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Systems/Circuits

Partial Adaptation to the Value Range in the Macaque
Orbitofrontal Cortex

X Katherine E. Conen1 and X Camillo Padoa-Schioppa1,2,3

Departments of 1Neuroscience, 2Economics, and 3Biomedical Engineering, Washington University, St Louis, Missouri 63110

Values available for choice in different behavioral contexts can vary immensely. To compensate for this variability, neuronal circuits
underlying economic decisions undergo adaptation. In orbitofrontal cortex (OFC), neurons encode the subjective value of offered and
chosen goods in a quasilinear way. Previous experiments found that the gain of the encoding is lower when the value range is wider.
However, the parameters OFC neurons adapted to remained unclear. Furthermore, previous studies did not examine additive changes in
neuronal responses. Computational considerations indicate that these factors can directly impact choice behavior. Here we investigated
how OFC neurons adapt to changes in the value range. We recorded from two male rhesus monkeys during a juice choice task. Each
session was divided into two blocks of trials. In each block, juices were offered within a set range of values, and ranges changed between
blocks. Across blocks, neuronal responses adapted to both the maximum and the minimum value, but only partially. As a result, the
minimum neural activity was elevated in some value ranges relative to others. Through simulation of a linear decision model, we showed
that increasing the minimum response increases choice variability, lowering the expected payoff. This effect is modulated by the balance
between cells with positive and negative encoding. The presence of these two populations induces a non-monotonic relationship between
the value range and choice efficacy, such that the expected payoff is highest for decisions in an intermediate value range.
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Introduction
Neuronal adaptation takes place throughout the brain. Although
its function is not fully understood, in sensory systems adaptation
may contribute to homeostatic regulation (Benucci et al., 2013;
Hengen et al., 2013), efficient perceptual representation (Dan et

al., 1996; Lewicki, 2002; Gutnisky and Dragoi, 2008; Adibi et al.,
2013), and sharper behavioral performance (Krekelberg et al.,
2006; Liu et al., 2016). Context adaptation has also been observed
in the neuronal representation of subjective values. Studies in
nonhuman primates have found adaptive coding in several brain
regions, including orbitofrontal cortex (OFC; Padoa-Schioppa,
2009; Kobayashi et al., 2010; Yamada et al., 2018), anterior cin-
gulate cortex (Cai and Padoa-Schioppa, 2014), and the amygdala
(Bermudez and Schultz, 2010; Saez et al., 2017). In humans, ex-
periments measuring BOLD activity have shown context-
adapting value signals in ventromedial prefrontal cortex
(vmPFC), ventral striatum, and other brain areas (Elliott et al.,
2008; Cox and Kable, 2014; Burke et al., 2016). More recent work
has begun to explore the behavioral implications of value adap-
tation using a combination of experimental and theoretical ap-
proaches. One study found that adaptation in OFC reduces
variability in value-based decisions, increasing the subject’s ex-
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Significance Statement

Economic decisions are thought to rely on the orbitofrontal cortex (OFC). The values available for choice vary enormously in
different contexts. Previous work showed that neurons in OFC encode values in a linear way, and that the gain of encoding is
inversely related to the range of available values. However, the specific parameters driving adaptation remained unclear. Here we
show that OFC neurons adapt to both the maximum and minimum value in the current context. However, adaptation is partial,
leading to contextual changes in the response offset. Interestingly, increasing the activity offset negatively affects choices in a
simulated network. Partial adaptation may allow the circuit to maintain information about context value at the cost of slightly
reduced payoff.
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pected payoff (Rustichini et al., 2017). Other work suggests that
value adaptation on a shorter time scale may induce irrational
decision patterns (Soltani et al., 2012; Yamada et al., 2018).

Despite these advances, many aspects of range adaptation re-
main poorly understood. For example, previous studies did not
distinguish between neurons adapting to the value range (i.e., the
difference between maximum and minimum value) and neurons
adapting to the maximum value (Padoa-Schioppa, 2009; Ko-
bayashi et al., 2010; Cox and Kable, 2014). Also, previous work
focused exclusively on gain adaptation (Padoa-Schioppa, 2009;
Kobayashi et al., 2010; Cox and Kable, 2014; Rustichini et al.,
2017) and did not examine changes in the intercept of the re-
sponse function. To address these outstanding issues, we re-
corded from monkeys engaged in a juice choice task. We focused
on OFC, an area engaged in value-based decisions (Fellows, 2011;
Wallis, 2012; Rudebeck and Murray, 2014; Schultz, 2015; Padoa-
Schioppa and Conen, 2017). Each neuron was recorded during
consecutive blocks of trials. Within each trial block, offer values
for each juice varied within a specified range. However, value
ranges varied across blocks. Neurons adapted to both the maxi-
mum and the minimum values available in the current context.
However, responses did not remap completely to the new value
range (partial adaptation). In particular, the encoding slopes
measured with wide value ranges were steeper than expected un-
der full adaptation. Furthermore, the response to the minimum
value increased as a function of the minimum value. Importantly,
partial remapping reflected the final adapted state of neurons, not
simply an incomplete temporal process.

We complemented these experimental results with a series of
simulations. Using a linear decision model, we showed that in-
creasing the minimum activity adds noise to the decision process,
increasing choice variability and reducing the expected payoff.
However, this theoretical loss is relatively minor compared with
the effect of narrowing the dynamic range. Moreover, the pres-
ence of both positive and negative value encoding moderates this
effect, keeping expected payoff more consistent across different
ranges. Incomplete adaptation may allow the circuit to remain
flexible and maintain information about the overall value of the
context, at the cost of a slight decrease in expected payoff.

Materials and Methods
Experimental procedures. Two adult male macaques (Macaca mulatta;
Monkey D, 11.5 kg; Monkey F, 11.0 kg) participated in this study. During
the experiment, the animal sat in an electrically insulated enclosure (Crist
Instruments) with its head fixed. Cues were displayed on a computer
monitor placed 57 cm in front of the animal. Monkeys performed a
variant of a juice choice task used in several previous studies (Padoa-
Schioppa and Assad, 2006). The task was run on custom-written software
(http://www.monkeylogic.net/) based on MATLAB (MathWorks). Eye
position was monitored with an infrared video camera (EyeLink, SR
Research).

In each session a monkey chose between two juices, A and B, offered in
varying quantities. Juice A was defined as the preferred juice (i.e., 1A was
generally chosen over 1B). In each trial, the monkey began by fixating on
a central point. After 1 s, cues appeared on each side of the central fixa-
tion, indicating the current range of possible offers. The cues consisted of
a set of filled and empty squares. The color of the squares indicated the
juice type, the total number of squares represented the maximum possi-
ble offer for that juice in the current trial, and the filled squares repre-
sented the minimum possible offer in that trial (Fig. 1A). The cues
remained on screen for 1 s and were then replaced by a set of solid squares
denoting the offers on the current trial. After a randomly variable delay
(1–2 s), the central fixation point disappeared and targets appeared next
to each offer (go signal). The monkey indicated its choice with a saccade
to one of the targets and, after 0.75 s, received the juice corresponding to

the chosen offer. If the monkey broke fixation before the go signal or if it
failed to fixate the target for 0.75 s after the saccade, the trial was aborted
and the monkey received no reward.

Each session consisted of 2–3 blocks, each lasting �250 trials. The
offered quantity varied pseudorandomly from trial to trial within a de-
fined range. Within a block, the range of possible offers was kept constant
for each juice. The monkey could either learn the value range implicitly
through experience or explicitly using the range cues. We do not attempt
to distinguish between these possibilities. Between blocks, the range of
available offers for each juice changed. There were three possible ranges
for each juice: “low” (0 –3 uA or 0 – 6 uB), “high” (2–5 uA or 4 –10 uB),
and “wide” (0 –5 uA or 0 –10 uB). Most range transitions consisted of an
increase/decrease in the minimum value (Vmin), whereas the maximum
value (Vmax) either remained constant or shifted in conjunction with
Vmin. When Vmin and Vmax changed together, the difference Vmax � Vmin

was kept constant. We counterbalanced the type of range transition
across sessions. In a small subset of sessions, Vmax increased/decreased
while Vmin was kept at zero. The ranges of Juice A and Juice B could
change in the same direction or in different directions.

Before training, a head-restraint device and a recording chamber were
implanted on the skull under general anesthesia. The recording chamber
(main axes: 50 � 30 mm) was centered on inter-aural coordinates (A30,
L0). Structural MRI scans were obtained before and after implantation
and used to guide recordings. We recorded neuronal data from the cen-
tral OFC, in a region approximately corresponding to area 13m (Ongür
and Price, 2000; Monkey D: A 31:36, L �6:�10; Monkey F: A 31:37 L
�6:�11 and 6:11). Recordings were conducted using tungsten elec-
trodes (diameter: 125 �m; FHC) or 16-channel silicon V-probes (diam-
eter: 185 �m, spacing between electrodes: 100 �m; Plexon). Electrodes
were lowered vertically into position each day using a custom-built mi-
crodrive (step size: 2.5 �m). The recording depth was determined ahead
of time based on structural MRI.

Electrical signals were amplified (gain: 10,000) and bandpass filtered
(low-pass cutoff: 300 Hz, high-pass cutoff: 6 kHz; Lynx 8, Neuralynx).
Action potentials were detected on-line by setting a threshold during
recording, and waveforms crossing the threshold were saved (sampling
rate: 40 kHz; Power 1401, Cambridge Electronic Design). Spike sorting
was conducted off-line using standard software (Spike 2, Cambridge
Electronic Design). Neurons were included in the analysis if they re-
mained stable and well isolated for at least 120 trials in each of two blocks.
Responses that were not stably isolated for the full session were only
analyzed for the trials in which they were stable. In the V-probe record-
ings, spikes from the same neuron were occasionally picked up by two
neighboring contacts. These instances were detected manually based on
the consistent presence of simultaneous spikes. If units in neighboring
channels shared �70% of spikes, they were considered duplicates, and
one of the units was excluded from the analysis.

All experimental procedures conformed to the NIH Guide for the Care
and Use of Laboratory Animals and were approved by the Institutional
Animal Care and Use Committee at Washington University in St Louis.

Experimental design and statistical analyses. The study included two
male rhesus monkeys. We recorded from several hundred cells in each
animal (1262 neurons total). All analyses were performed in MATLAB
(MathWorks). Pairwise comparisons were evaluated using the Wilcoxon
signed rank test. Comparisons between two distributions were made
using the Wilcoxon rank sum test. Correlations refer to Pearson’s corre-
lation unless otherwise specified. P values for sign rank and rank sum
tests were calculated by normal approximation using MATLAB’s built-in
functions. Tests for bimodality were done using Hartigan’s dip test,
adapted from code written by Nicholas Price (Monash University, Vic-
toria, Australia; http://www.nicprice.net/diptest/). P values for the dip
test were calculated by bootstrap permutation with 1000 repetitions. P
values are reported without adjustment for multiple comparisons. Addi-
tional details on the data analysis are provided in the following three
sections. Data and code are available upon reasonable request.

Analysis of behavior. Choice behavior was analyzed separately in each
trial block. We defined the choice pattern as the percentage of trials in
which the animal chose Juice B as a function of the offer ratio qB/qA,
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where qX is the quantity of Juice X offered to the monkey. We fit the
choice pattern to a sigmoid function using logistic regression:

P(choice B) � 1/(1 � e�x),

X � a0 � a1log(qB/qA).

From this fit, we computed the relative value of the two juices (�) and the
sigmoid steepness (�):

� � exp( � a0/a1),

� � a1.
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Figure 1. Task outline and behavioral results. A, Schematic of a session. The monkey chose between two juices, each associated with one color. The animal initiates each trial by fixating on a
central point. After 1 s, range cues appear on either side of the central fixation. Filled squares indicate the minimum possible offer for a given juice and total squares indicate the maximum. In this
trial, the cue informed the monkey that the quantity of Juice B offered would be between 4 and 10 drops, whereas the quantity of Juice A would be between 0 and 3 drops. After 1 s, the cues are
replaced by two sets of filled squares representing the current offers. In this trial, the animal chose between 1 drop of grape juice and 4 drops of fruit punch. After a variable interval (1–2 s), the central
fixation disappears, and targets appear next to each offer, cuing the monkey to indicate its choice. The monkey then makes a saccade to one of the targets and holds fixation for 0.75 s, after which
it receives the chosen juice. Each session consists of 2–3 blocks, each with �250 trials. Ranges remain constant across trials within each block and change between blocks. B, Each juice is offered in
one of three ranges: low, high, or wide. The two juices can be offered in either the same type of range or different types of range within a block. C–H, Changes in choice behavior across sessions. C,
D, Illustration of the behavioral response function for changing values of relative value � (C), or behavioral steepness � (D). Increased � corresponds to a decreased probability of choosing offer B
for a given offer (qB:qA). Increased � corresponds to less variable choice behavior. E–H, Animal behavior across sessions. Each point represents the behavior from one pair of blocks in a session (n �
205). E, Relative value in the earlier versus later block of a session. Values of � were strongly correlated across pairs of blocks in a session (r�0.73, p�5.5�10 �35, Pearson correlation) and slightly
elevated in later blocks (median ��� 0.07; p � 0.011, W � 8.4 � 10 4). F, Values of � were correlated across blocks (r � 0.24, p � 4.4 � 10 �4, Pearson correlation) but did not differ between
the first and second blocks of a session ( p � 0.48, W � 1.1 � 10 4). G, Fractional difference in � across range types. The fractional difference is defined as the difference in parameter values divided
by their sum. Median differences: �high ��low � 0.040 ( p � 2.3 � 10 �4, W � 436), �wide ��low � 0.032 ( p � 8.3 � 10 �5, W � 1.5 � 10 3), �high��wide � 0.041 ( p � 0.054, W � 479).
H, Fractional difference in � across range types. Median differences: �high � �low � 0.11 ( p � 7.7 � 10 �3, W � 384), �wide � �low � 0.069 ( p � 4.2 � 10 �3, W � 1.4 � 10 3), �high �
�wide � 0.049 ( p � 0.14, W � 449). Black diamonds indicate median fractional differences, and asterisks indicate significant difference from 0 ( p � 0.05). All p values, Wilcoxon signed rank test.
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We examined changes in � and � as a function of the range type. To do so,
we compared data for all pairs of blocks within a session. We recorded
during 107 sessions, each of which included 2 or 3 range conditions,
yielding a total of 236 unique block pairs. Block pairs were excluded from
the behavioral analysis if there were �2 offer types with choices split
between the two juices (complete or quasi-complete separation; 31 block
pairs excluded). This criterion was imposed because the logit regression
did not fully converge, resulting in large errors of measure for � and �.
For the remaining 205 block pairs, we computed a fractional difference
for each parameter across different range types, where we defined the
fractional difference as the difference divided by the sum.

Classification of neuronal responses. Because we were interested in the
effects of adaptation at steady state, we discarded the first 16 trials of each
block, thereby excluding trials where the monkey had not yet experi-
enced the full range of values. We analyzed cell data in seven time win-
dows following offer onset: post-offer (0.5 s after offer onset), late-delay
(0.5–1.0 s after offer onset), pre-go (0.5 s before the go signal), reaction
time (time from go cue to target acquisition, usually �200 ms), post-
juice (0.5 s after juice delivery), and post-juice 2 (0.5–1 s after juice
delivery). Data were analyzed independently for each block. We defined
a “trial type” as a set of two offers and the monkey’s choice between them.
For example, if the monkey was offered 1A versus 6B and chose Juice B,
the trial type would be [1A:6B; B]. A “neuronal response” was defined as
the activity of one cell in one time window as a function of the trial type,
across two blocks.

A response was considered task-related if it passed an ANOVA (factor:
trial type; p � 0.05) in each block. To classify task-related responses, we
regressed each response against variables offer value A, offer value B,
chosen value, and chosen juice, separately in each block. Variables that
provided a nonzero regression slope in both blocks ( p � 0.05) were said
to “explain” the response. When a response was explained by more than
one variable, we assigned it to the variable providing the highest total R 2

(summed over the 2 blocks). Most subsequent analyses focused on offer
value and chosen value responses. Because we were interested in the ef-
fects of changing the value distribution, we excluded responses from
analysis if the value range differed by �0.5 units of Juice B (uB) between
blocks (132 responses). We also excluded cells with dramatic changes in
pretrial firing rate across blocks (�1.6� change during the fixation time
window, 208 responses), because large variability in baseline activity
could obscure effects on cell tuning. Including these responses in the
analysis added noise but did not qualitatively alter the results.

Different neuronal responses encoded value with a positive slope
(higher activity for higher value; 71%) or with a negative slope (lower
activity for higher value; 29%). For our analyses, we rectified neuronal
responses with a negative slope as follows:

srectified � � sraw,

brectified � braw � sraw	Vmin � Vmax
,

where s and b indicate the slope and y-intercept of the original linear
regression (“raw”) and the rectified tuning function (“rectified”). Vmax

and Vmin indicate the maximum and minimum value offered in the
current condition. Rectification maintained the same dynamic range and
same slope magnitude, but with a positive rather than negative sign.
Hence, for a rectified response, the maximum evoked response corre-
sponds to Vmax rather than Vmin. Neuronal responses with positive and
rectified negative slopes were pooled in our main analysis. However, we
reproduced qualitatively similar results for positive and negative encod-
ing responses examined separately.

Analysis of range adaptation. The analysis of range adaptation focused
on offer value A, offer value B, and chosen value responses. We grouped
responses into three types of range transition: change Vmax only, change
Vmin only, and change both. Transition types could be divided further
based on the direction of change (increase/decrease). For offer value re-
sponses, we controlled the value range so that each transition type was
consistent across sessions. Thus, if we describe the offer value range as a
fraction of the wide value range (�Vwide), the normalized ranges were
0 – 0.6 uV (low range), 0.4 –1 uV (high range), and 0 –1 uV (wide range)
for all offer value responses. Chosen value ranges depended on the choice

pattern of the animal, and in particular on the relative value �, which
varied across sessions even when the two juices were identical. For the
purpose of this study, we considered the maximum/minimum chosen
value changed if the difference between blocks was �0.5 uB.

For each response, we regressed the firing rate onto value separately in
each block. We obtained the slope of encoding (s) from each fit. Slopes
were compared directly across range types, and the relationship between
slope and range was tested more precisely using adaptation ratios (see
Results). We also used the regression to calculate the responses to the
minimum and maximum values (Rmin and Rmax):

Rmin � s � Vmin � b,

Rmax � s � Vmax � b,

where Vmin and Vmax are the minimum and maximum values in the
current block and b is the y-intercept of the linear fit.

We computed the normalized difference for conditions where either
Vmin or Vmax changed alone:

�Rmin � 	Rmin,wide � Rmin,narrow
/	Rmax,wide � Rmin,wide
.

�Rmax � 	Rmax,wide � Rmax,narrow
/	Rmax,wide � Rmin,wide
,

and for conditions where both Vmin and Vmax changed:

�Rmin � 	Rmin,high � Rmin,low
/	Rmax,high � Rmin,low
,

�Rmax � 	Rmax,high � Rmax,low
/	Rmax,high � Rmin,low
.

We also computed the values of �Rmin and �Rmax that would be pre-
dicted if neurons did not adapt at all (NA). In this case �Rmin and �Rmax

were equivalent to the difference in Vmax and Vmin across conditions,
normalized as above. For example, when either Vmax or Vmin changed
alone:

�Rmin,NA � 	Vmin,wide � Vmin,narrow
/	Vmax,wide � Vmin,wide
.

For offer value responses, changes in Vmin and Vmax were controlled.
Thus, when Vmax changed alone �Rmax,NA � 0.4 and �Rmin,NA � 0;
when Vmin changed alone �Rmax,NA � 0 and �Rmin,NA � 0.4; and when
both changed, �Rmax,NA � �Rmin,NA � 0.4. For chosen value neurons,
�Rmax,NA and �Rmin,NA depended on the relative value and the animal’s
choice pattern in each session.

Figures 4 and 6 show average traces of offer value response activity
normalized so that values and neural responses vary in the range [0 1].
Unless otherwise specified, these responses were normalized as follows.
For cases where either Vmax or Vmin change alone:

Rnorm � 	R � Rmin,wide
/	Rmax,wide � Rmin,wide
,

Vnorm � 	V � Vmin,wide
/	Vmax,wide � Vmin,wide
.

For cases where Vmax and Vmin changed concurrently:

Rnorm � 	R � Rmin,low
/	Rmax,high � Rmin,low
,

Vnorm � 	V � Vmin,low
/	Vmax,high � Vmin,low
.

Rnorm and Vnorm denote normalized responses and values, R and V de-
note the non-normalized responses and values, and Rmax,j and Rmin,j

indicate the response to Vmax and Vmin in range type j.
To study adaptation in early versus late trials after the range transition,

we computed separate tuning functions for the first and second half of
each block. Responses were excluded if the slope changed by a factor �5
within the first block (2 responses excluded). Including these responses
did not substantially affect results, but did add noise to the data, partic-
ularly for changes in Vmax. Plots of mean tuning curves in the first and
second halves of each block were normalized to the first half of the wide
range block.

Simulations of a linear decision model. We constructed a linear decision
model to examine how changes in Rmin affect choices. The model con-
sisted of a population of 10,000 offer A and offer B units (5000 per group).
We considered two models: a “positive network” in which all units en-
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coded value with a positive slope, and a “mixed network”, in which 30%
of units encoded value with an unrectified negative slope. This propor-
tion reflected the fraction of negative encoding offer value cells in our
dataset. We defined Rmin as the activity elicited by the minimum offered
value. Each unit encoded offer value in a linear way. Thus, for a positive
encoding unit, the response of unit i on trial t was as follows:

Ri,t � Vt � 	Rmax � Rmin
 � Rmin � yi,t,

where Rmin is the response to the minimum value, Rmax- is the response to
the maximum value, Vt is the value of the encoded juice on trial t, and yi,t

is a noise term. Units of R and V are arbitrary. For a negative encoding
unit, the response of unit i in trial t was as follows:

Ri,t � Vt � 	Rmin � Rmax
 � Rmax � yi,t.

Note that this equation resembles the response for a positive encoding
unit, except that Rmax and Rmin are reversed. Because higher values evoke
lower activity, Rmax is the lowest evoked response in a negative encoding
unit. When it is important to keep the distinction explicit, we use the
terms Rmin[positive] and Rmax[negative] to denote the lowest evoked
response for positive and negative encoding units respectively. Likewise,
we use the terms Rmax[positive] and Rmin[negative] to denote their high-
est evoked responses.

Importantly, offer value neurons in OFC show small but significant
noise correlations (rnoise) (Conen and Padoa-Schioppa, 2015). We gen-
erated a realistic correlation matrix Q for the population as described
previously (Hardin et al., 2013; Conen and Padoa-Schioppa, 2015). We
set mean(rnoise) � 0.01 for pairs of units encoding the same juice with the
same sign and mean(rnoise) � 0 for pairs of units encoding different
juices. In the mixed-network model, we also set mean(rnoise) � 0 for pairs
of units encoding the same juice with opposite signs. To generate the
vector of noise terms yt for the population on each trial, we generated
values of uncorrelated noise starting from the standard normal distribu-
tion ut- � N(0,1). This was multiplied by the correlation matrix and
scaled according to the Fano factor ( F) and the mean response for the
current offer type (�RV�) to obtain yt:

yt � Q ut�RV�F0.5.

The scaling factor �RV�F 0.5 accounted for the fact that the variance in
firing rate is roughly proportional to the mean response (Conen and
Padoa-Schioppa, 2015).

Using this model, we simulated choice behavior for increasing values
of Rmin. We considered two scenarios: (1) units had a fixed maximum
response (Rmax[positive] and Rmin[negative]), or (2) units had a fixed
activity range �Rmax � Rmin�. Because the scales for V and R are arbitrary,
we conventionally set Rmax[positive] � Rmin[negative] � 1 for the first
scenario and �Rmax � Rmin� � 1 for the second.

Each simulation consisted of 1000 trials. The value of each juice for a
given trial was a randomly chosen integer ranging from 0 to 10. The
decision on each trial was determined by comparing the net activity of
offer value A and offer value B units. In mixed network simulations, the
responses of negative encoding units were multiplied by �1 before the
comparison.

For each scenario, we simulated the choice pattern for the neural pop-
ulation as values of Rmin[positive] increased from 0 to 1 in increments of
0.01. In the context of adaptation, this is analogous to shifting the value
range from [0, X] to [X, 2 X], where X is the initial maximum value. In
mixed network simulations, we set values of Rmax[negative] � (1 �
Rmin[positive]), reflecting the fact that Rmax[negative] and Rmin[posi-
tive] change in opposite directions as the value range shifts. We repeated
the process for five different values of F and ran the simulation 20 times
for each value of F and Rmin.

As in a previous study (Rustichini et al., 2017), we measured the effi-
cacy of choice behavior using the fractional lost value (FLV) defined as
follows:

FLV � �max value � chosen value�/�max value � chosen valuechance�,

where max value refers to the higher value of the two offers on a given
trial, chosen valuechance is the average of the two offers, and � � indicates an
average across trials. Notably, FLV is inversely related to the choice effi-
cacy: if a subject always chooses the max value, FLV � 0; if the subject
chooses randomly, FLV � 1.

Results
Two monkeys performed a juice choice task (Fig. 1A). In each
session, the monkey chose between two juices labeled A and B
(with A preferred). Each session included 2–3 blocks of �250
trials. Within each block, the quantity of juice offered varied
pseudorandomly within a set range, defined by a minimum and
maximum value (Vmin and Vmax). In a given block, each juice
could be offered in a low, high, or wide range (Fig. 1B). Between
blocks, the range of offers for each juice changed in one of six
ways: Vmax increased/decreased, Vmin increased/decreased, or
both Vmax and Vmin increased/decreased concurrently while
(Vmax � Vmin) remained constant.

We analyzed the animals’ behavior separately in each trial
block. A logistic regression of the choice pattern provided mea-
sures for the relative value (�) and the sigmoid steepness (�) (Fig.
1C,D; see Materials and Methods). Choice patterns generally
presented a quality– quantity tradeoff between the juices (mean
(�) � 2.4 across sessions). Within a session, � was strongly cor-
related across blocks (r � 0.73, p � 5.5 � 10�35, Pearson corre-
lation; Fig. 1E), indicating that the juice preferences were fairly
consistent within a session. Values of � increased slightly in the
second block compared with the first, presumably reflecting the
animals’ increasing satiety: their preference shifted toward the pre-
ferred juice rather than the higher quantity (p � 0.011, W �
8.4 � 10 3, Wilcoxon signed rank test). Values of � were also
correlated across blocks (r � 0.24, p � 4.4 � 10�4, Pearson
correlation) but did not differ systematically between the first and
second blocks of a session (p � 0.48, W � 1.1 � 10 4, Wilcoxon
signed rank test; Fig. 1F).

Choice behavior was weakly affected by the value range (Fig.
1G,H). In general, relative values were slightly larger in high and
wide range blocks compared with low range blocks (Fig. 1G),
reflecting an increase in the relative value of A for higher quanti-
ties. High and wide range blocks also had steeper sigmoid func-
tions than low range blocks (lower choice variability; Fig. 1H).
The sigmoid steepness recorded in high range and wide range
blocks was not statistically different (Fig. 1H). Differences in
sigmoid steepness were likely related to the monkeys’ greater
motivation in high value blocks (see Discussion).

Neural responses adapt to both the maximum and
minimum value
We recorded the activity of 1262 cells from the OFC of two mon-
keys (Monkey D, left hemisphere: 480 cells; Monkey F, left hemi-
sphere: 373 cells, right hemisphere: 409 cells). Firing rates were
analyzed in seven time windows. A trial type was defined by two
offers and a choice [e.g., (1A:3B, A)]. A neuronal response was
defined as the activity of one neuron in one time window as a
function of the trial type, pooling trial types from two blocks.
Building on previous studies (Padoa-Schioppa and Assad, 2006),
we identified task-related responses and classified them as encod-
ing one of the variables offer value A, offer value B, chosen value, or
chosen juice (see Materials and Methods). In total, 488 neurons
encoded a decision variable in at least one time window (Monkey
D: 248 cells, 51.7%; Monkey F: 240 cells, 30.7%). 1917 responses
were task-related and 984 of them encoded the offer value or the
chosen value (Table 1). Of these, 644 value-encoding responses
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met inclusion criteria for our analysis of neuronal adaptation (see
Materials and Methods).

At the outset of the study, we envisioned four possible out-
comes (Fig. 2). First, responses might adapt fully to changes in
both maximum and minimum values (range adaptation; Fig.
2A). In this case, the slope of encoding would be steeper in the low

and high ranges compared with the wide range. In addition, the
range of firing rates would be the same in all conditions–the
maximum and minimum values in each condition (Vmax and
Vmin) would always evoke the same maximum and minimum
responses (Rmax and Rmin, respectively). Alternatively, neurons
might adapt to the maximum value but not to the minimum
value (max adaptation; Fig. 2B). Conceptually, this scenario
would occur if values were represented relative to the status quo
(i.e., the animal’s state before the decision). In other words, the
monkey always begins the trial with 0 drops of juice and can
always receive 0 reward if it chooses not to engage with the task. If
neurons adapt only to the maximum value, the value of choice
options may be encoded relative to this default outcome. Adap-
tation to the minimum value rules out this possibility. In the max
adaptation scenario, the encoding slope in the high and wide
ranges would be the same while the slope in the low range would
be steeper. In addition, Rmin would be elevated in the high value
range, reflecting a larger Vmin. Notably, adaptation to either the
value range or the maximum value would be consistent with
previous results (Padoa-Schioppa, 2009; Kobayashi et al., 2010).
Third, neurons might not adapt at all (Fig. 2C). Non-adapting
responses would have the same tuning function in all conditions,
but different values of Rmax and Rmin would be observed because
of the different values sampled in each range. Because previous
work found adaptation to changes in maximum value, we con-
sidered this outcome unlikely, but kept it as reference point for
our analyses. Finally, neurons might adapt partially to Vmax, Vmin,
or both (Fig. 2D). In this case, value encoding would have a
steeper slope for the low and high value ranges relative to the wide
range, but the range of evoked responses would also change
across conditions. For example, Rmax and Rmin would be higher in
the high range compared with the low range condition, corre-
sponding to higher Vmax and Vmin.

In broad terms, neurons adapt to a parameter if changing that
parameter alters their tuning functions. We frequently observed
adaptation in offer value and chosen value responses for all types of
range transition. For example, the cell in Figure 3, A and B,
adapted to changes in the maximum value of Juice B. It encoded
offer value B in both blocks, but its tuning slope was shallower
when the maximum value increased. Similarly, the cell in Figure
3, C and D, adapted to changes in the minimum value, encoding
offer value A with a shallower slope when the minimum value
decreased. The cell in Figure 3, E and F, adapted to changes in
both maximum and minimum value. When the range of chosen
values shifted down, the tuning curve shifted left as firing rates
rescaled to the new value range. In this case, the encoding slope
also increased, reflecting the narrower range of chosen values in
the second block.

Across the population, neuronal responses were variable, but
they consistently showed adaptation to both the maximum and
minimum value (Fig. 4A–C). Notably, neuronal adaptation was
not complete: the range of firing rates differed across range types,
indicating that neural activity did not fully rescale to the range of
values available in each trial block. This point can be seen most
clearly in Figure 4D. Although each of the three range types has
distinct tuning curves, Rmin is higher in the high range condition
compared with the other conditions. Similarly, Rmax is lower in
the low range condition compared with the high and wide range
conditions. This result most closely resembles partial range ad-
aptation (Fig. 2D). We obtained similar results when responses
for positive and negative encoding responses were analyzed sep-
arately (Fig. 5).

Table 1. Number of responses encoding each variable for Monkeys D and F

Response Monkey D Monkey F

Offer value A 242 (160) 123 (75)
Offer value B 116 (78) 88 (51)
Chosen value 249 (173) 166 (107)
Chosen juice 578 355

Later analyses focused on offer value and chosen value responses. Values in parentheses indicate the number of
responses that met inclusion criteria.
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Adaptation is incomplete
To examine value adaptation quantitatively, we analyzed three
features of the response function: the slope of the encoding, the
response to Vmax, and the response to Vmin.

We analyzed changes in the tuning slope in two ways. First, we
compared the slope directly across changes in Vmax, Vmin, or both.
On average, the slope was larger when the value range was high or
low compared with when the range was wide, consistent with the
hypothesis that neurons adapt to both maximum and minimum
values (Fig. 6A–C). Responses also showed slightly higher slopes
in the low range relative to the high range condition (Fig. 6C).
While this observation is consistent with the idea that responses
adapt more to Vmax than to Vmin, the effect was driven by chosen
value responses. Offer value responses alone did not show any
difference in slope between the low range and the high range
conditions. To interpret changes of slope in chosen value re-
sponses, we also needed to account for the difference in value
range (Vmax � Vmin), which varied depending on the animal’s
choice pattern.

To further examine the relationship between slope and value
range, we defined adaptation ratios (ARs) for three hypothetical
scenarios: adaptation to maximum value (ARmax), adaptation to
the value range (ARrange), or no adaptation (ARnone):

ARmax � 	s1Vmax,1
/	s2Vmax,2
,

ARrange � 	s1�V1
/	s2�V2
,

ARnone � s1/s2,

where s is the encoding slope, �V is the value range (Vmax �
Vmin), and indices 1 and 2 indicate different trial blocks. For
highNwide or lowNwide transitions, we defined Block 1 as the
wide range (ARs are calculated as wide/narrow). For highNlow
transitions, we defined Block 1 as the high range (ARs are calcu-
lated as high/low). ARs provide a metric for the degree of adap-
tation. If neurons adapt completely to both maximum and
minimum values, then ARrange � 1. If they adapt to the maximum
only, then ARmax � 1. Note that ARnone is simply the ratio of
slopes in the two conditions, and should be 1 if responses do not
adapt. ARs are ambiguous for certain types of range transition.
For example, when only the maximum value changes, ARmax and
ARrange are equivalent. In addition, ARs only test the relation
between the value range and the tuning slope; they are not af-
fected by changes in the intercept of the tuning function. Hence,
AR � 1 does not imply that responses adapt in a specific way.
However, AR 1 indicates that a particular hypothesis does not
fully describe adaptation.
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Table 2 summarizes the ARs for every type of transition. A few
points are noteworthy. First, ARnone � 1 for all range transitions,
meaning that adaptation occurred consistently. Similarly, ARmax

 1 for transitions where Vmin changed alone or where both Vmin

and Vmax changed, indicating that responses adapted to changes
in both maximum and minimum value. At the same time, ARrange

� 1 when Vmin changed alone and when Vmax decreased. This
finding indicates that responses did not fully adapt to changes in
either Vmax or Vmin. Overall, these results confirm that responses

adapted to both the maximum and mini-
mum values, but that the dynamic range
did not rescale completely.

So far, we have examined changes in
the gain of value encoding. However, as
Figure 4 illustrates, range transitions often
led to a shift in Rmin and Rmax. To quantify
this effect, we compared Rmin and Rmax

across different ranges (Fig. 6D–I). In
general, when Vmax (Vmin) was higher,
Rmax (Rmin) was also higher (all p � 10�3,
Wilcoxon signed rank test). Interestingly,
Rmin was slightly higher in the wide range
compared with the low range condition,
even though Vmin was the same (Fig. 6G;
p � 0.026, W � 2.8 � 10 3, Wilcoxon
signed rank test). Rmax did not differ sig-
nificantly between the wide and the high-
range conditions, although there was a
trend toward higher responses in the wide
range (Fig. 6E; p � 0.058, W � 9.0 � 10 3,

Wilcoxon signed rank test). Importantly, although responses did
not remap completely, our results were inconsistent with the
hypothesis of no adaptation (Fig. 2C). To quantify this point, we
computed the normalized change of Rmin and Rmax (�Rmin and
�Rmax, respectively) and compared them to the values predicted
if neurons did not adapt (see Materials and Methods). �Rmin and
�Rmax were consistently lower than the values predicted for non-
adapting cells (Table 2). Along with the analysis of response gain,

A B

C D

Value

0

0.5

1

R
es

po
ns

e

0 10.5

All Transitions, Overlay

0

1

0

1

0 1

R
es

po
ns

e

0

0.5

1

Value
0 0.5 1

Low         High

Value
0 0.5 1

0

0.5

1

0

1

0

1

0 1

High        Wide

0

1

0

1

0 1

0

0.5

1

Value
0 0.5 1

R
es

po
ns

e

Low        Wide

Figure 4. Adaptation in offer value responses across each type of range transition. A–C, Individual responses (thin lines) and population mean (thick line) for (A) change in maximum value (n �
72); (B) change in minimum value (n � 163); and (C) change in both (n � 129). Insets, Average responses for transitions where Vmax and/or Vmin increase (top) or decrease (bottom). Shaded region
in inset shows mean � SEM. Responses are normalized to the wide range (A, B) or high range (C). Insets in C are normalized to Vmax(high) � Vmin(low). D, Overlay of mean responses for all six types
of range transition. Transitions from A and B are aligned to wide range. Transitions from A and C are aligned to the low range. Responses from all analyzed time windows are shown.

0 1
Value (normalized)

0

1

R
es

po
ns

e 
(n

or
m

al
iz

ed
)

1
Value (normalized)

0
-1

0

R
es

po
ns

e 
(n

or
m

al
iz

ed
)

A B

Figure 5. Adaptation in offer value responses with positive and negative encoding. A, Positive encoding. B, Negative encoding.
Each panel illustrates the overlay of mean responses for highNlow, highNwide, and lowNwide transitions. HighNwide and
lowNwide transitions are aligned to the wide range. HighNlow transitions are aligned to the total range across blocks (i.e., the
lowest value in the low range and the highest value in the high range).

Conen and Padoa-Schioppa • Neural Adaptation in Macaque Orbitofrontal Cortex J. Neurosci., May 1, 2019 • 39(18):3498 –3513 • 3505



these results confirm that value-encoding neurons in OFC un-
dergo partial adaptation to changes in the value range.

At the population level, the appearance of partial adaptation
could reflect a mixture of fully adapting and non-adapting re-
sponses. To test for this possibility, we used Hartigan’s dip test to
check for bimodality in the distributions of ARrange, �Rmin, and
�Rmax. We analyzed the data across changes in Vmax, Vmin, or
both, and did not observe evidence of a multimodal distribution

for any transition type (p � 0.22 for �Rmax when both Vmax and
Vmin changed, all other p � 0.75; bootstrap test on Hartigan’s dip
statistic). These results are consistent with the idea that partial
adaptation occurs within individual responses and is a consistent
feature of value encoding in OFC.

The observation of partial rescaling in value-encoding re-
sponses raised the possibility that adaptation was still ongoing
during data collection. An incomplete temporal process could
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produce the intermediate range adaptation observed in Figure 4.
To test this prospect, we computed the tuning function separately
in the first and second half of Block 2. If adaptation was tempo-
rally incomplete, responses should show greater changes in the
second half of Block 2 compared with the first half. Contrary to
this prediction, tuning functions for the first and second halves of
Block 2 were nearly identical for all transition types (Fig. 7).
Statistical analyses confirmed that changes in the slope and inter-
cept of the tuning function were present within the first half of
Block 2 (all p values �0.01, Wilcoxon signed rank test). Hence,
neuronal adaptation occurred relatively quickly after a change in
value range, and the features of range adaptation described above
reflect the steady state rather than an unfinished transition.

Adaptation does not affect linearity of tuning
Previous work found that value encoding in OFC is quasilinear,
but slightly convex on average (Rustichini et al., 2017). We asked
whether range adaptation has any effect on this curvature. To
address this question, we fit each value-encoding response sepa-
rately with a quadratic polynomial and a cubic polynomial in
each range condition. Confirming previous observations, few re-
sponses showed significant quadratic or cubic terms (�2: 10.6%,
�3: 4.9%; p � 0.05, F test). On average across the population,
quadratic terms were slightly positive (p � 5.8 � 10�56, W � 2.5
10 6, Wilcoxon signed rank test), while cubic terms were slightly
negative (p � 1.6 � 10�3, W � 1.7 � 10 6, Wilcoxon signed rank
test). Most importantly, the distribution of �2 did not differ be-
tween high and low value ranges (Fig. 8A; median values: 0.064,
0.61; p � 0.47, U � 5.6 � 10 5, rank sum test). Values of �2 were
slightly lower in the wide range (median: 0.017; wide vs high: p �
9.6 � 10�9, U � 7.6 � 10 5; wide vs low: p � 1.1 � 10�10, U �
8.3 � 10 5, rank sum test). However, this difference arose from the
fact that the wide range included a greater number of distinct
values, which constrained the polynomial fits. Indeed, when we
recalculated the quadratic fits for the wide range using only the
subset of values present in the low range condition, the distribu-
tion of �2 did not differ from the distribution measured with high
and low ranges (median �2,subsampled � 0.045; both p �0.1, rank
sum test). Similarly, the distribution of �3 did not differ across
high, low, and wide range conditions (Fig. 8B; median values:
�0.014, 1.8 � 10�3, and �3.8 � 10�3; all p values �0.1, rank
sum test).

The same pattern of results emerged when we compared �2

and �3 for each response across blocks (Fig. 8C–F). Although
values of �2 varied substantially, coefficients for each response
were correlated across blocks. This correlation suggests that �2 is

a characteristic of each neuron’s tuning function. As in the pre-
vious analysis, �2 was slightly higher in narrow ranges compared
with the wide range (Fig. 8E), although this was only significant
for changes in Vmax (median difference � 0.031, p � 1.4 � 10�4,
W � 9.7 � 10 3, Wilcoxon signed rank test). The effect disap-
peared when �2 for the wide range was calculated with sub-
sampled values (p � 0.39, W � 6.7 � 10 3). Values of �3 did not
differ across any type of range transition (all p values �0.1, Wil-
coxon signed rank test) and did not show any consistent pattern
of correlation across blocks.

In summary, adaptation altered the gain and offset of value-
encoding responses, but not their quasilinear functional form.

Absence of range adaptation in chosen juice cells
All the results presented so far focused on responses encoding the
offer value or the chosen value. In a separate set of analyses, we
examined responses encoding the chosen juice.

We did not find any evidence of range adaptation in this pop-
ulation. More specifically, we did not find systematic differences
in the encoding slopes (difference in responses to preferred and
non-preferred juice) or in the minimum response (i.e., the re-
sponse to the non-preferred juice), across any range transition
(Fig. 9; all p values �0.05, Wilcoxon signed rank test). Thus, it
appears that chosen juice responses, capturing the binary choice
outcome, are not affected by changes in the value range.

Increases in minimum response impair simulated
choice behavior
We have shown that value-encoding neurons do not rescale com-
pletely to changes in value range. In other words, responses do
not span the full range of potential firing rates in every condition.
One important question is whether and how partial adaptation in
offer value cells affects economic decisions. This issue is closely
related to that of optimality in the neuronal representation of
subjective values.

In sensory systems, neuronal response functions are generally
considered optimal if they transmit maximal information about
the stimuli (Barlow, 1961; Laughlin, 1981). In the neural system
underlying economic decisions, this concept of optimality seems
less relevant. Instead, optimal tuning may be defined as the re-
sponse function that maximizes the expected payoff (Rustichini
et al., 2017). In our choice task, the payoff is simply the value
chosen by the monkey on any given trial. Notably, although the
relative value of two juices is subjective, the payoff of two options
may be compared objectively once the relative value of the juices
is known. For example, if the choice pattern indicates that � �
2.5, then the payoff of 3B is higher than the payoff of 1A. Impor-
tantly, for given offers, the expected payoff is inversely related to
choice variability. When choice variability is higher, i.e., when
decisions between two options are more frequently split, the an-
imal is more likely to choose the lower value (lower expected
payoff). In previous computational work, we found that a linear
decision model achieved the maximum expected payoff if offer
value cells adapted completely to the value range; i.e., if their
dynamic range rescaled fully to the current range of values (Rus-
tichini et al., 2017). However, that study only considered changes
in the slope of the encoding, and it was limited to instances where
the minimum offer value was zero. Moreover, the study assumed
that each neuron’s minimum response was also zero, and it con-
sidered only positive encoding of value. Contrary to these as-
sumptions, we found here that value-encoding responses adapt
to the minimum as well as the maximum value. Furthermore,
Rmin changes with the value range in a systematic way, generally

Table 2. Metrics of adaptation in offer value and chosen value responses across six
types of range transition

Transition type ARmax ARrange AR-none �Rmax �Rmin

Increase max 1.04 1.04 0.78* 0.17*,� 0.011
Decrease max 1.13* 1.13* 0.74* 0.22*,� 0.060
Increase min 0.83* 1.23* 0.83* 0.029 �0.20*,�

Decrease min 0.88* 1.39* 0.88* 0.018 �0.19*,�

Increase both 1.37* 1.04 0.86* 0.22*,� 0.17*,�

Decrease both 1.27* 0.94 0.82* 0.17*,� 0.19*,�

Columns 1–3: median ARs calculated for three hypotheses: (1) neurons adapt to maximum value only, (2) neurons
adapt to both maximum and minimum values, and (3) neurons do not adapt. If a hypothesis is true, AR � 1.
Columns 4 –5: median normalized difference in Rmax and Rmin between blocks. Nonzero values indicate a change in
neural activity range between sessions (incomplete adaptation). Asterisks (*) indicate a significant deviation from 1
(columns 1–3) or from 0 (columns 4 –5). Plus (�) indicates that the median �Rmin or �Rmax differs from the value
predicted for non-adaptive coding (�Rmin,NA and �Rmax,NA , respectively). �Rmax,NA � 0.4 for transitions where
Vmax changes, otherwise �Rmax,NA � 0; similarly, �Rmin,NA � 0.4 for transitions where Vmin changes, otherwise
�Rmin,NA � 0. All p � 0.01, Wilcoxon signed rank test.
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increasing with Vmin. Finally, we know that �30% of offer value
cells in OFC encode value with a negative slope (lowest activity
for largest value). When the value range shifts upward, the re-
sponse of negative encoding neurons tends to decrease, while the
response of positive encoding cells tends to increase. These op-
posing changes could counteract each other in complex ways.

To explore the behavioral implications of these factors, we ran
a series of computer simulations. We examined a linear decision
model comprised of 5000 offer value A and 5000 offer value B units
(see Materials and Methods). We analyzed two networks: a pos-
itive network including only cells with positive encoding and a
mixed network including 30% of units with negative encoding. In
both cases, each offer value unit encoded the corresponding offer
value in a linear way. Trial-to-trial variability was correlated
across units, with correlation values estimated based on empirical
measures (Conen and Padoa-Schioppa, 2015). We simulated
choices between pairs of offer values, which were randomly se-
lected on each trial. The decision was determined based on the
activity of the two pools: on trials where the activity of offer A
units exceeded that of offer B units, Juice A was chosen (and vice
versa).

First, we examined how changes of Rmin affected choices in the
positive network. We specifically considered two scenarios: (1)
each unit had a fixed Rmax, such that increasing Rmin reduced the
available dynamic range (Fig. 10A); (2) each unit had a fixed
activity range (�r � Rmax � Rmin), such that increasing Rmin

shifted the dynamic range (Fig. 10B). In essence, the first scenario
captures the case where neurons do not adapt to changes in the
minimum value; the second scenario is analogous to the partial
range adaptation observed in the experiments, where both Rmin

and Rmax are elevated when the value range shifts up (Fig. 4C).
For each scenario, we simulated choices for increasing levels of
Rmin. Furthermore, we quantified the effectiveness of choice be-
havior using the FLV (see Materials and Methods).

Figure 10, C and D, illustrates our results. The payoff de-
creased with increasing values of Rmin in both scenarios. How-
ever, increased Rmin was much more costly when Rmax was fixed
(Fig. 10C). In this scenario, FLV increased to 1 as Rmin ¡ Rmax,
meaning that decisions fell to chance levels as the dynamic range
decreased. In contrast, increased Rmin had a relatively mild effect
when Rmax and Rmin increased together (Fig. 10D). In this condi-
tion, FLV remained �0.25 even for Rmin equal to or exceeding the
total response range. In both conditions, changing Rmin pro-
duced a similar effect across a range of Fano factors (F), although
FLV was slightly higher when units had higher variance. Dou-
bling the Fano factor had substantially less effect than increasing
Rmin ¡ Rmax in Scenario 1, and approximately half the effect of
increasing Rmin ¡ 1 in Scenario 2. In summary, increasing the
minimum activity in a network moderately decreases the ex-
pected payoff, though far less than reducing the dynamic range of
responses.

Second, we examined a mixed network comprised of 70%
positive encoding units and 30% negative encoding units (see
Materials and Methods). As in the previous simulations, we con-
sidered two scenarios: (1) each unit had a fixed maximum re-
sponse (Rmax for positive encoding units, Rmin for negative
encoding units), and (2) each unit had a fixed activity range (�r
� �Rmax � Rmin�). To account for the fact that positive and neg-
ative encoding cells change in opposing ways as the value range
shifts, we set Rmax[negative units] � 1 � Rmin[positive units].
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Thus, the minimum activity decreased in negative units, whereas
it increased in positive units, emulating a scenario where the
value range shifted higher.

Figure 10, E and F, illustrates our results. Most interestingly,
the relationship between FLV and Rmin[positive] was non-
monotonic. For both scenarios, FLV initially decreased, and
reached a minimum for Rmin[positive]�0.4. In Scenario 1, where
the maximum response was constant, FLV then rapidly in-
creased (Fig. 10E). Nevertheless, in contrast to what we ob-
served for the positive network (Fig. 10C), FLV did not reach
chance level (FLV � 0.9 when Rmin[positive] � 1). This is
because the dynamic range of negative units remained �0. In
Scenario 2, where the range of responses remained constant,
FLV also increased as Rmin[positive] increased from 0.4 to 1.
However, the increase in FLV was modest, such that FLV for
Rmin[positive] � 1 was only slightly higher than FLV for Rmin-

[positive] � 0 (Fig. 10F ).

We interpret these results with a few
caveats. Most importantly, these simula-
tions can only provide a general idea of
how FLV changes with Rmin. The specific
relationship between FLV and Rmin de-
pends on the details of the decision net-
work, including the firing rates of positive
and negative encoding neurons and their
relative weight in the decision process.
Furthermore, the mixed network makes
FLV more comparable in high and low
value ranges, but it does not increase the
efficacy of the network overall. Instead,
FLV in the mixed network is elevated
when Rmin[positive] is low (i.e., decisions
are noisier in low value ranges). As the
U-shaped function indicates, FLV is min-
imized for some Rmin � 0. In other words,
the model produces the best choice per-
formance in intermediate value ranges.

In these simulations, we focused on
changes in the minimum response with
and without changes in dynamic range.
However, the same principles apply to
changes in the maximum response. Pre-
vious theoretical work suggests that in-
complete adaptation to the maximum
value would degrade choices (i.e., in-
crease FLV) because of the reduction in
dynamic range (Rustichini et al., 2017).
As our simulations show, decreases in
the dynamic range because of increases
in Rmin produce similar detriments (Fig.
10C). If both Rmin and Rmax change to-
gether, higher firing rates generally lead
to larger FLV (Fig. 10D), but this effect
is reduced by opposing changes in posi-
tive and negative encoding units (Fig.
10F ). Partial adaptation to Vmin and
Vmax leads to suboptimal choices, but
the mixture of negative and positive en-
coding stabilizes performance across
value ranges.

Discussion
The present study addresses outstanding

questions concerning the neuronal representation of subjective
values. Specifically, we showed that neurons in OFC adapt to the
value range rather than to the maximum value. In other words,
values are not encoded relative to the subject’s pre-decision state.
Instead, values are represented in terms of the best and worst
outcomes possible in the current behavioral context. At the same
time, we found that range adaptation is partial. Although the
encoding gain was consistently higher when the value range was
narrow (high or low), neuronal responses did not rescale com-
pletely to the value distribution, and the range of firing rates was
lower when the value range was lower. Thus, value encoding fell
in an intermediate zone between fully adaptive coding (range
adaptation) and absolute value coding (no adaptation). Impor-
tantly, these observations did not reflect an unfinished process of
adaptation. Through a series of simulations, we also showed that
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increases in the minimum response negatively affects choices,
even when the gain of encoding is constant. However, this effect is
reduced by the presence of both positive and negative offer value
responses.

Our experimental results resonate with previous observa-
tions. Kobayashi et al. (2010) measured range-dependent
changes in value-encoding neurons in several subregions of OFC.
Their analysis focused on changes in gain. Although they divided
neurons into adapting, non-adapting, and partially adapting
groups, their results are also consistent with a single population
of partially adapting cells. In this study, we looked for but did not
find any evidence of bimodality in any metric of adaptation, and
adapted tuning curves generally clustered around intermediate
values, in line with the idea that partial adaptation is present
throughout the population. Along similar lines, in human sub-
jects, Burke et al. (2016) found partial adaptation in the BOLD
signal in vmPFC using a decoding approach. Together, these
findings suggest that partial adaptation may be a common char-
acteristic of value coding in prefrontal cortex.

This study is the first to examine the effect of adaptation on the
offset of encoding (i.e., changes in Rmin and Rmax). We found that
the dynamic range of value-encoding responses shifts up and
down depending on the current condition. For the most part,
changes in Rmin and Rmax seem related to the fact that adaptation
is partial; the adapted tuning functions fall between predictions
for fully adapting neurons and a non-adapting ones. However,
we also observed slightly lower Rmin in the low range condition
compared with the wide range. Because the minimum value is the
same in these conditions, this result does not appear to be a direct
byproduct of partial adaptation. Although the reason for this
outcome is unclear, one possibility is that value adaptation in-

volves two semi-independent components; a change in gain that
depends on the range of values, and a change in offset that de-
pends on the average available value or a related factor. Future
work will explore this hypothesis.

Elevated neural activity reduces the expected payoff
In a previous study, a simulated decision network yielded the
highest payoff when neurons exploited their full dynamic range
(Rustichini et al., 2017). Here, we found that responses do not
span their entire dynamic range in all conditions. Response func-
tions shift up or down depending on the value range, which can
be measured as a change in Rmin. We found that increasing Rmin

reduces the expected payoff in a simulated decision network.
Intriguingly, the effect of Rmin on payoff is lower when the simu-
lated population included offer value responses with both positive
and negative encoding. Indeed, in the mixed network, the payoff
is highest (lowest FLV) for intermediate values of Rmin. However,
although the presence of negative encoding makes FLV more
stable, it does so by spreading the costs of partial adaptation more
evenly across different value ranges. In the mixed network, the
minimum responses of neurons are elevated for both low and
high value ranges, leading to higher FLV. Although this activity
increase is less costly than reducing the dynamic range of re-
sponses, it still results in slightly lower payoff overall. Intuitively,
this inefficiency arises from the fact that the variance of neural
responses scales with the mean. Other things equal, when a neu-
ron’s dynamic range is higher, firing rates are noisier.

One caveat of our results is that partial adaptation may have
reflected the overall design of our experiments. Indeed, our mon-
keys were highly trained on the range adaptation task, and they
were familiar with all possible transitions between high, low, and
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wide ranges. Although complete adaptation would warrant an
efficient representation of values within a block, it would also
limit the circuit’s ability to respond when the value range
changes. In contrast, intermediate adaptation reserves a portion
of the dynamic range for new values that may appear after a
transition. This interpretation suggests that value encoding de-
pends on at least two components; a slow, learning-based process
that draws on contextual knowledge, and a more rapid adaptive
component that adjusts to the locally experienced value range.
Further work is needed to test whether the degree of value adap-
tation varies across different experimental paradigms.

Partial adaptation may also allow the circuit to maintain in-
formation about the overall value of the current context (i.e., the
value of the block). Information about the current contextual
value makes it possible to predict future reward expectations and
affects subjects’ motivation to engage in the task. Moreover, ef-
fective value comparison in an adapting network requires infor-
mation about the distribution of available values as well as neural
activity levels on a given trial. Without some mechanism for
maintaining this information, signals are ambiguous across con-
texts and cannot guide behavior effectively (Fairhall et al., 2001;
Rustichini et al., 2017). The differences in response offset ob-
served in OFC may be used by the network to help distinguish the
current value state.

Possible mechanisms of value adaptation
Although our study did not investigate the physiological mecha-
nism of adaptation directly, a few possibilities may be considered.
We showed that value adaptation involves both an additive and a
multiplicative component. While adaptation to the maximum
can occur via a simple change in gain, adaptation to the mini-
mum requires both a change in gain and a horizontal shift in the
response function. When the difference between maximum and
minimum values is constant, adaptation is purely horizontal: the
slope of neuronal encoding remains the same, but responses re-
map to a new set of values. Additive changes in activity often arise
from changes in hyper-polarization or shunting inhibition (Holt
and Koch, 1997; Chance et al., 2002). Alternate explanations,
such as cell-intrinsic changes in membrane conductivity, gener-
ally involve a mixture of additive and multiplicative effects, which
is difficult to reconcile with the purely additive adaptation we
observed during high-to-low range transitions ( Sanchez-Vives et
al., 2000a,b). The multiplicative component of value adaptation
could arise from several potential mechanisms. Changes in gain
can be produced by both cell-intrinsic mechanisms, such as
changes in ionic conductance (Higgs et al., 2006; Díaz-Quesada
and Maravall, 2008; Mease et al., 2013), and by circuit-level
changes in inhibitory activity (Olsen et al., 2012; Wilson et al.,
2012; Natan et al., 2017) or the background level of synaptic
activity (Chance et al., 2002).

Recent work examining a more medial region of OFC found
that adaptation to simultaneously presented values was best ex-
plained by a divisive normalization model (Yamada et al., 2018).
The data from our study, which reflect a slower form of adapta-
tion across trials, do not appear to follow a similar model. Among
other features, the divisive normalization model predicts a de-
crease in the maximum response in conditions with a higher
value range, which we do not observe. Notably, that experiment
focused on adaptation on a very short time scale (�100 ms).
Another recent model combined slow and fast normalization
dynamics to explain variability in choice behavior across contexts
(Zimmerman et al., 2018). One interesting question is whether
this model can also account for the neuronal responses recorded

in OFC. Divisive normalization is a common form of adaptation
in sensory regions (Valerio and Navarro, 2003; Wark et al., 2007;
Olsen et al., 2010; Beck et al., 2011; Ohshiro et al., 2011), and it is
highly effective at maximizing the transmission of sensory infor-
mation across a wide variety of stimuli (Schwartz and Simoncelli,
2001; Carandini and Heeger, 2011). At the same time, divisive
normalization seems less well suited for contextual adaptation in
a decision circuit, which ideally would optimize the choice out-
come rather than transmitting maximal information about the
value distribution (Rustichini et al., 2017). Nevertheless, the pos-
sible reconciliation of divisive normalization and range adapta-
tion remains an open question.

Range-dependent changes in choice behavior
Our behavioral analyses revealed range-dependent changes in
both the relative value and the sigmoid steepness (Fig. 1). The
increased relative value in high-value blocks could be explained if
the value of additional juice decreases at higher quantities (di-
minishing marginal utility). Because A is generally offered in
lower quantity, such nonlinearity would presumably shift prefer-
ences toward A when the offer quantities increased. However,
this explanation relies on the assumption that the marginal utility
of depends on the quantity of each juice, rather than the subjec-
tive value of an offer. More detailed studies of choice behavior are
needed to test this assumption.

The changes in sigmoid steepness across conditions were
somewhat more surprising. A recent analysis of behavior across
different ranges found that decision patterns were generally nois-
ier (lower �) during blocks with a wider value range, consistent
with the idea neurons that encoded value with lower resolution
during these blocks (Rustichini et al., 2017). In contrast, we ob-
served steeper choice functions (higher �) in the wide value range
compared with the low range. The reason for this discrepancy is
unclear. One possibility is that the effect is more complicated that
“wide range” versus “narrow range”. Simulations of mixed net-
works showed that choice variability (and hence FLV) changes in
a non-monotonic way as the value range shifts higher. Further
modeling and experimental work is needed to explore the inter-
actions between positive and negative encoding units and their
effect on decisions.

We also observed steeper choice patterns in the high range
compared with the low range. While somewhat unexpected, this
result parallels the behavior of the mixed network simulation for
low to medium values of Rmin[positive]. If this interpretation is
accurate, further increases in value should eventually lead to
higher choice variability (lower �). Alternatively, differences in
steepness across conditions may arise from other behavioral fac-
tors such as motivational state. Consistent with this possibility,
we observed the steepest choice pattern in the high range, when
the reward rate was the highest and monkeys were most moti-
vated. Choices were slightly more variable (i.e., less steep) in the
wide range, and most variable in the low range. Future experi-
ments may distinguish between these two explanations by con-
sidering a wider set of possible value ranges and by balancing the
reward rate across blocks.

To conclude, we examined how the neuronal representation
in OFC adapted to changes in maximum and minimum of the
value distribution. We found that both maximum and minimum
values influence the gain of value encoding, but only partially,
leading to an offset in neuronal activity levels across ranges. Mod-
eling work suggests that the relationship between the neuronal
adaptation in the representation of value and choice behavior
depends on the interplay of positive and negative encoding in the

3512 • J. Neurosci., May 1, 2019 • 39(18):3498 –3513 Conen and Padoa-Schioppa • Neural Adaptation in Macaque Orbitofrontal Cortex



neuronal population. Future work should investigate this rela-
tionship in greater detail and thus shed light on both the flexibil-
ity and the limitations of value coding across behavioral contexts.
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