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Abstract

Enforced egress of hematopoietic stem cells (HSCs) out of the bone
marrow (BM) into the peripheral circulation, termed mobilization, has come
a long way since its discovery over four decades ago. Mobilization research
continues to be driven by the need to optimize the regimen currently
available in the clinic with regard to pharmacokinetic and pharmacodynamic
profile, costs, and donor convenience. In this review, we describe the most
recent findings in the field and how we anticipate them to affect the
development of mobilization strategies in the future. Furthermore, the
significance of mobilization beyond HSC collection, i.e. for
chemosensitization, conditioning, and gene therapy as well as a means to
study the interactions between HSCs and their BM microenvironment, is
reviewed. Open questions, controversies, and the potential impact of recent
technical progress on mobilization research are also highlighted.
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Introduction

Discovered by pure chance in patients recovering from chemo-
therapy almost 45 years ago', the phenomenon of hematopoietic
stem cell (HSC) mobilization has transformed the clinical prac-
tice of HSC transplantation”. It has further extended to indications
beyond HSC collection, including mobilization-based chemo-
sensitization, conditioning, and gene therapeutic approaches,
which are areas of intensive research. Better understanding of
the pathways governing HSC trafficking can provide important
insights into how stem cell localization within the bone marrow
(BM) is regulated, which explains a continued need for basic
research on mobilization to define the underlying molecular and
cellular mechanisms.

In mammals, the first definitive HSCs arise in several intra and
extraembryonic tissues from which they first migrate into the
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fetal liver’™”. Following expansion in the fetal liver, HSCs con-
tinue their journey towards the BM, where the overwhelming
majority of adult HSCs are subsequently found in their unique,
specialized environments, the BM niches™®. Interestingly,
despite the dramatically reduced migratory activity upon BM
colonization, a small fraction of adult HSCs can be found in the
peripheral circulation at any given time’~. Even though random
leakiness of BM retention pathways cannot be excluded as a
cause, the regularity of this physiological HSC egress'*-"
implies a biological function. The number of HSCs in the circu-
lation at steady state can be substantially augmented by a wide
variety of endogenous and exogenous stimuli such as growth
factors'*’, chemotherapy'*'-*, chemokines**’, chemokine and
integrin receptor agonists and antagonists”~!, bioactive lipids**,
exercise’”, infection, and inflammation’*"’ (Figure 1). This
enforced egress of HSCs into peripheral blood is called

Preclinical Models:

Cytokines Chemotherapy

Proteases

Trypsin, CD26, MMP9
Cathepsin G, Neutrophil elastase

Dextran, Fucoidan, ;
GAG Mimetics, Polysaccharides
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G-CSF, GM-CSF, SCF, FLT3L, TPO,
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G-CSF
with or w/o chemotherapy
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Figure 1. Mobilization stimuli. A wide variety of stimuli that lead to increased numbers of circulating hematopoietic stem cells (HSCs)
have been identified, including but not limited to growth factors (cytokines'’, granulocyte colony-stimulating factor [G-CSF]'**%, granulocyte-
macrophage colony-stimulating factor [GM-CSF]*°, stem cell factor [SCF]"®**4 FLT3 ligand [FLT3L]***, thrombopoietin [TPO]'6:4
angiopoietin [Angpt]*“, vascular endothelial growth factor [VEGF]***°, and interleukins [ILs] -1, -374¢, -6%°, -7°Y, -12°" -17°, and -33

),

chemotherapy-induced myeloid rebound’**>*, chemokines (CXCL12 and analogs®"*¢, Gro-a’, -3?°"-*°, and -y*/, and IL-8°*2>%%), chemokine
receptor antagonists (CXCR4 antagonists®'¢*¢® and inhibitors of the intracellular mediator of CXCR4 signaling, the small Rho GTPase Rac 1),
bioactive lipids (sphingosine-1 phosphate [S1P]**®” and ceramide-1 phosphate [C1P]*%") and bacterial toxins***** (lipopolysaccharide

[LPST]?"7° and pertussis toxin [PTX]"=#), proteases (trypsin’®, matrix metalloprotease 9 [MMP9]>*7¢ CD26""¢, cathepsin G’°, and neutrophil
elastase’”) and adenosine receptor agonists (defibrotide)®*®', inhibitors of adhesive cell interactions® (VLA4?4295% and VLA4/VLA9* inhibitors,
VCAM1%, and CD44%%" blockers) and ephrin A3 receptor antagonists®, polymeric sugar molecules (dextran®, fucoidan®’, Betafectin
PGG-Glucan®', and glycosaminoglycan [GAG] mimetics™), and prostaglandin inhibitors®. For the majority of the listed stimuli, a direct or
indirect targeting of CXCR4 (green) or VLA4 (blue) signaling or both (red) has been documented. On the systemic level, the time of day ',
stress® and exercise”~'"’, trauma and tissue damage'’’~'®*, infection'® and inflammation'®'°¢, coagulation'®’='®> and complement'*-"**
cascade along with cortisol**'"* and the central''* as well as the sympathetic nervous system (SNS)''® have been shown to affect HSC
egress out of the bone marrow (BM) into the peripheral blood. In sharp contrast to the diversity of mobilizing agents discovered and tested
in preclinical models, only G-CSF alone (healthy donors) or in conjunction with chemotherapy and plerixafor (patients) is being used in the
clinic. CNS, central nervous system.
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mobilization. While the function of homeostatically circulat-
ing HSCs remains enigmatic, pharmacologically induced HSC
egress is increasingly used as the preferred strategy to generate
grafts for HSC transplantation (HSCT), the only curative
therapeutic option for many hematopoietic malignancies
as well as non-malignant pathologies. HSCT requires the
intravenous infusion of a minimum of 2x10° CD34* stem
cells/kg recipient body weight; however, a dose of 5x10° CD34*
cells’/kg is considered preferable for early, consistent, and
long-term multilineage engraftment''''®. Each failure or delay
to collect sufficient hematopoietic stem/progenitor cells (HSPCs)
to proceed to transplantation extends the time of high-dose
chemotherapy and increases the risk of disease progression in
cancer patients.

The need to optimize mobilization regimens with regard to their
stem cell yield, side effects and risk profile, cost-effectiveness,
and availability for different groups of patients, as well as the
need to better understand the communication between HSCs
and their niche, continues to drive mobilization research. In this
review, we discuss how deciphering the events induced by the
most commonly used mobilizing agent, granulocyte colony-
stimulating factor (G-CSF), led to the development of new
mobilization strategies. We highlight the most recent findings
and how we envision the newly discovered mobilization
approaches will impact mobilization in the clinic. Alternative
applications for mobilization are also reviewed. Lastly, we
identify open questions and controversies, prospective directions,
and how recent technical advances can be implemented within
mobilization research.

Current mobilization regimens

G-CSF-mobilized blood is the preferred graft source for virtually
all autologous and an increasing majority of allogeneic HSCTs
owing to its generally higher stem cell content, reduced rates
of graft failure, and better overall survival as compared to the
BM™>'"120 After 4-5 days of treatment with G-CSF, circulat-
ing HSPCs increase an average of 50-100-fold'*"'** as a result of
HSPC pool expansion followed by mobilization. The latter is
achieved through targeting the two major pathways involved in
stem cell retention: chemokine receptor CXCR4- and integrin
VLA4-mediated signaling’””'**'**. Attenuation of these pathways
is achieved on the level of gene expression as well as through
proteolytic cleavage’'**-'*’. While the role of specific proteases
involved in the latter, such as neutrophil elastase, cathepsin G,
and MMP9, remains controversial'”*'* the cell surface protease
dipeptidyl peptidase 4 (DPP-4, CD26), which cleaves and
inactivates the CXCR4 ligand CXCL12, has indeed been shown
to be essential for G-CSF-induced mobilization’””*.

Shortcomings of G-CSF such as the slow mode of action'”",
side effects, and contraindications’'*> as well as significant
heterogeneity in the mobilization response'”’ explain the quest for
alternative mobilizing agents'*. Plerixafor (AMD3100), a small
molecule bicyclam CXCR4 antagonist, is FDA approved for
autologous stem cell mobilization in non-Hodgkin’s lymphoma
and multiple myeloma (MM)"**'%. When combined with G-CSF,
plerixafor increases CD34* concentration 2-3-fold compared to
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G-CSF alone'**'*. However, a significant disadvantage of pler-
ixafor is its cost, adding $25,567 per patient compared to G-CSF
alone'*. Furthermore, up to 24% of patients undergoing autolo-
gous stem cell transplantation for lymphoma receiving pler-
ixafor and G-CSF still fail to collect >2x10° CD34* cells/kg
in 4 days of apheresis'**'*. A recent economic analysis deter-
mined that reducing apheresis by 1 day can potentially decrease
medical costs by $6,600"*". Thus improved/alternative mobilizing
agents and strategies are needed.

The long-standing view has been that both HSPC expansion and
mobilization are necessary for clinically relevant mobilization.
In line with this view, mobilization with CXCR4 or VLA4
antagonists alone fails to achieve numbers that would allow their
use without G-CSF, despite promising potential in preclinical
models™ ¢! #3:135-140 Very recent findings by our group and others
challenge this notion and suggest that efficient recruitment of
long-term, serially repopulating HSCs can be accomplished
within minutes’’®, Indeed, CXCR4 or VLA4 blockade, when
combined with the stimulation of a different chemokine recep-
tor, CXCR2, results in extremely rapid and potent HSC mobi-
lization in mice with a repopulating capacity similar or even
superior to G-CSF-recruited HSCs’"*. These observations show
that major changes in cellular composition or localization are
not required for efficient mobilization. They further highlight
the existence of different HSC species that, upon disruption of
certain adhesive tethers, can egress from the BM very rapidly with
kinetics that appear incompatible with a prior requirement for
changes in gene expression.

The key role of the stromal compartment in G-CSF-induced
mobilization has long been appreciated'**'**'*!. Following activa-
tion of their G-CSF receptor, BM monocytes/macrophages, the
most prominent hematopoietic component of the BM stroma'*~'*,
downregulate several retention molecules, including the major
CXCR4 ligand, CXCL12, and several VLA4 ligands by non-
hematopoietic stroma, resulting in HSPC egress'**'**~'*/. Absence
of the G-CSF receptor on monocytes/macrophages abrogates the
G-CSF-induced mobilization response'*’, whereas the cytokine
oncostatin M is thought to mediate communication between
monocytes and non-hematopoietic stroma'*'*, Interestingly, rapid
mobilizing agents in general, and chemokines and chemokine
receptor antagonists in particular, are assumed to act on hemat-
opoietic cells directly. Our recent findings challenge this view and
suggest a critical contribution of stromal (endothelial) CXCR2
targeting upon rapid HSC mobilization by the combination of
the CXCR2 ligand truncated Gro-beta (tGro-f) and a VLA4
antagonist”. Since CXCR2 is absent from the HSPC surface™,
CXCR2-expressing neutrophils have long been assumed to be
the responding cell. Upon stimulation with CXCR2 agonists,
neutrophils release proteases that cut adhesive interactions
between HSPCs and their niche®*'"*%°, Yet CXCR2 within
stroma was sufficient to induce mobilization with tGro-f and
a VLA4 antagonist’’, pointing towards changes in endothelial
layer permeability’”' as well as crosstalk between endothelia
and neutrophils as the “priming” events triggered by CXCR2
activation that boost VLA4 antagonist-induced HSPC egress
(Figure 2).
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Figure 2. Mobilization priming effects of CXCR2 stimulation. Upon activation of the CXCR2 receptor on the surface of neutrophils (NE)
and/or endothelial cells (EC), a reciprocal stimulation of the cells occurs that is critical for the subsequent boost of mobilization with a VLA4 or
CXCR4 antagonist. Augmented mobilization appears to be a result of increased permeability of the endothelial layer together with other cell
contact mediated or soluble factors derived from CXCR2-stimulated cells that reduce hematopoietic stem/progenitor cell (HSPC) retention.
Additional inhibition of the VLA4 or CXCR4 receptor results in efficient targeting of the very primitive, serially repopulating HSPCs retained
in the bone marrow (BM) primarily via VLA4 or CXCR4 signaling, respectively. The rapid kinetics of CXCR2 agonist + VLA4 or CXCR4
antagonist-induced mobilization preclude major molecular or cellular changes prior to the BM egress and rather suggest a close proximity of

the primitive HSPC fraction to the BM sinusoids.

Development of alternative HSPC mobilization
regimens and grafts

As we continue to learn about the events and mechanisms
regulating HSPC egress, we approach the ultimate goal of devel-
oping an “optimal” mobilization strategy to collect sufficient
numbers of primitive stem cells with superior properties within
a day or two. In contrast to the days when clinical observations
determined the applicability of a mobilization approach, edu-
cated and targeted designs are becoming the basis for the clinical
development of mobilizing agents. In addition to the quan-
tity and fitness of the HSPCs, as reflected in their engraftment
capacity, the immunogenic properties of the graft (i.e. the graft-
versus-host disease [GvHD] profile) are an important feature
requiring optimization, potentially at the cost of stem cell
numbers. For example, a substantially reduced incidence of
GvHD is observed upon transplantation of CXCR4 antagonist-
mobilized grafts, possibly due to co-mobilization of a specific
population of dendritic cells (DCs) with immunomodulatory
properties, plasmacytoid DCs'*>>!53 Along the same lines,
grafts mobilized with pegylated G-CSF were superior to standard
G-CSF in that they were associated with less GYHD"**'>° while
graft-versus-leukemia (GvL) effects were improved through
mobilization of invariant natural killer T (iNKT) cells'”. Sus-
ceptibility of the mobilized HSPCs to further molecular manipu-
lation, e.g. using gene therapy, is another important criterion
when defining the “optimal” mobilization strategy. Lastly, if
proven to be suitable for mobilized HSPCs, recently described
methods for ex vivo expansion of HSCs'* are expected to shift
the emphasis on HSPC quality over quantity even further.

Studies with CXCR4 and VLA4 antagonists, tested in VLA4
and CXCR4 knockout mice, respectively, implied an inde-
pendence between the two axes'* """, This suggests that sub-
sets of HSPCs are being retained in the BM by either CXCR4

or VLA4. Combined with the knowledge of the complex-
ity and multiplicity of events induced in the course of G-CSF
mobilization'”*!'*, co-existence of these (and possibly other)
functionally distinct HSPC populations suggests combinato-
rial mobilization approaches as the best alternatives to G-CSF.
Thus, the small molecule Me6TREN reportedly inhibits CXCR4
and VLA4 signaling simultaneously, possibly through upregula-
tion of the protease MMP9'*. However, given the controversy
regarding the role of MMP9 for mobilization'*, other approaches
should be explored. In addition to cell-intrinsic HSPC
retention pathways, disruption of endothelial layer integrity, along
with the endothelial cell activation and subsequent crosstalk
between endothelial and mature hematopoietic cells, should
be included in designing “optimal” mobilization. Recent data
suggest that Viagra (sildenafil citrate), a phosphodiesterase
type 5 (PDES) inhibitor which blocks the degradation of cyclic
GMP in the smooth muscle cells lining blood vessels, resulting
in vasodilation, can synergize with plerixafor to rapidly mobilize
stem cells in mice'".

Various techniques for ex vivo graft manipulation (e.g. T cell
depletion and CD34 enrichment'®~'**) have been developed that
entail extended periods during which the HSPCs stay outside
of their natural environment and therefore, unsurprisingly,
exhibit reduced stem cell capacity'®'*. From further in-depth
analyses of differentially mobilized blood (see below), we expect
to learn not only how to target specific HSPC populations but
also how to mobilize HSPCs without a concurrent mobilization of
mature cells, T-cells in particular. In general, a priori cell
type-specific targeting remains challenging because of the high
conservation of migratory and retention pathways between
different hematopoietic cell types. Nevertheless, selective HSPC
mobilization represents an intriguing goal that would help reduce
additional graft manipulation.
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Mobilization beyond stem cell collection
Chemosensitization

In addition to supplying HSPCs with the factors required for
their normal development, the BM microenvironment is also a
refuge for malignant cells, allowing them to escape cytotoxic
therapies and cause disease relapse'*'**. This provides a ration-
ale for targeting the interactions between tumor cells and the BM,
with the goal of sensitizing them to therapy. Pathways respon-
sible for the anchorage and survival of malignant cells
and resistance to chemotherapy largely overlap with those of
normal HSPCs'®!'®. Accordingly, blockade of CXCR4 and
VLA4 signaling and/or G-CSF was tested in conjunction with
chemotherapy in pre-clinical models of acute myeloid leukemia
(AML'"-7%) " acute'' and chronic'”® lymphoid leukemia,
and MM'”. Moreover, the FDA-approved CXCR4 antagonist
plerixafor has been tested as a chemosensitizing agent alone
and in combination with G-CSF in patients with relapsed
AML'"%'"_While the mobilizing capacity varied substantially, an
overall benefit from adding mobilizing agent(s) to chemotherapy
has been reported, prolonging survival and decreasing tumor
burden!”7>17%150 or even eradicating disease'””. The benefits of
this approach in AML and other hematologic malignancies, in
spite of these preclinical as well as early clinical studies, remain
both unclear and controversial.

Conditioning

As HSPCs are pharmacologically driven from the BM into
circulation, the temporarily unoccupied spaces (niches) in theory
become available to new cells, e.g. the HSPCs introduced into
a mobilized recipient during transplantation. The utility of
mobilization for non-cytotoxic and on-target conditioning prior
to HSCT is supported by the fact that mobilized cells return to
the BM after spending some time in peripheral circulation, as
shown in studies of parabiotic mice'®!. Yet virtually all attempts
at mobilization alone for conditioning of an adult host before
HSCT have been unsuccessful (Karpova and Rettig, unpub-
lished data). It is unclear whether the reason is that the cells
introduced exogenously are inherently disadvantaged (less fit?)
compared with endogenously circulating HSPCs or whether
the mobilizing agent interferes with the repopulating capacity
of the transplanted cells. An intriguing alternative explanation
is that owing to targeting/recruitment of a specific population
during the mobilization process, and by extension because of
emptying of very specific niches, only HSPCs mobilized with
the same mobilizing regimen are able to engraft BM niches that
become available. Interestingly, since BM- or fetal liver-derived
HSPCs have been used to engraft mobilized recipients (Karpova
and Rettig, unpublished data), the possibility that a qualita-
tive rather than quantitative approach might lead to success-
ful, persistent engraftment is untested. Given recent reports of
successful conditioning using antibody—drug conjugates target-
ing the pan leukocyte marker CD45'%> and the CD117-targeting
antibodies'**~'®, or a cocktail of monoclonal antibodies deplet-
ing CD47-expressing cells along with T cells, NK cells,
and HSPCs'®, mobilization-based conditioning may not be
a promising approach in postnatal recipients. However, fetal
HSPC mobilization with a VLA4 antagonist followed by
in utero HSCT results in increased donor HSC homing to the fetal
liver and enhanced long-term allogeneic engraftment in mice'’.
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Therefore, mobilization-based conditioning regimens might be
applicable for in utero HSCT.

Gene therapy

Manipulating HSCs to correct mutations that cause inherited
diseases of the hematopoietic system such as sickle cell anemia
and beta-thalassemia represents a potential cure, with recent
advances in gene therapeutic approaches (CRISPR-Cas9,
TALEN, and ZFN)'®-'%3 allowing sustainable correction of the
genetic defects. Autologous HSCT is the method of choice in this
setting, whereby instead of extracting HSCs for subsequent
ex vivo manipulation, stem cells are mobilized into the
circulation and subjected to gene therapy in situ'"'°. As
discussed above, HSC collection and ex vivo editing inevitably
leads to a diminished stem cell capacity, which can be avoided
by editing the cells in the peripheral blood. Proof of principle
for mobilization-based gene therapy was reported following
mobilization with G-CSF plus a CXCR4 antagonist, with sus-
tained expression of the introduced transgene over a period
of 5 months'”°. We believe this approach should be developed
further, e.g. by using it in combination with mobilization
strategies to preferentially recruit stem cells with superior
repopulating capacity into the circulation. In addition, these
cells may be more susceptible to therapeutic gene editing.
Apart from its obvious therapeutic benefit, this approach might
become useful for studying functional differences between HSCs
that have been mobilized into the circulation and returned to
the BM and HSCs that remain in the BM niche.

Biology of the hematopoietic niche

The discovery of compounds and pathways that enable HSPC
displacement from the niche has provided important insights
into the regulation of HSPC trafficking and maintenance. For
example, detailed analysis of the mechanisms underlying
G-CSF-induced mobilization was indispensable for establishing
monocytes/macrophages as crucial components of the BM niche
and understanding their crosstalk with the non-hematopoietic
stroma'“*'*>"*7. More recent studies demonstrated that bone
marrow dendritic cells regulate endothelial cell function in part
through CXCR2 signaling, resulting in HSPC mobilization
and loss of bone marrow macrophages'”'. Similarly, studies with
the CXCR?2 ligand tGro-f disclosed the role of another mature
leukocyte population, neutrophils, in HSPC trafficking”*"°.
Together with the observation that the circadian release of
HSPCs into the circulation is synchronized by daily return of
aged neutrophils from the circulation into the BM'’, these
findings implicate neutrophils as critical mediators of HSPC
localization at steady state and upon enforced egress. On the
molecular level, the recognition that all physiological, patho-
logical, and pharmacological mobilization stimuli described
to date interfere with VLA4 or CXCR4 signaling or both
(Figure 1) highlights the key roles of these two pathways in
HSPC trafficking.

Open questions and future directions

Homeostatic HSPC trafficking

The physiological function and regulation of daily HSPC egress
remain elusive. We know that, similar to their mature coun-
terparts, the release of HSPCs from the BM follows a circadian
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rhythm'"“*"% with sympathetic nervous system-derived adren-
ergic signals acting through beta(3)-adrenergic receptors on
BM stroma to downregulate CXCL12 signaling (and therefore
retention'*'"). While we understand the purpose of migration of
more differentiated hematopoietic cells out of the BM to undergo
maturation, encounter antigens, proliferate, etc., the role(s) of
HSPCs found in blood and other peripheral tissues is specula-
tive. Exchange between different parts of the hematopoietic
system has been suggested to be mediated by homeostatic
HSPC migration™'** and is supported by observations from
parabiotic”'***" as well as partially irradiated”’'” mice. An
alternative explanation implies a possible immune surveillance
function of HSPCs that have also been found in the lymphoid
system”” and non-hematopoietic tissues with crucial immune
functions such as the intestine’”. Furthermore, expression of
MHC class II molecules, otherwise restricted to professional
antigen-presenting cells, has been detected in HSPCs*">%.

Prediction of HSPC mobilization success and failure

With regard to inadequate HSPC mobilization, one must
distinguish between disease- and/or treatment-associated failure
and failure of G-CSF mobilization in healthy donors. Of note,
less than 1% of “healthy allogeneic donors” fail to collect an
optimal (5x10° CD34/kg) or minimal (2x10° CD34/kg) amount
of CD34* cells after a standard 4-5-day regimen of G-CSF
mobilization'*. This relatively uncommon event may represent
the extreme heterogeneity of HSPC mobilization seen among
the general population with no known medical conditions or
prior exposure to chemotherapy or radiation. Thus, CD34 counts
between 5 and 500 cells per ul blood have been reported'”'.
The general consensus, derived from studies of poor- and well-
mobilizing mouse strains’*", as well as repetitive mobiliza-
tion of healthy donors'*'*", is that genetic factors determine the
mobilization response in healthy individuals. However, single
nucleotide polymorphisms in any of the obvious candidate
genes (including CXCL12°"%, VCAMI1°''?"?) and CD44°'>*") do
not correlate with mobilization efficacy in response to G-CSF or
plerixafor in larger population studies'**’'**°. Knowledge of
high or low HSPC mobilization potential could be translated into
donor screening prior to mobilization to help predict response
and potentially to guide the best mobilization strategy.

The probability of mobilization failure in patients directly
correlates with the amount and extent of prior cytotoxic
exposure’'“'*. Other clinical and demographic features of normal
donors and patients undergoing autologous stem cell mobilization
that predict poor mobilization include age’'’', resting platelet
counts’'**, and a history of diabetes mellitus®'. Failure rates
have decreased since the CXCR4 antagonist plerixafor was
approved for the mobilization of HSPCs for MM and non-
Hodgkin lymphoma patients when given in conjunction with
G-CSF'**-'*. However, given that the diminished mobilization
response results from the substantially reduced HSPC pool in
these patients’, approaches that both potently expand HSPCs and
induce their egress into the circulation are needed. We recently
reported that the administration of CXCR4 antagonists to mice
by subcutaneous continuous infusion for 1-4 weeks induces a
robust mobilization response that significantly exceeds the
mobilization achieved with bolus drug injections and was
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25-50-fold greater than a 5-day course of G-CSF"*. Moreover,
continuous infusion of CXCR4 inhibitors leads to a two- to
four-fold expansion of the HSPC pool in the bone marrow that
exhibits a distinct repopulating advantage when tested in serial
competitive transplantation experiments. Similarly, others have
shown that the FMS-like tyrosine kinase 3 ligand (FIt3L)
stimulates the expansion and mobilization of HSPCs in animals
and humans®*** .

Profiling of differentially mobilized blood

Gene expression profiling of the HSPC populations mobi-
lized with different agents has been performed, mostly using
microarrays’ . Not unexpectedly, increased relative expres-
sion of genes involved in lymphoid development were detected
in grafts mobilized with a CXCR4 antagonist alone and in
conjunction with G-CSF as compared to G-CSF alone’*. A closer
similarity between BM-resident and CXCR4 antagonist-
mobilized HPSCs as compared to BM-resident versus G-CSF-
mobilized HSPCs had been proposed to be due to the fast
kinetics of CXCR4 antagonist-induced mobilization. However,
the opposite was detected when comparing the three, with BM-
resident HSPCs showing a profile much closer to that of
G-CSF-mobilized HSPCs”’. It would appear from these studies
that CXCR4 disruption recruits a specific rather than representa-
tive fraction of the BM HSPCs. By contrast, VLA4 antagonist
+ tGro-B-mobilized HSPCs have a profile very similar to that
of BM-resident as well as G-CSF-mobilized HSPCs, indicat-
ing that rapid kinetics of mobilization can indeed be associated
with an HSPC profile closely related to BM-resident HSPCs”’.

Single cell RNA sequencing (scRNA-seq) is currently revolu-
tionizing the field of hematopoietic cancer research by defining
the heterogeneity of malignant cells and the supporting network
of non-malignant cells*”’~**. Naturally, scRNA-seq analysis and
comparison of differentially mobilized HSPCs will provide
key insights and may strengthen the notion that they are com-
prised of different HSPC subsets rather than representing a
homogenous population with an overall altered expression
profile depending on the agent used. Moreover, we anticipate
that concurrent analysis of peripheral blood and BM HSPC
compartments will shed new light on the unique identity and
specific origin of mobilized cells that respond to specific
mobilizing agents. In general, single cell characterization of
mobilized blood/HSPCs is expected to be particularly informa-
tive with rapid-mobilizing agents, where the kinetics of the
cell recruitment would not allow for major changes of the cell
identity or localization prior to BM egress.

Interestingly, despite the more elaborate isolation process for
non-hematopoietic as opposed to hematopoietic cells, a detailed
characterization of the stromal populations using single cell
approaches has been published already”'~***. However, the
contribution of the newly identified populations to HSPC
retention remains unexplored. Ultimately, simultaneous analysis
of stroma and HSPCs based on their proximity using spatial
transcriptomics promises to reveal potentially unique relation-
ships between certain stromal and hematopoietic cell types and
thereby define the biological roles of the long-argued diversity
within the hematopoietic niche.
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Summary

Pharmacologically induced egress of HSPCs from the BM has
become an indispensable tool in HSCT with all autologous and
over 80% of allogeneic transplants performed with mobilized
blood. Mechanistic insights gained from studying the complex
chain of events induced during mobilization with G-CSF have
paved the way for the rational design of alternative mobilization
approaches without the inherent shortcomings of G-CSF such as
slow mode of action and side effects. Similar to the recruitment
of healthy HSPCs into the circulation, targeting of various BM
retention pathways has been explored as a means to sensitize
leukemic cells and thereby improve the efficacy of chemo-
therapy. Moreover, mobilization of HSPCs as a non-cytotoxic
conditioning strategy as well as for gene therapy represents
two other applications of mobilization beyond mere collection
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of a stem cell graft. Understanding the physiological function
of homeostatic HSPC trafficking and identifying the genetic
determinants of mobilization efficiency, along with character-
izing the differentially mobilized HSPC populations on a single
cell level, represent some of the directions of future mobilization
research.
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