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Development/Plasticity/Repair

Temperoammonic Stimulation Depotentiates Schaffer
Collateral LTP via p38 MAPK Downstream of Adenosine
A1 Receptors

X Yukitoshi Izumi1,3,4 and X Charles F. Zorumski1,2,3,4

Departments of 1Psychiatry, 2Neuroscience, 3Taylor Family Institute for Innovative Psychiatric Research, and 4Center for Brain Research in Mood
Disorders, Washington University School of Medicine, St. Louis, Missouri 63110

We previously found that low-frequency stimulation of direct temperoammonic (TA) inputs to hippocampal area CA1 depotentiates
previously established long-term potentiation in the Schaffer collateral (SC) pathway through complex signaling involving dopamine,
endocannabinoids, neuregulin-1, GABA, and adenosine, with adenosine being the most distal modulator identified to date. In the present
studies, we examined mechanisms contributing to the effects of adenosine in hippocampal slices from male albino rats. We found that
extracellular conversion of ATP to adenosine via an ectonucleotidase contributes significantly to TA-mediated SC depotentiation and the
depotentiation resulting from block of adenosine transport. Adenosine-mediated SC depotentiation does not involve activation of c-Jun
N-terminal protein kinase, serine phosphatases, or nitric oxide synthase, unlike homosynaptic SC depotentiation. Rather, adenosine-
induced depotentiation is inhibited by specific antagonists of p38 MAPK, but not by a structural analog that does not inhibit p38.
Additionally, using antagonists with relative selectivity for p38 subtypes, it appears that TA-induced SC depotentiation most likely
involves p38 MAPK �. These findings have implications for understanding the role of adenosine and other extrahippocampal and
intrahippocampal modulators in regulating SC synaptic function and the contributions of these modulators to the cognitive dysfunction
associated with neuropsychiatric illnesses.
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Introduction
Changes in the efficacy of excitatory synapses, particularly persis-
tent increases and decreases in transmission such as long-term
potentiation (LTP) and long-term depression (LTD), are

thought to play key roles in learning and memory (Kandel et al.,
2014; Nicoll, 2017). There are, however, limits on the degree to
which synapses can increase or decrease their efficacy, and it is
important for neurons and synapses to have mechanisms for re-
setting to baseline levels following successful plasticity and learn-
ing. This synaptic resetting can be accomplished by homeostatic
mechanisms in which neurons adjust function in response to
persistent changes in activity (Turrigiano, 2011). Alternatively,
synapses can be reset by homosynaptic or heterosynaptic inputs
that instruct the resetting (Fujii et al., 1991; Malenka and Bear,
2004).

We have been interested in understanding whether extrahip-
pocampal inputs can drive depotentiation of previously estab-
lished LTP, focusing on changes in transmission in the Schaffer
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Significance Statement

Low-frequency stimulation of temperoammonic (TA) inputs to stratum lacunosum moleculare of hippocampal area CA1 het-
erosynaptically depotentiates long-term potentiation of Schaffer collateral (SC) synapses. TA-induced SC depotentiation involves
complex signaling including dopamine, endocannabinoids, GABA, and adenosine, with adenosine serving as the most down-
stream messenger in the cascade identified to date. The present results indicate that TA-induced depotentiation requires intact
inputs from entorhinal cortex and that adenosine ultimately drives depotentiation via activation of p38 MAPK. These studies have
implications for understanding the cognitive dysfunction of psychiatric illnesses and certain abused drugs.
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collateral (SC) pathway in response to direct inputs through the
performant [temperoammonic (TA)] path that terminate in stra-
tum lacunosum moleculare (SLM). We have found that repeated
low-frequency stimulation (LFS) of TA inputs to SLM reverses
SC LTP without persistently altering SC transmission under
baseline conditions in naive hippocampal slices (Izumi and Zo-
rumski, 2008). This form of heterosynaptic resetting engages
complex signals that include activation of dopamine (DA) D4
receptors (D4Rs), endocannabinoid CB1 receptors (CB1Rs),
ErbB4 receptors, GABAA receptors (GABAARs), and adenosine
A1 receptors (A1Rs), likely in that order (Izumi and Zorumski,
2008, 2016, 2017). The cascade also involves two mitogen-
activated protein kinases (MAPKs), ERK1/2, and p38 MAPK
(Izumi and Zorumski, 2016).

In the studies outlined above, the activation of A1Rs has been
the most distal signal identified to date, in that A1R antagonism
blocks the effects of activators of the other receptors involved in
SC LTP depotentiation (LTP-D), while antagonists of the other
receptors have no effect on the ability of A1R agonists to induce
depotentiation (Izumi and Zorumski, 2008, 2016, 2017). In the
present studies, we examined the role of other signaling pathways
previously linked to SC homosynaptic LTD, LTP-D, and meta-

plastic LTP inhibition, including serine protein phosphatases
(PPs) and nitric oxide synthase (NOS; Izumi et al., 1992, 2008;
Kato et al., 1999; Malenka and Bear, 2004; Zorumski and Izumi,
2012). We also re-examined the role of p38 MAPK based on
studies indicating that this kinase can contribute to LTD and
depotentiation induced by A1R activation (Fujii et al., 1997,
1999, 2000; Huang et al., 2001).

Materials and Methods
Hippocampal slices. Protocols for animal use were approved by the Wash-
ington University Institutional Animal Care and Use Committee in ac-
cordance with national and international guidelines. Hippocampal slices
were freshly prepared from the septal (dorsal) hippocampal region of
postnatal day 30 (P30) to P34 male albino rats using previously described
methods (Tokuda et al., 2010). Rats were anesthetized with isoflurane
and decapitated, and hippocampi were dissected. Isolated hippocampi
were placed in ice-cold artificial CSF (ACSF) containing the following (in
mM): 124 NaCl, 5 KCl, 2 MgSO4, 2 CaCl2, 1.25 NaH2PO4, 22 NaHCO3,
and 10 glucose, bubbled with 95% O2-5% CO2 at 4 – 6°C, and cut into
450 �m slices using a rotary tissue slicer. For some experiments, the slices
included a significant portion of entorhinal cortex (EC) to keep TA in-
puts to SLM in the CA1 region as intact as possible (Izumi and Zorumski,
2008, 2016, 2017). For certain studies in this report, EC was removed,

Figure 1. TA-induced SC depotentiation requires inclusion of EC in hippocampal slices. A, The graph shows the time course of changes in SC field EPSPs in slices that included EC (whole slice). A
single 100 Hz � 1 s HFS was administered to the SC pathway at the arrow and triggered persisting synaptic enhancement. A 1 Hz � 900 pulse LFS was delivered to the perforant (temperoammonic)
path (PLFS) during the period denoted by the bar. In these slices, LTP was reversed by TA LFS. B, In standard hippocampal slices that do not include EC (mini slice), PLFS failed to depotentiate SC LTP.
C, In standard hippocampal slices, the D4R antagonist L-745,870 also failed to inhibit the depotentiation of SC LTP induced by SC LFS in contrast to what has been shown previously (Kwon et al., 2008;
Izumi and Zorumski, 2017). Traces to the right of the graphs show representative EPSPs at the times denoted, with the preceding baseline in red dashed lines and the results 60 min following either
HFS or PLSF shown in solid black lines. Calibration: 1 mV, 5 ms.
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allowing focus on chemically induced SC depotentiation in the absence
of more intact EC inputs. After preparation, slices were allowed to re-
cover from dissection in an incubation chamber containing gassed ACSF
for 1 h at 30°C before experiments.

Hippocampal slice physiology. At the time of the study, slices were
transferred individually to a submersion-recording chamber that was
maintained at 30°C with continuous ACSF perfusion at 2 ml/min. Extra-
cellular recordings were obtained from the apical dendritic layer (stratum
radiatum) of the CA1 region for analysis of EPSPs using glass electrodes
filled with 2 M NaCl (5–10 M� resistance).

EPSPs were evoked using 0.1 ms constant current pulses through a
bipolar stimulating electrode in the SC pathway. For some experiments,
a second stimulating electrode was placed in the TA pathway to activate
inputs to CA1 in SLM. A control SC input– output (IO) curve was ob-
tained to determine stimulus intensities for subsequent studies. Re-
sponses were monitored using the pClamp software (pClamp; RRID:
SCR_011323) during an experiment by applying single stimuli to the SC
pathway every 60 s at half-maximal intensity. After establishing a stable
baseline for at least 10 min, SC LTP was induced by a single 100 Hz � 1 s
high-frequency stimulus (HFS) using the same intensity stimulus. IO
curves were repeated 60 min following tetanic stimulation. TA stimula-
tion to induce SC depotentiation was administered as a single 1 Hz � 15
min LFS at half-maximal intensity based on prior results (Izumi and
Zorumski, 2008, 2016, 2017). Because of infrequent monitoring of syn-
aptic responses, short-term forms of synaptic enhancement following
tetanic stimulation are not readily apparent in all figures.

Materials. Chemicals and pharmacological agents were obtained from
Tocris Bioscience or Sigma-Aldrich. Concentrations of agents used in
this study were based on the literature and on the lack of effect on baseline
transmission at the selected concentrations.

Experimental design and statistical analysis. Data were collected and
analyzed using PClamp software (Molecular Devices). Data in the text
are expressed as the mean � SEM. A two-tailed Student’s t test was used
for comparisons between groups with correction for multiple compari-
sons when appropriate. Statistical comparisons were based on data from
IO curves obtained at baseline and 60 min following tetanic or 1 Hz
stimulation, with p � 0.05 considered to be significant. The graphs in all
figures display results from the continuous monitoring of synaptic re-
sponses during the course of experiments, while the results presented in
the text and statistical comparisons are derived from analysis of IO
curves, as noted above. Statistical analyses were performed using com-
mercial software (SigmaStat, Systat Software).

Results
In prior studies, we found that LFS of direct perforant path/TA
inputs to SLM (referred to as PLFS in the figures) in the CA1
hippocampal region can reverse previously established LTP at SC
synapses without persistently altering baseline transmission in
naive slices (Izumi and Zorumski, 2008). Figure 1A shows the
ability of PLFS to reverse LTP in control slices. For these studies,
we used a hippocampal slice preparation that includes a signifi-
cant portion of EC, keeping direct inputs to SLM in CA1 as intact
as possible (Fig. 1A, “whole slice”; EPSP slopes: 149.5 � 5.0% of
baseline 60 min following SC HFS vs 77.0 � 8.9% 60 min follow-
ing PLFS; N � 7, p � 0.000184).

We initially sought to determine whether the inclusion of ex-
trahippocampal structures, including a significant portion of EC,
is necessary for this form of LTP-D using a more traditional slice

Figure 2. CPA-induced LTP-D in standard hippocampal slices excluding EC. A, Perfusion of 10 nM CPA (black bar), an A1R agonist, readily depotentiated SC TLP. B, The effects of CPA on SC LTP were
completely inhibited by the selective A1 receptor antagonist DPCPX (200 nM). C, In mini slices without EC, homosynaptic LTP-D induced by SC LFS is also completely blocked by DPCPX. Traces to the
right of the graphs show representative EPSPs at the times denoted as in Figure 1. Calibration: 1 mV, 5 ms.
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preparation that largely excludes EC (Fig. 1B, “mini slice”). In
these more restricted slices, we found that TA LFS failed to mod-
ify SC LTP (EPSP slopes: 145.3 � 12.0% of baseline 60 min fol-
lowing SC HFS vs 137. 3 � 10.2% 60 min following TA LFS, N �
5; p � 0.5475; Fig. 1B).

Our prior studies found that TA-induced SC LTP-D involves
activation of dopamine D4Rs and that D4R activation is neces-
sary but not sufficient for this form of depotentiation (Izumi and
Zorumski, 2017). Because the removal of EC may also disrupt
monoaminergic inputs to area CA1, we examined the effects of
the D4R antagonist L-745,870 (0.1 �M; Clifford and Wadding-
ton, 2000) on homosynaptic SC LTP-D, which also involves
D4Rs (Kwon et al., 2008; Izumi and Zorumski, 2017). We found
that homosynaptic SC depotentiation remained intact in the

more restricted slices, but that this form of LTP-D was not inhib-
ited by L-745,870 (149.1 � 10.5% of baseline 60 min following
SC HFS vs 93.8 � 8.9% 60 min following SC LFS, N � 5; p �
0.00352; Fig. 1C), in contrast to what we previously observed in
slices containing EC (Izumi and Zorumski, 2017). Thus, the dis-
ruption of monoaminergic inputs to CA1 may also have contrib-
uted to the loss of TA-induced SC LTP-D.

In contrast to the effects of D4R activation, we previously
observed that the activation of adenosine A1Rs is both necessary
and sufficient for TA-induced LTP-D, and that adenosine is a
downstream regulator of this plasticity with A1R antagonism
blocking the effects of more proximal contributors to the cascade
of events resulting in SC depotentiation (Izumi and Zorumski,
2016, 2017). We found that even in the more restricted hip-

Figure 3. An ectonucleotidase inhibitor but not a nucleoside transport inhibitor, blocks the effects of TA stimulation. All results in this figure were obtained in hippocampal slices containing EC.
A, In whole slices containing EC, ARL67156 (white bar), a selective ectonucleotidase inhibitor, blocked the effects of TA stimulation on SC LTP. B, A selective nucleoside transport inhibitor, NBMPR,
produces a slowly developing depotentiation of SC LTP, consistent with block of uptake of extracellular adenosine. C, Depotentiation induced by NBMPR was blocked by DPCPX. D, Depotentiation by
NBMPR was also blocked by ARL67156. Traces show representative EPSPs at the times denoted. Calibration: 1 mV, 5 ms.
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pocampal (mini) slices, 10 nM N 6-cyclopentyladenosine (CPA), a
selective A1R agonist, effectively and persistently reversed SC
LTP (141.2 � 8.0% 60 min following SC HFS vs 70.3 � 3.1% 60
min following CPA; N � 5, p � 0.000191; Fig. 2A). We also found
that CPA-induced depotentiation was completely eliminated by
the selective A1 receptor antagonist, 1,3-dipropyl-8-cyclo-
pentylxanthine (DPCPX; 152.5 � 2.3% of baseline 60 min fol-
lowing SC HFS vs 146.4 � 9.0% 60 min following CPA � DP-
CPX; N � 5, p � 0.4432; Fig. 2B), consistent with what we
previously found for TA-induced SC LTP-D (Izumi and Zorum-
ski, 2008). Similarly, and consistent with prior reports (Fujii et al.,
1997; Santschi et al., 2006), we found that DPCPX also blocked
the ability of homosynaptic SC LFS to depotentiate SC LTP in
traditional hippocampal slices (143.1 � 9.7% of baseline 60 min
following SC HFS vs 161.4 � 9.3% 60 min following SC LFS �
DPCPX; N � 5, p � 0.1022; Fig. 2C).

There are two primary sources of adenosine that could con-
tribute to LTP-D: release of adenosine itself and/or extracellular
conversion from ATP (Pascual et al., 2005). If extracellular ATP is
the source of adenosine, an ectonucleotidase inhibitor should
block the effects of TA stimulation. Consistent with this, we
found that 50 �M ARL67156 inhibited TA-induced LTP-D in
slices containing EC (166.7 � 15.7% of baseline following SC
HFS vs 164.5 � 15.2% after TA LFS; N � 5, p � 0.4435; Fig. 3A).
In contrast, S-(4-nitrobenzyl)-6-thioinosine (NBMPR; 200 nM),
a selective inhibitor of equilibrative nucleoside (adenosine)
transporter 1 (ENT-1), produced a slowly developing dampening
of SC LTP when administered in the absence of TA stimulation
(162.2 � 10.3% after SC HFS vs 124.4 � 13.0% 60 min after
NBMPR; N � 6, p � 0.0486; Fig. 3B). Consistent with NBMPR
promoting the accumulation of extracellular adenosine, we
found that NBMPR-induced depotentiation was blocked by
DPCPX (152.6 � 12.6% of baseline 60 min after SC HFS vs
144.6 � 4.9% 60 min following NBMPR plus DPCPX; N � 5; p �
0.6416; Fig. 3C). Depotentiation by NBMPR was also blocked by
ARL67156, supporting the idea that the conversion of ATP to

adenosine is important for this form of synaptic resetting
(170.1 � 11.3% 60 min after SC HFS vs 164.5 � 10.3% 60 min
after NBMPR plus ARL67156; N � 5; p � 0.4683; Fig. 3D).
NBMPR, however, failed to alter either the acute or prolonged
effects of TA stimulation (165.3 � 14.3% 60 min following SC
HFS vs 78.3 � 8.2% 60 min following TA LFS; N � 5; p � 0.0051;
Fig. 4A), suggesting that the release of adenosine via ENT-1 did
not contribute significantly to the effects of TA stimulation. Ad-
ditionally, NBMPR did not promote the ability of TA stimulation
to depotentiate SC LTP in mini slices not including entorhinal
cortex (142.6 � 8.0% of baseline 60 min following SC HFS vs
135.6 � 6.8% 60 min following TA LFS; N � 5; p � 0.5237).
Nonetheless, depotentiation induced by NBMPR occluded fur-
ther depotentiation by TA stimulation in whole slices [168.8 �
14.7% 60 min following SC HFS vs 77.4 � 15.4% 60 min follow-
ing NBMPR (p � 0.0026) vs 78.6 � 16.0% following TA stimu-
lation (p � 0.9582 vs NBMPR); N � 5; Fig. 4B].

To date, our studies have not revealed mechanisms contribut-
ing to the effects A1Rs in the depotentiation process. Thus, in the
following experiments, we examined potential mechanisms con-
tributing to adenosine-mediated SC depotentiation, focusing on
pathways previously linked to depotentiation and adenosine-
induced synaptic depression. Based on prior studies showing that
serine-threonine PPs play important roles in homosynaptic SC
LTD, metaplastic LTP inhibition, and depotentiation of SC LTP
(Izumi et al., 1992, 2008; Malenka and Bear, 2004), we examined
the role of these phosphatases in the effects of CPA. In contrast to
homosynaptic depotentiation in the SC pathway, we found that
specific inhibitors of PP1, PP2A, and PP2B failed to reverse CPA-
induced depotentiation of SC LTP (Fig. 5A,B). Specifically, 20
�M okadaic acid, an inhibitor of PP1 and PP2A (McCluskey et al.,
2002), failed to inhibit CPA-induced LTP-D (175.8 � 13.4% 60
min following SC HFS vs 70.6 � 13.0% 60 min following CPA;
N � 5; p � 0.000678). Similarly, 1 �M FK-506, an inhibitor of
PP2B (Ho et al., 1996) also failed to overcome CPA (179.0 �
16.7% vs 101.4 � 22.7%; N � 5; p � 0.0336). We also found that

Figure 4. A, In contrast to the ectonucleotidase inhibitor, the nucleoside transport inhibitor NBMPR did not alter the faster occurring depotentiation of SC LTP following TA LFS in slices containing
EC. B, Despite the failure to block effects of PLFS on SC LTP, depotentiation induced by NBMPR occluded further depotentiation by TA LFS in whole slices, suggesting common mechanisms of action
involving adenosine. Traces show representative EPSPs at the times denoted. Calibration: 1 mV, 5 ms.

Izumi and Zorumski • Adenosine, p38 MAPK, and Depotentiation J. Neurosci., March 6, 2019 • 39(10):1783–1792 • 1787



3-bromo-7-nitro-indazole (3Br7NIA), a broad-spectrum inhib-
itor of NOSs (Bland-Ward and Moore, 1995), had no effect on
CPA-induced depotentiation (180.2 � 27.5% vs 90.0 � 15.3%;
N � 5; p � 0.036; Fig. 5C), again in contrast to the role of NOS in
SC LTD, metaplasticity; and depotentiation (Izumi et al., 1992;
Izumi and Zorumski, 1993).

Although we previously found that a specific inhibitor of
c-jun-N-terminal kinase (JNK) had no effect on TA-induced
LTP-D (Izumi and Zorumski, 2016), we also examined whether
JNK contributes to CPA-induced depotentiation of SC LTP-
based on studies indicating that this kinase contributes to A1R-
mediated LTD (Brust et al., 2007; Chen et al., 2014). SP600125 is
a broad-spectrum inhibitor for JNK1, JNK2, and JNK3 with IC50

values of 40, 40, and 90 nM, respectively (Bennett et al., 2001). In
the presence of 10 �M SP600125, CPA readily induced depoten-
tiation (160.5 � 16.5% 60 min after HFS and 90.7 � 8.5% 60 min
after CPA administration; N � 5; p � 0.035, paired t test; Fig. 6A).

Because prior studies of adenosine-induced LTD have indi-
cated a role for p38 MAPK (Brust et al., 2006, 2007), we examined
the effects of specific p38 inhibitors. In our earlier studies, we
found that 1 �M SB203580, a p38 inhibitor, blocked TA-induced
LTP-D but did not alter CPA-induced depotentiation, suggesting
that p38 activation occurs upstream of A1Rs (Izumi and Zorum-
ski, 2016). We re-examined this issue using higher concentra-

tions of SB203580 and other p38 inhibitors. We found that 10 �M

(154.8 � 8.5% vs 148.7 � 8.4%; N � 5; Fig. 6B) and 20 �M

(146.6 � 6.3% vs 147.8 � 7.1%; N � 5; data not shown)
SB203580 effectively blocked the effects of 10 nM CPA [p �
0.0000223 (10 �M) and p � 0.00000845 (20 �M), respectively,
against CPA alone], but had no effect at 1 �M (131.9 � 6.4% vs
81.8 � 17.2%; N � 5; p � 0.019; Fig. 6B). At 10 �M, SB202474, an
analog of SB203580 that is inactive against p38 MAPK (Davies et
al., 2000), also failed to block CPA-induced LTP-D (140.6 �
13.5% vs 80.6 � 10.2%; N � 5; p � 0.0048; Fig. 6C), supporting
the hypothesis that the effects of SB203580 involve p38 inhibition.

SB203580 is a relatively selective inhibitor of � and � p38
MAPK subtypes. To provide further support for a role of p38 MAPK
acting downstream of CPA, we examined two other p38 MAPK
inhibitors. At 1 �M, SB202190, an inhibitor of p38 � and � but not
p38 � or � (Davies et al., 2000), dampened, but did not com-
pletely eliminate, the effects of CPA on SC LTP (147.1 � 5.9% of
baseline 60 min after SC HFS vs 130.7 � 5.5% 60 min after CPA;
p � 0.0344 by paired t test; N � 5; Fig. 7A). Despite the reduction
in LTP magnitude, the observed degree of potentiation is greater
than the value with CPA alone (p � 0.000012 vs CPA alone). In
contrast, 0.1 �M skepinone-L, a potent inhibitor of p38 � (Koe-
berle et al., 2011), had no effect on CPA-induced LTP-D (168.3 �
24.2% 60 min after HFS vs 74.7 � 9.4% after CPA; p � 0.0206;

Figure 5. CPA-induced depotentiation does not involve serine phosphatases or NOS. A, Administration of 20 �M okadaic acid (white bar), an inhibitor of PP1 and PP2A, had no effect on the ability
of CPA (black bar) to depotentiate SC LTP. B, Similar to okadaic acid, 1 �M FK506 (white bar) had no effect on CPA-induced depotentiation. C, In the presence of a broad-spectrum NOS antagonist,
3Br7NIA, CPA still depotentiated SC LTP. Traces show representative waveforms as in Figure 1.
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N � 5; Fig. 7B). However, we found that 0.1 �M skepinone-L
completely eliminated the effects of TA stimulation (PLFS) on
SC LTP in slices that contained intact EC inputs (183 � 8.3%
change in SC EPSPs 60 min following SC HFS vs 178.2 � 8.3%
change 60 min after TA LFS; N � 5; p � 0.00836, compared
with CPA in the presence of skepinone; Fig. 7C). These latter
results indicate that, while CPA and TA stimulation have over-
lapping features, TA-induced LTP-D is not identical to CPA-
induced SC LTP-D.

Discussion
In this report, we provide further information about mechanisms
contributing to the depotentiation of SC LTP following LFS of TA
inputs to SLM in area CA1. The present results indicate three
major points about the complex cascade of events resulting in
TA-induced LTP-D. First, the induction of TA-induced LTP-D
requires intact inputs in SLM, as evidenced by results showing
that the removal of EC in the slicing procedure eliminates this
form of synaptic resetting. It is unclear whether the key inputs
involve direct excitatory or inhibitory paths from EC itself or
other inputs that enter the hippocampus via SLM (Basu et al.,
2016), including monoaminergic inputs from midbrain and
brainstem (Swanson and Hartman, 1975; Smith and Greene,
2012). Our results showing that the removal of EC also dis-
rupts the involvement of D4Rs in homosynaptic SC LTP-D
suggest that inputs that activate these receptors, either DA
itself or perhaps norepinephrine (NE; Smith and Greene,
2012; Root et al., 2015; Sánchez-Soto et al., 2016) have also
been altered. We cannot, however, exclude the possibility that
TA stimulation drives back propagating action potentials in
extrahippocampal inputs. It also appears that TA stimulation
in slices with severed extrahippocampal inputs failed to pro-
mote sufficient accumulation of adenosine for this form of

depotentiation, even in the presence of a nucleoside transport
inhibitor. Yet, the more restricted slice preparation does not
alter the ability of an exogenous A1R agonist to promote
chemically induced SC synaptic resetting.

Second, unlike homosynaptic LTD or LTP-D (Izumi et al.,
1992; Izumi and Zorumski, 1993), we found no evidence that
A1R-mediated SC LTP-D involves JNK, serine phosphatases or
NOS. Third, our results indicate that A1R-mediated depotentia-
tion, like TA-induced SC LTP-D, involves the activation of p38
MAPK, likely downstream of A1R activation. This latter result is
consistent with previously described roles of p38 MAPK in LTD
resulting from A1R activation (Brust et al., 2006, 2007; Chen et
al., 2014). Based on the effects of inhibitors with differing poten-
cies on p38 MAPK subtypes, it appears that the p38 � subtype is a
prime contributor to the effects of CPA. CPA-induced depoten-
tiation, however, is not identical to TA-induced SC LTP-D based
on the effects of skepinone-L, an agent with selectivity for p38 �
(Koeberle et al., 2011) that inhibited the effects of TA stimula-
tion but had no effect on CPA. This latter observation could
reflect the possibility that adenosine released in response to
TA stimulation is more restricted than bath applications of the
agonist CPA and results in the activation of A1Rs that differ in
coupling to p38 isoforms. Differential activation of p38 MAPK
isoforms can result from differences in the coupling of recep-
tors to MAPK kinase subtypes, as has been shown in other
systems (Cuenda and Rousseau, 2007; Feng et al., 2009). Res-
olution of this issue will require studies of animals with con-
ditional elimination of specific p38 isoforms. Nonetheless,
A1R and p38 MAPK activation are clearly downstream events
in the cascade leading to TA-induced synaptic resetting.

Prior studies have provided strong evidence that adenosine
contributes to chemical and heterosynaptic LTD (Zhang et al., 2003;

Figure 6. p38 MAPK, but not JNK, contributes to effects of CPA on SC LTP. A, The effects of CPA on SC LTP were not blocked by 10 �M SP600125, a broad-spectrum JNK inhibitor. Drugs were
administered for the periods denoted by the bars. B, At 1 �M SB203580, a p38 MAPK antagonist, had no effect on the ability of CPA to depotentiate SC LTP (white circles). We previously found that
1 �M SB203580 reversed TA-induced LTP-D (Izumi and Zorumski, 2016). In contrast, 10 �M SB203580 blocked the effects of 10 nM CPA (white squares). C, An inactive structural analog of SB203580,
SB202474, failed to alter the effects of CPA on SC LTP. Traces show EPSPs at the times denoted as in Figure 1. Calibration: 1 mV, 5 ms.
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Figure 7. The effects of CPA on SC LTP involve specific p38 MAPK subtypes. A, SB202190, a p38 inhibitor that blocks both p38 MAPK � and �, dampens the effects of CPA on SC LTP. B, Skepinone-L,
a p38 inhibitor with relative selectivity for p38 �, failed to alter the effects of CPA. C, In contrast, the same concentration of skepinone-L completely blocked the effects of TA LFS on SC LTP. Traces
show EPSPs at the times denoted as in Figure 1. Calibration: 1 mV, 5 ms.

Figure 8. The diagram depicts contributors to TA-induced SC LTP-D based on present results and prior studies in whole slices containing EC. The present study indicates that adenosine
accumulation results from ATP degradation via ectonucleotidases and that activation of p38 MAPK occurs downstream of A1Rs. Data in this manuscript further indicate that CPA- and TA-induced
LTP-D have overlapping features but are not identical with regard to the involvement of p38 MAPK subtypes. CPA (in green) is an A1R agonist that promotes SC depotentiation chemically, while the
A1R antagonist DPCPX (in red) blocks LTP-D. The ectonucleotidase inhibitor ARL67156 and the two p38 MAPK inhibitors block LTP-D and are shown in red.
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Pascual et al., 2005; Brust et al., 2006, 2007; Santschi et al., 2006;
Serrano et al., 2006; Chen et al., 2013, 2014; Boddum et al., 2016)
and depotentiation of glutamatergic synapses via activation of
A1Rs (Staubli and Chun, 1996; Abraham and Huggett, 1997; de
Mendonça et al., 1997; Fujii et al., 1997; Huang et al., 1999, 2001).
The source of adenosine for this plasticity is not always certain,
although, in multiple studies, it has involved the release of ATP
from astrocytes with extracellular conversion to adenosine (Pas-
cual et al., 2005; Serrano et al., 2006; Boddum et al., 2016). Addi-
tionally, ATP itself can depress glutamate-mediated transmission
in some studies (Zhang et al., 2003; Chen et al., 2013). Our pres-
ent results are consistent with extracellular ATP serving as a ma-
jor, although not necessarily exclusive, source of adenosine
underlying TA-induced SC depotentiation. Interestingly, two key
upstream mediators involved in TA-induced SC-LTP-D, endo-
cannabinoids and GABA, can promote increases in astrocytic
intracellular calcium that contribute to ATP release and adeno-
sine accumulation (Serrano et al., 2006; Boddum et al., 2016;
Covelo and Araque, 2018). In our prior studies, we found that
endocannabinoids act via CB1Rs and GABAARs, respectively
(Izumi and Zorumski, 2016), but the cellular localization of the
key receptors is not certain.

A1Rs have several presynaptic and postsynaptic mechanisms
that could contribute to LTD and depotentiation. These mecha-
nisms include the activation of serine phosphatases, including
PP1 (Huang et al., 1999, 2001) and PP2A (Huang et al., 1999;
Brust et al., 2006; Chen et al., 2014), but not PP2B (Huang et al.,
2001). Additionally, PP2B contributes to homosynaptic LTD
(Malenka and Bear, 2004) and metaplasticity (Kato et al., 1999;
Izumi et al., 2008). In our present studies, inhibitors of these
phosphatases had no effect on CPA-mediated LTP-D. A1Rs also
activate MAPKs, and these kinases, particularly p38 MAPK
(Chen et al., 2014) and JNK (Brust et al., 2007; Chen et al., 2014),
participate in A1R-mediated LTD. In our prior work, we found no
effects of JNK inhibition on TA-induced SC LTP-D, unlike other
forms of LTP-D (Zhang et al., 2018), but we did find a role for p38
MAPK (Izumi and Zorumski, 2016). In the present studies, we pro-
vide evidence that the activation of p38 likely occurs downstream of
A1R activation and involves the � p38 MAPK subtype. How p38
activation drives depotentiation remains uncertain, although the ef-
fects on clathrin-mediated endocytosis of AMPA receptors (Chen et
al., 2014), and possibly persistent presynaptic effects (Pascual et al.,
2005; Boddum et al., 2016), could contribute.

These results indicate that TA-induced SC depotentiation re-
quires extrahippocampal inputs as well as intrahippocampal cir-
cuits and processing. A role for the activation of D4Rs in SC
depotentiation has now been shown for depotentiation resulting
from either homosynaptic SC stimulation (Kwon et al., 2008;
Izumi and Zorumski, 2017) or TA-mediated heterosynaptic re-
setting (Izumi and Zorumski, 2017). It is unclear whether the
disruption of TA-induced LTP-D by removal of EC results
strictly from the loss of EC inputs or the disruption of other
inputs that enter the hippocampus via SLM. In prior studies, we
found no role for NMDA, AMPA, or metabotropic glutamate
receptors in the process, suggesting that excitatory inputs from
EC are unlikely to be key mediators (Izumi and Zorumski, 2008,
2016). EC can also provide longer-range GABAergic inputs to
hippocampus (Basu et al., 2016), and GABAAR activation partic-
ipates in the depotentiation process (Izumi and Zorumski, 2016);
these inputs would be altered by the removal of EC. It is also likely
that interneurons within the CA1 region participate in synaptic
resetting, but the identity of these interneurons is not certain.
Given the role of D4Rs, CB1Rs, and ErbB4 in the depotentiation

scheme, it is possible that the effects on parvalbumin-positive
interneurons play a key role given that their activity can be mod-
ulated by these receptors (Mrzljak et al., 1996; Woo et al., 2007;
Vullhorst et al., 2009; Neddens and Buonanno, 2010; Shamir et
al., 2012). Other possibilities include cholecystokinin interneu-
rons that are modulated by neuregulin 1 and ErbB4 receptors
(Neddens and Buonanno, 2010).

Combined with prior results, we suggest the following scheme
for TA-induced SC depotentiation. Proximal signals driven by
LFS of TA inputs to SLM result in the activation of D4Rs likely via
either DA or NE (Smith and Greene, 2012; Root et al., 2015) and
provide a necessary but not sufficient signal in the pathway. Activa-
tion of ERK1/2 occurs early in the cascade. Subsequent events
involve the release of an endocannabinoid agonist, likely 2-arachi-
donylglycerol, and stimulation of CB1Rs. This is followed by the
release of NRG-1 and activation of ErbB4 receptors with activation
of GABAARs. Further downstream, A1Rs are activated and provide a
signal that results in p38 MAPK and changes in SC-mediated trans-
mission (Izumi and Zorumski, 2016, 2017; Fig. 8).

TA-induced SC LTP-D represents a novel form of heterosyn-
aptic plasticity in which extrahippocampal inputs via SLM in-
struct the resetting of SC synapses following successful and stable
induction of LTP. There are several unique features of TA-
induced SC depotentiation, including the observation that TA
LFS has no persisting effect on baseline SC transmission in con-
trast to homosynaptic SC LFS (Izumi and Zorumski, 2008). Fur-
thermore, and again unlike homosynaptic SC LFS, TA LFS does
not inhibit subsequent LTP in the SC pathway (Izumi and
Zorumski, 2008; Izumi et al., 2013) and does not involve the
activation of NMDARs or neurosteroid synthesis (Izumi and Zo-
rumski, 2008, 2016). TA-induced LTP-D also does not involve
serine phosphatases or NOS. Given the involvement of multi-
ple neuromodulators in the process and the ability of specific
receptor agonists to trigger depotentiation, this form of syn-
aptic resetting is positioned to possibly play a key role in several
neuropsychiatric disorders, including major depression, bipolar
disorder, schizophrenia, and substance use disorders. While the
role of this form of plasticity in cognitive function and behavior
remains unknown, induction of this form of plasticity could con-
tribute to cognitive dysfunction across a range of illnesses.
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