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Aberrant structural and functional
connectivity and neurodevelopmental
impairment in preterm children
Cynthia E. Rogers1* , Rachel E. Lean2, Muriah D. Wheelock2 and Christopher D. Smyser3

Abstract

Background: Despite advances in antenatal and neonatal care, preterm birth remains a leading cause of
neurological disabilities in children. Infants born prematurely, particularly those delivered at the earliest gestational
ages, commonly demonstrate increased rates of impairment across multiple neurodevelopmental domains. Indeed,
the current literature establishes that preterm birth is a leading risk factor for cerebral palsy, is associated with
executive function deficits, increases risk for impaired receptive and expressive language skills, and is linked with
higher rates of co-occurring attention deficit hyperactivity disorder, anxiety, and autism spectrum disorders. These
same infants also demonstrate elevated rates of aberrant cerebral structural and functional connectivity, with
persistent changes evident across advanced magnetic resonance imaging modalities as early as the neonatal
period. Emerging findings from cross-sectional and longitudinal investigations increasingly suggest that aberrant
connectivity within key functional networks and white matter tracts may underlie the neurodevelopmental
impairments common in this population.

Main body: This review begins by highlighting the elevated rates of neurodevelopmental disorders across domains
in this clinical population, describes the patterns of aberrant structural and functional connectivity common in
prematurely-born infants and children, and then reviews the increasingly established body of literature delineating
the relationship between these brain abnormalities and adverse neurodevelopmental outcomes. We also detail
important, typically understudied, clinical, and social variables that may influence these relationships among
preterm children, including heritability and psychosocial risks.

Conclusion: Future work in this domain should continue to leverage longitudinal evaluations of preterm infants
which include both neuroimaging and detailed serial neurodevelopmental assessments to further characterize
relationships between imaging measures and impairment, information necessary for advancing our understanding
of modifiable risk factors underlying these disorders and best practices for improving neurodevelopmental
trajectories in this high-risk clinical population.
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Preterm birth remains a major public health issue due to
its high incidence combined with the frequency of neu-
rodevelopmental impairments among surviving infants.
In this review, we begin by highlighting the adverse ef-
fects of prematurity on trajectories across neurodevelop-
mental domains. Next, we discuss the increasingly
established relationship between aberrant brain develop-
ment and preterm birth, with particular focus on the ad-
vanced magnetic resonance imaging (MRI) techniques
increasingly utilized to delineate the changes in cerebral
structural and functional connectivity related to prema-
turity. We then review selected studies from the extant
literature which suggest that prematurity-associated
changes in cerebral structural and functional connectiv-
ity may underlie the neurodevelopmental impairments
common among prematurely born children and adults.
Finally, we conclude by detailing relevant clinical and so-
cial variables that may influence these relationships in
this high-risk clinical population.

Prematurity and neurodevelopmental disorders
Premature birth affects more than 500,000 newborns in
the USA each year, occurring in approximately 10% of
all births in 2016 [1]. Survival rates for these infants have
improved dramatically due to advances in perinatal and
neonatal care. In contrast to this improvement in mor-
tality, long-term neurodevelopmental outcomes have not
improved, with preterm birth remaining a leading cause
of neurological disabilities in children [2]. These surviv-
ing preterm children face a range of neurodevelopmental
and neurobehavioral challenges [3–7], with more than
30% experiencing impairments across multiple neurode-
velopmental domains [8]. Children delivered very pre-
term (VPT; born at ≤ 32 weeks’ gestation) typically face
disproportionate risk, with infants born earliest facing the
highest rates of developmental disability [9]. However,
these adverse effects are not universal, with widely varied
outcomes among preterm children with similar neonatal
clinical phenotypes. Critically, the associated costs in car-
ing for these children are enormous, amounting to more
than $25 billion annually in the USA alone [10].
Among preterm children, prominent neurodevelop-

mental difficulties are seen across motor, cognitive,
language, and social-emotional domains [11–14]. These
areas warrant particular focus due not only to their crit-
ical functional importance, but also to their significant
impact on quality of life, including poor peer relation-
ships [15] and academic underachievement [16–18].
Over 50% of children diagnosed with cerebral palsy are
born preterm, with the greatest likelihood among those
born at the earliest gestational ages [19]. An even larger
proportion of preterm children experience other more
subtle fine and gross motor problems, with approxi-
mately 40% displaying mild to moderate motor

impairment [12]. Similarly, 15–20% of intellectual dis-
abilities and 10–15% of other learning disorders are at-
tributable to preterm birth. VPT children obtain Full
Scale Intelligence Quotient (IQ) scores up to 10 points
lower than term children [20, 21]. Furthermore, VPT
children consistently perform worse than term-born
peers on executive function tasks assessing planning, flu-
ency, working memory, and response inhibition [22–24].
Preterm children also demonstrate problems in selective,
sustained, and executive attention, with up to 41% of
VPT and 62% of extremely preterm (born at < 28 weeks’
gestation) children in the impaired range [25–28]. Fur-
ther, large effect sizes have been reported for executive
shifting and divided attention [25, 26, 29], suggesting
VPT children particularly struggle with top-down con-
trol of attention processes. In addition, approximately
35% of children born between 31 and 34 weeks’ gestation
demonstrate language impairments at preschool-age,
with rates as high as 48% for children born at less than
30 weeks gestation [30]. Deficits in both receptive and
expressive language domains persist into school age, af-
fecting skills such as word finding, perception, grammar,
dialog, and linguistics [30–34]. Critically, across each of
these neurodevelopmental domains, preterm birth re-
mains a strong risk factor for impairment even after ac-
counting for sociodemographic risk [19, 35].
More recently, elevated rates of social-emotional deficits

and psychiatric disorders have been recognized among
children born preterm, with increasing numbers of reports
detailing the “preterm behavioral phenotype” [36], com-
prised of inattention, anxiety, and social-communication
deficits [37]. These comorbid symptoms and the related
disorders of Attention-deficit hyperactivity disorder
(ADHD), anxiety, and autism spectrum disorder (ASD)
are two to four times more common among preterm chil-
dren [5, 38–43]. As with other neurodevelopmental im-
pairments, children born VPT are at greatest risk for these
social-emotional impairments and psychiatric diagnoses
[36]. Further, studies examining the trajectory of these
symptoms demonstrate their persistence into adolescence
[5, 44–49]. Importantly, rates of these disorders remain el-
evated even after accounting for the increased frequency
of other neurodevelopmental disabilities, including motor
and intellectual impairments [36].

Assessment of functional and structural
connectivity in preterm children using MRI
The timing of key interrelated neurobiological processes
underlying development of early cerebral functional and
structural connectivity make the preterm brain uniquely
vulnerable to the perturbations that have been associated
with common neurodevelopmental disorders. Most notably,
this includes processes such as neuronal migration, synap-
togenesis, cortical folding, emergence of thalamo-cortical
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connections, and myelination [50]. Early investigations of
children born preterm employed conventional MRI to
characterize the alterations in cerebral structural develop-
ment associated with preterm birth [51–55]. These pre-
dominantly cross-sectional investigations focused on
metrics of brain growth, regional brain volumes, and cor-
tical folding, demonstrating atypical patterns of maturation
throughout the brain across techniques in preterm children
[56–58]. However, these modalities provided only limited
ability to elucidate the alterations in cerebral development
that lead to neurodevelopmental deficits; information crit-
ical for understanding the pathway to disability.
Advanced MRI techniques, including resting state-

functional MRI (rs-fMRI) and diffusion MRI (dMRI),
provide powerful, non-invasive tools with high sensitivity
for delineating alterations in the developing brain.
rs-fMRI is used to detect temporal correlations in spon-
taneous, low-frequency fluctuations in blood oxygen
level-dependent signal, thereby identifying functional
connectivity networks from data acquired without re-
quiring subjects to perform tasks during acquisition
[59–61]. These resting state networks incorporate gray
matter regions known to be anatomically connected and
co-activated by task performance [60, 62, 63]. dMRI
characterizes cerebral structural connectivity through
quantification of water displacement within the white
matter microstructural architecture [64–66]. In many
ways, these modalities are well-suited for investigations
of infants and pediatric populations; from a study lasting
minutes in duration on an infant at rest, robust mea-
sures of global functional and structural connectivity can
be obtained. Further, both modalities have been used
successfully to investigate cerebral connectivity in VPT
adults and older pediatric populations, demonstrating
atypical connectivity patterns which correlate with neu-
rodevelopmental disability [57, 67–71].
Unique methodological challenges have now been over-

come to successfully study neonates and young children
using rs-fMRI and dMRI, including scan sequence specifi-
cation, scanning of non-sedated subjects, effects of small
brain sizes on atlas registration, and development of data
processing streams [72–75]. Our group and others have
subsequently used these techniques to identify immature
forms of multiple canonical resting state networks and
white matter tracts throughout the brain as early as 26
weeks postmenstrual age (PMA). These systems reflect
the functional and structural topography of the developing
brain, gradually maturing with advancing age [74]. Our
recent applications of rs-fMRI and dMRI demonstrate
infants possess a functional and structural network archi-
tecture similar to that described in adults, with maturation
rates emulating known histological evidence regarding
brain development [74, 76, 77]. For example, networks
(e.g., somatomotor, auditory, visual networks) and tracts

(e.g., corticospinal tracts, optic radiations) in areas of the
brain known to develop early demonstrate mature top-
ology by term equivalent PMA. In contrast, networks (e.g.,
default mode [DMN], frontoparietal [FPN], cingulo-oper-
cular [CO] networks), and tracts (e.g., cingulum bundle,
uncinate) located in higher-order association cortices in-
volved in top-down control of emotion regulation, atten-
tion, and cognition do not demonstrate adult-like
topology until later in life.
Further, these methods are sensitive to the changes in

functional and structural connectivity associated with
premature birth (Fig. 1). Across rs-fMRI investigations,
infants born prematurely demonstrate similar overall
resting state network topography to term-born infants
scanned at comparable PMA, though with weaker in-
trinsic brain activity. The magnitude of these differences
in network amplitude and dimensionality differ by net-
work and are typically most prominent in those located
in higher-order association cortices [74, 77, 78]. Infants
with forms of white matter injury common in preterm
populations (e.g., intraventricular hemorrhage, cystic
periventricular leukomalacia) demonstrate aberrant net-
work development, dependent upon severity and prox-
imity to the injury site [79]. Interrelated investigations of
structural connectivity using dMRI also demonstrate
comparable regionally specific differences in gray and
white matter microstructural development between pre-
term and term-born infants [80–86]. Across these stud-
ies, prematurely born infants demonstrate delayed white
matter tract development, with susceptibility to specific
clinical factors (e.g., antenatal steroids, white matter in-
jury) also reported. Further, these neuroimaging data are
conducive to technically sophisticated analysis ap-
proaches designed to investigate complex patterns in
neuroimaging data, such as graph theory and machine
learning [76, 87–91]. Use of these methods in neonates
and older pediatric populations have demonstrated the
importance of connectivity within and between networks
for differentiation of term- and prematurely born infants
and continuous measure (i.e., birth gestational age) pre-
diction [92–94]. These studies provide converging lines
of evidence suggesting neurodevelopmental impairment
may directly correlate with disruptions in specific struc-
tural and functional systems.

Prematurity-related changes in functional and
structural connectivity and developmental
impairment
There is a small, but burgeoning literature investigat-
ing the relationship between cerebral functional and
structural connectivity changes and motor, cognitive,
language, and social-emotional outcomes in prema-
turely born children [54, 58, 81, 95–103]. For brevity,
across each of these domains, we highlight
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representative studies which have served to increas-
ingly identify the links between measures of aberrant
brain connectivity and adverse neurodevelopmental
outcomes, beginning during the neonatal period and
extending into adulthood. As the methods for applica-
tion of the modality were established earlier, many of
these studies utilized dMRI, though an increasing
number of recent studies also include rs-fMRI.
Further, many of these investigations have been
cross-sectional and focused on older populations,
though longitudinal investigations including neonatal
data are now being published.

Motor
dMRI and rs-fMRI have been increasingly used to dem-
onstrate clinically relevant alterations in key white mat-
ter tracts and the motor network in prematurely born
infants and children. Recently, higher mean and radial
diffusivity within the splenium of the corpus callosum
and lower fractional anisotropy (FA) in the left inferior
temporal lobe in VPT infants, indicating delayed and/or
aberrant tract development, were associated with worse
motor functioning at age 2 years (Fig. 2) [81, 99]. Similar
longitudinal relationships persist into later childhood, as
VPT infants with decreased neonatal FA in inferior

Fig. 1 Functional connectivity differences between term and very preterm infants. a Left: group mean amygdala resting state-functional connectivity
correlation maps for full-term and very preterm infants scanned at term equivalent postmenstrual age; right: z scores demonstrating group differences
in connectivity obtained from voxelwise t test. Blue voxels denote areas with greater negative correlations and orange voxels denote areas with
greater positive correlations in term infants. Results thresholded using |z| > 2.25 and 53 contiguous voxels achieving whole-brain false-positive rate of
0.05. Adapted with permission from Rogers CE, et al. JAACAP. 2017; 56(2):157-166. b Left: group mean covariance matrices representing multiple
canonical RSNs for full-term and very preterm infants at term equivalent postmenstrual age; right: difference between these two results (term minus
preterm). Black stars denote cells with between group difference on two-tailed Mann-Whitney U test (p < 0.05; multiple comparisons uncorrected).
Adapted with permission from Smyser CD, et al. Cerebral Cortex. 2016; 26(1):322-333. c Functional connections important for differentiating full-term
versus very preterm infants using support vector machine-multivariate pattern analysis to analyze data from 244 regions of interest located throughout
the brain. Connections stronger in term infants are shown in green; those stronger in very preterm infants are in orange. The caliber of each
connection is weighted by the difference magnitude. Adapted with permission from Smyser CD, et al. NeuroImage. 2016; 136:1-9
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occipital and cerebellar regions demonstrated greater
motor impairments at age 7 years [100]. Further, at age 7,
VPT children with a higher degree of motor impairment
demonstrated reduced structural connectivity within the
precuneus, inferior parietal cortex, and temporal lobes in
a network-based analysis [101]. Comparable patterns are
present in adulthood, with preterm-born adults found to
have lower FA in the corpus callosum, inferior longitu-
dinal fasciculus, inferior fronto-occipital fasciculus, and
external capsule demonstrating worse visual-motor inte-
gration and motor abilities [104]. White matter injury
affects these brain-behavior relationships, with motor-im-
paired VPT children with moderate-severe white matter
injury demonstrating lower corpus callosum FA than VPT
children with normal motor outcomes at age 7 [105].
Further, children with periventricular leukomalacia and
gross motor impairment demonstrated reduced corticosp-
inal tract size [106] and decreased FA within the corti-
cospinal tract and cerebellar peduncles [107]. Similar
findings have been reported using rs-fMRI, with investiga-
tions of prematurely born children, adolescents, and
adults with spastic diplegic cerebral palsy due to periven-
tricular leukomalacia demonstrating aberrant motor net-
work connectivity in relation to term-born peers that
correlated with severity of motor impairment [108, 109].

Cognitive
Alterations in cerebral white matter microstructure identi-
fied using dMRI have also been linked to adverse cognitive
outcomes in preterm children [101, 110–112]. A recent
prospective longitudinal study including serial dMRI scans
in preterm infants at birth, term equivalent PMA and 2
and 4 years demonstrated that slower rates of change in
mean diffusivity (MD) of the internal and external cap-
sules from birth to age 4, also reflecting delayed and/or
aberrant tract development, were associated with poorer

intellectual ability at age 4 [112]. In addition to these neo-
natal findings, reduced FA in the uncinate fasciculus, cor-
ticospinal tract, cingulum bundle, inferior frontal
fasciculus, inferior frontal-occipital fasciculus, superior
longitudinal fasciculus, and anterior thalamic radiations
has also been associated with worse intellectual and/or ex-
ecutive function skills in preterm children and adolescents
[110, 111]. Further, VPT children with cognitive impair-
ment demonstrate reduced connections in a white matter
network including the thalamus, hippocampus, paracen-
tral lobule, posterior cingulate, parietal and occipital corti-
ces, and frontal and temporal gyri compared to
non-impaired preterm children in a network-based ana-
lysis of white matter structural connectivity graphs [101].

Language
Multiple studies have also linked aberrant structural and
functional cerebral development with poor language out-
comes in preterm children. A serial MRI study reported
that greater increases in axonal diffusivity of the left pos-
terior thalamic radiation from term-equivalent PMA to
age 4 years was associated with poorer receptive and ex-
pressive language ability at age 4 [112]. Higher MD in the
centrum semiovale and left superior temporal gyrus has
also been linked to poorer language outcomes in preterm
children [113, 114]. Consistent with these early childhood
findings, alterations in the uncinate fasciculus, splenium
of the corpus callosum, and anterior commissure ex-
plained up to 57% of variability in language outcomes
among preterm adolescents [115]. Recent rs-fMRI investi-
gations have also shown that preterm children and adoles-
cents demonstrate persisting alterations in language
networks compared to term-born peers [116]. Specifically,
preterm children demonstrate increased connectivity
strength between the language network and other regions
throughout the brain, with decreased right hemisphere

Fig. 2 Relationship between regional neonatal structural connectivity measures and developmental outcomes in preterm children. a Boxplots of
hemispheric asymmetry between neonatal left and right inferior temporal lobe white matter fractional anisotropy in very preterm infants scanned
at term-equivalent age and Bayley-III Motor Composite Categories based upon assessments performed at age 2 years, corrected. b Regression
plot demonstrating the relationship between fractional anisotropy in the left cingulum bundle at term-equivalent age and competence scores on
the Infant Toddler Social Emotional Assessment (ITSEA) tool at age 2 years, corrected. Note the association between more impaired (lower) ITSEA
competence scores and higher FA (p = .001). Adapted with permission from Rogers CE, et al. Pediatric Research. 2016; 79(1-1):87–95
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lateralization [117, 118]. These differences have been
related to language performance, with preterm adoles-
cents demonstrating weaker bilateral connectivity be-
tween left and right superior temporal regions also
demonstrating poorer language ability at age 14–15
years [115, 116], with other regionally specific rela-
tionships also reported [68, 119, 120].

Social-emotional
Symptoms of ADHD, anxiety, and ASD comprising the
preterm behavioral phenotype have also been linked to al-
tered neonatal structural and functional connectivity in
key brain regions [96, 121–142]. Recent evidence suggests
that preterm birth may predispose children to higher rates
of emotion dysregulation and social-emotional disorders
due to stress experienced during the NICU hospitalization
via changes in hypothalamic-pituitary-adrenal axis func-
tion [143–146] and brain connectivity [73, 147]. For in-
stance, alterations in connectivity of the glucocorticoid-
rich amygdala [148], which has a prominent role in emo-
tion processing [149–151], have been linked to NICU
stress exposure in preterm infants [147]. It has also been
shown that neonatal rs-fMRI measures between the amyg-
dala and regions of key cortical networks, including the
DMN, FPN, and CO, are related to variability in anxiety
symptoms in VPT infants at 2 years (Fig. 3) [152, 153].
Aberrant dMRI measures of white matter tracts related
to ADHD, anxiety, and ASD symptoms, such as fron-
tostriatal circuits and frontolimibic regions including
the cingulum and uncinate [96, 131–135], have also
been associated with these same symptom domains in
VPT children [81, 98, 154].
Overall, these lines of converging evidence relating func-

tional and structural connectivity to neurodevelopmental
outcomes in preterm children indicate that for early devel-
oping white matter tracts and functional networks there
are typically well-defined, regionally specific relationships
between aberrant connectivity and domain-specific neuro-
developmental impairment. In contrast, abnormalities in
tracts connecting key regions within functional networks

such as the DMN, FPN, and CO, including the corpus cal-
losum, uncinate, and cingulum, have been linked to im-
pairment across multiple domains. In combination, these
results suggest that alterations in structural connectivity
underlie the abnormal functional connectivity patterns
identified in preterm children, though in a tract- and
network-specific manner, and that these differences play a
critical role in the increased rates of adverse outcomes in
this high-risk clinical population. Further, this work high-
lights our evolving understanding of the interrelationship
between early structural and functional connectivity and
the deleterious effects of preterm birth on brain develop-
ment and neurodevelopmental outcomes.

Clinical variables linked to developmental
impairment in preterm children
While the highlighted research suggests that
prematurity-associated alterations in structural and
functional connectivity underlie neurodevelopmental im-
pairments in preterm children, other clinical and social
factors likely modify this risk. Two important consider-
ations include sociodemographic risk factors and herit-
ability. Preterm children experience higher rates of
sociodemographic risk factors known to be associated
with developmental deficits, with preterm birth dispro-
portionately occurring among mothers from socially dis-
advantaged backgrounds [155, 156]. The odds of VPT
delivery are 1.03–1.27 times higher in mothers living
below the poverty threshold [157–159], with these
mothers typically having low levels of education and
high levels of assistance from public health care pro-
grams [156, 160, 161]. Among VPT children, poverty is a
particularly strong predictor of cognitive, motor, and
language outcomes [162–171]. Other psychosocial risk
factors more common among preterm infants, including
maternal depression [172, 173], high parenting stress
[174, 175], and unsupportive maternal-child interactions
[176–178], have also been linked to adverse psychiatric
outcomes [179–187]. For example, we reported maternal
depression during early childhood-mediated risk for

Fig. 3 Relationship between neonatal amygdala functional connectivity and social-emotional outcomes in preterm children. Results from whole-
brain analysis investigating the relationship between neonatal functional connectivity of left amygdala and internalizing scores on the Infant
Toddler Social Emotional Assessment (ITSEA) tool at age 2 years, corrected. Images demonstrate higher total internalizing domain scores were
positively correlated with functional connectivity measures between the left amygdala and the medial prefrontal cortex, right anterior insula, and
superior frontal cortex. Results thresholded using |z| > 2.25 and 53 contiguous voxels achieving whole-brain false-positive rate of 0.05. Adapted
with permission from Rogers CE, et al. JAACAP. 2017; 56(2):157–166
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anxiety disorders associated with preterm birth [188]. In
addition, these same risk factors have been linked to
changes in brain development, with exposure to poverty
and unsupportive caregiving impacting functional and
structural brain development in offspring [186, 189–191].
Thus, preterm birth both increases the likelihood of ex-
periencing early psychosocial adversity and alters func-
tional and structural development of the neonatal
brain. Further, the developing brain may remain highly
vulnerable to continued alterations from repeated expo-
sures to psychosocial adversity extending beyond the
neonatal period.
Another key and understudied risk factor among pre-

term children is heritability. Studies investigating herit-
ability suggest that family background determines the
lower and upper limits of the range in which a heritable
and continuously distributed trait may be expressed, but
that neurodevelopmental disorders increase the pheno-
typic variability of trait expression during childhood
[192, 193]. For instance, maternal intellectual ability has
a direct influence on her children’s intellectual develop-
ment because it is a genetically based and heritable trait
[194]. Preterm children born to mothers with low levels
of intellectual ability may therefore be at higher risk of
poor outcomes. Indeed, our analysis of maternal intellec-
tual ability demonstrated that maternal IQ scores were
associated with both preterm and term child IQ and lan-
guage scores at age 5 years [195]. However, the associ-
ation between maternal IQ and child IQ and language
outcomes was weaker for preterm children, indicating
preterm birth itself was an important factor explaining
intellectual and language development. Further, herit-
ability is an important variable for social-emotional de-
velopment and psychiatric symptoms underlying the
preterm behavioral phenotype, as ADHD, ASD, and anx-
iety symptoms are all highly heritable [196–199]. In
some cases, the heritability of social-emotional symp-
toms may confound the relationship between prematur-
ity and social-emotional development. For instance,
substance-abusing mothers are more likely to both have
ADHD [200, 201] and anxiety [202] and to deliver pre-
term [203, 204]. A similar relationship could exist be-
tween the highly related variables of maternal depression
and both preterm delivery [205] and childhood anxiety
[206]. These findings highlight the need to assess psy-
chosocial risk factors and heritability among families in
all research investigating links between preterm birth
and neurodevelopmental outcomes.

Future directions and conclusions
Continued research remains necessary to both further
delineate the relationships between imaging measures
and neurodevelopmental impairment in prematurely
born children and better characterize the role of

modifiable risk factors such as psychosocial adversity in
this trajectory. While MRI affords several advantages for
studying these associations, including improved spatial
resolution and anatomic specificity, future investigations
may utilize other complementary modalities for asses-
sing brain development and function. These include
functional near infrared spectroscopy (fNIRS), which
measures hemodynamic contrasts [207–209] and elec-
troencephalography (EEG), which assesses the coherence
of cortical electrical activity and has been used to suc-
cessfully model brain connectivity-behavior associations
[210]. In addition, diffuse optical tomography (DOT) en-
ables measurements of functional connectivity which
align with rs-fMRI, though with a more limited field of
view [211, 212]. Limitations notwithstanding, these port-
able methods can be readily employed to perform serial
studies at the bedside, providing avenues for novel inves-
tigation by enabling the study of clinical populations of
interest unable to undergo MRI.
Future work should also focus on extending longitu-

dinal evaluations of preterm children across early child-
hood, leveraging recent advances in MRI acquisition and
analysis methods and incorporating advances developed
and implemented among other clinical populations. For
example, the Infant Brain Imaging Study has performed
longitudinal MRI scanning of infants at risk for autism
beginning at 6 months of age with repeat MRI scans at
12 and 24 months, reporting changes in both structural
and functional connectivity parameters utilizing longitu-
dinal analyses of brain development and innovative
brain-behavior analyses [127, 213]. More recently, the
UNC/UMN Baby Connectome Project (BCP), building
on sequence development from the Human Connectome
Project, is studying longitudinal brain development
across the first 5 years of life, including imaging
preschool-age children in an awake state [214]. The BCP
aims to provide innovative data regarding early typical
structural and functional brain development through im-
proved acquisition resolution, optimized diffusion se-
quences, and frequent longitudinal sampling across early
childhood. While substantive technical challenges re-
main, including best practices for studying children in
the setting of evolving tissue contrast and registration of
individual imaging data sets across multiple time points,
these methods are being increasingly established and can
be employed at most institutions.
Collectively, the studies reviewed here and elsewhere

[215] provide converging evidence suggesting neurode-
velopmental disabilities common in prematurely born
children directly relate to early disruptions and/or re-
modeling of specific functional and structural networks
[102]. Continued use of advanced neuroimaging tech-
niques in combination with detailed serial neurodevelop-
mental assessments as part of longitudinal studies of
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preterm brain development has great potential to advance
the field of developmental neuroimaging. Critically, these
studies will provide improved understanding of the aber-
rant trajectories of structural and functional connectivity
in prematurely born children and the role of these differ-
ences in adverse outcomes. Further, these investigations
will provide valuable insights into how psychosocial and
familial factors impact not only neonatal brain develop-
ment, but also the nature and evolution of subsequent
alterations during early childhood. Ultimately, this infor-
mation will prove valuable for both advancing our under-
standing of modifiable factors underlying these disorders
and defining best practices for improving neurodevelop-
mental trajectories in this high-risk population.
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