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Behavioral/Cognitive

Multiple Mechanisms for Processing Reward Uncertainty in
the Primate Basal Forebrain

X Noah M. Ledbetter,1 Charles D. Chen,1 and Ilya E. Monosov1

1Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110

The ability to use information about the uncertainty of future outcomes is critical for adaptive behavior in an uncertain world. We show
that the basal forebrain (BF) contains at least two distinct neural-coding strategies to support this capacity. The dorsal-lateral BF,
including the ventral pallidum (VP), contains reward-sensitive neurons, some of which are selectively suppressed by uncertain-reward
predictions (U �). In contrast, the medial BF (mBF) contains reward-sensitive neurons, some of which are selectively enhanced (U �) by
uncertain-reward predictions. In a two-alternative choice-task, U � neurons were selectively suppressed while monkeys chose uncertain
options over certain options. During the same choice-epoch, U � neurons signaled the subjective reward value of the choice options.
Additionally, after the choice was reported, U � neurons signaled reward uncertainty until the choice outcome. We suggest that
uncertainty-related suppression of VP may participate in the mediation of uncertainty-seeking actions, whereas uncertainty-related
enhancement of the mBF may direct cognitive resources to monitor and learn from uncertain-outcomes.
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Introduction
Uncertainty about important future events, such as rewards, in-
fluences a wide range of behavioral states (Loewenstein et al.,
2001; Bach and Dolan, 2012). First, to obtain rewards, it is often
necessary to choose an uncertain or risky option. To mediate
such actions, the brain must integrate information about uncer-
tainty and value. Second, after performing actions leading to un-

certain outcomes, it is important to monitor those outcomes
and learn from them. These observations suggest that there may
be distinct mechanisms and circuits that integrate information
about value and uncertainty for action and learning, and that
these mechanisms may operate on different time scales.

We hypothesized that these multiple uncertainty-related
functions may in part be mediated by the basal forebrain (BF).
Indeed, a recent study identified a population of medial BF
neurons that integrate information about reward uncertainty
and reward value during a Pavlovian conditioning procedure
(Monosov et al., 2015). However, if and how these neurons par-
ticipate in processing reward uncertainty and reward value dur-
ing uncertainty-seeking decisions was not assessed. Moreover, if
and how other regions of the BF process information about un-
certain or variable rewards remains unknown.

Answering these questions is important because different BF
subregions are believed to play complementary but partly distinct
roles in behavioral, emotional, and cognitive control (Haber et
al., 1985; Everitt and Robbins, 1997; Baxter and Chiba, 1999; Lin
et al., 2006; Smith et al., 2009; Baxter and Bucci, 2013; Avila and
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Significance Statement

To survive in an uncertain world, we must approach uncertainty and learn from it. Here we provide evidence for two mostly
distinct mechanisms for processing uncertainty about rewards within different subregions of the primate basal forebrain (BF). We
found that uncertainty suppressed the representation of certain (or safe) reward values by some neurons in the dorsal-lateral BF,
in regions occupied by the ventral pallidum. This uncertainty-related suppression was evident as monkeys made risky choices. We
also found that uncertainty-enhanced the activity of many medial BF neurons, most prominently after the monkeys’ choices were
completed (as they awaited uncertain outcomes). Based on these findings, we propose that different subregions of the BF could
support action and learning under uncertainty in distinct but complimentary manners.
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Lin, 2014). The medial portion of the BF, comprising the medial
septal-diagonal band complex (Mesulam et al., 1983; Everitt and
Robbins, 1997), strongly projects to cingulate and hippocampal
cortices (Mesulam et al., 1983; Koliatsos et al., 1988), and has
been implicated in learning, memory, and outcome monitoring
(Damasio et al., 1985; Everitt et al., 1988; Morris et al., 1992;
Voytko, 1996; Everitt and Robbins, 1997; Semba, 2000; Baxter
and Bucci, 2013; Monosov et al., 2015). The nucleus basalis of
Meynert, located in ventrolateral BF, projects to sensory and/or
attention-related cortical areas (Mesulam et al., 1983) and the
amygdala (Koliatsos et al., 1988), and has been implicated in
salience-driven behavioral control (Everitt and Robbins, 1997;
Lin and Nicolelis, 2008; Avila and Lin, 2014; Peck and Salzman,
2014; Hangya et al., 2015). Finally, the dorsolateral part of the BF
includes the ventral pallidum (VP), which receives strong projec-
tions from the nucleus accumbens and other regions of the stria-
tum, and contains many GABAergic neurons (Parent et al., 1988;
Richardson and DeLong, 1991; Baxter and Chiba, 1999; Avila and
Lin, 2014; Root et al., 2015) that serve as a key output node of the
limbic basal ganglia for the control of reward motivated behavior
(Spooren et al., 1996; Smith et al., 2009; Haber and Knutson,
2010). Testing if and how single neurons in different BF subre-
gions encode information about reward value and uncertainty
during reward-seeking decisions and actions could therefore pro-
vide important information about how the BF supports behavior,
particularly in naturalistic environments, in which outcomes are
often variable or uncertain.

Here, we examined how BF neurons process reward uncertainty
and value. We found that a subset of BF neurons most often found in
the dorsal-lateral BF (in regions occupied by VP) were suppressed by
reward uncertainty as monkeys made uncertainty-seeking (risky)
choices. Another subset of BF neurons, most often found in the
medial BF, signaled the subjective values of reward options during
choices, and were selectively enhanced by reward uncertainty
after the risky choices (during the anticipation of the delivery of
uncertain outcomes). Our findings support the notion that different
subregions of the BF contribute differentially to behavior under un-
certainty, on different timescales, to help us approach or avoid un-
certainty and learn from it.

Materials and Methods
General procedures. Three adult male rhesus monkeys (Macaca mulatta)
were used for the experiments (Monkeys B, R, and W). All procedures
conformed to the Guide for the care and use of laboratory animals and
were approved by the Washington University Institutional Animal Care
and Use Committee. A plastic head holder and plastic recording chamber
were fixed to the skull under general anesthesia and sterile surgical con-
ditions. The chambers were tilted laterally by 35° and aimed at the BF and
the anterior portion of the caudate nucleus. After the monkeys recovered
from surgery, they participated in the reward-probability and reward-
amount behavioral procedure.

Data acquisition. While the monkeys participated in the reward-
probability and reward-amount behavioral procedure, we recorded
the activity of 298 single neurons in the BF. Monkey B yielded 44
neurons, Monkey R yielded 95 neurons, and Monkey W yielded 159
neurons. The recording sites were determined with 1-mm-spacing
grid system, with the aid of MR images (3T) obtained along the di-
rection of the recording chamber. This MRI-based estimation of neu-
ron recording locations was aided by custom-built software (Daye et
al., 2013) and was described in detail previously (Daye et al., 2013;
Monosov and Hikosaka, 2013; Monosov et al., 2015). These methods
were verified previously using histology (Monosov and Hikosaka,
2012, 2013; Monosov et al., 2015), and by in vivo MR imaging of the
electrode at the site of the neuronal recordings in this and one previ-
ous study (Monosov et al., 2011).

Single-unit recording was performed using glass-coated tungsten elec-
trodes (Alpha Omega). The electrode was inserted into the brain through
a stainless-steel guide tube and advanced by an oil-driven micromanip-
ulator (MO-97A, Narishige). Signal acquisition (including amplification
and filtering) was performed using Alpha Omega 44 kHz SNR system.
Action potential waveforms were identified online by multiple time-
amplitude windows with an additional template matching algorithm
(Alpha Omega). Neuronal recording was restricted to single neurons that
were isolated online. Neuronal and behavioral analyses were conducted
offline in MATLAB (The MathWorks).

Eye position was obtained with an infrared video camera (Eyelink,
SR Research). Behavioral events and visual stimuli were controlled by
MATLAB with Psychophysics Toolbox extensions (Brainard, 1997; East-
man and Huk, 2012; Herman et al., 2015). Juice, used as reward, was
delivered with a solenoid delivery reward system (CRIST Instruments).

Reward-probability and reward-amount behavioral procedure. The
reward-probability and reward-amount behavioral procedure consisted
of two distinct alternating trial blocks: a reward-probability block and a
reward-amount block, with each block consisting of 18 trials (Monosov
et al., 2015). Monkeys often performed �20 blocks on any given exper-
imental session.

In the reward-probability block, three visual fractal conditioned stim-
uli (CSs) were followed by a liquid reward (0.25 ml of juice) with 100%,
50%, and 0% chance. In the reward-amount block, three CSs were fol-
lowed by a liquid reward of 0.25, 0.125, and 0 ml. Thus, the expected
values of the three CSs matched between the probability and amount
blocks. To control for neuronal object preference, we used two fractal sets
(i.e., for every CS, there were two different visual fractals).

Each trial started with the presentation of a green trial-start cue at the
center of the screen. The monkeys had to maintain fixation on the trial-
start cue for 1 s; then the trial-start cue disappeared and one of the three
CSs was presented pseudorandomly. After 2.5 s, the CS disappeared, and
juice (if scheduled for that trial) was delivered. In each trial, the CS could
appear in three locations: 10 degrees to the left or to the right of the
trial-start cue, or in the center. One block consisted of 18 trials with fixed
proportions of trial types (each of the three CSs appears 3 times each
block, 9 of 18 trials total).

In the remainder of the trials in each block (9 of 18), the monkeys
chose among the CSs, with each trial as a two-alternative forced choice.
Their choice preference was tested among the probabilistic CSs (used in
the reward-probability block), among the amount CSs (used in the
reward-amount block), and across the probabilistic and amount CSs.
Therefore, choice trials tested monkeys’ preferences among all reward
CSs in this study.

Each trial started with the presentation of a purple trial-start cue at the
center, and the monkeys had to fixate it for 0.5 s. After the monkey fixated
the trial start cue for 0.5 s, a choice array was presented consisting of two
CS fractals used in the Pavlovian procedure. The monkey had to continue
to fixate until the trial start cue disappeared (0.5 s). Monkeys then made
saccadic eye movements to their preferred CS fractals and fixated them
for 0.75 s to indicate their choices. Then, the unchosen CS disappeared,
and the monkeys waited for 1 s to receive the scheduled outcome (asso-
ciated with their chosen fractal).

Throughout this study, the intertrial intervals ranged from 3 to 6 s.
Approximately 1 in 5 intertrial intervals contained uncued events (cho-
sen randomly). These could be either a juice reward alone (0.25 ml) or a
�70 dB 0.15 s auditory white-noise burst paired with a brief screen flash
of equal duration.

The methods of creating the visual fractals used in our experiments
were as previously described (Miyashita et al., 1991; Yamamoto et al.,
2012). The variability in luminance across the (1) visual fractals, (2) the
trial start center spot, and (3) the gray background of the screen was
minimized.

Data processing and statistics. Spike-density functions were generated
by convolving spike times with a 100 ms Gaussian filter. For display
purposes, spike-density functions of single neurons in the figures were
generated by convolving spike times with a 100 ms Gaussian filter. CS-
modulated neurons were defined as those that varied their responses
across the 4 possible reward predictions (100% 0.25, 50% 0.25, 100%
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0.125, and 0 ml of juice) (Kruskal–Wallis test, p � 0.05; analysis window:
last 750 ms of the single CS trial).

A neuron was further defined as uncertainty-enhanced if its response
to the uncertain CS (50%) was significantly stronger than its responses to
both certain CSs (100% and 0% CSs). Likewise, a neuron was further
defined as uncertainty-suppressed if its response to the uncertain CS was
significantly weaker than its responses to both certain CSs (100% and 0%
CSs). These tests were performed with 2 separate two-tailed rank-sum
tests (i.e., 50% vs 100% and 50% vs 0%; p � 0.05 with Bonferroni cor-
rection for multiple comparisons). Performing the initial Kruskal–Wallis
test on CSs in the reward-probability block only did not change the
results in this study. Our uncertainty selectivity identification procedure
allowed us to identify neurons whose responses were selective for reward
uncertainty in the reward-probability block and to further study their
activity in the reward-amount block and during choice trials (Monosov
and Hikosaka, 2013; Monosov et al., 2015).

To normalize single CS task-event related responses, we subtracted
baseline activity (the last 750 ms of the intertrial interval) from the activ-
ity during the task-event related measurement epoch. To normalize
choice task-event related responses, we subtracted the trial-start cue fix-
ation epoch activity from the activity during the task-event related mea-
surement epoch. To study the reward-prediction related responses
during single CS presentation trials, we used the time window of 100 ms
after CS presentation until the outcome delivery.

All statistical tests were two-tailed. For comparisons between two task
conditions for each neuron, we used the rank-sum test, unless otherwise
noted. For comparisons between two task conditions across the popula-
tion average, we used a paired signed-rank test, unless otherwise noted.
The statistical significance of all correlations ( p � 0.05) was tested using
a permutation test (null hypothesis: neuronal activity was independent of
reward value) by shuffling the neural firing rates across the conditions
(e.g., reward sizes) 10,000 times (Monosov et al., 2015).

To assess whether single neurons’ uncertainty responses contained
information about spatial location or object identity, we computed re-
sponse indices (difference between neuronal responses to two conditions
divided by their sum). Specifically, to test for CS spatial sensitivity, we
compared responses for 50% CS when it was shown 10 degrees to the
right versus 10 degrees to the left of center. To test for object-feature
sensitivity, we compared responses to two distinct 50% CS fractal objects.

To display the choice-related dynamics of uncertainty signals among
different groups of uncertainty-sensitive neurons, we sorted the activity
into three trial types: (1) trials in which monkeys chose 0.25 ml of juice,
(2) trials in which the monkeys chose 50% of 0.25 ml of juice, and (3)
trials in which the monkeys chose 0.125 ml of juice. We then performed
a running test of uncertainty sensitivity in 100 ms time bins, stepping in
1 ms steps. To confirm the tests, uncertainty sensitivity was also tested in
nonoverlapping time windows. Uncertainty sensitivity was defined as
when there was significant variance across the three choice trial types
(Kruskal–Wallis test, p � 0.01) and activity in uncertain choice trials was
significantly stronger or weaker than during each of the other two certain
choice trials (e.g., 0.25 ml and 0.125 ml of juice chosen; two-tailed rank-
sum tests; p � 0.05).

To quantify irregularity of spiking activity, we used the irregularity
index developed by Davies et al. (Davies et al., 2006; Nakamura et al.,
2008; Matsumoto and Hikosaka, 2009). This measurement does not re-
quire constant firing during the measurement period and is therefore
useful for analyzing neurons with different firing properties (Davies et
al., 2006; Monosov et al., 2015). Baseline period for irregularity and firing
rate measures was defined as the last second of an intertrial interval.

Results
We recorded single BF neurons while Monkeys B, R, and W
participated in a behavioral procedure having two distinct con-
texts or blocks: (1) a reward-probability block in which three
visual fractals predicted 0.25 ml of juice with 100%, 50%, and 0%
chance; and (2) a reward amount block in which a different set of
three visual fractals predicted 0.25, 0.125, and 0 ml of juice, with
no uncertainty (Fig. 1A). The two contexts had the same expected

value across an entire block, but reward uncertainty was only
present in the reward probability block. During neuronal record-
ings, to verify that the monkeys understood the behavioral pro-
cedure, we included (1) choice trials and (2) measured the
monkeys’ licking behavior. First, monkey’s choice was largely
guided by reward value (Fig. 1B). Second, as in our previous
reports (Monosov and Hikosaka, 2013; Monosov et al., 2015), the
magnitude of the monkeys’ licking behavior was correlated to the
value of the fractals in the reward-probability block (p � 0.001;
Spearman’s rank correlation) and the reward-amount blocks
(p � 0.001; Spearman’s rank correlation).

We found that many BF neurons were sensitive to reward uncer-
tainty (also often called “reward risk”) (O’Neill and Schultz, 2010;
Burke and Tobler, 2011b; Monosov and Hikosaka, 2013) and re-
ward value in different manners. The average visual fractal CS re-
sponses of three reward uncertainty-sensitive BF neurons to certain
(black) and uncertain (red) reward predictions are shown in Figure
1C. In the reward probability block, the first two neurons (Fig. 1C,
left and middle) had the lowest firing rate when the delivery of re-
ward was predicted with 50% chance (p�0.01, Wilcoxon rank-sum
test). They were therefore selectively suppressed by uncertainty. The
third neuron (Fig. 1B, right) displayed the highest firing rate when
the delivery of 0.25 ml of the reward was predicted with 50% chance
(p � 0.01, Wilcoxon rank-sum test). It was selectively enhanced by
uncertainty. In contrast to the results obtained in the reward-
probability block, in the reward-amount block (black), the neurons’
activity was correlated with the monkeys’ reward preference and
reward value (Fig. 1B). The magnitude of the first neuron’s activa-
tion was negatively correlated with the amount of predicted reward
(p � 0.05; Spearman’s rank correlation). Its activity scaled with re-
ward amount (i.e., no reward � small reward � large reward). The
second and third neuron showed a similar pattern of activation, but
their activity was positively correlated with the amount of predicted
reward (p � 0.05; Spearman’s rank correlation). The three example
neurons illustrate that the BF contains positive and negative reward
value-coding neurons that are selectively enhanced or suppressed by
reward uncertainty.

Beyond the difference in the direction (suppression or enhance-
ment) of uncertainty modulation of value-coding neurons in BF, we
observed that the dynamics of the uncertainty selective signals dif-
fered across the uncertainty-suppressed and uncertainty-enhanced
neurons. This can be observed in Figure 1D (activity is shown for the
same neurons as in Figure 1C, left, and Figure 1C, right). After the
uncertain-reward prediction, the uncertainty-suppressed neuron
became suppressed relatively quickly, and this uncertainty suppres-
sion persisted until the end of the trial. In contrast, the uncertainty-
enhanced neuron continued to increase its uncertainty-related
response in a ramp-like manner until the time of the trial outcome
(reward delivery or omission). These different dynamics of the
uncertainty-enhanced and uncertainty-suppressed example neu-
rons may suggest that they contribute to reward value processing
and outcome-anticipation in distinct manners.

To assess the possibility that the uncertainty-suppressed and
uncertainty-enhanced BF neurons belong to functionally and ana-
tomically distinct neuronal populations, we (1) examined their an-
atomical locations and intrinsic neuronal characteristics, (2)
assessed the similarities and differences in their representation of
reward value, and (3) studied the dynamics of their uncertainty sig-
nals while monkeys chose between certain and uncertain rewards.

We explored widely in the BF (anterior–posterior range rela-
tive to the center of the anterior commissure was as follows: �2 to
3 mm; mediolateral range relative to the midline was as follows:
0 –9 mm). Of the 298 recorded BF neurons, 80 were selectively
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modulated by reward uncertainty (see Materials and Methods);
39 of 80 BF neurons were enhanced and 41 of 80 were suppressed
by reward uncertainty. Their locations are shown in Figure 2A.
Uncertainty-enhanced neurons were concentrated in the
ventral-medial portion of the BF that projects to the cingulate

and hippocampal cortices, and plays important roles in learn-
ing, memory, and outcome monitoring (Damasio et al., 1985;
Everitt et al., 1988; Morris et al., 1992; Voytko, 1996; Everitt
and Robbins, 1997; Baxter and Chiba, 1999; Semba, 2000;
Baxter and Bucci, 2013; Monosov et al., 2015). Uncertainty-

Figure 1. Responses of neurons in the BF to certain and uncertain reward predictions. A, Monkeys experienced two distinct blocks: a reward-probability block (left) in which three visual fractal
CSs predicted juice 0.25 ml of juice with 100%, 50%, and 0% chance; and a reward amount block (middle) in which three fractals predicted three “certain” amounts of juice (0.25, 0.125, and 0 ml
with 100% chance). Behavioral procedure is shown on the right. TS, Trial start cue. B, Choice percentage of a single reward probability CS versus all the other reward-probability CSs (red). Choice
percentage of a single reward amount CS versus all the other reward-amount CSs (black). Data are compiled from a dataset of 18,287 trials. C, Average responses of three BF neurons in the two blocks
to the certain and uncertain reward predictions (time window: 100 ms following CS presentation until the outcome). D, Task dynamics of an uncertainty-suppressed neuron (top; same neuron as C,
left) and an uncertainty-enhanced neuron (bottom; same as C, right). Spike activity is shown by raster plots (top) and spike density function (bottom). Activity is separated by the 4 possible reward
predictions. Dark blue raster plots represent the activity in 50% CS trials in which reward was omitted. TSf, Monkey fixated trial start cue; US, unconditioned stimulus (trial outcome).
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suppressed neurons were concentrated in a region slightly
posterior, in the dorsal-lateral portion of the BF occupied
mostly by the ventral pallidum, an output nucleus of the lim-
bic striatal-pallidal system (Haber et al., 1985, 1995; Spooren
et al., 1996). This region may be distinct from other BF subre-
gions due to its neuronal composition (e.g., like other pallidal
structures, it is mostly GABAergic), anatomical connectivity
(Spooren et al., 1996; Smith et al., 2009; Haber and Knutson,
2010), and its role in adjusting the motivational drive relative
to reward (Smith and Berridge, 2005; Smith et al., 2011; Tachi-
bana and Hikosaka, 2012; Root et al., 2015).

The differences in the locations of the uncertainty-enhanced
and uncertainty-suppressed neurons’ were significant along

the medial-lateral axis (p � 0.05; Wilcoxon rank-sum test), an-
terior–posterior axis (p � 0.05; Wilcoxon rank-sum test), and
depth (p � 0.05; Wilcoxon rank-sum test). Lastly, among the
uncertainty-suppressed neurons, some signaled positive or neg-
ative reward value. We did not find a difference in their locations.
This was consistent with previous observations that the primate
ventral pallidum contained a mixture of positive and negative
coding neurons (Tachibana and Hikosaka, 2012).

Beyond anatomical differences in their locations, we found
statistical differences in electrophysiological properties of
uncertainty-suppressed and enhanced neurons. First, on aver-
age, uncertainty-enhanced neurons displayed wider action
potential spike duration than uncertainty-suppressed neurons

Figure 2. Differences between uncertainty-enhanced and uncertainty-suppressed BF neurons. A, Reconstructed locations of uncertainty-enhanced (red dots) and uncertainty-suppressed (blue
dots) BF neurons plotted on two coronal sections where they were most often found. The location of the coronal sections along the anterior–posterior axis relative to the center of anterior
commissure (AC) is indicated in italics. The locations of the uncertainty-enhanced and uncertainty-suppressed neurons differed along the anterior–posterior, medial-lateral, and depth dimensions
( p � 0.01 by Wilcoxon rank sum tests). Estimated locations of medial BF (mBF), lateral BF (lBF), caudate (cd), putamen (put), dorsal pallidum (dp), septum (s), and ventral pallidum (vp) are shown
on the diagrams. Scale bar, 6 mm. Inset, Histogram represents the anterior–posterior locations of uncertainty-enhanced (red) and uncertainty-suppressed (blue) neurons relative to the center of the
AC. Below the reconstructions are coronal T1 MR images taken with electrodes at the location of identified uncertainty-enhanced (left) and uncertainty-suppressed (right) neurons. After identifying
a single neuron, the electrode was raised 300 �m and was fixed to the recording grid. Then, MR images were acquired under gas anesthesia. The electrode’s shadow in each MR image (indicated
with a yellow arrow) is the black line whose tip is further highlighted with a red arrow. The locations of coronal images relative to the center of the AC are indicated below. Scale bar, 1.01 cm. For
visibility, MRI slices were aligned along the electrode track. B–D, Electrophysiological properties of uncertainty-enhanced and uncertainty-suppressed neurons. Error bars indicate SE. Individual
neuron’s properties are shown as scatters. B, Average spike shapes of uncertainty-enhanced and uncertainty-suppressed neurons (red and blue, respectively). *p � 0.01, the duration, from trough
to peak, was statistically different (Wilcoxon rank sum test). Single neuron spike widths are shown on the right. Average baseline irregularity (C) and firing rate (D) for the two groups of
uncertainty-sensitive neurons. *p � 0.01, significant differences (Wilcoxon rank sum test).
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(Fig. 2B; p � 0.01; Wilcoxon rank sum test). Second, consis-
tent with previous observations, uncertainty-enhanced neurons
often exhibited regular firing relative to the uncertainty-suppressed
neurons (Fig. 2C; p � 0.01; Wilcoxon rank sum test). Third,
uncertainty-enhanced neurons on average had lower baseline firing
rates than uncertainty-suppressed neurons (Fig. 2D; p � 0.01; Wil-
coxon rank sum test). These differences seemed to be related to the
locations of the uncertainty-enhanced and uncertainty-suppressed
neurons. This was found when we studied the firing characteristics
of the uncertainty-insensitive neurons (n � 218). We defined the
ventral pallidum region using previously reported criteria (Tachi-
bana and Hikosaka, 2012) and compared electrophysiological prop-
erties of putative ventral pallidal neurons (n � 85) with other BF

neurons (n � 133). The same patterns of results were observed: on
average, VP neurons displayed narrower spike shapes, more irregu-
lar firing, and higher firing rates (spike shape: p � 0.01, firing irreg-
ularity; p � 0.05, firing rate; p � 0.01).

Together with the difference in the anatomical location of the
uncertainty-enhanced and uncertainty-suppressed neurons, these
data support the notion that the two types of uncertainty-sensitive-
neurons belong to mostly distinct neuronal populations.

BF is known to exert control over reward-modulated behav-
iors. To understand how uncertainty processing by uncertainty-
enhanced and uncertainty-suppressed neurons could contribute
to this BF function; we next asked how they represent informa-
tion about reward amount.

Figure 3. Representation of reward value and uncertainty among uncertainty-enhanced and uncertainty-suppressed BF neurons. A, Histograms of correlation coefficients for uncertainty-
enhanced and uncertainty-suppressed neurons (left and right, respectively) assessing the relationship of neuronal activity and the size of predicted reward in the reward amount block. Gray
represents significant correlations. Numbers of positive or negative value-coding neurons (e.g., those with significant negative or positive correlation coefficients) are indicated in italics. B–D,
Average normalized responses of value coding uncertainty neurons for reward probability (red) and reward amount predictions (black). Value coding was defined by each neuron’s significant
correlation coefficient (negative or positive). B, CS responses of the 33 uncertainty-enhanced positive value-coding neurons. C, CS responses of the 16 uncertainty-suppressed positive value-coding
neurons. D, CS responses of the 18 uncertainty-suppressed negative value-coding neurons. Insets, Reward-amount population CS responses subtracted from the reward-probability population CS
responses of equal expected value *p � 0.05, significant difference between conditions (paired sign-rank test; time window: 100 ms following CS presentation until the outcome). E–G, Task
dynamics of uncertainty-enhanced positive value-coding neurons (E), uncertainty-suppressed positive value-coding neurons (F ), and uncertainty-suppressed negative value-coding neurons (G).
Activity is separated by the 4 possible reward predictions.
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To this end, we assessed the relationship between the size of ex-
pected rewards in the reward amount block and neuronal activity
(see Materials and Methods); 33 of 39 of uncertainty-enhanced neu-
rons’ CS responses in the reward amount block were positively cor-
related with the size of the predicted reward (Fig. 3A; we term them
positive reward value-coding neurons). No uncertainty-excited
neurons displayed significant negative correlations with reward
amount, whereas 16 of 41 of uncertainty-suppressed neurons were
positively correlated with reward amount and 18 of 41 of
uncertainty-suppressed neurons were negatively correlated with re-
ward amount (we term them negative reward value-coding neu-
rons). Thus, this analysis revealed three groups of neurons:
uncertainty-suppressed positive reward value-coding neurons,
uncertainty-suppressed negative reward value-coding neurons,
and uncertainty-enhanced positive value-coding neurons. The aver-
age activity of uncertainty-enhanced reward value neurons and
uncertainty-suppressed reward value neurons (for positive value
and negative value separately) is shown in Figure 3B–D. Reward size
was encoded by all three groups of uncertainty-sensitive neurons in
a graded manner. The neurons discriminated between no reward
versus small reward (0.125 ml of juice) and small reward versus large
reward (0.25 ml of juice) (p � 0.05, Wilcoxon rank-sum test).

However, the dynamics of reward value and reward uncertainty
coding was different between uncertainty-enhanced and uncertain-
ty-suppressed neurons (Fig. 3E–G). Uncertainty-enhanced neurons
rapidly encoded reward value in a phasic manner after the presenta-
tion of the reward prediction (Fig. 3E), while uncertainty-sup-
pressed neurons differentiated between big and small rewards
continuously (in a approximately tonic manner) until the time of the
trial outcome (compare green vs black traces in Fig. 3F,G; and see
additional example neurons in Fig. 4).

Another difference between uncertainty-enhanced and
uncertainty-suppressed neurons was observed during the trial
start epoch (Fig. 3E–G). On average, uncertainty-enhanced neu-

rons were significantly excited during the trial start fixation ep-
och (p � 0.01; sign rank test; comparison was between baseline
activity and activity during the TS-fixation epoch), whereas
uncertainty-suppressed neurons were suppressed (p � 0.01).
This last finding is consistent with observations of Avila and Lin
(2014) who reported that a subset of putative ventral pallidal
neurons were inhibited during trial start epochs in rodents per-
forming reward-seeking actions.

We verified that uncertainty responses in the BF were not due
to object and spatial selectivity. To this end, we derived spatial-
and object-sensitivity indices for each uncertainty-sensitive neu-
ron (Fig. 5); 0 of 39 uncertainty-enhanced neurons displayed
object or spatial sensitivity. Among the uncertainty-suppressed
neurons, 4 of 41 displayed object sensitivity, and 1 displayed spa-
tial sensitivity. These results replicate our and others’ observa-
tions (Tachibana and Hikosaka, 2012; Monosov et al., 2015) that
most neurons in the medial BF and ventral pallidum do not carry
spatial or object signals.

Next, to further examine the functional differences between
uncertainty-suppressed and uncertainty-enhanced neurons, we
analyzed the time course of uncertainty selectivity in the BF while
monkeys chose between certain and uncertain CS fractals (see
Materials and Methods; Fig. 6A). Briefly, monkeys fixated a cen-
ter spot for 500 ms. Then, the two CS stimuli appeared. The CSs
were the visual fractals associated with certain and uncertain re-
wards used in the single stimulus trials (Fig. 1). Monkeys contin-
ued to fixate the center spot for 500 ms, until the fixation spot
disappeared. To choose among the two reward options, monkeys
made a saccade to one of the two fractal CSs and maintained
fixation for at least 750 ms. Then the unchosen stimulus disap-
peared; and after 1 s, the outcome (associated with the chosen CS)
was delivered. As observed in previous studies, the monkeys’
choices were largely guided by the expected reward value when
they chose between CSs associated with different reward sizes or

Figure 4. Task dynamics of two (A, B) uncertainty-suppressed positive value-coding neurons (top and bottom). Conventions are the same as in Figure 1. The bottom neuron’s reward and
uncertainty preference is also shown in Figure 1B, middle.
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between CSs associated with 100% versus 50% rewards of the
same size (Fig. 6B) (Padoa-Schioppa and Cai, 2011; Monosov
and Hikosaka, 2013; Lak et al., 2014; Monosov et al., 2015). Also,
in agreement with previous findings (Platt and Huettel, 2008;
O’Neill and Schultz, 2010; Monosov and Hikosaka, 2013; Mono-
sov et al., 2015), uncertainty or risk preference was evident be-
cause the monkeys preferred a 50% chance of 0.25 ml of juice
�0.125 ml of juice on �93% of trials, even though the expected
value of these options is the same (Fig. 6B).

To examine the time course of uncertainty selectivity during
choice behavior, we sorted the neuronal activity of uncertainty-
enhanced and uncertainty-suppressed reward value correlated
cells by the monkeys’ choices. The activity of four single neu-
rons is shown in Figure 6C–F, and the population activity of
uncertainty-enhanced and uncertainty-suppressed value-coding
cells is shown in Figure 7A, B. This analysis revealed important
differences in the dynamics of value and uncertainty signals
in the populations of uncertainty-enhanced and uncertainty-
suppressed BF neurons. First, before the go signal (as the mon-
keys continued fixating the fixation cue), uncertainty-enhanced
neurons displayed highest firing for the 100% 0.25 ml option,
lower for the 50% 0.25 ml option, and lowest for the 0.125 ml
option (this rank ordering matches the early phase of the single
CS responses observed in Fig. 3E and the monkeys’ preferences).
The uncertainty-suppressed neurons also displayed “certain” re-
ward value coding before the go signal because they differentiated
choices between certain rewards of different reward values (Fig.
7B, compare black with blue). However, these neurons also dis-
played selective uncertainty suppression before the go signal (Fig.
7B, red trace). Second, uncertainty-enhanced neurons selectively
signaled reward uncertainty mostly after the unchosen stimulus
disappeared as the monkeys expected the receipt of uncertain
rewards (Fig. 7A, red trace). Third, activity differences between
choices of 0.25 ml versus 0.125 ml juice reward options were
evident before the outcome delivery in the uncertainty-
suppressed neurons but not in the uncertainty-excited neurons
(compare black with blue before the choice outcome).

To display the observed differences in the time course of un-
certainty signals among populations of uncertainty-enhanced
and uncertainty-suppressed neurons, we calculated the propor-
tion of neurons showing selective uncertainty enhancement and
suppression during choice. This analysis further supported the
results in Figure 7A, B. Among the uncertainty-enhanced neu-
rons, the population uncertainty signal increased steadily after
choice, as the time of the uncertain outcome receipt neared (Fig.
7C). In contrast, among the uncertainty-suppressed neurons, the

population uncertainty signal began before the choice behavior
was completed and persisted until the uncertain outcome was
delivered (Fig. 7D).

Among the uncertainty-sensitive BF neurons, only
uncertainty-enhanced positive reward value neurons encoded
the three chosen reward options before the choice was finalized
(100% 0.25, 50% 0.25, and 0.125 ml of juice) in a manner that
resembled subjective preference (100% 0.25 � 50% 0.25 � 0.125;
compare behavior in Fig. 6B with neuronal activity in Fig. 7A).
Therefore, we further asked whether these neurons were sensitive
to the subjective values of both options in the choice array or were
only driven by the value of the chosen option. We found that,
before the overt choice, their firing rate was related to the subjec-
tive value of both choice array options (Fig. 8). Overall, the results
in Figures 7 and 8 suggest that uncertainty-enhanced neurons
may signal different task variables during the different epochs of
the decision-action-outcome continuum.

Discussion
The ability to control our actions and internal states relative to un-
certainty about future rewards is critical for flexible and adaptive
behaviors, such as for learning and exploration, and for hopeful or
risky reward seeking. Our data suggest that different regions of the
primate BF could support these functions in distinct manners. We
found that uncertainty preferentially enhanced the activity of many
positive value-coding neurons that were largely concentrated in the
medial regions of the BF and that this enhancement increased as the
time of the uncertain outcome neared. In contrast, uncertainty sup-
pressed the activity of many value-coding neurons that were most
often found in the dorsal-lateral BF, a brain region corresponding to
VP. This suppression was observed in positive and negative value-
coding neurons and occurred when monkeys made actions aimed at
uncertain or risky rewards. Last, we found statistical differences in
firing patterns and spike shapes of neurons in the medial BF and
dorsal-lateral BF, an observation that may support the hypothesis
that they constitute partly distinct anatomical systems (Spooren et
al., 1996; Smith et al., 2009; Avila and Lin, 2014; Root et al., 2015).

VP is considered crucial for setting motivational gain of be-
haviors aimed at rewards (Smith et al., 2009; Haber and Knutson,
2010; Tachibana and Hikosaka, 2012; Berridge and Kringelbach,
2013). We hypothesize that the uncertainty-related modulation
of some value-coding neurons in the dorsal-lateral BF region
corresponding to VP could mediate risky or hopeful behavioral
states. One previous study found, that when VP is inactivated, the
speed of the monkeys’ actions increased and the effect of reward
value associations on behavior decreased (Tachibana and Hiko-

Figure 5. Lack of spatial and object sensitivity in BF uncertainty-enhanced and uncertainty-suppressed neurons. Object (left) and spatial (right) sensitivity indices shown separately for
uncertainty-enhanced (A) and for uncertainty-suppressed (B) BF neurons. Neurons with significant sensitivity indices (Wilcoxon rank sum test; p � 0.05) are shown in gray. The count of significant
neurons (gray) is indicated next to the histograms.
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saka, 2012). Therefore, the suppression of value-coding neurons
in VP may mediate the rate of risky or exploratory behavior. In
support of this notion, we found that, during risky choices,
uncertainty-related suppression emerged before the overt
choice behavior and continued to increase until the choice was
finalized (Fig. 7D; when animal could not change its mind
after the unchosen stimulus disappeared). Because VP proj-
ects to midbrain dopaminergic neurons (Smith et al., 2009;
Haber and Knutson, 2010; Humphries and Prescott, 2010;
Watabe-Uchida et al., 2012), one attractive possibility is that
VP uncertainty-related suppression mediates dopamine re-

sponses and decreases their reward value selectivity. This
mechanism could then promote actions aiming at new or un-
certain contexts. To test this hypothesis, future studies will
need to inactivate VP and record neuronal activity from do-
paminergic neurons during safe and risky choice tasks.

Learning and memory are enhanced by surprising events and
uncertain contexts (Pearce and Hall, 1980; Yu and Dayan, 2005;
Courville et al., 2006; Esber and Haselgrove, 2011; Le Pelley et al.,
2011; Bach and Dolan, 2012) and are thought to be in part depen-
dent on the BF (Damasio et al., 1985; Everitt et al., 1988; Morris et al.,
1992; Voytko, 1996; Everitt and Robbins, 1997; Semba, 2000; Baxter

Figure 6. Choice task, monkeys’ choice preference, and single neuron examples. A, Choice trial structure (left) and the monkeys choice behavior (right). Monkeys made a choice between two CSs
among the well-learned CSs (3 indicating reward amounts, and 3 indicating reward probabilities). B, Percentage of trials the monkeys chose 0, 0.125, 50% 0.25, and 0.25 CSs. Percentage of choice
for every type of choice trial is shown in the inset matrix. Each number in the matrix indicates the choice percentage of the CSs on the x-axis versus the y-axis. Data are compiled from a dataset of
18,287 trials. C–F, Activity of example neurons (same neurons as in Fig. 1D shown in C, D; same neurons as in Fig. 4, shown in E, F ) aligned on choice array presentation and choice.
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and Bucci, 2013). We observed that uncer-
tainty-enhanced neurons displayed a ramp-
like increase in activity after risky choices
that terminated when the outcome was de-
livered. This suggests that the medial BF
uncertainty-enhanced neurons may con-
tribute to outcome monitoring and learning
functions commonly associated with the
medial BF (Damasio et al., 1985; Everitt et
al., 1988; Morris et al., 1992; Voytko, 1996;
Everitt and Robbins, 1997; Semba, 2000;
Baxter and Bucci, 2013; Monosov et al.,
2015). Anatomical, clinical, and imaging
studies support this conjecture. First, medial
BF neurons project strongly to cingulate
cortex and the hippocampal formation
(Mesulam et al., 1983), regions involved in
learning and memory (Suzuki and Clayton,
2000; Suzuki and Eichenbaum, 2000; Su-
zuki, 2007; Bryden et al., 2011; Hayden et al.,
2011). And in both the cingulate and the
hippocampal formation, reward uncer-
tainty (or risk) modulates neural activity

Figure 8. Sensitivity of uncertainty-enhanced positive value-coding neurons to the subjective value of the choice array options.
Normalized neuronal responses during the choice epoch of uncertainty-enhanced positive reward value-coding neurons (n � 33;
analyses done in the first time window in Fig. 7A). The results of Spearman’s correlation across the choice array option combina-
tions are shown in the top left corner. The results of Spearman’s correlation across 3 choice-array combinations in which one of the
options was the 0.25 ml of juice are shown in larger font on the right. *p � 0.01, variance across 3 choice-array combinations in
which one of the options was the 0.25 ml of juice (Kruskal–Wallis test). Error bars indicate SE. In this figure, single neurons’
responses to the 6 choice-array combinations (inset) were normalized to the maximum response (i.e., to the most preferred
choice-array combination), from 0 to 1.

Figure 7. Uncertainty signals in uncertainty-enhanced and uncertainty-suppressed BF neurons during choice. A, B, Average normalized responses during the choice task for uncertainty-
enhanced value coding (n � 33; A) and uncertainty-suppressed value coding (n � 34; B) neurons sorted by the monkeys’ choices. Specifically, neuronal activity was sorted into trials in which the monkey
chose the neurons’ preferred reward value, (black), uncertain reward value (red), or nonpreferred reward value (blue). Preferred values were defined by the sign of the correlation coefficients in Figure 3A.
Variability across the three trial types is tested by a Kruskal–Wallis test ( p � 0.05) for each time window shown in gray near the x-axis. Next, for significant time windows, Wilcoxon rank sum tests were
performed across different trial types. The colored asterisks indicate significant pairwise comparisons ( p�0.05). B, Insets, Choice array onset epoch activity separately for uncertainty-suppressed negative and
positive value neurons. C, D, Percentage of neurons showing either selective uncertainty enhancement (green) or suppression (black) is shown for the populations of uncertainty-enhanced (C) and suppressed
BF neurons (D) in time. To display the choice-related dynamics of uncertainty signals (C, D), we sorted the activity of each neuron into three trial types: (1) trials in which monkeys chose 0.25 ml of juice, (2) trials
in which the monkeys chose 50% of 0.25 ml of juice, and (3) trials in which the monkeys chose 0.125 ml of juice. We then performed a running test of uncertainty sensitivity (see Materials and Methods). The
percentage of neurons displaying selective uncertainty suppression or enhancement is then displayed in C, D. A thin black line indicates 5%.
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during reward-seeking behaviors (Vanni-Mercier et al., 2009; Burke
and Tobler, 2011a; Kolling et al., 2012). Second, lesions of the medial
BF disrupt learning from outcomes and episodic memory acquisi-
tion (Damasio et al., 1985; Everitt et al., 1988; Morris et al., 1992;
Voytko, 1996; Everitt and Robbins, 1997; Semba, 2000; Baxter and
Bucci, 2013).

The possibility that uncertainty-enhanced and uncertainty-
suppressed neurons play overlapping but different roles in
behavior under uncertainty is further supported by the many
clear differences in how the two neuronal populations signaled
information about the value of rewards. Reward uncertainty sup-
pressed the activity of many VP neurons that increased (i.e., pos-
itive reward value-coding neurons) or decreased (i.e., negative
reward value-coding neurons) their activity in relation to in-
creases in expected rewards (Fig. 3A). As observed in previous
studies (Smith et al., 2011; Tachibana and Hikosaka, 2012), these
reward value signals persisted until the trial’s outcome (Figs.
3F,G, 7B). The tonic reward value signals observed in VP
reward-sensitive neurons may aim and motivate actions to-
ward known or certain rewards by persistently encoding their
expected value until the action is complete (Fig. 7B) and the
outcome is delivered.

In contrast, with the tonic reward value coding by
uncertainty-suppressed neurons in the dorsal-lateral BF,
uncertainty-enhanced neurons’ reward value signal was rela-
tively phasic and discriminated between big and small reward
trials mostly during the first �500 ms of the trial (Figs. 3E,
7A). Also, a previous study showed that uncertainty-enhanced
medial BF neurons displayed anticipatory ramping that pre-
ceded the delivery of punishments (Monosov et al., 2015).
Most of these same neurons also responded to the delivery of
punishments with rapid phasic activations. Lastly, here we
found that uncertainty-enhanced neurons displayed unstable
selectivity for different reward options during the choice task
(Fig. 7A). Before the overt choice was made, the neurons rank
ordered the reward options in the order of the monkeys’ pref-
erence (100% big reward �50% big reward � small reward;
Fig. 7A, left) and were sensitive to the subjective value of both
options in the choice array (Fig. 8). However, after the mon-
keys chose the uncertain option, the neurons selectively sig-
naled reward uncertainty (50% big reward �100% big reward;
50% big reward � small reward), and the discrimination of
small versus big reward options mostly disappeared (Fig. 7A,
right; p � 0.05). In sum, these data suggest that the
uncertainty-enhanced neurons are not exclusively dedicated
to signaling selective information about reward uncertainty or
reward value. Instead, their selectivity seems to shift depend-
ing on the task at hand (Fig. 7A).

We previously proposed that a source of uncertainty signals in
the medial BF is the anterodorsal septum (ADS) (Monosov and
Hikosaka, 2013; Monosov et al., 2015), where some neurons are
specifically dedicated to signaling information about reward un-
certainty (Monosov and Hikosaka, 2013). Because ADS is partic-
ularly rich in GABAergic inhibitory neurons (Sheehan et al.,
2004), one might hypothesize that uncertainty suppression in VP
plays an intermediate role in the ADS-medial BF circuit (e.g.,
ADS would inhibit VP, which would then release medial BF from
VP-mediated inhibition). However, the present study makes
this possibility unlikely. First, on average, uncertainty suppres-
sion signals emerged as the time of the choice neared, whereas
uncertainty enhancements in the medial BF emerged much later,
after the unchosen stimulus turned off and the monkeys awaited

the uncertain outcome of their choices (Fig. 7). Second, the se-
lective targeting of uncertainty to positive reward value coding
cells in the medial BF is unlikely to be facilitated by uncertainty-
suppressed neurons in VP that included both negative and posi-
tive reward value coding cells (Fig. 3A). Third, available
anatomical data indicate that the ADS and the medial BF do not
project or receive inputs from VP, which receives inhibitory pro-
jections most prominently from the striatum (Spooren et al.,
1996; Smith et al., 2009; Root et al., 2015). These observations
suggest that the BF contains multiple distinct mechanisms for
signaling uncertainty and reward value: one in VP and one in the
septal-medial BF complex.

One interesting possibility is that the different integration
of value and uncertainty in BF subregions is supported by
monoamine transmission (and other inputs) from the brain-
stem and hypothalamus (Fiorillo et al., 2003; Watabe-Uchida
et al., 2012; Ogawa et al., 2014; Cohen et al., 2015), but more
anatomical studies are required to support or exclude this
hypothesis.

To survive in an uncertain context, humans and other animals
sometimes approach and other times avoid uncertainty, and
learn from the receipt of the uncertain outcomes. These processes
require that the brain integrates information about uncertainty
and value. Our data show that the BF contains at least two reward
uncertainty-coding strategies that could play important roles in
uncertainty-related behavioral control: one mostly in the dorsal-
lateral BF, occupied by VP, to mediate and adjust our actions
aiming at certain and uncertain rewards; and another in the me-
dial BF to help us anticipate, learn, and monitor reward-
uncertain outcomes. How these BF subregions interact with
other brain areas that are modulated by reward uncertainty (Hsu
et al., 2005; McCoy and Platt, 2005; Preuschoff et al., 2006, 2008;
Preuschoff and Bossaerts, 2007; O’Neill and Schultz, 2010; Burke
and Tobler, 2011a; Schultz et al., 2011; Monosov and Hikosaka,
2012, 2013; Monosov et al., 2015) will be the subject of our next
experiments.
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