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Necrotizing Soft Tissue Infections: A Focused Review
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Antimicrobial Therapy, and Pediatrics

Jeffrey M. Tessier,1 James Sanders,2 Massimo Sartelli,3 Jan Ulrych,4 Belinda De Simone,5

Julia Grabowski,6 Sara Buckman,7 and Therese M. Duane8

Abstract

Background: Necrotizing fasciitis is a major health problem throughout the world. The purpose of this review
is to assist providers with the care of these patients through a better understanding of the pathophysiology and
management options.
Methods: This is a collaborative review of the literature between members of the Surgical Infection Society of
North America and World Society of Emergency Surgery.
Results: Necrotizing fasciitis continues to be difficult to manage with the mainstay being early diagnosis and
surgical intervention. Recognition of at-risk populations assists with the initiation of treatment, thereby im-
pacting outcomes.
Conclusions: Although there are some additional treatment strategies available, surgical debridement and
antimicrobial therapy are central to the successful eradication of the disease process.

Keywords: fasciitis; infection; necrotizing

This review is a collaboration between members of
the Surgical Infection Society of North America (SIS)

and the World Society of Emergency Surgery (WSES). Our
purpose is to provide insights from throughout the world on
the topic of necrotizing fasciitis (NF). The following is a
review of the disease with focus on the pathophysiology,
diagnosis, and treatment with a section specifically dedicated
to the pediatric population. It is meant to assist providers
who are faced with these challenging patients so that they
may have a deeper understanding of this pathology and its
management.

Pathophysiology

There are four specific characteristics associated with
necrotizing soft tissue infection (NSTI) including presence of

toxin-producing bacteria, local tissue destruction, fulminant
progression of the inflammatory process, and early systemic
toxicity resulting in sepsis, multi-organ dysfunction, septic
shock, and death. Necrotizing infections may occur within
any layer of skin and soft tissue—the dermal layer, subcu-
taneous tissue, fascia, or muscle. The majority of bacteria
enter through a break in the skin barrier such as with bite
wounds, small lacerations, trauma, or surgical procedure.
Hematogenous spread of bacteria to the tissue is another
mechanism, although less common. Not all contaminated
wounds will progress to necrotizing infections. Local tissue
environment plays a role in disease progression as seen in the
case of contamination by spores of Clostridium perfringens.
Here the anaerobic environment (caused by impairment of
the blood supply resulting in tissue hypoxia) is necessary for
maturation and proliferation of Clostridium strains [1].
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Characteristic local manifestation, as well as systemic
manifestation, is related to the specific pathophysiologic
mechanism, depending on the toxins and enzymes of in-
volved bacteria [1–3]. Rapid bacterial spread is facilitated by
protease activity of bacterial enzymes and toxins, causing
damage of the extracellular matrix. Lack of fibrous attach-
ments can lead to widespread infection and tissue destruction
in some regions, such as the trunk and limbs. The inflam-
matory process usually begins in the deep tissue planes, often
leaving the skin unaffected.

The lack of purulence is a hallmark of the histopathology
of NSTI [1]. Absorbed bacterial toxins inhibit the influx of
neutrophils from vessels while other mechanisms allow
pathogens to escape phagocytosis by leukocytes (i.e., M-
protein of Streptococcus pyogenes) [2]. In addition, toxin-
induced intravascular platelet aggregates reduce the ability of
leukocytes to cross the vascular endothelium into infected
tissues, and polymorphonuclear neutrophils exhibit de-
creased function under hypoxic tissue conditions [1,2].
Clinically, marked swelling with edema and only mild ery-
thema is observed in the site of inflammation.

The second basic characteristic is progressive necrosis of
affected tissue. The necrosis may be directly mediated by
bacterial toxins or indirectly because of vascular occlusion
causing ischemia. Bacterial toxins are released into the blood
stream and potently stimulate platelets, leukocytes, and en-
dothelial cells resulting in the formation of occlusive intra-
vascular aggregates [1,4]. The vascular perforators coursing
through the fascia to supply the skin are thrombosed, re-
sulting in critical skin ischemia. Blisters and bulla are caused
by ischemia-induced necrolysis, and initially they are filled
with clear fluid. Hemorrhagic bulla or blue-violet color of
skin is a manifestation of dermal necrosis from irreversible
local perfusion deficits. In the case of clostridial necrotizing
infection, tissue destruction is associated with gas bubble
formation. Superficial nerves are damaged, producing pain,
which may manifest as hyper- or hypoesthesia [5].

Systemic manifestations of NSTIs are also related to toxin-
mediated pathophysiologic mechanisms and include fever,
hypotension, tachycardia, altered mental status, and signs of
organ dysfunction. In principle, these mechanisms may in-
volve both host and pathogen factors. Human genes that
control release of cytokines and promote or inhibit the acute
inflammatory response determine host-related factors. Mi-
crobial virulence factors include gram-positive and gram-
negative bacterial products.

Bacterial superantigens (pyrogenic exotoxins) directly
stimulate and non-specifically activate high numbers of T
cells and macrophages to produce tumor necrosis factor
(TNF)-a, interleukin (IL)-1, and IL-6 [1,2]. The massive re-
lease of these cytokines produces the uncontrolled systemic
inflammatory response that can lead to multi-system organ
dysfunction and shock. Superantigens also activate comple-
ment, the bradykinin-kallikrein system, and the coagulation
cascade. Other bacterial toxins may have direct effects on
cardiac output, heart rate, and systemic vascular resistance
[6]. Toxin-induced hemolysis can contribute to the devel-
opment of acute renal failure because of hemoglobinuria [7].

The NSTIs comprise two distinct bacteriologic entities—
polymicrobial infection (type I) and monomicrobial infection
(type II) [8,9]. Polymicrobial infection is characterized by
mixed aerobic-anaerobic populations, including at least one

anaerobic species (most commonly Bacteroides spp., Clos-
tridium spp., and Peptostreptococcus spp.) in combination
with one or more aerobic species such as Enterobacteriaceae
(e.g., Escherichia coli, Enterobacter spp., Klebsiella spp.,
Proteus spp.), streptococci, or staphylococci [10].

Monomicrobial infection is most commonly caused by
S. pyogenes (group A streptococci, GAS) [11,12]. Other path-
ogens causing type II NSTI include Staphylococcus aureus,
especially the USA300 clone, Aeromonas hydrophila in asso-
ciation with traumatic lesions in fresh water, and Vibrio vul-
nificus in association with seawater injuries [13–15]. E. coli and
K. pneumoniae have both been described recently as causes
of monomicrobial NF in East Asia and may represent thera-
peutic challenges because of multi-drug resistance [16,17].

Polymicrobial necrotizing infection

Polymicrobial necrotizing infection is the most common
type of NSTI [10,11]. A shift of responsible bacterial spec-
trum toward monomicrobial infections with multi-drug-
resistant bacteria has been observed in the last decade,
however [12,18]. Pathophysiologic mechanisms of mixed
aerobic-anaerobic infection are synergistic and more virulent
than infections caused by each microbial species individu-
ally. Most polymicrobial infections are associated with pre-
ceding injuries, often resulting from only minor trauma.
Polymicrobial NSTI occurs mainly in immunocompromised
individuals, such as patients with diabetes mellitus or chronic
renal failure [9,19].

Streptococcus pyogenes (GAS)

S. pyogenes has been identified as a major cause of
monomicrobial necrotizing infection [11,12]. Streptococcal
NF has a significant potential for aggressive local spread, as
well as systemic toxicity including toxic shock syndrome.
GAS has several virulence factors that are thought to play
important roles in the pathogenesis of NSTIs, including
M-proteins, hyaluronic acid capsules, adherence to vimentin,
and pyrogenic exotoxins [2,20].

M protein is a filamentous protein anchored to the cell
membrane that protects GAS against humoral immune sur-
veillance and phagocytosis by polymorphonuclear leuko-
cytes. Many M-protein types have been described; however,
types 1 and 3 are the most common M-proteins related to
necrotizing infection [19]. Hyaluronic acid capsule allows
the bacteria to escape phagocytosis [2]. Vimentin is a host
skeletal muscle protein upregulated on injured skeletal
muscle, and GAS adheres to vimentin, a phenomenon that
partially accounts for the increased incidence of GAS in-
fections after muscle trauma.

Streptococcal pyrogenic exotoxins (type A, B, and C)
belong to a group of proteins called superantigens. These
pyrogenic toxins may stimulate and activate a much larger
proportion of T cells and macrophages than conventional
antigens activate in some individuals. Such stimulation of the
host’s immune cells is associated with production of both
monokines (TNF a, IL-1, IL-6) and lymphokines (IL-2 and
TNF b) [2,19]. The massive release of these cytokines con-
tributes to shock, tissue destruction, and organ failure called
streptococcal toxic shock syndrome. Superantigens also ac-
tivate complement, the bradykinin-kallikrein system, and the
coagulation cascade.
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Staphylococcus aureus

S. aureus has been reported to be associated with NF
mainly in polymicrobial infection; nevertheless, mono-
microbial NF caused by S. aureus has been described as well
[21,22]. Panton-Valentine leucocidin has been linked to se-
vere infections like necrotizing pneumonia or deep abscesses
in skin and soft tissue. The role of Panton-Valentine leuco-
cidin in pathogenesis of NF has yet to be elucidated, however
[3]. S. aureus may produce toxic shock syndrome toxin-1 that
leads to toxic shock syndrome [3]. Toxic shock syndrome
mediated by S. aureus was associated mainly with tampon
use during menstruation; however, non-menstrual etiology
including soft tissue infection has been described.

Clostridial necrotizing infection

Clostridium species are widespread in nature because of
their ability to form spores. Necrotizing Clostridium infec-
tions are usually attributable to C. perfringens, C. septicum,
C. sordellii, C. histolyticum, and C. novyi [1]. Some Clos-
tridium species (C. perfringens, C. histolyticum, etc.) are the
principal causes of trauma-associated necrotizing infections,
whereas C. septicum may initiate infection spontaneously.
Categories of Clostridium-related soft tissue infections in-
clude benign wound contamination, anaerobic cellulitis, NF,
and life-threatening myonecrosis (i.e., gas gangrene).

Clostridial gas gangrene consists of progressive invasion
and destruction of healthy muscle tissue and early systemic
toxicity. The pathogenesis of gas gangrene is complex and
can be considered in four separate stages—contamination
and proliferation (stage 1), toxin production (stage 2), local
and regional tissue destruction (stage 3), systemic toxicity
including shock and organ failure (stage 4) [1]. If trauma
compromises the blood supply, an anaerobic environment
forms with tissue hypoxia and acidic pH providing an optimal
condition for maturation of clostridial spores that were in-
duced during injury. Clostridial micro-organisms begin to
proliferate and produce toxins.

Alpha and theta toxins of C. perfringens have been impli-
cated in the pathogenesis of gas gangrene. Alpha toxin is largely
responsible for both the widespread tissue necrosis and the
characteristic absence of tissue inflammatory response. Alpha
toxin induces platelet aggregation and formation of occlusive
thrombi that completely and irreversibly occlude vessels [1,4].
The major mechanism explaining the absence of polymor-
phonuclear leukocytes in tissue is sequestration within the ad-
jacent vasculature [4]. Alpha and theta toxins are also cytotoxic
to leukocytes; hence, these toxins likely destroy the small
number of polymorphonuclear leukocytes that do migrate into
tissue. Both toxins are absorbed systemically; they interact with
leukocytes, platelets, and endothelial cells and induce release of
cytokines (TNF a, IL-1, IL-6). Alpha toxin and theta toxins
directly suppress myocardial contractility and may contribute to
profound hypotension via a sudden reduction in cardiac output
and decrease of systemic vascular resistance [1].

Pathogenic strains of C. sordellii produce up to seven
exotoxins. Of these, lethal toxin and hemorrhagic toxin are
regarded as the major virulence factors [23]. The C. septicum
a toxin is a pore-forming hemolysin that induces rapid ne-
crosis of cultured cells (without induction of apoptosis) by
causing efflux of intracellular potassium and adenosine tri-
phosphate depletion [24,25].

Diagnosis

Skin and soft tissues infections (SSTIs) are common causes
of emergency department (ED) admission. The SSTIs are
clinical entities with variable presentations ranging from mild
and superficial such as impetigo to deeper and more severe
such as NSTIs. At clinical examination, it can be difficult to
distinguish a cellulitis or an abscess from a severe NSTI.

Necrotizing fasciitis is a subset of the aggressive NSTIs
that cause necrosis of the muscle fascia and subcutaneous
tissues. It can spread rapidly, causing infection of the fascia,
peri-fascial planes, and cause secondary infection of the over-
and underlying skin, soft tissue, and muscle. This infection
typically travels along the fascial plane, which has a poor
blood supply, leaving the overlying tissues unaffected ini-
tially, potentially delaying diagnosis and surgical interven-
tion. Early diagnosis and appropriate surgical treatment
decreases significant morbidity and death related to NF. The
time from admission to surgical procedure is the most deci-
sive factor for survival [26].

Clinical features

The most common risk factors for NF are diabetes mellitus
(it can be found in 40%–60% of patients with any NF types),
immunodeficiency diseases, illicit drug use, malnutrition,
chronic renal failure, obesity, liver cirrhosis, chronic heart
failure, alcohol abuse, systemic lupus erythematosus, Ad-
dison disease, peripheral vascular disease, and skin injuries
[27]. The primary symptom that leads the patient to present to
the ED is severe, excruciating pain resistant to medications.
NF can occur with a trivial wound or often without any
provocation. The infection is located commonly in the lower
extremities, the perineum, and genital area (e.g., with Four-
nier gangrene), the abdominal wall, and in upper extremities.
Classic physical examination findings include the presence of
purulent secretions, erythema, swelling or induration, warmth,
crepitus, cellulitis, pain, or tenderness.

Localized fluid collections such as carbuncles can be
fluctuant. Cellulitis is a diffuse spreading infection of the
dermis with erythematous, sometimes ill-defined borders,
while erysipelas has a similar presentation to cellulitis but
with a well-demarcated, raised border because of lymphatic
congestion. Crepitus can be present, and it is suggestive of
necrotizing tissues, usually caused by gas within tissues. The
presence of bullae or ecchymotic changes to the skin and
hyper/hypoesthesia also suggests NF.

Kim and colleagues [28] divided NF into three stages on the
basis of the sequential presence of clinical features reported by
Wong and Al [11]. In stage I (early stage), the overlying skin is
warm, erythematous, and indurated, producing ‘‘wooden
skin.’’ In stage II (intermediate stage), blisters and bullae form,
and in stage III (late stage), the bullae become hemorrhagic,
crepitus can be noted on physical examination, and skin ne-
crosis, which can progress to overt gangrene, ensues. Involved
areas in NF tend to be extremely painful in early stages and
painless in more advanced stages. As local signs of NF can be
minimal and clinical evolution can be fast and fatal, early
diagnosis requires high clinical suspicion and the identification
of systemic signs of toxicity including tachycardia, fever,
hypotension, and tachypnea.

Medical decision making in the ED is often based on the
presence or absence of fever. Presence of fever was found to
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be the strongest predictor of need for hospitalization greater
than 24 h, yet it is reported that fewer than 25% of patients
with NSTI have a fever on presentation [29,30]. A prospec-
tive, observational study demonstrated fever in patients pre-
senting to the ED with SSTI is uncommon (96/734 patients
analyzed, 13.1%) in patients admitted for SSTI during the
first 6 h of ED evaluation; area of erythema and leukocytosis
are the only characteristics associated with fever. This asso-
ciation with fever negatively correlates with the severity of
the infection (i.e., when the area of erythema was less than
9 cm2, fever was unusual). Clinical features such as bullae,
streaks, necrosis, and bone involvement on imaging, con-
sidered as signs of severe infections, were not associated with
fever [31]. The strongest predictor of death in patients with
SSTI is septic shock at ED admission [32].

Laboratory risk indicator for NF scoring

The Laboratory Risk Indicator for NF (LRINEC) is a
scoring system introduced in 2004 to distinguish NF from
other severe SSTI and to identify and classify patients with
NF into different risk categories [33]. Six routinely per-
formed laboratory tests were taken into consideration in this
score: serum C-reactive protein (CRP) level, white blood
cell (WBC) count, hemoglobin level, serum sodium level,
serum creatinine level, and serum glucose level, as shown in
Table 1. Several studies have assessed the utility of this score,
and it has been proposed that the cutoff value for diagnosis
of NF is 6, and the severity of the infection can be estimated
as low (score £5), moderate (score 6–7), and severe (score
‡8) [34–36]. With a score of 8 or higher, there is a 75% risk of
having NSTI (Table 2).

A recent systematic review and meta-analysis evaluated
the clinical application of LRINEC scoring. Analysis of 16
studies with a total of 846 patients showed that the mean
LRINEC score in patients with NF was 6.06. Two articles
reported LRINEC scores in patients without NF with a mean
2.45. The authors concluded that LRINEC is a useful clinical
determinant in the diagnosis and surgical treatment of pa-
tients with NF with a statistically positive correlation be-
tween LRINEC score and a true diagnosis of NF [37].

El-Menyar et al. [38] aimed to evaluate the prognostic
value of LRINEC score in NF; they retrospectively analyzed

294 patients with hospital length of stay, septic shock, and
hospital death as primary outcomes. Patients were divided
into two groups: group LRINEC <6 and group LRINEC ‡6.
Patients with a LRINEC ‡6 had a significantly greater hos-
pital length of stay, septic shock, and death. The authors
concluded that LRINEC scoring has a diagnostic role in NF
and that it can identify high-risk patients. In contrast, other
studies determined the LRINEC score to have low predictive
value [39,40]. The LRINEC score can be misapplied easily;
in fact, it was not designed to exclude NF in patients with a
low-risk score, and case reports and small studies failed to
replicate the high sensitivity and negative predictive value
reported in the initial article [39–43].

Burner et al. [44] and colleagues analyzed data about pa-
tients with NF evaluated in the ED of an urban, academic,
tertiary care hospital to describe the sensitivity of the LRI-
NEC score and examine the role of patient factors in the
score’s sensitivity. Among 266 patients discharged with a
diagnosis of NF, the authors were only able to confirm the
diagnosis, by chart review, in 167; it was only possible to
calculate a LRINEC score in 80 patients because of the ab-
sence of an initial CRP value; a LRINEC score of 6 or greater
had a sensitivity of 77%. Sensitivity analyses of missing data
supported their finding of inadequate sensitivity to rule out
NF. In subanalysis, NF patients with concurrent diabetes
mellitus were more likely to be categorized accurately by the
LRINEC score. Burner et al. concluded that the LRINEC
score is not sufficiently sensitive to rule out NF. In clinical
practice, CRP value is not routinely collected in the ED,
which presents a barrier for the effective utilization of the
LRINEC score as a predictive tool.

Neeki et al. [45] analyzed retrospective clinical data about
948 ED patients to assess the ability of the LRINEC score to
differentiate cellulitis from NF. In the cohort with cellulitis,
10.7% had LRINEC scores in the moderate-to-high risk
range for NF. The NF cohort (n = 135) only had CRP values
available for 22 patients; LRINEC scores among the re-
maining 113 patients without CRP values included six pa-
tients with a score ‡8, while 19 patients had a LRINEC score
£1, so a total of 47 patients (22 with CRP values, six with high
LRINEC scores but no CRP, 19 with low LRINEC scores but
no CRP) in the NF cohort were classified as low, moderate, or
high risk for NF based on the LRINEC score. A majority of
these 47 NF cohort patients (63.8%, 30/47) were classified as
low risk (LRINEC score £5). These results suggest that in the
ED setting, the LRINEC score may not be an accurate tool to
determine NF risk stratification or to differentiate between
cellulitis and NF

Hietbrink et al. [46] proposed a triple diagnostic strategy
that included an incisional biopsy over the most suspected

Table 1. Laboratory Risk for Necrotizing

Fasciitis Scoring

Variable Value Score

C reactive protein <150 mg/L 0
>150 mg/L 4

White blood cell count <15 cells/mm3 0
15-25 cells/mm3 1
>25 cells/mm3 2

Hemoglobin >13.5 g/dL 0
11-13.5 g/dL 1
<11 g/dL 2

Sodium ‡ 135 mmol/L 0
<135 mmol/L 2

Creatinine £1.6 mg/dL 0
>1.6 mg/dL 2

Glucose level £180 mg/dL 0
>180 mg/dL 1

Table 2. Necrotizing Fasciitis Patient Risk

Categories according to Laboratory Risk

for Necrotizing Fasciitis Scoring

Risk categories
LRINEC
scoring

Probability
of NSTI (%)

Low < = 5 <50
Intermediate 6-7 50-75
High > = 8 >75

LRINEC = Laboratory Risk for Necrotizing Fasciitis.
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area, a fresh frozen section and gram-staining to help with
early recognition of NF and make the diagnosis in the early
ambiguous stages of the infection. The authors provided an
algorithm and retrospectively analyzed this strategy for 21
patients included in the study who presented with suspected
NF and extensive comorbidities. The diagnosis was con-
firmed based on intra-operative macroscopic findings in 11
patients, and six of the 10 remaining patients had a change
in treatment strategy because of histology or micro-biotic
observations. Seventeen patients had proven NF, and two
died from this disease. This approach emphasizes the im-
portance of adequate algorithms and treatment protocols for
all medical specialties that might encounter NF because
clinical signs are often unrecognized or absent.

Imaging of NF

The diagnosis of NSTIs remains clinical primarily.
Therefore, imaging should not delay emergency surgical
treatment in patients with established NF. Imaging can be
useful to map disease extent to aid in planning the surgical
approach and margins and to exclude other processes. In
patients whose conditions are severely toxic, treatment
should not be delayed for the performance of imaging [47].
Plain radiographs, ultrasound (US), computed tomography
(CT), and magnetic resonance imaging (MRI) may help the
diagnosis of NF when uncertain [26,27]. Radiographic find-
ings in the early stage of NF are similar to those of cellulitis
and include increased soft-tissue opacity and thickness.
Radiographs can often be normal until the infection and ne-
crosis are advanced and manifest as soft-tissue emphysema
tracking along fascial planes. Plain radiography is useful in
cases of gas gangrene [47].

Point-of-care ultrasound (POCUS) has the advantage of
rapid performance at bedside in critically ill patients who are
unable to tolerate a CT or MRI, and it may be helpful in
differentiating simple cellulitis from NF in the emergency
setting [38]. The available literature demonstrates that the
test is highly sensitive and specific (i.e., 88% sensitivity and
93% specificity) for NF on certain imaging criteria, such as
soft tissue thickening, fascial fluid accumulation greater than
4 mm, and the presence of subcutaneous air [48]. In some
cases involving non–gas-producing Group A streptococcal
infections, US has been shown to help in the diagnosis of NF
with negative findings on CT and MRI [49]. Because US can
be highly operator-dependent, suitable teaching models
should be available to train clinicians properly on how to best
diagnose and recognize sonographic findings of NF [50]. By
POCUS, subcutaneous air will show as shiny white dots in
the fascial plane, while edema will show as hypoechoic areas;
calcifications may mimic air on US, and the acoustic shadow
can help clarify whether gas bubbles are truly present [51].

The most sensitive modality for soft-tissue gas detection is
CT, and compared with plain radiography, CT is superior to
evaluate the extent of tissue or osseous involvement, show an
underlying, and potentially more remote, infectious source,
and reveal serious complications such as vascular rupture
complicating tissue necrosis. The CT characteristics correlate
with pathologic findings of soft-tissue inflammation or li-
quefactive necrosis and thus may feature dermal thickening,
increased soft-tissue attenuation, inflammatory fat stranding,
and possible superficial or deep crescentic fluid or air in the

subfascial planes [47]. The rapidity of CT compared with
MRI may be advantageous for an emergent NF evaluation,
but often patients at risk for NF have concurrent acute kidney
injury precluding the administration of contrast [50].

An MRI is the preferred imaging platform for soft tissue
infections, but its use is limited by acquisition time, poten-
tially delaying rapid diagnosis of severe infections like NF.
Detailed descriptions of MRI findings in NF are beyond the
scope of this review, but can be found in the excellent review
by Chaudhry et al. [47].

Carbonetti et al. [52] evaluated the diagnostic efficacy of
contrast enhanced CT in the ED for diagnosis of NF and
correlated radiologic findings with the LRINEC score. Two
parameters were strongly associated with the diagnosis of
NF: Involvement of the fascia and lack of fascial enhance-
ment. The LRINEC score does not show strong association
with the presence of fasciitis and can be high in other mus-
coloskeletal infections. Final diagnosis of necrosis among the
fascia is surgical. Presence of gas is not a specific sign of NF
being present in other musculoskeletal infections. They
concluded that in clinical practice, CT could be useful to
discriminate NF from other musculoskeletal infections in
emergency settings, when MRI, which is superior to CT in
this discernment, could not be performed.

Operative Management

The management of NSTIs involves operative debride-
ment in addition to antimicrobial therapy and physiologic
support. A high index of suspicion should prompt early sur-
gical consultation, because delays in diagnosis and time to
surgical debridement are associated with higher mortality
rates [11,53–58]. While the diagnosis is often obvious by the
time surgical consultation is obtained, for equivocal cases,
surgical exploration may be used to evaluate the tissue planes
to avoid further delay [8,59]. A small skin incision made
down to the fascia for evaluation of the separation from the
surrounding tissues may aid the diagnosis [60]. Operative
findings consistent with a NSTI include presence of gas,
edema, purulence, dishwater drainage, necrotic tissue,
thrombosed perforating vessels, and a dull gray fascia that
separates easily from fat with blunt dissection [59,61].

Surgical debridement should encompass all clearly non-
viable infected tissue and necrotic tissue including muscle,
fascia and overlying skin. It often requires a wide debride-
ment that involves large areas of tissue and potentially or-
gans. Healthy tissue may need to be removed if there is
extensive tissue involvement underneath, and the debride-
ment should be taken back to healthy, bleeding tissue, be-
cause the goal is to create a well-vascularized bed. At the time
of the initial debridement, tissue should be sent for culture,
and the incision area should be left open, packed, and the
patient should be taken to the intensive care unit for ongoing
resuscitation. In addition, it is important to document the
location and dimensions of the incision area and the existence
of any undermining or tracts.

Rarely is one debridement adequate, and patients will
likely need to be taken back to the operating room for re-
exploration after their hemodynamic values improve. This
should occur within the first 24 h, and most patients will re-
quire on average 3–4 operative procedures [60]. Early re-
debridement is recommended because of increases in death
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and complications with delaying the procedure [62]. If the
clinical condition of the patient deteriorates or does not im-
prove greatly before the planned re-exploration, the patient
should be taken back to the operating room sooner because
spreading infection and hypotension leads to progressive
necrosis. During each subsequent exploration, all newly
identified necrotic tissue should be debrided until a clean
incision area is obtained.

While the traditional teaching for surgical debridement of
NSTIs is wide debridement, these debridements can lead to
large, difficult-to-treat complex incision areas. In addition,
the areas can lead to disfigurement, immobility, and chronic
pain with often only skin grafting as an option for recon-
struction. Because of these complications, there have been
techniques developed that employ a skin-sparing approach
[63]. These techniques maintain maximal native tissue to
improve reconstructive options and to minimize the surface
area healing by secondary intention, and are based on the
model of perforator blood vessels and permanent vessel en-
largement known as the delay phenomenon [64–66]. The
debridement includes only necrotic tissue, and the perfused
skin beyond the margins of the necrotic tissue should be
preserved [63]. Full-thickness skin flaps including subcuta-
neous tissue are raised with viable perforating vessels pre-
served if possible.

If exposure is inadequate, there are several adjunct tech-
niques can be used including incision extension, counter in-
cisions, and trap-door or hinge flaps [63]. One of the goals of
using the skin sparing technique is to be able to close the
spared skin primarily in a delayed fashion after the debride-
ments are complete.

The NSTI of the perineal, peri-anal and peri-urethral tis-
sue, otherwise known as Fournier gangrene, can also pose an
operative challenge. Surgical debridement is the primary
treatment, and careful examination of the patient under an-
esthesia should be performed to identify the cause of the
disease and extent of the spread of infection [67]. If no per-
ineal source can be found, an abdominal exploration should
be considered [68,69].

If necrotic testicles are found during debridement, an intra-
abdominal source should be suspected, because they are
usually spared if necrosis only affects the subcutaneous tissue
given their intra-abdominal vascular supply [68]. Debride-
ment of muscle and deep fascia is usually not required, be-
cause rarely are these involved; however, debridement often
results in exposure of the testes. Orchiectomy rarely is re-
quired unless there is testicular necrosis as seen with
epididymo-orchitis or a scrotal abscess [70]. If the testes are
exposed, they can be implanted temporarily into a medial
thigh or lower subcutaneous pouch until healing or recon-
struction are complete [71–75].

Fecal and urinary diversion may be necessary depending on
the severity of the infection and extent of debridement. For
cases with extensive anal sphincter damage or colonic or rectal
perforation, diverting colostomy has been demonstrated to
improve outcomes by decreasing the soilage and bacterial load
in the perineal wound [76,77]. Diverting colostomy does not
eliminate the necessity of multiple debridements, nor does it
reduce the number of debridements [78]. If the incision bed
can be kept clean with regular dressing changes and stool
diverted using a fecal management system, colonic diversion
may be avoided [60]. Urinary diversion with a supra-pubic

catheter may be necessary if there is underlying urinary tract
disease such as a known stricture with extravasation or urinary
incontinence [70,79,80].

A NSTI of the extremities can be managed with serial
debridements, but often requires amputation of the extremity.
It can be performed as the initial operation in patients with
profound shock, because it is usually a shorter procedure and
patients may not tolerate a long operation. In addition, it
requires less, if any, reconstructive procedures [81]. In-
dependent risk factors for limb loss include shock on hospital
admission, pre-existing heart disease, and clostridial infec-
tion [82]. The extent of the debridement required and the
likelihood of a functional extremity should also be taken into
consideration when the decision to perform amputation for
source control is made [59]. Other indications include joint
involvement, rapid progression to the torso, or destruction of
the major nerves and blood vessels [61,83].

When the surgical debridement is no longer necessary, and
the overall clinical condition of the patient has improved,
ongoing incision management becomes increasingly impor-
tant. Dressing changes can be performed at the bedside, as
long as the patient can tolerate the procedure, often requiring
high doses of pain medications. While certain centers use
topical antiseptics such as sodium hypochlorite or mafenide
for dressing changes in incisions with clinical signs of in-
fection, it has not been established whether this is better than
simple wet to dry dressing changes [59,60].

When the incision bed is clean, a negative pressure device
or vacuum-assisted closure device (VAC) may be a possi-
bility to help facilitate granulation. These VACs accelerate
incision healing by removing excess fluid that leads to in-
creased capillary circulation and inflow, reducing bacterial
load at the incision base and encouraging growth of granu-
lation tissue, vascularity, and epithelial migration [84,85].
This therapy has been shown to be effective in managing
extremity areas from NSTIs, in addition to perineal areas
[86–88]. Dressing changes are only performed every 2–
3 days, therefore decreasing frequency, discomfort, and
pain medication requirements. These devices also are useful
in the reconstruction of incision areas by promoting the
granulation-healing process and allowing elective plan-
ning of the definitive closure or reconstructive procedure
[89,90].

When the incision area is clean, healing, and stabilized,
definitive coverage or closure can be considered. Tem-
porary skin substitutes such as porcine or cadaveric skin or
artificial skin substitutes may be used with larger areas for
immediate tissue coverage. These temporary skin substitutes
can help decrease fluid and protein loss and minimize bac-
terial colonization of the incision bed [91,92]. The dermal
skin substitutes play a role in optimizing the bed for eventual
skin grafting.

Integra� is a bilayer matrix wound dressing with a silicone
layer over a collagen fiber artificial dermis. The collagen
replacement layer acts as a matrix for the patient’s fibroblasts,
macrophages, and endothelial cells to infiltrate, and this layer
is replaced gradually by collagen and subsequent vasculari-
zation. After vascularization and engraftment, the silicone
layer is removed, and an epidermal autograft is applied over
the neodermis [93]. These skin grafts can be very thin,
therefore decreasing the risk of scarring and promoting rapid
donor site healing.
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The most common type of coverage is split-thickness skin
grafts; however, other reconstructive options include full-
thickness skin grafts, delayed primary closure versus healing
by secondary intention, tissue expansion and flap coverage,
both pedicled and free flaps. Groin and perineal incision sites
may be able to heal by delayed primary closure or secondary
intention only if they are small with excess subcutaneous
tissue and the lesions run parallel to the natural tissue planes
[59]. For larger wounds, split-thickness skin grafts can be
used; however, scar contracture can occur leading to an un-
sightly scar, the graft may not take on an uneven surface, and
they are not as durable as a fasciocutaneous or myocutaneous
flap [94,95].

Local versus distant flap selection is based on presence of
infection, presence of vascular supply, defect depth, and
other areas of damage that would preclude a local flap [96].
Free tissue transfer from remote sites with revascularization
at the reconstructive site using micro-surgical techniques can
be performed when local flaps are not available [97]. In cases
where an extremity is amputated, a myofascial cutaneous
skin flap can be preserved to allow for early pedicle flap
coverage after surgical site control is achieved [60]. Tissue
expansion and complex pedicled and free flaps should be
undertaken in a multi-disciplinary fashion with plastic and
reconstructive surgeons.

Antimicrobial Therapy

Empiric therapy (Table 3)

Empiric antimicrobial therapy must begin as soon as the
diagnosis of NF is considered. Because clinical examination
alone cannot differentiate between Type 1 and Type 2 NF,
coverage initially should be broad, including gram-positive,
gram-negative, and anaerobic organisms. Antimicrobials
should include an anti-methicillin-resistant S. aureus (MRSA)
agent, given the incidence of MRSA throughout the country.

Linezolid is preferred over vancomycin, given its associ-
ation with improved outcomes in patients with MRSA SSTIs
[98], as well as its anti-toxin effect and favorable safety
profile, particularly because many of these patients already
have acute kidney injury. Tedizolid is another oxazolidinone
with antibacterial activity similar to linezolid, but there is less
published clinical experience using this agent [99]. Dapto-
mycin is a lipopeptide antibacterial drug with rapid bacteri-
cidal activity against MRSA in vitro; there are limited
published data using this drug for MRSA-associated NSTIs.
This drug is also rapidly bactericidal for other gram-positive
etiologies of NF, such as beta hemolytic streptococci [100].

Ceftaroline is an advance generation cephalosporin that is
active against MRSA, beta-hemolytic streptococci, and enteric
gram-negative pathogens. This drug lacks activity against
anaerobes, extended spectrum beta-lactamases (ESBL)- or
AmpC-producing gram-negatives, and Pseudomonas aerugi-
nosa, but this drug is non-inferior to vancomycin plus az-
treonam in the management of complicated SSTIs [101].
There are no published data about the efficacy of ceftaroline
for NF specifically, so caution is advised regarding the use of
this agent empirically.

Other agents with activity against MRSA that have be-
come available recently include the semi-synthetic glyco-
peptides telavancin, oritavancin, and dalbavancin. These
agents have all been studied for the management of MRSA

SSTIs and are all comparable in terms of efficacy, but tela-
vancin is associated with a higher rate of adverse events
compared with oritavancin or dalbavancin [102], and none of
these agents have any published data for use in NF.

Delafloxacin is a new fluoroquinolone with activity against
MRSA, other gram-positive bacteria associated with NF
(beta-hemolytic streptococci), enteric gram-negative bacte-
ria, anaerobes, and P. aeruginosa. This drug is approved for
the management of acute bacterial skin and soft tissue in-
fections, based on several phase III clinical trials that com-
pared delafloxacin with vancomycin plus aztreonam [103].
None of these trials enrolled patients with NF, but this drug is
attractive as a single agent that covers the bulk of pathogens
associated with NF, has enhanced activity at acidic pH, and
may be given as both an intravenous and oral agent. Further
studies are needed to determine whether delafloxacin is
comparable to older antibacterial regimens for NF (e.g.,
linezolid plus piperacillin-tazobactam).

Table 3. Empiric Antibacterial Agents for

Necrotizing Soft Tissue Infections*

Recommended First-Line Agents (doses not adjusted for
renal/hepatic function)
1. Linezolid 600 mg IV every 12 h PLUS piperacillin-

tazobactam 4.5 gm IV every 6 h
2. Linezolid 600 mg IV every 12 h PLUS meropenem

1 gm IV every 8 h
Alternative agents for MRSA/gram-positive bacterial

pathogens1

� Vancomycin: load 25 mg/kg IV, then 15 mg/kg IV
every 8–12 h

� Tedizolid 200 mg IV every 24 h
� Daptomycin 6 mg/kg IV every 24 h
� Ceftaroline 600 mg IV every 12 h
� Telavancin 10 mg/kg IV every 24 h
� Dalbavancin 1500 mg IV as a single dose OR 1000 mg

IV once, then 500 mg IV in 7 d
� Oritavancin 1200 mg IV as a single dose
� Delafloxacin 300 mg IV every 12 h
� Tigecycline 100 mg IV load on day 1, then 50 mg

IV every 12 h
� Omadacycline 200 mg IV load on day 1, then 100 mg

IV every 24 h
Alternative agents for gram-negative PLUS anaerobic

bacterial pathogens1

� Delafloxacin 300 mg IV every 12 h
� Tigecycline 100 mg IV load on day 1, then 50 mg

IV every 12 h
� Omadacycline 200 mg IV load on day 1, then 100 mg

IV every 24 h
Agents that decrease protein toxin synthesis via ribosomal

inhibition2

� Linezolid
� Tedizolid
� Clindamycin
� Tigecycline

IV = intravenous; MRSA = methicillin resistant Staphylococcus
aureus;

*Includes only antibacterial agents with Food and Drug
Administration-approved indication for skin/soft tissue infections.

1Published experience using these agents for NSTI varies from
‘‘none’’ to ‘‘extensive’’; there are no comparative trials that
specifically address these agents for necrotizing fasciitis.

2These agents have published in vitro data supporting toxin
synthesis inhibition.
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Piperacillin-tazobactam provides completion coverage for
enteric gram-negative bacteria and anaerobes that may be
involved. Patients colonized with ESBL or AmpC-producing
gram-negative pathogens should be treated empirically with
a carbapenem such as meropenem or doripenem. While
piperacillin-tazobactam may demonstrate in vitro activity
against ESBL-producing organisms, a recently published
clinical trial comparing clinical outcomes of bacteremia with
ceftriaxone-resistant E. coli or K. pneumoniae for patients
treated with piperacillin-tazobactam or meropenem clearly
showed a survival benefit for those receiving meropenem
[104].

Newer antibacterial agents with activity against multi-drug-
resistant (MDR) gram-negative pathogens include ceftolozane-
tazobactam, ceftazidime-avibactam, meropenem-vaborbactam,
tigecycline, omadacycline, and eravacycline. The specific
use of these agents as empiric therapies for NSTIs has not
been studied, and these agents should be reserved for the
tailored treatment of patients with MDR gram-negative
pathogens who have limited therapeutic options.

All patients with NSTIs should receive an antibacterial
agent that inhibits bacterial protein synthesis. Examples of
these agents include linezolid, tedizolid, and clindamycin.
For patients receiving linezolid (or tedizolid) as part of an
empiric regimen, there is no need for an additional protein
synthesis inhibitor. If other drugs are chosen for empiric
gram-positive coverage, however, a ribosomal protein syn-
thesis inhibitor should be added to the regimen to reduce
bacterial protein toxin synthesis.

Duration of therapy for NF has never been studied formally
nor is it commented on in many of the published guidelines
[26,105,106]. Many experts in the Surgical Infection Society
agree, however, that once source control is obtained and sep-
sis has resolved, further antimicrobial therapy is unnecessary.

Directed therapy

Ideally, micro-biologic laboratory testing of relevant pa-
tient samples will yield specific pathogens causing the NSTI.
In these cases, antimicrobial therapy should be optimized
for the involved organisms to reduce antibiotic-associated
complications (e.g., allergic reactions, adverse drug events,
colonization with MDR pathogens because of selective
pressure, Clostridioides difficile infection) and improve
clinical outcomes. This section details directed therapy for
select pathogens involved in NF.

S. aureus. Agents active against MRSA have been dis-
cussed in the above section addressing empiric therapy. It is
important to note that methicillin-sensitive S. aureus
(MSSA) infections can be equally devastating, and contin-
uation of a MRSA-active agent when MSSA has been iso-
lated may not provide equivalent clinical outcomes. For
example, vancomycin is associated with inferior clinical
outcomes compared with nafcillin for the management of
MSSA bacteremia [107]. Clinical trials comparing efficacy
of cefazolin versus nafcillin or oxacillin have not found any
significant differences among these beta-lactams for the
management of MSSA bacteremia [108]; specific informa-
tion regarding the relative efficacy of these agents for MSSA-
associated NF are lacking.

Beta-hemolytic streptococci. The most common beta-
hemolytic streptococcal species associated with NF is S.
pyogenes (group A streptococcus, GAS), but other beta-
hemolytic streptococci have been implicated uncommonly in
NF as well. These bacteria remain susceptible to beta-lactam
antibacterial agents, particularly penicillins and ceftriaxone;
however, resistance to clindamycin has been documented
[109]. The GAS infections are best managed with a combi-
nation of intravenous penicillin plus clindamycin. Group B
streptococci (GBS) have also been described as NF patho-
gens, notably among infants, and generally remain suscep-
tible to penicillin, Penicillin resistance has emerged,
however, among GBS isolates via amino acid substitutions
in penicillin binding protein 2x (PBP2x), leading to higher
penicillin minimum inhibitory concentrations (MICs) [110].
Penicillin susceptibility testing should be performed before
using penicillin alone for the definitive therapy of serious
GBS infections, including NF.

Clostridial NSTI. C. perfringens is the prototypical clos-
tridial pathogen in gas gangrene, a necrotizing infection that
is associated with devitalized soft tissue wounds. Other im-
portant clostridia associated with soft tissue infections in-
clude C. sordellii, C. histolyticum, and C. septicum. This
latter organism is associated with spontaneous gas gangrene
among patients with gastrointestinal co-morbidities. Man-
agement of gas gangrene very much relies on surgical de-
bridement of the devitalized tissues. Clostridial infections are
characterized by the production of multiple protein toxins
that damage host tissues and impair the innate immune re-
sponse, so the inclusion of ribosomal protein synthesis in-
hibitors in antibacterial regimens for these infections is
critical. The combination of a beta-lactam plus clindamycin
will provide antibacterial coverage for the vast majority of
clostridial soft tissue infections [105,109].

V. vulnificus. This halophilic gram-negative pathogen is
associated with life threatening soft tissue infections, usually
after exposure of an open site to brackish coastal water or
shellfish. A history that includes these latter features should
prompt rapid initiation of doxycycline and a third-generation
cephalosporin [105].

Aeromonas species. Aeromonas species are ubiquitous,
oxidase-positive, facultative anaerobic gram-negative bacilli
found in many environmental sources, especially water that
can cause a variety of severe human infections, including
monomicrobial NF. Three species (A. hydrophila, A. caviae,
A. veronii) account for >85% of human infections. Aero-
monas NSTIs (NF, myonecrosis) are preceded commonly by
traumatic injuries, especially in patients with underlying
cancer or liver disease, and carry a high mortality rate in the
60%–75% range. Clinicians must maintain a high diagnostic
suspicion for these organisms to include environmental ex-
posures before presentation, recent leech therapy for wound
healing, traumatic injuries from occupational or recreational
activities, natural disasters, or animal bites.

Pathogenic Aeromonas species commonly are susceptible
to carbapenems (meropenem, imipenem), third/fourth-
generation cephalosporins, and piperacillin-tazobactam, so
the recommended empiric gram-negative regimens already
recommended in this review typically will kill these bacteria.
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The major mechanism of antibiotic resistance utilized by this
genus is expression of beta-lactamases, so antibacterial sus-
ceptibility testing is recommended highly to allow detection
of potentially resistant isolates. Quinolones are highly active
against aeromonads, but an important exception that should
be highlighted are cases of Aeromonas infection arising from
medicinal leech therapy; these patients commonly are given
quinolone prophylaxis, and this can select for quinolone-
resistant strains that result in infection [111].

Adjunct Therapy

In addition to surgical and antibacterial therapies, other
modalities have been investigated to decrease the morbidity
and death associated with NF. An extensive discussion of
these therapies is beyond the scope of this review, but the
reader is referred to two recent excellent summaries addres-
sing novel adjunctive therapies for NF [61,112].

Special Populations

Pediatrics

The NSTIs are less common in children than in adults, with
an annual incidence of approximately 0.08 per 100,000
children [113]. Several studies have suggested a slight in-
crease in the incidence over the last 20 years [114–116]. The
disease affects children of all ages, with incidence peaks
correlating with the predisposing conditions in different age
groups. Neonates, babies aged 1–2 years old, and younger
teenagers are reported to each have an increased incidence
[117].

Risk factors for NSTI in children have some distinctions
from those in adults. Malnutrition, immunocompromise, and
prematurity are cited to be predisposing factors; however,
many cases occur in otherwise healthy children [118].
Trauma, either surgical or otherwise, is a known risk factor
for NSTI in children. The most commonly reported skin
traumas leading to NSTI are varicella skin lesions. Vaccine
sites reportedly have also developed into NST [119]. Post-
operative NSTI has been associated with all types of proce-
dures, but there is a notable association with Fournier gan-
grene and herniorrhaphy, orchidopexy, and circumcision in
young children [120]. Fournier gangrene has also been at-
tributed to severe diaper rashes in infants. Neonates have a
unique disease pattern, and neonatal NSTIs most commonly
are caused by omphalitis. Infections such as balanitis, neo-
natal mastitis, reactions to hospital monitors, and necrotizing
enterocolitis have also been associated with neonatal NSTI
[121,122].

Given its rare occurrence, the overall mortality rate of
pediatric NSTI has been hard to estimate. Studies in children
suggest a significantly lower mortality rate in children than in
adults—between 5.0%–25%, with a recent meta-analysis
reporting an overall mortality rate of 15.4% [118,123–126].

Soft tissue infections can occur anywhere on the body but
are more common on the trunk in children compared with
adults. Most cases of truncal NSTI are seen in neonates and
babies younger than a year old, with older children having an
increased rate of extremity infections [117,118].

As in adults, there is often a delay in diagnosis of NSTI in
children, and they often receive a diagnosis of cellulitis. The
most common findings of NTSI in children are fever,

tachycardia, erythema, tenderness, and pain [117,127]. The
finding of ‘‘pain out of proportion’’ to physical findings, al-
though described frequently in older patients, is often diffi-
cult to diagnose in children [127]. The erythema in children
with NSTI is often described as having more induration
compared with simple cellulitis [118]. Children with NSTI
have also been described as more ‘‘toxic’’ appearing than
those with cellulitis [114]. As the disease progresses, the skin
can develop bullae and crepitus. As in adults, hypotension
and mental status changes portend advanced infection.

Laboratory findings in children with NSTI are notoriously
non-specific [114,117,121]. Anemia, likely because of hemo-
lysis, is often reported, as is leukocytosis and leucopenia
[118,121]. Thrombocytopenia may differentiate cellulitis from
deeper soft tissue infections [114]. Although scoring systems
have shown promise in adults, they have not been validated in
children and are, therefore, of minimal utility [121].

There are no standard recommendations for obtaining
imaging studies to diagnose NSTI in children. Plain x-ray
rarely is useful in identifying soft tissue necrosis and is sel-
dom part of the diagnostic algorithm. Frequently, US is used
in the pediatric population because it lacks ionizing radiation
and rarely requires sedation. Although it has demonstrated
utility in differentiating drainable abscesses from simple
cellulitis, US has not been used frequently to diagnose NSTI.
Both CT scans and MRI have been utilized in the evaluation
of children with concern for NSTI with varying success. The
MRI has been shown to have a high false-positive rate and
often requires anesthesia in young children [121]. CT may
have a role in the diagnosis of NTSI in patients with head and
neck infections [128].

The NTSIs can be classified according to the causative
organisms. Type 1 is caused by a polymicrobial infection
with an average of 4.4 organisms identified in culture [121].
These include Streptococcus spp., Staphylococcus spp.,
Bacteroides spp., Pseudomonas spp., E. coli, K. pneumoniae,
and others. Type 2 NSTI is a monomicrobial infection caused
by group A Streptococcus (GAS), sometimes in conjunction
with S. aureus [121]. Although Type I classically has been
thought to be most commonly encountered in children, more
recent data suggest monomicrobial infection may be more
common than previously described [117,127]. Specifically,
community-acquired MRSA has been reported with in-
creasing frequency [117].

With high clinical suspicion or once the diagnosis is made,
admission to the neonatal or pediatric intensive care units with
close monitoring, aggressive fluid hydration, and administra-
tion of broad-spectrum antibiotic agents are essential. In the
absence of published evidence-based recommendations re-
garding antibiotic agents in NSTI, there is great variability in
antibiotic choice [117]. For suspected GAS infections, com-
binations that include a penicillin or third generation cepha-
losporin are recommended most frequently, and the addition of
clindamycin appears to be beneficial [117,121]. Those infec-
tions not suspected to be GAS require antibiotic agents tar-
geting aerobes, anaerobes, and MRSA [121]. At the time of
operation, cultures should be performed and antibiotic agents
tailored to specific organisms.

As in adults, urgent extensive surgical debridement is the
mainstay of tmanagement of NSTI in children [123]. Because
of the difficulty in making the diagnosis, operation is often
delayed, which has been associated with poorer outcomes.
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Often, surgical exploration is diagnostic as well as thera-
peutic [121]. Once the diagnosis is made, serial debride-
ments are often required to obtain clean, viable margins
[121,123]. A small case series from a hospital in a resource-
poor region described a more conservative approach with
bedside, rather than operating room, debridements with
acceptable results, but this approach has not been adopted
widely [118,129].

Little data exist regarding optimal approach and timing for
coverage of tissue defects after debridement, but reports of
early and late split thickness skin grafts and primary or de-
layed skin closure have all had success. Negative-pressure
surgical site therapy, although used with less frequency than
in adults, has shown success in children [117]. Adjunct
measures such as intravenous immunoglobulin or hyperbaric
oxygen therapy have been described in children, but the data
are scarce [117].

Conclusion

The NSTIs, including NF, continue to present a diagnostic
and therapeutic challenge for clinicians. The core principles
for the management of these infections have remained un-
changed for the past 70 years: Rapid and repeated surgical
debridement of dead and infected tissues, rapid initiation of
broad-spectrum antibacterial agents that kill gram-positive,
gram-negative, and anaerobic pathogens, inclusion of protein
synthesis inhibitors with empiric antibacterial regimens, de-
escalation of antibacterial therapies based on operative cul-
tures, and cessation of these agents once the patient has been
cured surgically. Further research in both the basic and
clinical science arenas must address the challenges presented
by these devastating infections to reduce morbidity and death
for generations to come.
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