23]. https://
github.com/w84death/Tanks-of-Freedom/wiki

[36] Blondie24: the full story In: Youtube [online] [cit. 2019-12-14]. https:
//www.youtube.com/watch?v=QSNs-PYv7co. Channel of user JacobsS-
choolNews.

[37] Blondie24. Wikipedia, The Free Encyclopedia [online]. 2019 [cit. 2019-12-
14]. https://en.wikipedia.org/wiki/Blondie24

[38] Chellapilla K.; Fogel D. B. Evolution, Neural Networks, Games, and
Intelligence.. In: Proceedings of the IEEE. Berlin: Springer, 1999, p. 1471–
1496. https://doi.org/10.1109/4235.735432

[39] A Way to Deal With Enormous Branching Factors. In: To-
gelius – Better Playing Through Algorithms [online] [cit. 2019-12-
14]. http://togelius.blogspot.com/2016/03/a-way-to-deal-with-
enormous-branching.html

[40] Agner, Fog. Optimizing software in C++ [online]. 2019 [cit. 2019-12-14].
https://www.agner.org/optimize/optimizing_cpp.pdf

[41] Stroustrup, Bjarne The C++ programming language. Upper Saddle River,
Addison–Wesley, 2013. ISBN 978-0-321-56384-2.

[42] Simple DirectMedia Layer - Homepage [online]. 2019 [cit. 2019-12-27].
https://www.libsdl.org/

[43] JsonCpp. The world’s leading software development platform GitHub
[online]. 2019 [cit. 2019-12-27]. https://github.com/open-source-
parsers/jsoncpp

[44] Catch2. The world’s leading software development platform GitHub [on-
line]. 2019 [cit. 2019-12-27]. https://github.com/catchorg/Catch2

[45] Game Loop. In: Game Programming Patterns [online] [cit. 2019-12-14].
https://gameprogrammingpatterns.com/game-loop.html

[46] Command. In: Game Programming Patterns [online] [cit. 2019-12-14].
https://gameprogrammingpatterns.com/command.html

66

https://wargroove.com/faq/
https://wargroove.com/faq/
https://www.ign.com/articles/2019/01/30/wargroove-review
https://www.ign.com/articles/2019/01/30/wargroove-review
https://tof.p1x.in/
https://github.com/w84death/Tanks-of-Freedom/wiki
https://github.com/w84death/Tanks-of-Freedom/wiki
https://www.youtube.com/watch?v=QSNs-PYv7co
https://www.youtube.com/watch?v=QSNs-PYv7co
https://en.wikipedia.org/wiki/Blondie24
https://doi.org/10.1109/4235.735432
http://togelius.blogspot.com/2016/03/a-way-to-deal-with-enormous-branching.html
http://togelius.blogspot.com/2016/03/a-way-to-deal-with-enormous-branching.html
https://www.agner.org/optimize/optimizing_cpp.pdf
https://www.libsdl.org/
https://github.com/open-source-parsers/jsoncpp
https://github.com/open-source-parsers/jsoncpp
https://github.com/catchorg/Catch2
https://gameprogrammingpatterns.com/game-loop.html
https://gameprogrammingpatterns.com/command.html

Bibliography

[47] Sean Parent. Better Code: Runtime Polymorphism – Sean Parent In:
Youtube [online] [cit. 2019-12-14]. https://www.youtube.com/watch?v=
QGcVXgEVMJg. Channel of user NDC Conferences.

[48] The tiny neural network library. The world’s leading software development
platform GitHub [online]. 2019 [cit. 2019-12-27]. https://github.com/
glouw/tinn

[49] Data Locality. In: Game Programming Patterns [online] [cit. 2019-12-14].
https://gameprogrammingpatterns.com/data-locality.html

[50] MNIST handwritten digit database [online]. [cit. 2019-12-27] http://
yann.lecun.com/exdb/mnist/

[51] Centroid. In: Wikipedia, The Free Encyclopedia [online] [cit. 2019-11-23].
https://en.wikipedia.org/wiki/Centroid

[52] Fogel David; Hays Timothy; Hahn Sarah; Quon James A Self-learning
Evolutionary Chess Program. In: Proceedings of the IEEE. 2004, p. 1947–
1954. https://doi.org/10.1109/JPROC.2004.837633

67

https://www.youtube.com/watch?v=QGcVXgEVMJg
https://www.youtube.com/watch?v=QGcVXgEVMJg
https://github.com/glouw/tinn
https://github.com/glouw/tinn
https://gameprogrammingpatterns.com/data-locality.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://en.wikipedia.org/wiki/Centroid
https://doi.org/10.1109/JPROC.2004.837633

Figure References

[1] OXO running in Classis in Mac OS X [online] [cit. 2019-12-23].
Available at: https://en.wikipedia.org/wiki/OXO#/media/File:OXO_
emulated_screenshot.png

[2] Williams, Aaron. Full Frontal Nerdity [online] [cit. 2019-12-23]. Available
at: http://ffn.nodwick.com/ffnstrips/2011-11-15.png

[3] Rock Paper Scissors [online] [cit. 2019-12-23]. Available at: https:
//en.wikipedia.org/wiki/Rock_paper_scissors#/media/File:
Rock-paper-scissors.svg

[4] Advance Wars [online] [cit. 2019-12-23]. Available at: https:
//giantbomb1.cbsistatic.com/uploads/original/0/3699/418220-
154908_3_2.jpg

[5] Wargroove [online] [cit. 2019-12-23]. Available at: https://
wargroovewiki.com/mediawiki/images/5/58/Thumb_The_Breach.png

[6] Tanks of Freedom [online] [cit. 2019-12-23]. Available at: https://
github.com/w84death/Tanks-of-Freedom

[7] Blondie24 [online] [cit. 2019-12-23]. Available at: https://youtu.be/
TS8QlL-3NXk?t=26

[8] Hero Academy Crossover [online] [cit. 2019-12-23]. Available at: http:
//1.bp.blogspot.com/-K2vOorKLMzk/VvThlEh-OoI/AAAAAAAAC8Q/
ZxtBaJjtNpca0k5GpIKrMaxfrIWWcrkXg/s1600/crossover.png

69

https://en.wikipedia.org/wiki/OXO#/media/File:OXO_emulated_screenshot.png
https://en.wikipedia.org/wiki/OXO#/media/File:OXO_emulated_screenshot.png
http://ffn.nodwick.com/ffnstrips/2011-11-15.png
https://en.wikipedia.org/wiki/Rock_paper_scissors#/media/File:Rock-paper-scissors.svg
https://en.wikipedia.org/wiki/Rock_paper_scissors#/media/File:Rock-paper-scissors.svg
https://en.wikipedia.org/wiki/Rock_paper_scissors#/media/File:Rock-paper-scissors.svg
https://giantbomb1.cbsistatic.com/uploads/original/0/3699/418220-154908_3_2.jpg
https://giantbomb1.cbsistatic.com/uploads/original/0/3699/418220-154908_3_2.jpg
https://giantbomb1.cbsistatic.com/uploads/original/0/3699/418220-154908_3_2.jpg
https://wargroovewiki.com/mediawiki/images/5/58/Thumb_The_Breach.png
https://wargroovewiki.com/mediawiki/images/5/58/Thumb_The_Breach.png
https://github.com/w84death/Tanks-of-Freedom
https://github.com/w84death/Tanks-of-Freedom
https://youtu.be/TS8QlL-3NXk?t=26
https://youtu.be/TS8QlL-3NXk?t=26
http://1.bp.blogspot.com/-K2vOorKLMzk/VvThlEh-OoI/AAAAAAAAC8Q/ZxtBaJjtNpca0k5GpIKrMaxfrIWWcrkXg/s1600/crossover.png
http://1.bp.blogspot.com/-K2vOorKLMzk/VvThlEh-OoI/AAAAAAAAC8Q/ZxtBaJjtNpca0k5GpIKrMaxfrIWWcrkXg/s1600/crossover.png
http://1.bp.blogspot.com/-K2vOorKLMzk/VvThlEh-OoI/AAAAAAAAC8Q/ZxtBaJjtNpca0k5GpIKrMaxfrIWWcrkXg/s1600/crossover.png

Appendix A
Acronyms

2D Two-dimensional

AI Artificial intelligence

EDSAC Electronic delay storage automatic calculator

ESA Entertainment Software Association

FPS First-person shooter

GUI Graphical user interface

MNIST Modified National Institute of Standards and Technology

MSE Mean squared error

NPC Non-player character

RTS Real-time strategy

RPG Role-playing game

SDL Simple Direct Media Layer

TINN Tiny Neural Network

TBS Turn-based strategy

71

Appendix B
Contents of Enclosed SD Card

readme.txt.........................the file with SD contents description
evaluated_results....... the directory with executed tests with graphs
src...the directory of source codes

impl..implementation sources
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
BP_Stepanek_Ivan_2020.pdf..........the thesis text in PDF format

73

Appendix C
Game Manual

C.1 Software Requirements

Creating usable executable files require C++17 features supported by com-
pilers such as g++ 8 or higher, clang 7 or higher. For easier building Cmake
3.13 or higher is needed. In addition user must install graphic libraries such
as SDL 2, SDL_image 2 for loading textures and SDL_ttf 2 for loading fonts.
Recommended operation system is Linux since the program was tested on
Debian distribution.

C.2 Getting Required Software

For Debian and Ubuntu users, SDL libraries can be easily obtained via a
package manager using command-line interface. Commands are showed in
Listing C.1. Package managers may differ between Linux distributions and
the commands might be invalid in a different operating system. For successful
installation root priviliges might be needed.

Listing C.1: Terminal Installation
1 apt install libsdl2-dev
2 apt install libsdl2-image-dev
3 apt install libsdl2-ttf-def
4
5 apt install g++
6 apt install cmake

75

C. Game Manual

Listing C.2: Building Source Code
1 cd RGB_Wars
2 mkdir Release
3 cd Release
4 cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_COMPILER=/usr/

bin/g++ ..
5 make all

C.3 Building the Source Code
To create executables it is needed to create a directory using an arbitrary
name inside the RGB_Wars. In the created directory cmake command will be
executed. Then it will generate platform specific build tool, like Make for
Linux. After that it is needed to execute the generated build tool. Finally the
executables are created from the source code. Listings C.2 shows all neccesary
commands.

C.4 Launching the Game
After the successful building there will be RGBWarsApp executable in the
RGB_Wars directory. After launching the game from terminal a screen with
simple menu is displayed. The entire game uses only 6 buttons. Arrow key-
boards for navigating the cursor, button a for accepting or chosing and button
s for deselecting or going back. These keyboards are used for both navigating
in menu and actual playing.

C.5 Game
Objective of the game is to destroy all enemy units or to capture enemy base.
Capturing can be done only by infantry units. The smaller the unit health the
longer time to capture. Buildings can refuel and heal units, if player places
his units at his captured building. Player has to think of unit positions since
different terrains provide different levels of defence. Defence status of a terrain
is shown when player places cursor at the terrain. If player moves unit at some
position, the move can be reverted by pressing button s. However the move
cannot be taken back when it has been already confirmed. Move for specific
unit is confirmed when unit cannot make another moves and is gray.

76

	Introduction
	Thesis Goal
	Thesis Structure

	Theoretical Background
	Game Genres
	Strategy Game
	Categories of Strategy Game
	Common Features of Strategy Game
	Different Types of Units
	Game Map

	Fog of War
	Aim of Strategy

	Artificial Intelligence for Turn-based Strategy
	Pathfinding Algorithms
	Depth First Search
	Dijkstra Algorithm

	Minimax
	Heuristic
	Artificial Neural Network
	Neuron
	Activation Function
	Feed-forward Neural Network
	Learning of Artificial Neural Network

	Optimizations
	Hill Climbing
	Simulated Annealing

	Genetic Algorithm
	Genetic Operators
	Niching Methods
	Applications

	Analysis and Design
	Examples of Turn-based Strategy Games
	Advance Wars
	Wargroove
	Tanks of Freedom

	Examples of Artificial Intelligence Playing Turn-based Strategy
	Blondie24
	Hero Academy

	Game Requirements
	Game Wireframes
	Game Design
	Artificial Intelligence Design
	Used Technology

	Realisation
	Game Architecture
	Game Class
	GameBoard Class
	GameBoardOperation Class
	MLP1 Class
	AIGeneral Class

	Architecture of the Optimization Algorithms
	Classic Optimization Algorithms
	Genetic Algorithm

	Testing and Measurement
	Testing Optimization Algorithms With MNIST Data Set
	Structure of Neural Network
	Fitness
	Genetic Algorithm Testing
	Hill Climbing and Simulated Annealing
	Genetic Algorithm With Fitness Sharing
	Results

	Learning Artificial Inteligence with Minimum Human Input
	Fitness
	Structure of Neural Network
	Genetic Algorithm
	Result

	Quality of the Game Played by Artificial Inteligence
	Heuristic Created By Human
	Heuristic Created By Machine

	Conclusion
	Future Work

	Bibliography
	Figure References
	Acronyms
	Contents of Enclosed SD Card
	Game Manual
	Software Requirements
	Getting Required Software
	Building the Source Code
	Launching the Game
	Game

