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The Subjective Value of Cognitive Effort is Encoded by a
Domain-General Valuation Network
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1Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands, 2Department of Psychiatry, Radboud
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Rhode Island 02912, 4Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, Departments of
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Cognitive control is necessary for goal-directed behavior, yet people treat cognitive control demand as a cost, which discounts the value
of rewards in a similar manner as other costs, such as delay or risk. It is unclear, however, whether the subjective value (SV) of cognitive
effort is encoded in the same putatively domain-general brain valuation network implicated in other cost domains, or instead engages a
distinct frontoparietal network, as implied by recent studies. Here, we provide rigorous evidence that the valuation network, with core
foci in the ventromedial prefrontal cortex and ventral striatum, also encodes SV during cognitive effort-based decision-making in
healthy, male and female adult humans. We doubly dissociate this network from frontoparietal regions that are instead recruited as a
function of decision difficulty. We show that the domain-general valuation network jointly and independently encodes both reward
benefits and cognitive effort costs. We also demonstrate that cognitive effort SV signals predict choice and are influenced by state and trait
motivation, including sensitivity to reward and anticipated task performance. These findings unify cognitive effort with other cost
domains, and suggest candidate neural mechanisms underlying state and trait variation in willingness to expend cognitive effort.
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Introduction
Cognitive control is necessary for goal-directed behavior (Miller,
2000; Botvinick et al., 2001). Yet, intriguingly, control demands
are treated as if they are subjectively costly: people even forgo
rewards to avoid them (Kool et al., 2010; Dixon and Christoff,
2012; Westbrook et al., 2013). Subjectively high effort costs have

clinical implications, undermining functioning in schizophrenia
(Gold et al., 2015; Culbreth et al., 2016), ADHD (Volkow et al.,
2011), depression (Cohen et al., 2001), and Parkinson’s disease
(Sinha et al., 2013; Manohar et al., 2015). It is thus critical to
identify mechanisms of cognitive effort valuation, as a first step
toward targeted clinical interventions that address impaired cog-
nitive motivation.

Decision-making may involve “common currency” subjective
value (SV) representations that integrate costs and benefits
(Padoa-Schioppa, 2011) and facilitate exchange across choice di-
mensions (Rangel et al., 2008). Numerous studies have impli-
cated a core valuation network that encodes SV across multiple
domains (e.g., risk and delay), with primary foci in the ventro-
medial prefrontal cortex (vmPFC) and ventral striatum (VS; Levy
and Glimcher, 2012; Bartra et al., 2013). Although this network
was recently implicated in physical effort-based SV encoding
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Significance Statement

Subjective effort costs are increasingly understood to diminish cognitive control over task performance and can thus undermine
functioning across health and disease. Yet, we are only beginning to understand how decisions about cognitive effort are made. A
key question is how subjective values are computed. Recent work suggests that the value of cognitive effort might be computed by
networks that are distinct from those involved in other domains like intertemporal and risky decision-making, implying distinct
mechanisms. Here we demonstrate that the domain-general network also encodes effort-discounted value, linking cognitive effort
closely with other domains. Our results thus elucidate key mechanisms supporting decisions about cognitive effort, and point to
candidate neural targets for intervention in disorders involving impaired cognitive motivation.
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(Hogan et al., 2018; Aridan et al., 2019), it has not been demon-
strated to encode SV for choices about cognitive effort.

Surprisingly, the only two prior studies investigating SV en-
coding during cognitive effort-based decision-making (Massar et
al., 2015; Chong et al., 2017) did not implicate the core valuation
network. Instead, they identified frontoparietal regions that are
components of brain networks more typically associated with
cognitive control itself: the dorsal anterior cingulate cortex
(dACC), dorsolateral prefrontal cortex (dlPFC), and intrapari-
etal sulcus (IPS). Thus, a plausible interpretation is that these
regions may be recruited to support the control demands associ-
ated with difficult decision-making, such as when options are
close in value (Pochon et al., 2008; Shenhav et al., 2014). Their
involvement is also consistent with a comparator hypothesis by
which regions like the ACC track the differences in chosen versus
unchosen offer SV (Hunt et al., 2012; Klein-Flügge et al., 2016).

The fact that these prior studies found no evidence of SV
encoding in the core valuation network, however, also raises the
possibility that cognitive effort-based decision-making involves
different mechanisms than other domains. For example, deci-
sions about cognitive effort might not involve SV computation
per se, but rather prospective simulation of task demands to es-
timate controllability, and opportunity costs with respect to an
average reward-rate baseline (cf. Kurzban et al., 2013; Boureau et
al., 2015; Shenhav et al., 2017; Musslick et al., 2018).

Alternatively, the prior cognitive effort studies may have sim-
ply used methods which detected regions as a function of choice
difficulty rather than single offer SV. In particular, both studies
tested for SV encoding during simultaneous presentation of
competing offers. Thus, any subtle trial features prompting more
intensive deliberation as a function of SV might evoke frontopa-
rietal activity (Jimura et al., 2018) that is correlated with SV re-
gressors. Hence, it is critical to complement these approaches
with methods that dissociate SV representations from decision
difficulty.

In the present study, we used a cognitive effort discounting
task (COGED; Westbrook et al., 2013), in conjunction with
fMRI, to test whether a domain-general valuation network en-
codes the SV of cognitive effort. Specifically, we test whether a
priori regions-of-interest (ROIs) encode SV during evaluation of
single offers while explicitly controlling for decision difficulty.
Additionally, to provide more rigorous evidence for SV encod-
ing, we identify valuation network regions that track both the
costs (cognitive load) and benefits (reward magnitude) of out-
comes, along with subjective measures that may reflect stable,
trait differences as well as context-specific (i.e., trial-by-trial)
state differences.

Materials and Methods
Participants. Twenty-one healthy, right-handed, volunteer participants
(11 females, mean age � 21 years) recruited from the local St. Louis
community, gave informed consent as prescribed by the Institutional
Review Board at Washington University. Before the current imaging
study, all participants previously performed a separate behavioral and
imaging study focused on N-back task performance. Participant selec-
tion for the current study was based on ensuring both uniformly high
N-back performance and sufficient individual variability in cognitive
effort discounting in the included sample. Compensation for participa-
tion was provided at the rate of $25/h (plus additional bonus for repeat-
ing N-back tasks, based on offers they accept as described in the
Experimental Design section).

Apparatus and stimuli. Stimuli were presented using the MATLAB
(MathWorks) Psychophysics toolbox v3.0.11 (RRID:SCR_002881;
http://www.psychtoolbox.com; Brainard, 1997). For each N-back load, 2

runs of 64 lower-case consonants were presented in 32 point Arial font, in
one of six colors corresponding to the N-back load level: black [rgb code:
(0,0,0)], red (240,0,0), blue (0,0,255), purple (95,0,115), green (0,110,0),
and brown (102,51,0) for the 1– 6-back, respectively. Load levels were
labeled by different colors, rather than by numeric load (“N”), to avoid
anchoring confounds during decision-making (Chapman and Johnson,
1999). MR images were collected using a 12-channel 3-T Siemens Trio
scanner (Siemens Medical Solutions).

Imaging parameters and acquisition. High-resolution anatomical im-
ages were acquired for anatomical references using an MPRAGE se-
quence [repetition time (TR) � 2400 ms, echo time (TE) � 3.08 ms, flip
angle � 8°, inversion time � 1000 ms, voxel size � 1 � 1�1 mm 3]. The
functional scans were acquired with T2*-weighted gradient echoplanar
imaging sequence, TR: 2000 ms; TE: 27 ms; flip angle, 90°; field-of-view,
256 � 256 mm 2; dimensions, 64 � 64 and 32 axial slices each 4 mm thick
acquired (voxel dimensions: 4 � 4 � 4 mm 3).

Experimental design and statistical analysis
Procedure and task design. The study was implemented in three phases. In
the first phase, following consent and MR compatibility screening, par-
ticipants performed the N-back task, completing two runs of each load
level, in order of increasing load, to familiarize participants with the
subjective demands of each level before decision-making. In the second
phase, indifference points were estimated, according to a discounting
procedure detailed previously (Westbrook et al., 2013). Specifically, par-
ticipants made a series of choices between repeating a block of one of the
higher N-back load levels (N � 2– 6) for a larger payment amount ($2,
$3, or $4) or instead performing a 1-back block for a lower amount, with
the amount offered for the 1-back varied in a stepwise titration procedure
(over 5 choices per amount-load pair) until participants were indifferent
between the two offers. The indifference point is critical because it quan-
tifies the SV of an offer, discounted by the cognitive effort cost of the
higher N-back levels relative to the 1-back. For instance, if a participant
was indifferent between $3 for the 4-back, and $1.70 for the 1-back, this
indicates that the participant found the additional subjective effort of the
4-back versus the 1-back to cost $1.30. In this example, therefore, we
consider the SV of both $1.70 for the 1-back, and also $3 for the 4-back to
be $1.70.

In the third phase, which is the focus of this report, participants were
scanned while performing a series of decision trials that systematically
and orthogonally varied by both decision difficulty and SV of the high-
load offer. Over the course of 150 trials (3 amounts � 5 loads � 10
repetitions), we manipulated the SV of the high-load offer by giving
participants choices to either perform one of five, high-load N-back lev-
els (N � 2– 6) for one of three higher reward amounts ($2, $3, or $4), and
the 1-back at a lower, variable amount. To manipulate decision difficulty,
we varied the amount offered for the 1-back according to a proximity
parameter, �. This parameter specified the difference in estimated SV of
the two options, with small absolute values indicating that alternatives
were close in SV, and positive values indicating higher SV for the 1-back
option. Specifically, � gives the proportion difference between indiffer-
ence (� � 0) and the bounds: e.g., � � �0.4 indicates that the offer for
the easy task is 40% below the indifference point, whereas � � 0.2 indi-
cates that the offer for the easy task is above the indifference point by 20%
of the difference between the indifference point and the amount offered
for the hard task. The proximity parameter � was repeated twice for each
value from the set {�0.4, �0.1, 0.2, 0.6} yielding 120 regular trials, and
once each from the set {�1.0, 1.0} yielding 30 catch trials. The “catch”
trials (� � 1.0 or �1.0) were referred to this way because they involve
obvious choices: either the same amount is offered for the easy and the
hard task (� � 1.0), which should strongly bias selection of the easier
task, or the easy task is associated with $0 payment (� � �1.0), which
should strongly bias the harder task.

The proximity parameter thus accomplishes three goals. First, it per-
mits testing for decision difficulty encoding by, e.g., contrasting difficult
trials in which the proximity parameter is small (��� � 0.6) with easy trials
when the parameter is large (��� � 1.0). Second, the specific values of the
proximity parameters were designed (based on prior behavioral piloting
results) to ensure that participants are likely to select the harder and
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easier tasks in equal proportion. As a consequence, it protects against
decision biases, and decisions being anticipated in advance of both op-
tions being presented while also ensuring that decision difficulty is bal-
anced across trials and participants. Third, BOLD signal may be
contrasted according to whether participants make decisions that are in
line with their own indifference points from the second phase to see how
trial-level choice patterns are reflected in BOLD signal variation. For
example, we might infer that participants had higher momentary moti-
vation on a trial in which they choose the harder alternative, even though
we offered more for the easy task than the SV of the hard task. This
hypothesis would be supported if we found that BOLD signals encoding
SV happened to be augmented on those trials, indicating that trialwise
motivation is reflected in SV representations.

Each trial lasted 13 s (see Fig. 3). All decision trials began with a single
high-load offer presented in isolation for 6 s, followed by presentation of
both offers (high- and low-load) presented for up to 5.25 s, or until a
decision was made. Presenting the high-load option alone enabled us to
isolate SV encoding for that offer and avoid any ambiguities about which
offer, or combination of offers was encoded from moment-to-moment.
Our key test was whether the SV of the high-load option was encoded at
the end of this first-offer valuation window. Specifically, we focused on
the brain response 6 – 8 s after first offer onset to isolate encoding of first
offer SV, accounting for hemodynamic lag (Miezin et al., 2000). BOLD
dynamics pursuant to second offer onset were used only to investigate
decision-difficulty effects. Trials were concluded with either a fixation-
cross, presented after the response was made, or instead, feedback that
the response deadline was missed, followed by a fixation cross until the
next trial. Trials in which participants did not respond in time (1.15% of
trials overall) were omitted from further analyses.

Data were collected in two cohorts. In an early cohort (7 participants),
T1 and T2 anatomical images were collected first, after which all decision
trials were completed in a single run while 1019 functional volumes were
collected. In the later cohort, to reduce discomfort, trials were broken
down into three runs (345 volumes each); in between task runs, partici-
pants were invited to relax, motionless while T1 and T2 anatomical scans
were acquired. After all images were collected, one decision trial was
chosen at random, and participants were required to repeat one run of
the chosen N-back level, after which they received the associated reward
amount, as a monetary bonus added to their base compensation.

Imaging analyses. All DICOM images were converted to NIFTI format
using the FreeSurfer function mri_convert (RRID:SCR_001847; http://
surfer.nmr.mgh.harvard.edu). Subsequent steps of the analysis were im-
plemented with AFNI software functions (RRID:SCR_005927; http://
afni.nimh.nih.gov/afni; Cox, 1996). Brain tissue was masked using the
3dSkullstrip function, images were concatenated using 3dTcat, aligned
from oblique to cardinal orientation using the 3dWarp function, and
then up-sampled to 3 � 3�3 mm 3 voxels and aligned across all func-
tional runs to the first run. Parameters for registration of functional
volumes with anatomical T1 images were computed for each participant
separately. Precise registration was verified visually for every participant
and cost functions were tailored to optimize registration for each partic-
ipant. Then, parameters for warping participant-specific anatomical im-
ages to a standard MNI space (MNI152_T1_2009c�tlrc; Fonov et al.,
2011) were computed. All registration and warping parameters were con-
catenated using the cat_matvec function, and applied as a single transforma-
tion to aligned functional image volumes using the 3dAllineate function.
Following these transformations, functional images were smoothed using an
8.0 mm FWHM kernel and the 3dmerge function.

Three distinct GLMs were fit to functional data using the 3dDecon-
volve function. One GLM (GLM1), designed to investigate choice diffi-
culty effects using the contrast of catch and regular trials, included stick
regressors for the onset of the first offer, and for the onset of the second
offer, convolved with a canonical hemodynamic response (gamma)
function. The decision difficulty contrast of regular and catch trials
(comparing the magnitude of the response to the second offer onset) is
reported in the statistics in Table 1, column 6. A second GLM (GLM2),
not reported further here, used amplitude modulated “tent” functions to
investigate trialwise modulation of signal by first offer SV in a whole-
brain analyses to complement our core ROI-based analyses. A third GLM

(GLM3), used as the first stage of our core analyses, included regressors
of no interest only. Residuals of GLM3 were used in most of our analyses
to test for SV encoding, and derived statistics are reported in Figures 4 –8
and Table 1, columns 3–5. All GLMs included six motion regressors,
polynomial regressors suited to run duration for low-frequency drift,
and a gamma-convolved stick function associated with the infrequent
onset of a brief, 5 s reminder menu listing all load levels in their associated
color labels. In addition to motion regression, we censored all frames
with mean displacement �0.3 mm before parameter estimation to min-
imize the effects of high-motion transients (Siegel et al., 2014).

After fitting GLMs for individual subjects, we either contrasted aver-
age parameter estimates for regular and catch trials (GLM1) to test for
decision difficulty effects, or fit linear models to test predictors of average
BOLD signal residuals of GLM3 from a set of a priori ROIs to test for SV
encoding. We used ROI-based analyses to maximize statistical power
while protecting against false-positives, and because of strong a priori
hypotheses about SV encoding in a putatively domain-general valuation
network of 11 ROIs identified in two meta-analyses (Levy and Glimcher,
2012; Bartra et al., 2013). We contrasted these ROIs with 16 ROIs impli-
cated in encoding SV in two recent studies of cognitive effort-based
decision-making (Massar et al., 2015; Chong et al., 2017). To test for
difficulty effects, we averaged parameter estimates from GLM1, esti-
mated separately for difficult decision trials (��� � 0.6), and easy catch
trials (��� � 1.0), across all voxels lying within 6 mm radius spheres
centered on loci of interest identified by prior literature. Next, we t tested
the differences in average parameter values across trial types for each
ROI, or set of ROIs. To test for SV encoding, we extracted residuals of
GLM3, and fit a series of mixed-effects models to estimate linear relation-
ships between decision variables (SV, amount, and load) and residual
BOLD signal variation. In all cases, we used exact peak coordinates as
reported, except in the case of the amygdala, since the amygdala were
slightly anterior of the center of mass reported in (Chong et al., 2017). For
those loci, we used the anatomical amygdala centers as defined by Eick-
hoff et al. (2005). We then conducted all statistical analyses on averaged
sphere values, across trials and subjects.

In the key analysis, we tested whether residuals of GLM3 encoded
first-offer SV across trials and subjects, by fitting hierarchical linear mod-
els of residual BOLD signals (Yij) as predicted by z-scored SV (SVij) on
trial i, with trials nested within participants j:

Yij � B0j � B1jSVij � �ij,

B0j � �00 � u0j,

B1j � �10 � u1j.

Note that the model is fully random, allowing both the intercept B0j,
and SV effect B1j to vary across participants. At the second level of the
model, the intercept and slope are given subject-specific intercepts �00,
and �10, respectively. This and all subsequent mixed models were fully
random except in cases where predictor variables did not improve model
deviance sufficiently to justify the additional degrees of freedom. �ij, u0j,
and u1j are all error terms.

When testing whether SV predicted variation in individual ROIs, we
used the untransformed residuals from GLM3, averaged across all voxels
in a given ROI, across 6 – 8 s following first-offer onset. However, for
fitting models involving the network-level response of sets of ROIs (e.g.,
all ROIs in the putative domain-general valuation network) we com-
bined all ROIs into a single outcome measure (Yij) by z-scoring mean
residual BOLD signals at 6 – 8 s, across trials, for each ROI, then averaging
these z-scores across ROIs in the network set for each participant. This
method was used to give each component ROI equal weighting in quan-
tifying the mean, network/set-level response on a given trial. For all hi-
erarchical models, we used the arm package for R v1.10-1 (http://
CRAN.R-project.org/package�arm).

We also tested whether linear combinations of ROIs, as a group, pre-
dict first offer SV in a series of nested, hierarchical model comparisons to
ask whether residuals from one set of ROIs explain variance in SV better
than another set, and vice versa. Note that this is a more stringent test of
SV encoding than showing that variance is shared between trial-by-trial
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SV and BOLD signals in a single network. Showing that one set of a priori
regions predicts SV while controlling for variance in other regions dem-
onstrates both more robust SV encoding relative to other networks, and
implies greater specificity in encoding SV versus more general factors like
arousal, which may evoke activity across multiple networks. For this
analysis, we fit the following models including untransformed ROI re-
siduals (of GLM3) from set A alone (ROIA) in the first step, then in-
cluded ROI residuals from set B (ROIB) in the second step. na is the count
of ROIs in set A, etc.

SVij � B0j � �
a�1

na

BaROIAi � �ij,

SVij � B0j � �
a�1

na

BaROIAi � �
b�1

nb

BbROIBi � �ij,

B0j � �00 � u0j.

After estimating each model, we compared model fit according to 	 2

distributed deviance, to ask whether the additional regressors explained
significantly more variance than the nested model.

Mirroring our analysis of trialwise SV encoding, we also tested whether
amount and load are jointly predictive of GLM3 residuals, by fitting
additional hierarchical linear models that replaced SV with these two
terms. Note, however, that we did not model random effects for amount
and load (only the intercept term was both fixed and random) as they

were fixed across participants, and because including random effects for
these predictors did not explain sufficient variance to justify the addi-
tional degrees of freedom according to a nested model comparison.

Yij � B0j � B1Amounti � B2Loadi � �ij.

Additionally, we tested whether a measure of mean willingness to
accept a high effort-cost, high reward-benefit offer predicted BOLD sig-
nal residuals in putative valuation ROIs as a main effect and in interac-
tion with first offer amount and load. Because mean willingness to accept
a high-cost, high-benefit offer indexes trait cognitive motivation (West-
brook et al., 2013), interactions with load and amount would imply that
individuals with higher cognitive motivation were less sensitive to offer
load or more sensitive to offer amounts, respectively. To test this hypoth-
esis, we used area under the discounting curve (AUC; equivalent here to
the average of SVs across all high-load, amount pairings) for each indi-
vidual. Because we were interested in using AUC as a trait measure of
cognitive motivation, we averaged together AUCs measured on three
separate occasions (two prior visits and the imaging visit), to estimate
stable discounting tendencies. For testing whether AUC, at the subject
level, predicts GLM3 residuals as a main effect, and in interactions with
amount and load, we fit the following model. Here, amount and load are
treated as fixed effects, whereas AUC was a predictor of those effects at
the participant level of the model.

Yij � B0j � B1jAmounti � B2jLoadi � �ij,

Table 1. Effects of choice difficulty and first offer SV, amount, and load on BOLD signal in all a priori ROIs, grouped by study of origin

Anatomical description MNI (x,y,z) SV, B�10 �2 ( p) Amount, B�10 �2 ( p) Load, B�10 �2 ( p) Regular vs Catch t(20) ( p)

All SV meta-analysis ROIs 4.2 (�0.01)** 3.9 (�0.01)** �4.8 (�0.01)** 1.58 (0.13)
Levy and Glimcher, 2012

l vmPFC (�7,38,�11) 2.2 (�0.01)** 2.1 (�0.01)** �2.1 (�0.01)** �1.38 (0.18)
r vmPFC (4,35,�12) 2.2 (�0.01)** 1.8 (�0.01)** �2.3 (�0.01)** �1.22 (0.24)

Bartra et al., 2013
PCC (�4,�30,36) 1.6 (0.03)* 1.4 (0.03)* �1.6 (0.02)* 0.36 (0.72)
dACC (�2,16,46) 1.9 (0.05)* 0.7 (0.39) �2.4 (�0.01)** 3.70 (�0.01)**
ACC (�2,28,28) 1.6 (0.06)● 1.4 (0.07)● �2.2 (�0.01)** 1.69 (0.11)
l VS (�12,12,�6) 3.8 (0.02)* 2.5 (�0.01)** �1.8 (�0.01)** 0.92 (0.37)
r VS (12,10,�6) 4.1 (0.05)* 2.8 (�0.01)** �1.8 (0.02)* 0.39 (0.70)
r vmPFC (2,46,�8) 3.1 (�0.01)** 2.4 (0.01)* �3.2 (�0.01)** �1.48 (0.16)
l AI (�30,22,�6) 0.8 (0.10)● 0.5 (0.26) �1.2 (�0.01)** 3.28 (�0.01)**
r AI (32,20,�6) 0.6 (0.16) 0.5 (0.18) �0.8 (0.02)* 2.70 (0.01)*
Brainstem (�2,�22,�12) 0.9 (0.30) 1.1 (0.19) �1.6 (0.05)● 2.97 (�0.01)**

Massar et al., 2015
Massar et al. ROIs (Study 1) 2.6 (0.05)● 1.8 (0.19) �3.7 (0.02)* 3.50 (�0.01)**
r supr. gyr. (33,�52,32) 0.4 (0.38) 0.1 (0.81) �0.7 (0.09)● 2.83 (0.01)*
l cingulate (�24,�49,36) 0.4 (0.24) 0.1 (0.63) �0.5 (0.13) 2.61 (0.02)*
l ITG (�58,�35,�22) 1.1 (0.08)* 0.5 (0.25) �1.7 (�0.01)** �1.78 (0.09)●

l IFG (�43,53,�4) 0.4 (0.61) 0.4 (0.67) �1.8 (0.03)* 0.66 (0.51)
l IPL (�30,�43,43) 0.5 (0.35) 0.3 (0.48) �0.7 (0.12) 5.10 (�0.01)**
l IPL (�41,�55,46) �0.2 (0.82) 0.1 (0.93) �0.9 (0.22) 3.42 (�0.01)**
r temp. pole (34,16,�26) 3.1 (0.03)** 1.8 (0.02)* �1.4 (0.08)● 0.04 (0.97)

Chong et al., 2017
Chong et al. ROIs (Study 2) 2.1 (0.11) 1.6 (0.24) �3.5 (0.05)* 3.41 (�0.01)**
l amygdala (�24,0,�22) 2.2 (0.08)● 1.6 (0.04)* �1.7 (0.04)* �0.41 (0.69)
r amygdala (24,0,�22) 2.8 (0.03)* 2.1 (0.02)* �1.4 (0.13) �0.15 (0.88)
l IPS (�36,�44,38) 0.4 (0.50) 0.1 (0.90) �0.8 (0.12) 6.04 (�0.01)**
dmPFC (�4,22,44) 1.1 (0.12) 0.4 (0.56) �1.9 (�0.01)** 2.61 (0.02)*
r IPS (24,�60,42) 0.6 (0.25) 0.3 (0.56) �1.0 (0.04)* 4.95 (�0.01)**
r AI (34,22,2) 0.2 (0.75) 0.2 (0.65) �0.4 (0.30) 3.78 (�0.01)**
l dlPFC (�44,26,26) 0.9 (0.23) 0.8 (0.18) �0.6 (0.36) 3.29 (�0.01)**
r dlPFC (44,36,30) 0.1 (0.95) �0.4 (0.55) �1.3 (0.07)● 1.68 (0.11)
l insula (�28,22,4) 0.5 (0.17) 0.3 (0.24) �0.5 (0.11) 3.08 (�0.01)**

Column 2, MNI coordinates for each ROI. Columns 3–5, Effect estimates and corresponding p values for activity in a priori networks and individual ROIs predicting mean residual activity 6 – 8 s after first offer onset, after regressing out motion
and other predictors of non-interest. Column 3 describes first offer SV as a predictor of residuals. Columns 4 and 5 provide relationships with first offer amount and load simultaneously estimated in a hierarchical multiple regression. Column
6, t test contrasting the canonical hemodynamic response on regular versus catch trials. Cells are starred according to their p value: **p � 0.01, *0.01 � p � 0.05, and ●0.05 � p � 0.10. Network-level effects at the top of each section
were estimated from the mean response at 6 – 8 s, z-scored across trials, then averaged across ROIs in each network.
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B0j � �00 � �01 AUCj � u0j,

B1j � �10 � �11 AUCj,

B2j � �20 � �21 AUCj.

The logic of this analysis is that if either of the cross-level interaction
terms �11 or �21 were significant predictors of BOLD residuals, this
would indicate that SV representations were modulated by individual
differences in participants’ trait cognitive motivation (indexed by AUC)
via differential sensitivity to amount benefits or load costs, respectively.

To investigate whether SV representations varied with trialwise moti-
vation, we tested for relationships between choice patterns and offer
biasing (the proximity parameter, �). Specifically, we asked whether
BOLD signals in putative valuation ROIs were higher or lower on trials in
which participants ultimately selected the hard task offer, even when we
offered more for the easy task (relative to the SV of hard task), or vice
versa. Thus, we tested whether choice and second offer bias predicted
GLM3 residuals 6 – 8 s after first offer onset, fitting a model with trials, i,
3 vmPFC ROIs, k, nested within participants, j.

Yikj � B0kj � B1ChcBiasi � �ikj,

B0kj � �00j � �0kj,

�00j � 
000 � u00j,

The predictor ChcBias was coded to incorporate two factors: (1)
whether the low or high-demand option was chosen; and (2) whether the
amount for the low-demand option was above (� � 0) or below the SV of
the high-demand option (� � 0), thus biasing choice toward the low
(“low-load biased”) or high-demand option (“high-load biased”), re-
spectively. We coded the predictor to indicate whether participants chose
in accordance with, or against these offer biases. The regressor took the
following values, mapping increasing motivation to select the high-cost,
high-benefit option on a given trial. For low demand chosen, high-load
biased trials (choices implying low momentary cognitive motivation),
ChcBias � �1.5, for low demand chosen, low-load biased trials, Ch-
cBias � �0.5, for high demand chosen, high-load biased trials, Ch-
cBias � 0.5, and for high demand chosen, low-load biased trials (choices
implying high momentary cognitive motivation), ChcBias � 1.5. This
coding scheme thus emphasizes the effect of higher state motivation
reflected to select the high-load offer, particularly when choice was biased
against this offer. In this analysis, if the ChcBias term positively predicted
SV, this would indicate that more positive SV representations on a given
trial were related to higher implied motivation.

We also considered the possibility that the effect of load on SV repre-
sentations might depend on performance of the prior N-back task (e.g.,
the possibility that load-related cost encoding might be stronger for those
who performed worse on higher load levels). To investigate whether
level-specific N-back performance (dij

� ) predicted BOLD signal residuals
6 – 8 s after first offer onset (Yij) either as a main effect or in interaction
with load on trial i for participant j, the following multilevel models were
estimated in the dACC, and the bilateral anterior insula (AI).

Yij � B0j � B1Amounti � B2Loadi � B3dij
� � B4j	dij

� � Loadi
 � �ij,

B0j � �00 � u0j,

B4j � �40 � u4j.

Finally, to test whether SV predicted BOLD signal 6 – 8 s after first offer
onset, simply controlling for performance at that task load, we examined
regression weights for the SV term in the following model.

Yij � B0j � B1jSVij � B2dij
� � �ij,

B0j � �00 � u0j,

B1j � �10 � u1j.

Results
Reward is discounted subjectively by cognitive load
In the COGED paradigm, participants decide whether to perform
N-back working memory task levels that vary in cognitive load
for differing amounts of money (Kirchner, 1958; Braver et al.,
1997). Prior work has demonstrated that the N-back is perceived
as effortful, and self-reported effort increases systematically with
cognitive load (Westbrook et al., 2013; Hopstaken et al., 2015).
Critically, subjective effort costs are measured by the extent to
which cash offers are discounted for each load level (N; West-
brook et al., 2013). In the present study, outside the scanner,
participants first experienced all N-back levels, then made re-
peated decisions between performing a high-load N-back level
(N � 2– 6) for one of three base offer amounts ($2, $3, or $4) or
instead performing the low-load 1-back condition for a smaller,
variable amount. Low-load (1-back) offers were iterated in a
staircase fashion, until an indifference point was reached. Indif-
ference points give the SV: the perceived worth of monetary of-
fers, discounted by costs of each higher N-back load relative to the
low-load baseline. Replicating prior findings (Westbrook et al.,
2013), offers were discounted at all (high) load levels, and more-
over an ANOVA of indifference points normalized by base offer
amounts revealed that participants discounted offers propor-
tionally more for larger loads (F(1,20) � 49.3; p � 8.2 � 10�7; � 2

� 0.68), indicating increasing effort costs (Fig. 1). Additionally,
participants discounted proportionally less for larger amounts
(F(1,20) � 11.6; p � 0.0028; � 2 � 0.06) and an interaction (F(1,20)

� 6.87; p � 0.016; � 2 � 0.01) indicated that amount effects were
largest for higher load levels, though the amount and interaction
effect sizes were small compared with the load effect. Impor-
tantly, there were also strong individual differences in the degree
of discounting (Fig. 1). Given theoretical uncertainty regarding
the form of the discount function (Hartmann et al., 2013; Chong
et al., 2017), we quantified individual differences with AUC (Fig.
1), a measure that prior work has shown to be psychometrically
optimal for individual difference analyses (Myerson et al., 2001).
Higher AUC indicates that a participant is more willing to expend
cognitive effort for reward, on average.

Participants may discount high-effort tasks because they an-
ticipate worse performance as task load increases. However, it is
unlikely that discounting reflects performance alone. First, par-
ticipants were instructed that they would be paid for completing
a task, even for poor performance. Second, although poor per-

-

Figure 1. Decreasing indifference points (here normalized by, and averaged over base
amounts) reflect rising subjective costs as N-back level increases. Gray bars and black lines
reflect group means � SEM. Gray dashed lines show individual participants’ discounting
curves, illustrating clear individual differences. AUC values provided for two example
participants.
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formance predicts steeper discounting, there is considerable dis-
counting variance not explained by performance. For example,
even controlling for N-back performance (d�; B � 9.83 � 10�2,
p � 0.019), load significantly (B � �8.16 � 10�2, p � 9.1 �
10�10) predicted SV in a hierarchical multiple regression (load
levels nested within participants). Furthermore, indexed by d�,
steep discounters (below-median AUC) performed the N-back as
well as shallow discounters (Wilcoxon p � 0.62), and numerically
better at high-load levels (though not reliably: p values � 0.16).
Hence, although declining performance with higher load may
contribute to discounting, it does not satisfactorily explain load
effects or individual differences.

In the fMRI scanner, participants again decided between a
base offer ($2, $3, or $4) to perform the high-load N-back (N �
2– 6), and a variable amount for the low-load, but this time with
the low-load offer systematically adjusted with respect to partic-
ipants’ own indifference points, to control decision difficulty and
balance choice bias. Specifically, with � referring to the fractional
difference between the indifference offer and the bounds of $0 or
the base amounts ($2, $3, or $4), participants decided between
offers in which the low-load amount was slightly above indiffer-
ence (� � 0.2, 0.6), biasing low-load choices (low-load biased), or
slightly below indifference (� � �0.1, �0.4), biasing high-load
choices (high-load biased trials). We also included catch trials, in
which we offered equal amounts (� � 1.0) for the 1-back and
high-load task, strongly biasing low-load choices (“low-load catch”)
or instead $0 (� � �1.0), strongly biasing high-load choices
(“high-load catch”). A key advantage of this design is that deci-
sion difficulty, high-load versus low-load preference, and first-
offer SV were all orthogonalized across trials.

Bias reliably (F(1,20) � 341; p � 4.9 � 10�14) influenced the
probability of selecting the high-load offer on a given trial. Ex-
cluding catch trials, there was a reliable preference for high-load
offers on high-load biased trials (choice probability � 0.5; t20 �
5.12; p � 5.3 � 10�5), and a for low-load offers on low-load
biased trials (� � 0; choice probability � 0.5; t(20) � 2.31; p �
0.031; Fig. 2A).

Choice reaction times provide further evidence that our dis-
counting procedure identified indifference points accurately:
participants responded more slowly on trials closer to indiffer-
ence, consistent with increasing decision difficulty. On “pro-
bias” trials, in which participants’ choices were consistent with
offer biases, median reaction times were slower on more difficult
decision trials (��� � 1.0) relative to catch trials (� � �1.0 or 1.0;
t(20) � 7.51, p � 3.0 � 10�7; Fig. 2B). Furthermore, when decisions
went against offer biases (“anti-bias” trials), reaction times were
significantly slower than on pro-bias trials (t(20) � 7.03, p � 8.1 �
10�7). Such a pattern is consistent with a response conflict ac-
count of decision difficulty (Yarkoni et al., 2005; Botvinick, 2007;
Pochon et al., 2008), as conflict would be highest, on average,
when deciding against typically preferred alternatives.

SV encoding
Our central question was whether a domain-general valuation
network encoded cognitive effort-discounted SV. To test this, we
asked whether BOLD response reliably tracked the SV (indiffer-
ence points) of offers to repeat N-back tasks for money. Specifi-
cally, participants were instructed to consider the value of single
high-load N-back options (N � 2– 6) paired with single base
amounts ($2, $3, or $4), presented in isolation for 6 s (i.e., 1 of 15

high-load offers were presented first; Fig. 3). Consequently, brain
activity 6 – 8 s after first offer onset was regarded as reflecting
single offer valuation, isolated from other decision processes, ac-
counting for hemodynamic lag (Miezin et al., 2000). We tested
whether activity during this “valuation period” tracked trial-
by-trial, first-offer SV within a set of 11 ROIs from prior meta-
analyses identifying the putatively domain-general core
valuation network (Fig. 4A, yellow), which includes the
vmPFC, VS, AI, posterior cingulate cortex (PCC), and dACC
(Levy and Glimcher, 2012; Bartra et al., 2013). The focus on a
priori ROIs was motivated by strong prior beliefs about re-
gions encoding SV, and the desire to maximize statistical
power (for completeness, we also conducted a whole-brain
analysis although this did not identify any regions outside of
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our candidate ROIs). We contrasted the SV encoding in this
meta-analysis defined core valuation network with sets of
ROIs (16 in total) identified in two recent studies specifically
focused on decision-making about cognitive effort (Fig. 4A,
blue; Massar et al., 2015; Chong et al., 2017). Note that in
addition to testing whether individual ROIs tracked SV from
trial-to-trial, we combined ROIs as a set, giving each ROI
equal weight by z-scoring each ROI’s response at 6 – 8 s, then
averaging to obtain network-level responses.

Our data indicate clearly that the meta-analysis core valu-
ation network of regions positively and reliably tracked first-
offer SV in the valuation period, 6 – 8 s following the first offer
onset (B � 4.09 � 10 �2; p � 2.6 � 10 �4). Moreover, almost
all individual ROIs in this set showed some evidence of track-
ing first offer SV (at p � 0.05) including the bilateral vmPFC,
VS, PCC, ACC, and dACC (Fig. 4B; Table 1, column 3). These
results are consistent with the hypothesis that a core valuation
network encodes SV, discounted by cognitive effort costs. Fur-
thermore, they extend the notion of domain-generality from
delay, risk, and physical effort costs (Levy and Glimcher, 2012;
Bartra et al., 2013) to the domain of cognitive effort. Among
individual ROIs, only the brainstem and right AI showed no
evidence of encoding effort-discounted SV, whereas the left AI
showed only trend-level evidence, despite these regions reli-
ably encoding SV in other cost domains (Bartra et al., 2013).

By contrast, SV encoding was unreliable in the set of ROIs
identified in the prior cognitive effort studies. The set of ROIs
from one study (Study 1; Massar et al., 2015) encoded SV at
trend-level (B � 2.57 � 10�2; p � 0.050), whereas the set iden-
tified in by the other study (Study 2; Chong et al., 2017) did not

(B � 2.13 � 10�2; p � 0.11). Moreover, unlike the meta-analysis
set, most individual ROIs from either study did not reliably track
first-offer SV. Notable exceptions to this pattern include the right
temporal pole from Study 1 and right amygdala from Study 2 (the
left amygdala also encoded trial wise SV at trend-level). The
amygdala is notable as a region that has been previously impli-
cated in encoding SV during cognitive, relative to physical effort-
based decision-making (Chong et al., 2017) and also supporting
cognitive effort-based decision-making in rats (Hosking et al.,
2014). Despite these exceptions, the broader pattern did not rep-
licate the findings from the two prior cognitive effort studies: in
neither the IPS, parietal lobule (IPL), nor the lateral PFC loci did
activity reliably track first offer SV.

Direct comparisons between sets of ROIs reveal that the meta-
analysis core valuation network not only tracks trialwise SV with
greater reliability than ROIs identified in the two prior cognitive
effort studies, but also that activity in these ROIs is modulated
more strongly by, and in turn explains more trial-by-trial vari-
ance in, first offer SV. First, as a group, valuation network regres-
sion weights (Table 1, column 3) are reliably larger across
individual ROIs than those from the two prior cognitive effort
studies (t(19) � 2.78; p � 0.012). Second, in hierarchical, nested
model comparisons of pro-bias trials, valuation network ROIs
explained variance in first-offer SV above and beyond that ex-
plained by the ROIs from the prior effort studies. For example,
after controlling for activity 6 – 8 s after first offer onset in all ROIs
from Study 1 and Study 2, adding activity from the left (	1

2 � 10.4,
p � 0.0013) or right (	1

2 � 8.52, p � 0.0035) VS, or left (	1
2 � 4.00,

p � 0.046) or right (	1
2 � 2.86, p � 0.091) vmPFC improved 	 2

Figure 4. A, Six-millimeter-radius spheres centered at all a priori ROIs. Colors indicate origination from either of two prior meta-analyses of domain-general SV encoding (yellow, Levy and
Glimcher, 2012; Bartra et al., 2013) or two recent studies on SV encoding during cognitive effort decision-making (blue, Massar et al., 2015; Chong et al., 2017). Note that the amygdala is projected to
the surface for display purposes only. B, Percentage of ROIs from each set tracking SV 6 – 8 s after first offer onset by p value. Map shows ROIs reliably tracking SV at p�0.05. C, Percentage of ROIs from each set
with reliably more activity on difficult, regular versus easy catch trials by p value. Map shows ROIs with a reliable difficulty contrast at p�0.05. T Pole, Temporal pole; Amyg, amygdala; Supr Gyrus, supramarginal
gyrus; ITG, inferior temporal gyrus; Brstm, brainstem.
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distributed (Gelman and Hill, 2007) model deviance, indicating
that the valuation network ROIs explain reliably more variance in
first-offer SV across trials. When adding all 11 valuation ROIs at
once, model deviance also improved at trend-level (	11

2 � 18.01,
p � 0.081) above a model including all ROIs from Study 1 and
Study 2. By contrast, adding Study 1 and Study 2 ROIs to a base
model containing valuation ROIs did not improve model devi-
ance (	16

2 � 12.25, p � 0.73).

Encoding of decision difficulty
Relatively weak SV encoding among ROIs from the prior cogni-
tive effort studies suggests that they were previously implicated
because SV encoding is only apparent under certain conditions,
or that the ROIs they identified are primarily responsive to fac-
tors correlated with SV, rather than SV per se. One possibility is
decision difficulty. Correlation between SV and difficulty might
occur, for example, if participants typically prefer high-effort,
high-reward alternatives (such alternatives have higher SV on
most trials), and the decision only becomes difficult on infre-
quent trials when the SV of the high-effort option is low and
differences in SV between offers are small. This is a particularly
likely explanation in the case of Study 2, in which participants
mostly preferred the high-effort option. Moreover, Study 2 re-
gressed BOLD signal on the difference in the SV of a chosen offer
and that of a fixed baseline. Thus, the SV difference regressor used
in that study should negatively covary with difficulty. Study 1, by
contrast, orthogonalized the value of the high-cost offer with
respect to the low-cost offer, and included reaction time as a
covariate to control for choice conflict. Also, selection rates of the
high- and low-effort options were balanced. Nevertheless, both
studies examined BOLD signal while participants compared two
offers, rather than evaluating a single offer, leaving open the pos-
sibility that ROIs identified in the prior studies tracked subtle
aspects of SV that were correlated with decision difficulty. Also, in
both cases, it is possible that SV regressors interacted with diffi-
culty and were thus most predictive of BOLD signal when choice
difficulty was high. Perhaps the ROIs identified in these prior
studies are mechanisms recruited specifically on difficult trials
involving close offer comparison.

To examine whether ROIs from the prior cognitive effort
studies were indeed more sensitive to decision difficulty, we
tested whether they were more sensitive to differences in offer SV.
Specifically, we contrasted hemodynamic response functions,
time-locked to second offer onset, between difficult trials, when
the differences in SV of were small (��� � 0.6), and easy catch
trials, when differences in SV were large (� � �1.0 or 1.0). In a
reversal of the SV encoding analysis, sets of ROIs from the prior
cognitive effort studies were robustly sensitive to this difficulty
contrast (Study 1: t(20) � 3.50, p � 0.0022; Study 2: t(20) � 3.41,
p � 0.0028), whereas the meta-analysis valuation network was
not (t(20) � 1.58, p � 0.13). The pattern of results across sets of
ROIs suggests a double dissociation, which is buttressed by a
strikingly consistent pattern at the individual ROI level: individ-
ual ROIs were either more reliably active on difficulty trials or
reliably tracked SV, but not both (Table 1; Fig. 4B,C). Sole ex-
ceptions to this pattern were the dACC and trend-level results in
the inferior temporal gyrus and left AI. As noted, ROIs sensitive
to the difficulty contrast comprise regions more typically associ-
ated with cognitive control, working memory, and cost-benefit
evidence accumulation (Braver et al., 1997; Dosenbach et al.,
2006; Kouneiher et al., 2009; Basten et al., 2010), including the
bilateral IPS, the dACC and pre-supplementary motor area, and
dlPFC. As above, for completeness, we examined the decision

difficulty contrast across the whole brain; the results recapitu-
lated the ROI analysis: a network of regions including the dACC,
dlPFC, and IPS were more active on difficult versus easy trials,
whereas valuation network regions were not differentially active
across trial types. This pattern of results indicates a double disso-
ciation, in which a domain-general core valuation network tracks
first-offer SV significantly better than frontoparietal regions im-
plicated in prior cognitive effort studies, whereas conversely these
latter frontoparietal regions are more sensitive to decision diffi-
culty than those involved with domain-general valuation.

Costs and benefits are jointly encoded in the
valuation network
For a region to track SV, it should encode both offer benefits and
costs, and with opposing signs. Surprisingly few SV encoding
studies decompose these sources of variance, however, which
leaves open the possibility that BOLD signal correlating with SV
may be primarily tracking costs or benefits alone. Thus, we tested
whether trial wise first-offer amount (benefits) and N-back load
(costs) jointly and independently predicted mean valuation period
(at 6–8 s) activity in a priori ROIs, using hierarchical linear models.
We found that the meta-analysis valuation network covaried both
positively with amount (controlling for load; B � 3.91 � 10�2; p �
0.0035), and negatively with load (controlling for amount; B �
�4.80 � 10�2; p � 3.6 � 10�4; Table 1). This was also true, more-
over, among most individual ROIs within this network. For exam-
ple, bilateral vmPFC and VS activity both reliably increased with
higher-offer amounts and decreased with increasing task loads (Fig.
5). This result confirms that the putatively domain-general valuation
network not only correlates with SV, but independently tracks both
cognitive costs and benefits. By contrast, and mirroring our SV anal-
ysis, we did not find encoding of both dimensions in the sets of
regions implicated by the prior cognitive effort studies. In both cases,
we found evidence that these networks encoded first-offer load
(Study 1: B��3.69�10�2, p�0.023; Study 2: B��3.41�10�2,
p�0.048), but not first offer amount (Study 1: B�1.79�10�2, p�
0.19; Study 2: B � 1.58 � 10�2, p � 0.24). Relative insensitivity to
first offer amount helps explain why these ROIs did not reliably track
first-offer SV.

There were some individual ROIs within the meta-analysis valu-
ation network, however, for which our data only support the encod-
ing of single dimensions. For example, load reliably (and negatively)
predicted activity in the dACC and the bilateral AI (all p values �
0.02), but reward did not (all p values �0.18). These findings leave
open the possibility that certain ROIs tracking SV in other studies
may have reflected encoding of specific dimensions, rather than SV
per se. There may be methodological reasons, however, why these
ROIs do not track first-offer amount, (e.g., low power) so negative
results in individual ROIs should be interpreted with caution.

Individual ROIs encoding value
Although the set of meta-analysis valuation ROIs showed clear
evidence of SV encoding at the network level, it is also useful to
know whether individual ROIs encode SV. Although most ROIs
showed some evidence of encoding SV (Table 1), none of the
individual 11 valuation ROIs survived Benjamini–Hochberg–Ye-
kutieli FDR correction (Benjamini and Hochberg, 1995). By con-
trast, both the left (�7,38,�1) and right vmPFC (4,35,�12) and
the left VS (�12,12,– 6) survived multiple-comparisons correc-
tion for reliably encoding amount and load, indicating robust
evidence that the vmPFC and VS encode both key dimensions of
SV. Beyond these three ROIs, the right VS (12,10,�6), dACC
(�2,16,46), ACC (�2,28,28), and left AI (�30,22,�6) also sur-
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vived FDR correction for encoding load but not amount. Outside
of the meta-analysis valuation ROIs, neither any of the seven
ROIs from Study 1, nor any of the nine ROIs from Study 2 sur-
vived FDR correction for encoding either amount or load.

Trait subjectivity in value encoding
Beyond objective dimensions like reward amount and task load,
SV further implies subjectivity in how those dimensions are ex-
perienced. Indeed, participants varied considerably in their will-
ingness to exert effort for reward across load and reward levels
(Fig. 1). Subjectivity may partly reflect stable, trait experience. To
test for trait subjectivity in the experience of offers, we used AUC,
a measure of participants’ overall tendency to accept an offer to
perform a high-load N-back for reward. Prior work has shown
that COGED AUC predicts personality traits and individual dif-
ferences in delay discounting, cognitive aging, and negative
schizophrenia symptoms (Westbrook et al., 2013; Culbreth et al.,
2016), supporting its use as a trait measure. Furthermore, we took
advantage of the fact that we measured participants’ AUC in
multiple sessions to estimate stable, trait-like tendencies to dis-
count rewards for performing the N-back. Specifically, we aver-
aged AUC over three separate discounting sessions for which the
intraclass correlation was 0.48, 95% CI: (0.22, 0.72), indicating
both stability and variability in intersession discounting.

One possible source of trait-like subjectivity in these prior studies
is reward sensitivity. To investigate whether individuals vary in their
willingness to perform demanding cognitive tasks because of differ-
ences in reward sensitivity, we tested whether AUC predicted the
effect of offer amount (reward) on SV representations in the VS and
amygdala, two functionally coupled regions which have been shown
to reflect trait reward sensitivity (Beck et al., 2009; Hariri, 2009;
Plichta and Scheres, 2014). Specifically, we fit hierarchical models to
test whether AUC interacted with first-offer amount in predicting
average BOLD signal during the valuation period (6–8 s after first
offer onset). In both the left (B � 14.5 � 10�2; p � 5.3 � 10�4) and
right (B � 15.6 � 10�2; p � 8.1 � 10�4) VS, and in the left (B �
11.0 � 10�2; p � 0.028) and right amygdala (B � 18.3 � 10�2; p �
0.0014), activity was positively predicted by the interaction of AUC
and amount. This AUC-amount interaction implies that high AUC
participants were more willing to perform the high-load N-back

because they were more sensitive to increasing reward amounts. A
plot of time courses pursuant to first offer presentation reveals that
this interaction is driven by more positive deflections for $3 and $4
offers, in both sets of regions, for high versus low AUC participants
(Fig. 6A). We also found evidence that higher AUC is related to
steeper effects of amount on SV in a complementary analysis.
Namely, we fit models with amount and load jointly predicting
activity in those ROIs reliably tracking SV for each participant,
and then tested whether AUC predicted individual differences in
fitted amount effects. In both the left (B � 2.41 � 10�2, p �
0.0088) and right VS (B � 2.57 � 10�2, p � 0.059, trending), and
left (B � 1.85 � 10�2, p � 0.088, trending) and right amygdala
(B � 3.01 � 10�2, p � 0.0072), amount effects were positively
predicted by mean, cross-session AUC (Fig. 6). Note that exclud-
ing the high amount effect participant (BVS Amount Effect � 0.24;
Fig. 6B) did not attenuate the relationship between AUC and
amount effects for the remaining participants in either the left
(B � 2.41 � 10�2, p � 0.0088) or right VS (B � 1.35 � 10�2, p �
0.043). We should note, however, that these and subsequent in-
dividual difference results should be interpreted with caution
given our relatively small sample.

Cognitive demand encoding in AI and dACC reflects working
memory performance
Beyond trait reward sensitivity, we further considered the possibility
that subjective effort costs may be related to cognitive task perfor-
mance. Relationships between SV representation and N-back per-
formance seemed especially likely given that performance correlated
with discounting in the present data. Also, one recent study found
that subjective effort closely tracked task performance errors (Dunn
et al., 2017). Thus, we tested whether average N-back performance
(the sensitivity index d�) predicted the effect of load on SV represen-
tations. We focused on the AI and dACC as these regions have been
implicated previously by multiple lines of evidence, including in-
volvement in attention and control modulation (Dosenbach et al.,
2006), error awareness and processing (Klein et al., 2007), decision-
making and learning about physical effort costs (Prévost et al., 2010;
Skvortsova et al., 2017), and, in the case of the AI, self-reported
cognitive effort ratings (Otto et al., 2014). As above, we also tested the
full interaction of load-specific performance and load in predicting

Figure 5. Residual time courses in a priori ROIs, averaged by first offer amount or load. Error bands reflect � SEM across participants. Reliability of amount and load effects in separate hierarchical multiple
regression (trials and ROIs, nested within participants) at each time point indicated by *p � 0.05. Gray region highlights 6 – 8 s after first offer onset; vertical dashed line indicates second offer onset.
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BOLD signal 6–8 s after first offer onset. In both the left AI (B �
1.15 � 10�2; p � 0.023) and right AI (B � 8.71 � 10�3; p � 0.056)
and the dACC (�2,16,46; B � 2.62 � 10�2; p � 0.0067), we found
reliable, positive interactions indicating stronger load effects on
BOLD signal for increasingly bad N-back performance. These inter-
actions support the hypothesis that predicted task failure is inte-
grated into subjective effort cost representations via the AI and
dACC.

To investigate the nature of those interactions, we again
used individual participants’ task load effect estimates from a
model in which valuation period activity was jointly predicted
by task load and amount separately, and then tested whether
average d� (across all N-back levels) predicted individual dif-
ferences in load effects. A trend-level result in the bilateral AI
(Fig. 7; B � 2.11 � 10 �2; p � 0.085) supported the interpre-
tation that participants with the worst average N-back perfor-
mance tended to show the strongest load effects during the
valuation period (activity decreasing with increasing load).
The same analysis in the dACC was inconclusive ( p � 0.48),
perhaps reflecting reduced power from collapsing across
N-back levels and choice trials.

Cognitive effort discounting does not merely reflect
task performance
Although participants were promised payment contingent on
merely repeating the N-back tasks of their choosing (not on per-
formance), it is possible that decision-making was primarily
driven by anticipated likelihood of successful performance at a
given load level. In other words, an alternative interpretation of
the relationship between N-back performance and SV represen-
tations is that, rather than reflecting effort discounting and SV
encoding per se, apparent SV encoding instead reflected concerns
about performing well. This alternative account is plausible given
that N-back performance covaried negatively with task load, and
positively with SV. To test this alternative account, we estimated

hierarchical multiple regression models to determine whether
valuation period activity in the vmPFC and VS was predicted by
SV, controlling for load-level-specific N-back performance, and
vice versa. The results clearly reject the alternative, performance-
based interpretation. In the VS, N-back performance did not
reliably predict BOLD signal variation (both p values � 0.74),
whereas SV did, controlling for performance (left VS: B � 3.76 �
10�2, p � 0.018; right VS: B � 3.96 � 10�2, p � 0.057). In the
vmPFC, although N-back performance predicted BOLD signal
variation (left B � 1.39 � 10�2, p � 0.055 and right vmPFC B �
1.42 � 10�2, p � 0.046, from Levy and Glimcher, 2012; B �
2.70 � 10�2, p � 0.020, from Bartra et al., 2013), SV was also a

Figure 6. Trait willingness to select high cognitive load for reward varies with reward sensitivity. A, Residual time courses in a priori ROIs, averaged by first offer amount and divided by above
(High) or below median (Low) AUC. Error bars reflect SEM across participants. Reliability of the interaction between AUC and first offer amount in separate hierarchical multiple regression (trials
nested within participants) at each time point indicated by *p � 0.05 and � p � 0.075. Gray region highlights 6 – 8 s after first offer onset; vertical dashed line indicates second offer onset. B,
Cross-session AUC predicts the average amount effect on mean activity at 6 – 8 s following first offer onset in both the bilateral ventral striatum (B � 2.49 � 10 �2, p � 0.027) and bilateral
amygdala (B � 2.43 � 10 �2, p � 0.023). Shaded regions show 95% CI.

Figure 7. Higher mean N-back performance (measured by sensitivity index d�) predicts
shallower load effects in bilateral AI across participants (B � 2.11 � 10 �2; p � 0.085). The
shaded region shows 95% CI.
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significant predictor, controlling for performance in both the left
(B � 1.78 � 10�2, p � 0.026) and right vmPFC (B � 1.79 �
10�2, p � 0.031, from Levy and Glimcher, 2012, and B � 2.18 �
10�2, p � 0.063 from Bartra et al., 2013). These results support
that although anticipated performance partially determines
discounting, SV, and neural representations of SV, SV represen-
tations further reflect other state and trait factors (e.g., working-
memory load and reward sensitivity) determining willingness to
expend cognitive effort.

Trialwise value signals in the vmPFC predict
subsequent choice
In addition to stable, trait subjectivity, valuation may also involve
state variation, from factors such as satiety or fatigue that can
influence motivation (Hare et al., 2014; Rudorf and Hare, 2014).
Although we did not explicitly manipulate state motivation, non-
catch trials were close enough to indifference for choice to be
sensitive to spontaneous trial-to-trial fluctuations in motivation.
Thus, trial-level differences in cognitive or neural state may alter
SV representations with consequences for choice behavior. To
test for such effects, we examined whether trialwise variation in
SV representations predicted choice; specifically, whether valua-
tion period signal predicted choice behavior, above and beyond
the bias (�) imposed by the second offer. We focused our analysis
on the VS and vmPFC, given clear SV tracking in these regions,
and also prior literature implicating vmPFC both in state incen-
tive motivation, and causally determining choice (Hare et al.,
2009, 2011, 2014; Rudebeck and Murray, 2014; San-Galli et al.,
2018).

During the valuation period, we found that lower vmPFC
activity predicted choice of the low-load option, and that this
effect was most pronounced on anti-bias trials (when partici-
pants do not select the option expected to have the higher SV; or
in this case, when the offer was designed to bias choice of the
high-load offer but participants still selected the low-load op-
tion). A hierarchical model with trials and three vmPFC ROIs
nested within participants revealed that this interaction of choice
and bias significantly predicted mean vmPFC activity during the
valuation period (B � 3.57 � 10�2; p � 0.0072). Thus, even
before participants knew what the low-load (1-back) offer
amount would be, trialwise variation in vmPFC activity predicted
subsequent choice (Fig. 8). Notably, this pattern was not ob-
served in either the right (B � 1.29 � 10�2; p � 0.57) or left VS

(B � 2.48 � 10�2; p � 0.22), despite the VS otherwise covarying
with SV. Stronger coupling of choice to vmPFC activity is consis-
tent with the hypothesis that although both VS and vmPFC are
part of a distributed valuation network, the vmPFC serves as a
final common node incorporating state motivation during
decision-making (Levy and Glimcher, 2012). As shown in Figure
8, the interaction of choice and bias also reliably predicted BOLD
signal later in trials with the opposite sign: activity was higher on
trial in which participants selected the low-effort option. Al-
though it is possible that this reflects interesting post-decisional
processes, the timing of this the interaction, pursuant to presen-
tation of two offers and choice commitment precludes unambig-
uous interpretation of this effect.

Discussion
Decisions involving cognitive effort evaluation are reflected in
demand avoidance (Kool et al., 2010; Schouppe et al., 2014b) and
effort discounting (Botvinick et al., 2009; Dixon and Christoff,
2012; Westbrook et al., 2013; Massar et al., 2015; Chong et al.,
2017). Yet it is unclear where and how cognitive effort costs and
benefits are encoded in the brain. In this study, we used fMRI as
participants decided between a high-load working memory task
for more money, or a low-load task for less money, to identify the
neural encoding of cognitive effort-discounted SV. Our results
provide the first direct evidence that a domain-general valuation
network, centered on the vmPFC and VS, tracks SV during
decision-making about cognitive effort. This result closely links
cognitive effort with other cost domains such as delay, risk, and
physical effort (Levy and Glimcher, 2012; Bartra et al., 2013).

Earlier studies have shown valuation regions encoding reward
signals modulated by prior or anticipated cognitive demands
(Botvinick et al., 2009; Satterthwaite et al., 2012; Schmidt et al.,
2012; Schouppe et al., 2014a; Vassena et al., 2014; Dobryakova et
al., 2017; Nagase et al., 2018). These results imply that the valua-
tion network should also encode SV during cognitive effort-
based decision-making. Yet, to date, this has not been shown. In
fact, the only two studies directly examining cognitive effort-
discounted SV (Massar et al., 2015; Chong et al., 2017) identified
regions outside the valuation network, raising the possibility that
decisions about cognitive effort involve fundamentally different
mechanisms than other cost domains. Indeed, these studies
found that SV was encoded primarily in frontoparietal regions
typically associated with cognitive control itself, including the
dlPFC and IPS.

Our results suggest a reinterpretation of these prior studies,
namely that frontoparietal regions track shared variance between
SV regressors and choice difficulty. Note that we are agnostic as to
whether frontoparietal ROIs encode SV when offers are directly
compared. The dACC in particular, e.g., encodes SV differences
between competing alternatives in both reward and physical
effort demands (Klein-Flügge et al., 2016). However, it may be
that these regions are recruited primarily for careful comparison
between close alternatives. Such regions would not, therefore,
reliably track first-offer SV in our design, which was focused on
valuation of a single offer in isolation.

It is possible, however, to mistakenly implicate regions pri-
marily tracking difficulty with SV encoding if the two are corre-
lated. Consider frontoparietal cognitive control regions recruited
to focus attention during difficult value-based discriminations
(Jimura et al., 2018). Such regions could be recruited as a func-
tion of value differences, without computing SV per se. Thus, it is
critical to also test for SV encoding when controlling for decision
difficulty, as we did by: (1) examining BOLD response to single

Figure 8. Mean residual time courses at vmPFC loci, averaged by whether participants chose
the high or low-demand offer and whether the low-demand offer amount biased them toward
the high- or low-demand offer. Error bands reflect SEM across participants. Reliability of choice-
bias effects in separate, fully random hierarchical multiple regressions at each time point indi-
cated by *p � 0.05, and � p � 0.075. Based on a Choose Low, Pro-Bias � Choose Low,
Anti-Bias � Choose High, Pro-Bias � Choose High, Anti-Bias coding scheme.
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offers in isolation, (2) balancing offers so that participants prefer
the high-demand/high-benefit option on approximately half the
trials, and (3) fully-crossing offer attributes to decorrelate SV and
difficulty. With this approach, we doubly dissociated a valuation
network reliably tracking first-offer SV, and a frontoparietal net-
work reliably tracking decision difficulty.

Our conclusions align closely with a recent physical effort
study, which found that the vmPFC encoded SV while the ACC
tracked decision difficulty (Hogan et al., 2018). Interestingly, de-
spite coming to the same conclusions as our own study, this study
used methods more like those used in the prior cognitive effort
studies. Namely, they also examined value encoding during si-
multaneous offer presentation, and regressed BOLD signal on the
SV difference between competing offers. So how could they come
to different conclusions? For one, this study (like Study 1) bal-
anced high- and low-cost offer selection and regressed out reac-
tion time to control for conflict-related difficulty. However,
unlike Study 1, only effort costs varied (no rewards were offered).
Perhaps, therefore, what prevented the prior cognitive effort
studies from implicating the valuation network was the complex-
ity of the decision space and uncertainty about encoding across
two attributes and two alternatives at any given time point. By
holding reward constant, the physical effort study benefitted
from greater certainty about what choice dimensions were en-
coded during offer comparison, whereas in our study, the presen-
tation of a single alternative also simplified the decision space.

Beyond showing that a domain-general valuation network
tracks SV, we further show that this network scales both posi-
tively with amount, and negatively with cognitive load. This re-
sult was critical to demonstrate that the network encoded SV
rather than merely correlating with a single dimension, such as
rewards on offer; a result that is already well established within
the vmPFC and VS (Bartra et al., 2013). On an individual ROI
basis, the AI and dACC demonstrated sensitivity to cognitive load
but not reward amount. This could reflect limited power to detect
reward encoding: the dACC has elsewhere been shown to track
both physical effort costs and reward amount (Harris and Lim,
2016; Klein-Flügge et al., 2016). Interestingly, however, numer-
ous lines of evidence also suggest a somewhat more specialized
role for these regions in processing cognitive effort costs includ-
ing involvement in control modulation (Dosenbach et al., 2006),
error awareness and processing (Klein et al., 2007), decision-
making about physical effort (Croxson et al., 2009; Prévost et al.,
2010; Kennerley et al., 2011; Kurniawan et al., 2013; Skvortsova et
al., 2014), self-reported cognitive effort (in the AI; Otto et al.,
2014), and learning about cognitive effort costs (Botvinick, 2007;
Nagase et al., 2018).

Our results are thus consistent with the overarching hypoth-
esis that the dACC and AI specialize in processing effort cost
information in the service of SV computation. This interpreta-
tion is bolstered by additional findings that individual differences
in N-back performance modulate cost encoding (load effects)
within dACC and AI, suggesting that these regions may track the
subjective difficulty (expected performance decline) associated
with higher cognitive load. With regard to the dACC in particu-
lar, an influential account, known as expected value of control
(EVC), implicates this region in regulating control as a function
of expected reward benefits and effort costs (Shenhav et al.,
2013). Our results are consistent with the EVC, in demonstrating
that information about both costs and benefits are represented in
the ACC proper during offer valuation. Moreover, the EVC ac-
count also predicts increased dACC involvement when decisions
are more difficult. Our data confirm this prediction by showing

higher dACC activity when participants decide between offers
that were close in value versus when offers were far apart. In fact,
the dACC ROI was one of the few to reliably track to both pro-
spective cognitive load and decision difficulty, a pattern of results
that is uniquely predicted by the EVC hypothesis.

Our results also elucidate factors driving subjectivity in SV.
First, larger amount effects in the VS and amygdala predicted
shallower discounting across participants. This result is consis-
tent with the close structural and functional connectivity of these
regions for reward processing (Cardinal et al., 2002) and evidence
that they reflect trait reward sensitivity (Hariri et al., 2006; Beck et
al., 2009; Plichta and Scheres, 2014). Second, trialwise vmPFC
representations of SV predict choice. Specifically, low-load
choices were anticipated by below-average vmPFC signal during
the valuation period, and this was particularly true on when of-
fers biased high-load offer selection. This finding is consistent
with the hypothesis that state variation in SV, as encoded by the
vmPFC, determines momentary preference (Hare et al., 2009,
2011, 2014; Rudebeck and Murray, 2014), current motivational
state (Bouret and Richmond, 2010), and willingness to perform
effortful instrumental tasks (San-Galli et al., 2018).

Our a priori ROI approach provided increased statistical
power, while protecting against false-positives that are of greater
concern in whole-brain voxelwise analyses. Nevertheless, one
limitation was that we did not investigate representational heter-
ogeneity across the larger cortical regions identified in the prior
cognitive effort studies. Complementary whole-brain analyses
did not identify any clusters overlapping regions identified in the
prior studies. Yet, this null result may reflect false negatives, or
missed dynamics in other parts of regions identified in Study 1
and Study 2. Future work is also needed to elucidate the nature of
value signals; e.g., to discern whether valuation regions are en-
coding value as opposed to subjective relief when prospecting
about low-effort options. Finally, our study is limited by a rela-
tively small sample size and low-power. This concern is particu-
larly relevant for individual difference analyses including
subjectivity effects in amount and load encoding. Although our
results conform to strong prior predictions, replication studies
with higher-power are needed. Nevertheless, these results pro-
vide clear evidence that a domain-general valuation network en-
codes cognitive effort-discounted SV, while also suggesting how
other components (e.g., amygdala, dACC, AI) might be particu-
larly sensitive to individual difference variables.

Recent theoretical and empirical work highlights that subjec-
tive cognitive effort costs modulate cognitive control demand
avoidance, and contribute to psychopathology (Gold et al., 2015;
Culbreth et al., 2016). By implicating a domain-general valuation
network in cognitive effort-related SV encoding, our results yield
considerable leverage in understanding the mechanisms by
which decisions about cognitive effort are made. Moreover, they
point to coherent neural targets for interventions to enhance
cognitive motivation in impaired populations.
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Schmidt L, Lebreton M, Cléry-Melin ML, Daunizeau J, Pessiglione M (2012)
Neural mechanisms underlying motivation of mental versus physical ef-
fort. PLoS Biol 10:e1001266.

Schouppe N, Demanet J, Boehler CN, Ridderinkhof KR, Notebaert W
(2014a) The role of the striatum in effort-based decision-making in the
absence of reward. J Neurosci 34:2148 –2154.

Schouppe N, Ridderinkhof KR, Verguts T, Notebaert W (2014b) Context-
specific control and context selection in conflict tasks. Acta Psychologica
146:63– 66.

Shenhav A, Botvinick MM, Cohen JD (2013) The expected value of control:
an integrative theory of anterior cingulate cortex function. Neuron
79:217–240.

Shenhav A, Straccia MA, Cohen JD, Botvinick MM (2014) Anterior cingu-
late engagement in a foraging context reflects choice difficulty, not forag-
ing value. Nat Neurosci 17:1249 –1254.

Shenhav A, Musslick S, Lieder F, Kool W, Griffiths TL, Cohen JD, Botvinick
MM (2017) Toward a rational and mechanistic account of mental effort.
Annu Rev Neurosci 40:99 –124.

Siegel JS, Power JD, Dubis JW, Vogel AC, Church JA, Schlaggar BL, Petersen
SE (2014) Statistical improvements in functional magnetic resonance
imaging analyses produced by censoring high-motion data points. Hum
Brain Mapp 35:1981–1996.

Sinha N, Manohar S, Husain M (2013) Impulsivity and apathy in Parkin-
son’s disease. J Neuropsychol 7:255–283.

Skvortsova V, Palminteri S, Pessiglione M (2014) Learning to minimize ef-
forts versus maximizing rewards: computational principles and neural
correlates. J Neurosci 34:15621–15630.

Skvortsova V, Degos B, Welter ML, Vidailhet M, Pessiglione M (2017) A
selective role for dopamine in learning to maximize reward but not to
minimize effort: evidence from patients with Parkinson’s disease. J Neu-
rosci 37:6087– 6097.

Vassena E, Silvetti M, Boehler CN, Achten E, Fias W, Verguts T (2014)
Overlapping neural systems represent cognitive effort and reward antici-
pation. PLoS One 9:e91008.

Volkow ND, Wang GJ, Newcorn JH, Kollins SH, Wigal TL, Telang F, Fowler
JS, Goldstein RZ, Klein N, Logan J, Wong C, Swanson JM (2011) Moti-
vation deficit in ADHD is associated with dysfunction of the dopamine
reward pathway. Mol Psychiatry 16:1147–1154.

Westbrook A, Kester D, Braver TS (2013) What is the subjective cost of
cognitive effort? Load, trait, and aging effects revealed by economic pref-
erence. PLoS One 8:e68210.

Yarkoni T, Gray JR, Chrastil ER, Barch DM, Green L, Braver TS (2005)
Sustained neural activity associated with cognitive control during tempo-
rally extended decision making. Brain Res Cogn Brain Res 23:71– 84.

Westbrook et al. • A Domain-General Network Encodes Cognitive Effort Value J. Neurosci., May 15, 2019 • 39(20):3934 –3947 • 3947


	The subjective value of cognitive effort is encoded by a domain-general valuation network
	The Subjective Value of Cognitive Effort is Encoded by a Domain-General Valuation Network
	Introduction
	Materials and Methods
	Results
	Discussion
	References


