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MicroRNAs are short non-coding RNAs that play a crucial role in the regulation of gene

expression during cellular processes. The host-encoded miRNAs are known to modulate

the antiviral defense during viral infection. In the last decade, multiple DNA and RNA

viruses have been shown to produce miRNAs known as viral miRNAs (v-miRNAs) so as

to evade the host immune response. In this review, we highlight the origin and biogenesis

of viral miRNAs during the viral lifecycle. We also explore the role of viral miRNAs in

immune evasion and hence in maintaining chronic infection and disease. Finally, we offer

insights into the underexplored role of viral miRNAs as potential targets for developing

therapeutics for treating complex viral diseases.
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INTRODUCTION

Until the twenty first century, it was assumed that more than 95% of the eukaryotic genome is
“junk” DNA; however, the advent of next-generation sequencing and high throughput functional
screening has highlighted the regulatory functions of the non-coding genome. Around 50–85%
of the mammalian genome is transcribed, with at least some non-coding RNA transcript,
which includes microRNA (miRNA), siRNA, piwi-interacting RNA (piRNA), long non-coding
RNA (lncRNA), and circular RNA (circRNA) (1–4). In recent years, the role of miRNAs in
the development of immune responses in viral infections has been a subject of immense
research interest.

MicroRNAs are small RNAmolecules (18–22 nt) that play a crucial role in the regulation of gene
expression by binding to the 3′ untranslated region (3′UTR) of target messenger RNAs (mRNAs)
(5–7). miRNA-mRNA interaction results in mRNA degradation or translation inhibition, thereby
resulting in reduced gene expression, thereby modulating the biological function (8, 9). Various
studies indicate that miRNA can be derived from an intronic region of coding and non-coding
genes, an exonic region of non-coding genes, and intragenic regions (10, 11). In addition to the
hundreds of eukaryotic cellular miRNAs, miRNAs of viral origin (also known as v-miRNAs) have
been discovered that can function as post-transcriptional gene regulators to host as well as viral
genes (12, 13).

In this review, we summarize the miRNA-like non-coding RNAs encoded by DNA and RNA
viruses and their roles in the evasion of host immunity. Finally, we discuss the possible role of these
v-miRNAs as potential targets for developing therapeutics for the treatment of viral diseases.
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DISCOVERY AND ORIGIN OF VIRAL
miRNAs

Two different approaches have been used to identify v-miRNAs.
(i) The use of computational tools to predict the secondary
structure of the precursor of v-miRNAs (pre-v-miRNAs). This
approach usually results in a large number of false positives;
however, it can lead to the identification of less abundant
miRNA (14, 15). (ii) Sequencing of cloned small RNA molecules;
however, less abundant miRNA may be left out (15–18). The
first v-miRNAs were identified in 2004 in the Epstein-Barr virus
(EBV) by cloning the small RNAs from Burkitt’s lymphoma
cell line latently infected with EBV. Analysis of the genomic
region flanking the small RNAmolecules suggested characteristic
miRNA gene-like structures (19). The EBV-miRNAs miR-
BHRF1-1, miR-BHRF1-2 and miR-BHRF1-3 and miR-BART1
and miR-BART2 originated from two regions in BHRF1 and
BART mRNAs (19). To date, EBV is known to encode 44 v-
miRNAs from 25 double-stranded RNA precursors (20). Work
by Pfeffer et al. suggested that other DNA viruses might also
express miRNAs to modulate host and viral gene expression (19).
Notably, more than 250 v-miRNAs have been identified, and the
majority of them are accounted for in the DNA viruses of the
herpesvirus family (12, 21).

Studies have indicated that viruses utilize the cellular
machinery to encode miRNA. Similarly to eukaryotic miRNAs,
v-miRNAs are generated by the Drosha and Dicer machinery
(5, 22). The viral miRNA gene is transcribed by RNA
polymerase II (RNA pol II) or Pol III to generate primary
miRNA (pri-miRNA) that is then processed by a complex of
Drosha/DiGeorge syndrome (DGCR8) within the nucleus to
generate ∼70-nucleotide (nt) pre-miRNA. The pre-miRNA is
exported out of the nucleus by exportin-5, where pre-miRNA
is further processed by endonuclease Dicer to yield mature
miRNA duplex (21–25 nt). One strand of the duplex is loaded
into the RNA-induced silencing complex (RISC) containing
Argonaute 2 (Ago2). The miRNA-RISC complex interacts with
the target transcript and inhibits gene expression (Figure 1) (23–
26).

v-miRNAs IN DNA VIRUSES

γ-Herpesvirus-Encoded v-miRNAs
EBV is a γ-herpesvirus that infects 90% of the world
population and is associated with various epithelial and
lymphoid malignancies including Burkitt’s lymphoma (BL),
gastric carcinoma (GC), Hodgkin’s lymphoma (HL), and
nasopharyngeal carcinoma (NPC) (27–30). In infected cells,
EBV can establish two phases of infection known as latent and
lytic. EBV primarily infects the human oropharynx epithelial
cells, followed by replication and spread to B cells. This results
in latent infection in B cells, epithelial cells, and natural
killer/T cells (31). Latent EBV infection is a substantial cause
of many human malignancies (32). Under certain conditions,
EBV switches from latent to lytic phase, a stage where it
expresses a repertoire of more than 80 genes, accompanied by
viral DNA replication and finally leading to the production

of progeny virus particles (33, 34). The majority of the EBV
miRNAs are transcribed from the BART and BHRF1 regions.
BART and BHRF1 transcripts encode 40 and 4 mature miRNAs,
respectively (34–36). BART and BHRF1 transcripts express
different miRNAs during different phases of EBV latency
(37). EBV-encoded BART transcripts are detected in EBV-
associated NPC biopsy or EBV-positive cell lines in vitro
(38, 39).

Following the identification of EBV-encoded miRNA, several
reports identified miRNA expressed by Kaposi’s sarcoma-
associated herpesvirus (KSHV/HHV8), another member of
the γ-herpesvirus family. KSHV is known to cause Kaposi’s
sarcoma (KS), primary effusion lymphoma (PEL), Multicentric
Castleman’s disease (MCD), and KSHV inflammatory cytokine
syndrome (40–42). A total of 25 mature miRNA processed from
12 different pre-miRNAs have been identified in KSHV and
are in the latency-associated region (43, 44). Out of the 12
pre-miRNAs, 10 pre-miRNAs are located between the kaposin
and open reading frame 71 (ORF71) genes, while miR-K10
is located within the kaposin gene, and miR-K12 is mapped
to the 3′-UTR of kaposin. Although all known KSHV v-
miRNAs are expressed during the viral-latent phase, v-miRNAs
originating from pre-miR-K10 and pre-miR-K12 are further
enhanced during the viral-lytic phase (15, 16, 44, 45). Also,
several of the KSHV-encoded v-miRNAs share the seed sequence
with human-encoded miRNAs and therefore regulate many
target genes. KSHV miRNAs help in maintaining KSHV latency
and interfere with the host immune system by regulating viral
and cellular gene expression, ultimately contributing to KS
development (46).

β-Herpesvirus-Encoded v-miRNAs
Like γ-herpesvirus, α- and β-herpesvirus are also found to
express v-miRNAs. The β-herpesvirus human cytomegalovirus
(HCMV) is commonly found in the human population and
has the largest genome, 230 kb of double-stranded DNA
(dsDNA), among the herpesvirus family (47). HCMV causes
serious life-threatening diseases in patients with a compromised
immune system such as the human immunodeficiency virus
(HIV) infection or patients undergoing immunosuppressive
therapies (48, 49). v-miRNAs encoded by HCMV were
first identified in 2005 (16). The study predicted and
cloned nine pre-miRNAs, which were later validated in two
independent studies by Northern blotting (50, 51). More
studies on HCMV miRNAs identified additional miRNAs
using deep sequencing technology (ref). A total of 26
HCMV v-miRNAs have been identified to date, dispersed
throughout the genome (16, 51, 52). The HCMV miRNAs
target multiple host genes involved in immune response
and cell cycle control and thereby enhance HCMV virulence
(53, 54).

HCMVmiRs, namely, miR-UL-112-1, US25-1, US25-2, US25-
2-5p, US5-1, US33-5p, and ULD148D, have been shown to
inhibit HCMV DNA viral replication by targeting multiple host
and viral regulatory genes (discussed in the following sections)
(55–63). miR-UL112, US25-2-3p, and US4-1 modulate immune
recognition by cytotoxic T lymphocyte (CTL) and natural
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FIGURE 1 | Canonical viral miRNAs are transcribed as pri-v-miRNAs from the genome of DNA viruses in the nucleus. Cleavage of pri-v-miRNAs by Drosha results in

pre-v-miRNA that is exported to the cytoplasm via Exportin 5. In the cytoplasm, pre-v-miRNAs undergo cleavage by Dicer to generate the mature v-miRNAs that are

loaded in the multiprotein RISC complex to target the host and viral mRNA transcript. v-miRNAs (viRNA).

killer (NK) cells (64–67). Similarly, the HCMV miRs UL112-
3p, US5-1, UL112-1, US25-1-5p, and UL148D target multiple
host inflammatory genes and result in reduced inflammatory
response (53, 54, 68–71). Also, UL148D and UL36-5p are found
to inhibit programmed cell death by repressing the expression
of cellular genes involved in the regulation of apoptosis (72–
74). Altogether, HCMV miRNAs play an important role in
regulating the expression of host and viral genes to induce
latent infection.

α-Herpesvirus-Encoded v-miRNAs
Herpes simplex virus (HSV) has two members, HSV-1 and HSV-
2, which are known to cause oral or genital herpes lesions (75).
v-miRNAs in HSV were first identified in 2006, and, to date,
HSV-1 and HSV-2 are known to encode 27 and 24 functional
v-miRNAs, respectively (76–78). Few of the HSV-1 and HSV-
2 v-miRNAs share the same seed sequence (77, 78). Like γ-
herpesvirus, HSV-1 and HSV-2 v-miRNAs are associated with
latency-associated transcript and are expressed during the latent
phase of infection (79).

Almost all herpesviruses encode their own v-miRNAs except
varicella-zoster virus (VZV). Many small-RNA sequencing
studies have been performed for VZV, but VZV v-miRNAs have
not yet been identified (80).

Papillomavirus (PV)
Human papillomaviruses (HPV) preferentially infect the
keratinocytes of mucous membranes or skin and cause
numerous benign and malignant lesions at different anatomical
locations. HPV infection is a common cause of cervical cancer
(81–84). HPV infection is associated with varying proportions of

other cancers of the anogenital tract, head and neck region, and
skin (85).

The first report for the prediction of HPV-encoded miRNAs
came in 2011. In that study, the authors predicted the HPV-
encoded miRNAs in several HPV types. They predicted the
pre-miRNAs using a computational algorithm and compared
the conserved mature miRNAs with currently known miRNAs.
Predicted HPV miRNAs related to miR-466,-467, and -669 were
common and specific to the mucosal HPV types. Also, the
authors observed that HPV-38 expresses a miRNA conserved
to human let-7a (86). In another study, the authors generated
small RNA libraries of 10 HPV-associated cervical cancer and
two HPV16-harboring cell lines. From the sequencing data, nine
putative HPV miRNAs were discovered. Four HPV-encoded
miRNAs (two by HPV16, one by HPV38, and one by HPV68)
were validated (87).

Similarly, another study developed miRNA discovery by using
a forced genome expression (miDGE) tool for the identification
of miRNAs. The study screened 73 different PV genomes using
miDGE and observed that most of the PV genomes are unlikely
to encode viral miRNAs. However, they could identify and
validate five different miRNAs (hpv17-miR-H1, hpv37-miRH1,
hpv41-miR-H1, fcpv1-miR-F1, and fcpv1-miR-F2 encoded by
four different PVs: HPV17, 37, 41, and FcPV1). These HPV
miRNAs targeted transcripts corresponding to the early region
of the HPV genome (18).

Hepadnavirus
Hepatitis B virus (HBV) is the best-known member of the
Hepadna virus family. Infection with HBV can cause chronic
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hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC).
HBV has infected 2 billion people worldwide (88). In comparison
to healthy individuals, HBV-infected patients have a 100-fold
higher risk of development of HCC (89).

To date, only one HBV-encoded miRNA has been
identified by deep sequencing of HBV-positive HCC tissue.
The corresponding study identified and confirmed the
expression of HBV-miR-3. HBV-miR-3 downregulated HBV
protein and HBV replication by reducing the expression
of HBcAg, a positive regulator of HBV transcription and
pregenomic RNA (pgRNA), which inhibits HBV replication
overall (90).

Adenovirus
The adenovirus genome encodes two non-coding RNAs, namely
VA-RNA I and VA-RNA II (91). VA RNAs are structurally like
pre-miRNAs and bind and block Dicer (92, 93). However, 2–5%
of VA RNAs can still be processed by Dicer in a manner similar
to cellular miRNAs and can produce VA-RNA-derived miRNAs
(called mivaRNAs) (92, 94). VA-RNA-I produces the two most
abundant mivaRNAs (mivaRNAI-137 and mivaRNAI-138), and
VA-RNA-II produces a single mivaRNA (mivaRNAII-138) (95).
mivaRNAs have the potential to regulate cellular gene expression,
which could be important in the adenovirus life cycle. Ectopic
expression of mivaRNAI-138 in HeLa cells downregulated the
expression of several genes controlling DNA repair, cell growth,
apoptosis, and RNA metabolism (96). Recently, it was shown
that mivaRNAII-138 enhanced Jun N-terminal kinase (JNK)
signaling by downregulating CUL4, a negative regulator of
the JNK signaling cascade (97). JNK signaling is crucial for
viral replication, and several viruses have been reported to
activate the JNK pathway upon infection (98–100). However,
VA RNA-derived miRNA was dispensable for lytic replication of
adenovirus in tissue culture cells. VARNAI is a known suppressor
of interferon-induced PKR enzyme, and, in the absence of PKR,
the deletion of VA RNAI rescued viral late gene expression,
suggesting that VA RNA-derived mivaRNAs might play an
important role in inhibiting the PKR pathway to promote late
gene expression (101).

Polyomavirus
Polyomavirus are non-enveloped viruses that infect a wide
range of species including humans, primates, rodents, birds,
and cattle (102). Few reports have characterized miRNAs in
polyomaviruses. The betapolyomaviruses BK virus (BKV), JC
virus (JCV), simian virus 40 (SV40), Merkel cell polyomavirus
(MKV), and simian agent 12 (SA12) have one pre-miRNA at the
3′ end that encodes two mature miRNAs. These miRNAs control
the viral replication by autoregulating the viral gene expression
or inhibiting the viral T antigen expression to suppress antiviral
T cell response (17, 103–105).

v-miRNAs in RNA Viruses
Most of our current understanding of v-miRNAs has been
attributed to v-miRNAs that were produced by DNA viruses. The
detection of v-miRNAs in RNA viruses has been controversial,
with a few reports suggesting non-canonical miRNA-like small
RNAs produced during RNA virus infections; however, these

small RNAs lack the canonical stem-loop structure found
in miRNAs, so their biogenesis and function are not well-
understood (106, 107). The following reasons might explain the
lack of v-miRNAs produced by RNA viruses during infection:
(i) the RNA viruses consists either +/– sense or double-stranded
RNA (dsRNA) and replicate in the cytoplasm of the host cell, so
the RNA molecules are not accessible to the miRNA biogenesis
machinery in the nuclei (108); (ii) excision of pre-miRNA
from the primary transcript might result in the destruction of
RNA-based viral genomes; (iii) the generated v-miRNA may
target the viral genome itself, resulting in cleavage of the viral
genome (109).

Influenza Virus
The influenza virus replicates inside the host nucleus and it
therefore differs from most of the other RNA viruses. As the
virus replicates inside the host nucleus, it can utilize the nuclear
miRNA processing factor Drosha to express v-miRNAs (108).
One of the hallmarks of H5N1 influenza virus infection is a strong
and rapid production of antiviral cytokines, a process known as
a cytokine storm. A study using an influenza virus engineered by
incorporating a primary (pri) form of cellular miRNA-124 into
the genome showed the ability to produce functional miR-124
without any deleterious effects on the viral life cycle. This study
suggests that RNA viruses have the ability to exploit the host’s
small RNA machinery to produce v-miRNAs (110). The ability
to produce functional miRNAs can be harnessed to mediate the
delivery of miRNAs or siRNAs using RNA virus-based vectors
(111). H5N1 encodes miRNA-like small RNA named miR-HA-
3p, which accentuates the production of antiviral cytokines by
targeting PCBP2, a known regulator of RIG/MAVS signaling.
Suppression of PCBP2 leads to high levels of cytokine production
and results in highmortality (112). In another study, it was shown
that the 5′ end of all the eight segments of the influenza virus
encodes small viral leader RNAs (leRNAs). LeRNAs are known
to play a key role in the genomic RNA encapsidation to newly
generate progeny virions, suggesting an important role in the
viral life cycle (113).

Ebola Virus
Ebola virus (EBOV) is a negative-sense RNA virus that causes
severe infectious disease with a high mortality rate of 83–90%.
To date, few studies have identified miRNA-like small RNA
encoded by EBOV (114–117). The first report was by Liang et al.,
who predicted that three mature miRNAs (EBOV-miR-1-5p,-3p,
and miR-2-3p) are formed from two pre-miRNAs (EBOV-pre-
miR-1 and EBOV-pre-miR-2) using the host cellular machinery.
Further, they validated the production of mature miRNA by
transfecting the pre-forms in HEK293T and showed reduced
production of the mature miRNAs in Dicer-deficient cells (115).
Similarly, another group performed genome-wide screening and
predicted the formation of seven mature miRNAs from four pre-
miRNAs (EBOV-pre-miRNA-T1, -T2, -T3, and -T4) (117). The
third study identified two mature miRNAs and found that one
miRNA, EBOV-miR-1-5p, serves as an analog of humanmiR-155
(116). Overexpression of EBOV-miR-1-5p inhibits the expression
of importin-alpha5 in HEK293T cells. Reduced expression of
importin-alpha5 could facilitate evasion of the host immune
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system (116). Although these reports identify miRNAs expressed
in EBOV infection, the underlying mechanism is not so well-
understood. With the development of a reverse genetics system
for EBOV, characterizing the roles of these miRNAs in regulating
the viral life cycle and immune response could yield insights
into controlling EBOV pathogenesis. One more study showed
that EBOV expresses a putative miRNA-like RNA fragment,
EBOV-miR-VP-3p, which is highly conserved among other
strains. EBOV-miR-VP-3p was found in the exosomes and was
abundantly present in the sera of individuals infected with EBOV.
Interestingly, EBOV-miR-VP-3p was detectable in the serum
even before the detection of viral genomic RNA, indicating that
EBOV miRNAs may serve as a biomarker for early diagnosis of
EBOV infection (114).

HIV-1
Using a computational prediction tool, one study predicted
that HIV-1 might encode five putative pre-miRNAs (118).
Furthermore, another study showed that nef-derived miR-N367
suppresses nef expression by targeting HIV-1 nef transcript to
regulate HIV-1 virulence (119). Subsequently, two independent
studies found that the HIV-1 TAR element located at the 5′

end of HIV-1 encodes two microRNAs, namely miR-TAR-5p
and miR-TAR-3p. TAR miRNAs target host apoptotic genes
such as ERCC1 and IER3 that are involved in DNA repair
to inhibit apoptosis (120–122). Another study found miR-
H3 located in the active region of reverse transcriptase. miR-
H3 was found to interact with HIV-1 5′LTR and enhance
promoter activity, thereby increasing viral production (123).
Next-generation sequencing technology has been widely used to
identify and validate HIV-1 miRNAs. However, there have been
some discrepancies in the miRNAs reported in different studies.
Sequencing analysis of HIV-1-infected cell lines such as TZM-bl
and CD8166 and primary human CD4+ PBMCs did not detect
any HIV-1miRNAs (124). More importantly, the HIV-1miRNAs
reported fail to satisfy the essential criteria for classification as
authentic viral miRNAs. The majority of the HIV-1 miRNAs
are derived from a few locations in the genome, their size
is <20 nucleotides in length, and the pri-miRNA stem loop
lacks the defining properties of canonical pri-miRNA stem loops
(125). These outstanding questions on the functional interplay
between HIV-1 miRNAs and cellular targets provide a significant
opportunity to understand the viral pathogenesis better so as to
develop anti-HIV-1 therapies.

VIRAL miRNAs IN IMMUNE EVASION

Targeting the Viral Gene Expression
One of the major functions of viral miRNAs involves targeting
viral gene expression to control latency or as a switch from
latency to activation (Figure 2A). SV40-encoded microRNAs
regulate viral gene expression and reduce susceptibility to
cytotoxic T cells (17). HSV1-induced latency is driven by
LAT (Latency Associated Transcript), which encodes for non-
coding RNAs such as miR-H2-3p and miR-H6. These miRNAs
target viral reactivation factors ICP0 and ICP4, which are

FIGURE 2 | (A) v-miRNAs act as a fine switch between latency and the active

replication phase of the viral lifecycle. (B) v-miRNAs control the host

physiology by targeting multiple processes including immune response, cell

survival, and tumorigenesis. v-miRNAs (viRNA).

essential in controlling viral reactivation from latency of HSV-
1 (79). Similarly, for HSV-2, miR-I, miR-II, and miR-III
expressed by LAT reduce the expression of ICP34.5, a key viral
neurovirulence factor (126). miR-I is also expressed in human
sacral dorsal root ganglia of neurons latently infected with HSV-
2, suggesting the role of v-miRNAs in HSV-2 latency in human
neurons (127).

For HCMV, miR-UL112-1 downregulated the expression of
IE72 (UL123, IE1), UL112/113, and UL120/121 by translational
inhibition rather than transcript degradation (55). miR-UL112
also targets the UL114 gene, a viral uracil DNA glycosylase, with
minimal effects on viral growth. In addition, human fibroblast
cells (HFF) ectopically expressing miR-US25-1 and miR-US25-
2 reduced viral DNA synthesis for HCMV by downregulating
IE72 and pp65, one of the most abundant proteins of the virion
tegument of HCMV (62). Interestingly, the antiviral effects of
the ectopically expressed HCMVmiRNAs miR-US25-1 and miR-
US25-2 were also observed for other DNA viruses such as HSV-1
and adenovirus, suggesting that these two miRNAs might target
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cellular genes that are essential for virus growth or to maintain
latency (62).

EBV-encoded BART miRNAs play a key role in maintaining
latency and controlling the viral life cycle. BART miRNAs such
as miR-BART16, miR-BART17-5p, and miR-BART1-5p target
the 3′ UTR of the LMP1 gene and negatively regulate LMP1
protein expression. LMP1 is capable of inducing cell growth and
proliferation, but overexpression of LMP1 can result in inhibition
of growth and apoptosis. Therefore, the downregulation of LMP1
expression may favor EBV-associated cancer development by
exerting tight control on LMP1 expression (128). The EBV-
encoded miRNA miR-BART2 inhibits the viral transition from
the latent to the lytic part of the life cycle by suppressing
the viral DNA polymerase BALF5 (129). Similarly, BART20-
derived v-miRNA maintains the latency phase in EBV-associated
tumors by targeting two EBV immediate-early genes, BZLF1, and
BRLF1 (130).

Few reports have identified v-miRNAs involved in the
maintenance of KSHV latency. The KSHV-encoded miRNA
miRK9 targets the viral protein RTA, a major lytic switch protein.
RTA plays an important role in controlling viral reactivation from
latency. v-miRNA-mediated regulation of RTA fine-tunes viral
reactivation in the KSHV life cycle (119). In addition to miR-K9,
miR-K12-5 can inhibit RTA expression. However, unlikemiR-K9,
which targets a sequence in the 3′ UTR of RTA, the 3′ UTR of
RTA does not contain a favorable seed sequence for miR-K12-5,
suggesting an indirect effect on RTA expression (131).

As discussed in the previous sections, the expression of v-
miRNAs by RNA viruses is highly controversial. Viral miRNAs
are not detected in themajority of RNA virus families, mostly due
to the inaccessibility of the host machinery required for miRNA
biogenesis. Small viral RNAs (svRNAs) have been identified in
influenza virus infections that play a role in switching the viral
polymerase from transcription toward genome replication by
interacting with the polymerase machinery. However, whether
svRNAs target viral or host transcripts is unknown (132). Using
in silico tools, the HIV-1 genome was putatively shown to encode
five pre-miRNAs. Based on thematuremiRNA sequence deduced
from the pre-miRNAs, these miRNAs were computationally
predicted to target a large set of host cellular genes to establish
a favorable cellular milieu for viral replication (118).

Targeting the Host Cellular Genes
Evidence has been accumulating for v-miRNAs modulating
the host immune response to enable a favorable intracellular
milieu (Figure 2B). To date, studies of v-miRNAs targeting
host cellular genes have been mainly focused on KSHV and
EBV infections (Table 1). Host target cellular genes have
been identified with the help of gene expression profiling in
HEK293 cells, ectopically expressing the KSHV miRNA cluster.
KSHV miRNA suppressed the expression of thrombospondin
1 (THBS1), strong tumor suppressor, and anti-angiogenic
factor (159). KSHV miR-K12-1 controls cell survival and
proliferation by targeting p21, a key tumor suppressor and
inducer of cell cycle arrest (160). miR-K5, along with K12-
9 and miR-K12-10b, targets Bcl-2-associated factor (BCLAF1),

a known apoptotic factor (123). In addition, KSHV v-
miRNAs reduce expression of C/EBPβ p20 (LIP), a known
negative regulator of IL6 and IL10 cytokines, to regulate
the cytokine signaling in infected cells (165). KSHV miR-
K1 regulates the NF-κB pathway by directly targeting IκB.
Suppressing IκB enhances NF-κB activity and inhibits viral
lytic replication (161). KSHV miR-K12-10a suppresses the
expression of TWEAKR (TNF-like weak inducer of apoptosis
receptor) (169), whereas miR-K12-9 and miR-K12-5 target
the TLR/Interleukin-1R signaling pathway by targeting IRAK1
and MYD88, thereby controlling inflammation (168). KSHV
viral miRNAs also modulate the host gene expression to
control pathogenesis. miR-K12-6 and miR-K12-11 direct the
transcriptional reprogramming in latently infected cells by
targeting the cellular transcription factor MAF (167). Several
KSHV viral miRNAs target Retinoblastoma (Rb)-like protein
2 (Rbl-2), a negative regulator of DNA methyltransferases, to
maintain latency (131). Using Ago2-based RIP-Chip in multiple
B cell lines latently infected with KSHV or stably transduced
to express 10 KSHV miRNAs identified genes involved in
lymphocyte activation and pre-mRNA splicing such as LRRC8D
and NHP2L1, respectively (139).

The same study identified Epstein-Barr virus (EBV) miRNAs
targeting host cellular genes in EBV-positive B cell lines.
EBV miRNAs were shown to regulate cellular transport
processes by targeting key genes such as TOMM22 and
IPO7 (139). EBV miR-BART5 controlled proliferation and
established latent infection by targeting PUMA. PUMA is
known to modulate apoptosis by p53, so by suppressing
PUMA, EBV miRNAs alter the susceptibility to apoptotic
agents and improve host cell survival (143). In EBV-associated
non-Hodgkin’s lymphomas, miR-BHRF1-3 targets T cell-
attracting chemokine CXCL11. Sequestering miR-BHRF1-3 by
antisense oligos reversed the suppression of CXCL11 in primary
cultures derived from patients with EBV-positive Burkitt’s
lymphoma (153).

HCMV miRNAs have been shown to target host genes
involved in the antiviral immune response. miR-UL112 blocks
the natural killer (NK) cell-mediated recognition of virus-
infected cells by inhibiting the expression of MICB, a stress-
induced ligand essential for NK-cell activity. Suppression of
MICB results in decreased binding to the NKG2D receptor,
thereby leading to decreased killing of virally infected cells by
NK cells (67). Interestingly, MICB expression is suppressed
by KSHV miR-K12-7 and EBV miR-BART2 by binding to
different sites in the 3′ UTR, highlighting a common strategy
for immune evasion commonly used by multiple DNA viruses
(140). Additionally, HCMV miR-US4-1 targets the endoplasmic
reticulum-resident aminopeptidase ERAP1, which is required for
MHC class I antigen presentation on CD8T cells, resulting in
less clearance of infected cells by HCMV-specific cytotoxic T
cells (66).

Therapeutic Potential of Viral miRNAs
Combating viral diseases and virus-associated cancers is an
ongoing health-related challenge present globally. Recent studies
have focused on identifying miRNAs as targets for treating
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TABLE 1 | Viral miRNAs with regulatory functions and immune evasion approaches.

Virus v-miRNA Target Regulation/Immune evasion Model References

DNA virus family

Herpesviruses

HSV-1 miR-H2-3p ICP0, ICP4 Immediate-early transactivation

(latency establishment)

Male CD-1 mice, 293T

and Vero cells (1)

(79, 80)

miR-H3 ICP34.5 Neuro-virulence determinant (1) (79)

miR-H4 ICP34.5 Neuro-virulence factor (1) (79)

miR-H6 ICP0, ICP4 Immediate-early transactivation

(latency establishment)

(1) (79, 80)

miR-H8 PIGT GPI anchoring and

immune evasion

BJAB cells,

NK cells

(133)

HSV-2 miR-H2/H3/H4 ICP0; ICP34.5 Immediate-early

transactivation

(latency establishment);

neuro-virulence determinant

Vero, HEK293, HeLa, and

US02 cells

(126, 127)

HCMV miR-UL-112-1 IE72 Immediate-early transactivation

(latency establishment)

NHDF and U373 cells (55, 63)

UL114 Viral uracil DNA glycosylase HFF cells (62)

miR-UL-112-1,

miR-US5-1,

miR-US5-2

VAMP3;

RAB5C;RAB11A;

SNAP23; CDC42

Host secretary pathways;

control cytokine secretion;

formation of VAC

NHDFs,

HEK293

(VAMP3-FL-cDNA clone)

(134)

miR-UL-112-1 MICB Cell-mediated immunity by

NK cell ligand

Cells-HFF, RKO, DU145,

PC3, 1106mel, NK cells

(67)

miR-UL-112-1,

miR-US5-1

IKKα; IKKβ Blocks NFκB signaling; partially

blocks IL-1β and TNFα signaling

NHDF, THP-1, hAECs (54)

miR-UL-148D-1 RANTES Activation and secretion of T cells,

controls viral pathogenesis

HFF cells (71)

ACVR1B Triggered secretion of IL-6, controls

viral pathogenesis

HFFF2, CD34+ myeloid

cells

(69)

miR-US4-1 ERAP1,

acts as biomarker

Controls MHC-I presentation to CD8+

T cells, indicator of IFNα treatment in

hepatitis B patients

Serum (Patient) (135)

EBV miR-BART22 LAMP2A Viral oncogenesis in NPC and

immune evasion

HEK293T cells, biopsy

samples

(136)

NDRG1;

IL12

Immune surveillance escape;

T-cell differentiation, activation and

recognition

B95-8, PC-3 AdAH,

HEK293,

and C666-1 cells;

hPBMCs,

B cells, T cells and LCLs

(137, 138)

miR-BART1-5p and

miR-BART5-5p

Viral LMP1 Apoptotic inducer and transforming

factor, viral oncogenesis

NPC cells (128)

miR-BART16 LMP1 Apoptotic inducer and transforming

factor, viral oncogenesis

NPC cells (128)

TOMM2; CBP Mitochondrial membrane protein;

immunomodulation

B cells

(DG75-eGFP and

DG75-10/12)

(139)

miR-BART17-5p LMP1 Apoptotic inducer and transforming

factor, viral oncogenesis

NPC cells (128)

TAP2 Peptide transportation hPBMCs, B cells, T cells,

and LCLs

(138)

miR-BART1 IL12B;

IFI30

T-cell differentiation, activation and

recognition;

antigen processing

hPBMCs, B cells, T cells,

and LCLs

(138)

miR-BART2/BART2-5p

(Viral)

BALF5 DNA polymerization and controls viral

replication

BL41 cells (129)

MICB;

LGMN and CTSB;

IL12B

Cell-mediated immunity by NK cell

ligand; antigen processing; T-cell

differentiation, activation, and

recognition

293T, RKO, HeLa,

721.221 and BCBL1 cells;

NK cells; hPBMCs,

B cells, T cells, and LCLs

(138, 140–142)

(Continued)
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TABLE 1 | Continued

Virus v-miRNA Target Regulation/Immune evasion Model References

miR-BART3-3p IPO7 Nuclear import protein; T-cell

activation and immune cell tolerance

B cells (DG75-eGFP and

DG75-10/12)

(139)

miR-BART5 PUMA Apoptotic inducer and proapoptotic

factor

hNPC and EBV-GC cells (143)

miR-BART5-3p TP53 Cell cycle progression by inhibiting

p53, inhibition of apoptosis

EBV-gastric cancer cell

lines

(144)

miR-BART8 IFN-γ Immunomodulation YT, NK92, and Jurkat cells (145)

miR-BART10-3p IL12B T-cell differentiation, activation, and

recognition

hPBMCs, B cells, T cells,

and LCLs

(138)

miR-BART11-5p EBF1 B-cell differentiation B cells, LCLs, HEK293T (146)

miR-BART15 NLRP3; BRUCE Inflammasome production; apoptosis Macrophages; AGS,

SUN-719 cells

(147, 148)

miR-BART16 CBP Immunomodulation EBV+BL and SUN-719

cells

(149)

miR-BART17 TAP2 Peptide transportation hPBMCs, B cells, T cells,

and LCLs

(138)

miR-BART18-5p MAP3K2 Lytic reactivation B cells (150)

miR-BART20-5p BRLF1 and BZLF1 Latency establishment AGS, SUN-719, and

YCCEL1

(130)

BAD;

IFN-γ

Apoptosis;

immunomodulation

AGS,

SUN-719, YCCEL1,

DG75,

and B cells;

YT, NK92, and Jurkat cells

(145, 151)

miR-BHRF1-2 PRDM1; CTSB;

IL12B

B-cell terminal differentiation; antigen

processing; T-cell differentiation,

activation, and recognition

LCLs, JY25,

CCL156/159, TIB190, BL

cells; hPBMCs,

B cells, T cells

and LCLs

(138, 152)

miR-BHRF1-3 CXCL11;

TAP2

Chemokine and T-cell attractant;

peptide transportation

BL-5/8, EBV+BL, BC-1,

JCS-1, and PEL cells;

hPBMCs,

B cells, T cells,

and LCLs

(138, 153)

miR-BHRF1,

miR-BHRF2,

miR-BHRF3

BSAP1/pax5,

RFX1, YY1,

MIBP1, CREB,

ATF1

Cellular transactivator: regulate

expression of Wp/Cp promoter; viral

infection persistence

B cells (154–156)

KSHV miR-K12-9*,

miR-K12-5p,

miR-K9*/miR-K5,

miR-K12-7-5p

RTA Controls viral replication and

transcriptional activator

(latency establishment)

HFF, BCBL-1, SLK,

HEK293; DG75 and

BCBL-1 cells;

HEK293-Bac36 cells

(157, 158)

miR-Cluster THBS1

EXOC6

ZNF684

CDK5RAP1

Inhibition of angiogenesis;

SEC15 gene:

Zinc figure protein; regulation of

neural differentiation

BCBL-1, HEK293; B cells

(DG75-eGFP and

DG75-10/12)

(139, 159)

miR-K1, miR-K12-1 P21;

IκBα

Inhibition of cell cycle;

inhibits NFκB signaling

U2OS, BL40, HEK293T,

BC-3;

PEL-BCP-1 cells

(160–162)

miR-K12-1,

miR-K12-3p,

miR-K12-6-3p

THBS1 Cell cycle regulation and tumor

suppression

BCBL-1, HEK293 (159)

miR-K12-1, miR-K12-3 CASP3 Inhibition of apoptosis HEK293 and DG75 cells (163)

miR-K12-3 NFIB Latency establishment BC-3 cells (164)

LRRC8D;

NHP2L1

Activation of immune cells; U4 snRNA

nuclear binding protein

B cells (DG75-eGFP and

DG75-10/12)

(139)

miR-K12-3, miR-K12-7 C/EBPβ (LIP) Transcriptional activator BCBL-1, MM6, and RAW

cells

(165)

(Continued)
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TABLE 1 | Continued

Virus v-miRNA Target Regulation/Immune evasion Model References

miR-K12-4 IκBα Inhibits NFκB signaling PEL-BCP-1 cells (162)

miR-K12-4-3p GEMIN8;

CASP3

Splicing factor;

inhibition of apoptosis

B cells

(DG75-eGFP and

DG75-10/12); HEK293

and DG75 cells

(139, 163)

miR-K12-4-5p Rbl-2 Rb-like protein DMVECs, HEK293T (131)

miR-K12-5 BCLAF1; Rbl-2 Proapoptotic factor and promotes

lytic reactivation; Rb-like protein

HUVEC, BCBL-1,

BJAB-B cells;

DMVECs, HEK293T

(131, 166)

miR-K12-6 MAF Transcription factor LECs, BECs (167)

miR-K12-7 MICB; NFIB Cell-mediated immunity by

NK cell ligand; latency establishment

293T, RKO, HeLa,

721.221, and BCBL1

cells, and NK cells;

BC-3 cells

(140, 164)

miR-K12-9 IRAK1 and

MyD88;

BCLAF1

Immune evasion;

proapoptotic factor and promotes

lytic reactivation

HEK293, SLK,

HUVEC, BCBL-1, and

BJAB-B cells

(166, 168)

miR-K12-10a/b TWEAKR;

BCLAF1

Regulates apoptosis and

inflammation;

proapoptotic factor and promotes

lytic reactivation

HUVEC, SLK+K cells;

BCBL-1, BJAB-B cells

(166, 169)

miR-K12-11 ** identical

seed sequence to that

of cellular miR-155

BACH1;

C/EBPβ;

MAF;

IκBα;

THSB1;

NFIB

Transcriptional suppressor;

splenic B-cell expansion and induces

lymphomagenesis;

transcription factor; inhibits NFκB

signaling;

cell cycle regulation and tumor

suppression;

latency establishment

BCP-1, BC-1, VG-1,

JSC-1, RAJI, BCBL-1

BJAB; hCB cells,

NOD/LtSz-scid IL2Rγnull

mice;

LECs, BECs;

PEL-BCP-1 cells;

BC-3 cells

(162, 164,

167, 170–173)

Polyomaviruses

SV40 miR-M1 (5p and 3p) T Antigens (Large) Regulation of early viral genes;

transforming factor

TC-7/Db cells (17)

SA12 miR-S1 T Antigens (Large) Regulation of early viral genes BSC40 cells (105)

BKV miR-B1 T Antigens (Large) Regulation of early viral genes U87 and Vero cells (104)

JCV miR-J1 (5p and 3p) T Antigens (Large) Regulation of early viral genes;

transforming factor

U87 and Vero cells (104)

MCV miR-S1 T Antigens (Large) Regulation of early viral genes HEK293T cells and

MCC350 plasmid

(103)

Hepadnavirus

HBV HBV-miR-3 3.4 kb viral

transcript

Regulate HBc protein and pgRNA

levels to alter viral replication

Huh7 and HepG2.2.15

cells

(90)

RNA virus family

Orthomyxovirus

Influenza Engineered host

miR-124 in intronic

region of the virus

miR-124 targets Regulate cellular functions of miR-124 HEK293, MDCK, CAD,

murine fibroblast

(110)

miR-HA-3p PCBP2 Regulates cytokine production and

viral infection

in-vivo mouse model (112)

Filovirus

EBoV miR-1-3p, miR-1-5p,

and miR-T3-3p

c-MET, Activin,

and KPNA1 (by

miR-155 ortholog)

Cellular signaling pathways, immune

response dysregulation

Balb/c mice, NHP, and

patients

(174)

Flaviviruses

WNV KUN-miR-1 GATA4 Regulates viral replication Mosquito cells and

bioinformatic approaches

(175)

DENV DENV-vsRNA-5 NS-1 Autoregulation of viral replication Mosquito cells and

deep-sequencing

approach

(176)

ZIKA Putative 47 v-miRNAs Multiple cellular

targets

Immune surveillance and other

biological pathways

Bioinformatic approaches (177)

(Continued)
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TABLE 1 | Continued

Virus v-miRNA Target Regulation/Immune evasion Model References

Picornavirus

HAV hav-miR-N1-3p MAVS (in-silico

predicted target)

Cellular antiviral pathways KMB17 and HEK293T

cells

(178)

Retrovirus

HIV-I miR-N367 Nef Persistence viral infection Balb/c and C3H/Hej mice;

Jurkat T and

MT-4T cells

(119)

miR-TAR-5p and

miR-TAR-3p

Multiple genes

involved in

apoptosis and cell

survival

Apoptosis and viral propagation Jurkat and

J-LAT cells

(179)

miR-H3 HIV-1 5′LTR Enhances promoter activity and viral

infection

Sup-T1, HEK293T,

TZM-bl, and hPBMCs

(123)

several diseases, including viral diseases. Antagomirs designed
to sequester host miR-122 involved in HCV infection entered
the phase II of human clinical trial and show promising effects
against the infection (180, 181). Using similar approaches, v-
miRNAs could also be targeted by using inhibitor or sponge-
based antagomirs in DNA virus infections. A few reports support
the notion of developing antagomirs against v-miRNAs rather
than cellular miRNAs, as this could reduce the possibility of
side-effects or off-target effects in human subjects and might
solve the problem of non-toxic/site-specific, targeted delivery
(182). In mouse cytomegalovirus (MCMV) infection, mice
receiving antagomirs against MCMV v-miRNAs had reduced
occurrence of MCMV upon challenge. In another study,
gold nanoparticles containing anti-EBV-miR-BART7-3p were
shown to therapeutically deliver anti-miRNAs against EBV-miR-
BART7-3p, inhibiting the tumorigenicity of EBV-positive cells in
mice (20, 183).

Similarly, using EBV promoters such as EBER2 promoter
was reported to effectively express miRNA sponge to silence
specific genes in EBV-infected cells and might be useful in
the targeting of EBV-positive NPC cells (184). In addition, v-
miRNAs were also considered as biomarkers in many virally
infected diseases. miR-VP-3p was found to be present in the
sera of EBOV-infected patients but not in healthy controls,
and this v-miRNA was detectable in the serum prior to the
detection of viral genomic RNA, indicating that miR-VP-
3p may serve as a biomarker for early diagnosis of EBOV
(114). HCMV-encoded miR-US4-1 serves as a biomarker for
IFNα treatment potency in the serum of hepatitis B patients
(135). Moreover, certain v-miRNA adapters (HSUR2) were
discovered that recruit miRNA to target transcripts through

alternative base-pairing. Inhibitors against these supportive
v-miRNAs adaptors could be considered as an alternative
therapeutic candidate (185). Finally, critical design and validation
of miRNA-based studies in cell lines and animal models can
help identify novel therapeutic candidates for treatments in
the future.

CONCLUSION

Although the biogenesis, mechanism and function of virally
encoded miRNAs are not well-characterized, substantial progress
has been made in the last few years. With the emergence of
high-throughput sequencing technologies and computational
analysis tools, the number of newly discovered v-miRNAs is
increasing. Multiple lines of evidence have strengthened the
“classical” hypothesis of v-miRNAs solely originating from
DNA viruses; however, some non-canonical miRNA-like RNA
fragments have been detected during RNA virus infections.
While the major functions of v-miRNAs across divergent virus
families have been broadly attributed to immune evasion,
autoregulation of the viral life cycle and tumorigenesis, there is
still a broad gap in annotating the exact molecular determinants
underlying these functions. The holy grail of the functional
importance of v-miRNAs warrants more investigation to provide
therapeutically amenable leads for targeting infectious diseases in
the future.
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