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Reviews

Protective and Pathogenic Effects of Interferon
Signaling During Pregnancy

Rebecca L. Casazza,1 Helen M. Lazear,1 and Jonathan J. Miner2–4

Abstract

Immune regulation at the maternal-fetal interface is complex due to conflicting immunological objectives:
protection of the fetus from maternal pathogens and prevention of immune-mediated rejection of the semi-
allogeneic fetus and placenta. Interferon (IFN) signaling plays an important role in restricting congenital
infections as well as in the physiology of healthy pregnancies. In this review, we discuss the antiviral and
pathogenic effects of type I IFN (IFN-a, IFN-b), type II IFN (IFN-c), and type III IFN (IFN-k) during
pregnancy, with an emphasis on mouse and non-human primate models of congenital Zika virus infection. In
the context of these animal model systems, we examine the role of IFN signaling during healthy pregnancy.
Finally, we review mechanisms by which dysregulated type I IFN responses contribute to poor pregnancy
outcomes in humans with autoimmune disease, including interferonopathies and systemic lupus erythematosus.
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Introduction

Immune regulation at the maternal-fetal interface is
complex due to conflicting immunological objectives:

protection of the fetus from maternal pathogens and pre-
vention of immune-mediated rejection of the semiallogeneic
fetus and placenta. Maternal and fetal tissues are in direct
contact where the fetal-derived placenta invades and im-
plants into a layer of specialized maternal endometrial tissue,
termed the decidua. The decidua is enriched in maternal
leukocytes, particularly natural killer (NK) and Treg cells,
which mediate protective and tolerogenic immunity at the
maternal-fetal interface. In addition to controlling pathogen
transmission from mother to fetus, proper regulation of cy-
tokine signaling, including interferon (IFN) signaling, con-
tributes to the physiology of healthy pregnancy.

In this review, we discuss the antiviral and pathogenic
effects of type I, II, and III IFN signaling during pregnancy,
with an emphasis on mouse and non-human primate (NHP)
models of congenital Zika virus (ZIKV) infection. In the
context of these animal model systems, we examine the role
of IFN signaling during healthy pregnancy. Finally, we re-
view mechanisms by which dysregulated type I IFN re-
sponses contribute to poor pregnancy outcomes in humans
with systemic autoimmunity.

IFN Signaling

IFNs are cytokines and are divided into three families
(type I, type II, and type III) based on sequence homology,
evolutionary relatedness, receptor usage, and functional
activity (Fig. 1) (5,61,68). In humans, mice, and NHPs, the
type I IFN family includes multiple IFN-a subtypes (13 in
humans, 14 in mice, and 14 in rhesus macaques) and single
IFN-b, IFN-e, IFN-j, IFN-x (primates), and IFN-f (mice)
subtypes (4,5). Additional type I IFNs are found in other
mammals, for example multiple IFN-t genes in ruminants
and IFN-d in swine (57). All type I IFNs signal through the
same receptor, IFNAR (comprising two chains, IFNAR1
and IFNAR2). The type II IFN family includes a single
member, IFN-c, which signals as a homodimer through the
receptor IFNGR (comprising two copies each of IFNGR1
and IFNGR2) (5). The type III IFN family includes four
subtypes in humans and NHPs, IFN-k1, IFN-k2, IFN-k3,
and IFN-k4, although IFN-k4 is a pseudogene in many hu-
man populations (55,91). In mice, the type III IFN family
consists only of IFN-k2 and IFN-k3; IFN-k1 is a pseudogene
and the genomic region encoding IFN-k4 is absent. All type
III IFNs signal though IFNLR (comprising IFNLR1 and
IL10Rb). Receptor usage distinguishes the three IFN fami-
lies; so targeting the receptors provides a means to
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selectively ablate the activity of an entire IFN family. This
can be accomplished using transgenic mice lacking a re-
ceptor globally or in specific cell types (most commonly
Ifnar1-/-, Ifngr1-/-, or Ifnlr1-/-); using receptor-blocking
monoclonal antibodies; or targeting the receptors in cell
culture (e.g., with knockdown or gene-editing approaches).

Despite using different receptors, type I and type III IFNs
share many functional similarities. Both are induced by
pattern recognition receptor (PRR) signaling following viral
infection, their receptor binding activates STAT1/STAT2
heterodimer formation, and they induce a similar transcrip-
tional program characterized by IFN-stimulated response el-
ements in the promoters of induced genes (5,61,68). Type I
and III IFN signaling result in the upregulation of hundreds
of IFN-stimulated genes (ISGs), many of which act in a cell-
intrinsic manner to restrict viral entry, replication, and spread
(101). In addition to these canonical IFN signaling pathways,
additional signaling pathways also are activated and likely

contribute to the specific transcriptional response induced by
different IFNs (61,87). Type I and III IFNs also serve im-
munomodulatory functions, including priming adaptive im-
mune responses.

Although type I and III IFNs activate similar antiviral
transcriptional responses, they have distinct physiological
activities largely determined by receptor expression. IFNAR
is ubiquitously expressed, but IFNLR expression is greatest
on epithelial cells and some immune cell subsets, including
neutrophils and NK cells (61). Furthermore, while type I and
III IFNs are induced by similar PRR signaling pathways,
some stimuli favor production of type III IFNs over type I
IFNs. These stimuli include infection of respiratory epithe-
lial cells (19,36,50,82), signaling by the PRR MAVS from
peroxisomes rather than mitochondria (80), and signaling by
the PRR TLR4 from the plasma membrane rather than en-
dosomes (81). Overall, type III IFN signaling is less potent
and less inflammatory than type I IFN and predominates at

FIG. 1. IFN signaling pathways. Type I, type II, and type III IFNs signal through distinct receptors, but activate overlapping
transcriptional programs. More than a dozen type I IFNs, including IFN-a, IFN-b, IFN-e, IFN-d, and IFN-t, signal through a
heterodimeric receptor comprising IFNAR1 and IFNAR2. A smaller set of type III IFNs (IFN-k) signal through a hetero-
dimeric receptor comprising IFNLR1 and IL10Rb. The type II IFN family consists only of IFN-c, which signals as a dimer
through a tetrameric receptor comprising IFNGR1 and IFNGR2. Receptor binding activates kinases, including JAK1, JAK2,
and TYK2, which phosphorylate STAT1 and STAT2. Phosphorylated STATs dimerize and translocate to the nucleus, where
they activate transcription from promoters that contain ISRE (STAT1/2 heterodimers) or GAS (STAT1 homodimers), resulting
in the expression of IFN-stimulated genes. The canonical IFN signaling pathways are depicted, but additional signaling
pathways also are activated and likely contribute to the specific transcriptional response induced by different IFNs. GAS, c-
activated sites; IFN, interferon; ISRE, IFN-stimulated response elements. Color images are available online.
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anatomic barriers, leading to a model wherein type III IFNs
provide front-line protection at barrier surfaces, thereby
minimizing the activation of the systemic type I IFN re-
sponse and consequent immune pathology.

While type I and III IFNs are best known for their anti-
viral activities (61), type II IFN has distinct proin-
flammatory and immunomodulatory functions that also
contribute to the control of viral infections. Type II IFN
signaling induces STAT1 homodimers and induced genes
are characterized by c-activated sites (GAS) in their pro-
moters. Type II IFN is produced by T cells and NK cells and
functions primarily in later stages of infection by clearing
viruses from infected tissues. Crosstalk between the type I
and type II responses can impact the outcome of infection.
For example, downregulation of IFNGR by type I IFN
signaling leads to more severe Listeria monocytogenes in-
fection in Ifnar1-/- mice (95). Indeed, while Ifnar1-/- mice
generally have enhanced susceptibility to most viral infec-
tions, these mice are protected from infection by many
bacterial and protozoan pathogens for which immune con-
trol is highly dependent upon type II IFN (13,97).

IFN Signaling During Pregnancy

Pregnancy encompasses multiple developmental stages,
including implantation, fetal growth, and parturition, each
with unique immunological requirements that have been
reviewed elsewhere (73,75,121). Early events in pregnancy,
such as blastocyst implantation and subsequent placental
invasion, are inflammatory processes that physically de-
grade and remodel maternal tissue at the site of implanta-
tion. In contrast, fetal growth occurs in an anti-inflammatory
Th2-type environment that characterizes the majority of
pregnancy. Finally, parturition is an inflammatory process
with NF-jB signaling contributing to labor induction. Since
implantation, fetal growth, and parturition have distinct
immunological features, IFNs play different roles at each
stage of pregnancy. Accordingly, IFNs may also have dis-
tinct effects during viral infection at different gestational
stages.

Before implantation, the blastocyst is surrounded by an
outer trophectoderm layer that attaches to the maternal
endometrium and differentiates into trophoblast layers that
constitute the placenta. In mice, type I IFNs are expressed
in the trophectoderm of the preimplantation blastocyst, in
the decidua following implantation, and in multiple tro-
phoblast layers mid-gestation (115). Accordingly, ISGs,
including Irf-8, Iarp, Isg12, and Isg15, are upregulated in
the postimplantation decidua (53). IFN-c also is produced
by human trophoblasts early in gestation and in mouse
trophoblast giant cells, spongiotrophoblasts, and laby-
rinth zone by mid-gestation (84,90). Specialized NK cells
(CD56bright and CD16-) with reduced cytotoxic potential,
termed decidual, uterine, or endometrial NK cells, make up
the majority of leukocytes in the maternal decidua and
secrete IFN-c during pregnancy (8,37). IFN-c signaling at
the maternal-fetal interface not only promotes differentia-
tion of decidual NK cells but also facilitates formation of
the placenta and maintenance of the decidua (75,121).

In addition to its role promoting the physiology of healthy
pregnancy, type II IFN has been associated with adverse
fetal outcomes in mouse models of congenital infection.

Fetal loss following Toxoplasma gondii and Plasmodium
berghei infection is ameliorated in Ifngr1-/- mice (79,103).
Likewise, administering an anti-IFN-c antibody protects
dams from fetal loss following Brucella abortus infection
(56). Since IFN-c is a key component of proinflammatory
immune responses, fetal loss may be general response to
infection and inflammation at the maternal-fetal interface in
mice.

The placenta mediates nutrient and waste exchange be-
tween mother and fetus as the site of contact between fetal
and maternal blood supplies. Maternal blood is delivered to
the placenta by spiral arteries, which are remodeled early in
pregnancy in a process involving IFN signaling. Mice
lacking either type I or type II IFN signaling (Ifng-/-,
Ifngr1-/-, Ifnar1-/-, or Stat1-/-) have incomplete spiral ar-
tery remodeling, suggesting that both type I and II IFNs
contribute to this process (75,117). Nonetheless, these
knockout mice all produce healthy pregnancies and can be
bred for routine experimental use.

Type I IFNs serve distinct pregnancy functions in other
mammals. Ruminants express multiple subtypes of IFN-t,
which signals through IFNAR and induces ISG expression,
but is not known to serve a protective antiviral function
(31,57). Unlike IFN-ab, IFN-t expression is not induced by
viral infection, but rather by trophoblast development (33).
In trophoblasts, IFN-t serves as a pregnancy recognition
factor that modulates maternal hormonal status before im-
plantation and induces ISGs in the maternal endometrium
(43,98). In swine, another type I IFN, IFN-d, is secreted by
peri-implantation conceptuses and serves along with IFN-c
to modulate maternal endometrial gene expression before
trophoblast attachment (38,67,100). Primates and rodents
do not encode orthologs of IFN-t or IFN-d (57), which
may reflect their corresponding placental types: rumi-
nant and swine placentas are epitheliochorial and less in-
vasive than the hemochorial placentas of primates and
rodents (96). Although congenital ZIKV infection has been
studied in swine (23,109,113), these studies have used
in utero inoculation and thus do not model transplacental
transmission.

IFN-e, a type I IFN, is conserved in many mammals,
including mice, humans, and NHPs, and is secreted consti-
tutively in the female reproductive tract (27,35,44). In mice,
IFN-e is expressed primarily in the uterine endometrium,
ovaries, and cervix, and protects against sexually transmit-
ted infections, including HSV-2 and Chlamydia muridarum
(35). However, IFN-e levels fluctuate with the estrus cycle
rather than being induced downstream of PRR signaling
(27). In rhesus macaques, IFN-e is secreted from mucosal
epithelial cells in the vagina and cervix, as well as in the
lung, foreskin, and small and large intestines (27). A role for
IFN-e during pregnancy has not been described, but its ex-
pression profile in the female reproductive tract poten-
tially could protect the fetal compartment from ascending
infections.

IFN Signaling in Mouse Models of Congenital
ZIKV Infection

The 2015–2016 ZIKV outbreak throughout Latin Amer-
ica and the Caribbean led to the discovery that ZIKV in-
fection during pregnancy can produce adverse fetal and
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neonatal outcomes, including microcephaly, intrauterine
growth restriction (IUGR), and vision and hearing loss, as
well as miscarriage. Subsequently, models of congenital
infection were developed to test vaccines and antivirals as
well as to define ZIKV pathogenic mechanisms and antiviral
immunity at the maternal-fetal interface (85,88).

Mice have become a common animal model of congenital
ZIKV infection (16). Comprehensive comparisons between
mouse and human pregnancy have been reviewed elsewhere
(6). Like humans, mice have hemochorial, discoid placentas
and are an important pregnancy model because they are
genetically tractable, cost-effective, and have a short ges-
tation. However, modeling congenital ZIKV infection in
mice can be difficult due to physiological differences at the
maternal-fetal interface and because their gestational de-
velopment has inexact parallels with human gestation. The
shortened timing of mouse gestation (3 weeks compared to
40 weeks in humans) confounds studies of infection at
distinct developmental stages as well as studies of adaptive
immune responses during pregnancy. Furthermore, con-
ventional inbred mouse models produce fetuses and pla-
centas that are genetically identical to the dam; this removes
the immunologic pressure of supporting invasive, semi-
allogeneic tissues that exist in outbred models or in humans.

Another complication of mouse models of congenital
ZIKV infection is that type I IFN signaling restricts ZIKV
replication in mice (59), in part, due to the inability of ZIKV
to antagonize murine STAT2 and STING (28,40,41,58).
This results in diminished ZIKV replication in immune-
competent mice and has led most groups to use IFN-
deficient mouse models, including mice lacking the type I
and/or type II IFN receptors (e.g., Ifnar1-/- or Ifnar1-/-

Ifngr1-/- double knockout), mice with defects in IFN in-
duction or signaling (e.g., Irf3-/- Irf5-/- Irf7-/- or Stat2-/-),
or mice treated with IFNAR1-blocking antibody (74).
Congenital ZIKV infection has been studied using IFN-
deficient mouse models in which maternal ZIKV infection
by intravaginal or subcutaneous footpad inoculation results
in viral transmission to the fetus, placental damage, and
adverse pregnancy outcomes, including IUGR and fetal
demise (16,49,51,70,119). IFN-deficient mouse models are
valuable because they allow sufficient viral replication to
elicit congenital phenotypes, but they limit studies of the
specific effects of IFN signaling at the maternal-fetal in-
terface in the context of congenital ZIKV infection. Ac-
cordingly, some groups have reported congenital ZIKV
infection in wild-type mice, although these models have
required high inoculation doses, infection-enhancing anti-
bodies, or direct intrauterine inoculation (22,94,107,110).
ZIKV transplacental transmission (but not fetal pathology or
loss) also has been reported in transgenic mice expressing
human STAT2 (40). Recombinant IFN-k2 administered to
pregnant dams restricted ZIKV transplacental transmission
(49) and induced ISGs in both placental and decidual cells
(12), consistent with an antiviral effect of type III IFN at the
maternal-fetal interface.

The mechanisms by which ZIKV accesses the fetal
compartment have yet to be determined and could be af-
fected by the route of inoculation (e.g., subcutaneous vs.
intravaginal). Congenital infection also may be impacted
by viral strain, as different ZIKV strains produce different
pathologic outcomes in nonpregnant mice (59,106,108).

Nonetheless, the ability to cause fetal infection and pathol-
ogy in mice is not a unique property of contemporary ZIKV
strains compared to historical ones (48,104,110). Infection
at early gestational stages (before E10) results in higher
rates of fetal loss and more severe IUGR (49,70,110,119),
likely because placentation is incomplete and the placental
and fetal tissues are more vulnerable to infection early in
development. Fetal and placental pathology generally are
more severe in Ifnar1-/- dams compared to wild-type dams
treated with an IFNAR1-blocking antibody, consistent with
higher viral burdens in Ifnar1-/- dams and suggesting that
fetal disease outcomes are driven by maternal viremia
(59,70).

An advantage of using mouse models to study congenital
infection is the ability to use dams and sires of different IFN
receptor genotypes to produce pregnancies with different
IFN responsiveness on each side of the maternal-fetal in-
terface, or among fetuses within a single pregnancy, as the
placenta is a fetal-derived tissue and each fetus produces its
own placenta. For example, crossing an Ifnar1-/- dam and
Ifnar1+/- sire yields a pregnancy in which 50% of fetuses
(and their associated placentas) are Ifnar1-/- (lack type I
IFN signaling) and 50% are Ifnar1+/- (intact type I IFN
signaling), within an Ifnar1-/- dam.

Both type I and type III IFN signaling have an antiviral
effect at the maternal-fetal interface and limit ZIKV trans-
placental transmission in mouse models. However, Ifnar1+/-

fetuses within Ifnar1-/- dams succumb to ZIKV infection,
indicating that fetal and placental type I IFN signaling are
not sufficient to restrict congenital ZIKV infection
(49,70,118). Somewhat counterintuitively, Ifnar1-/- fetuses
within Ifnar1-/- dams exhibited less ZIKV-induced pathol-
ogy than their Ifnar1+/- littermates, suggesting a detrimental
effect of type I IFN signaling on the developing placenta
and fetus, and underscoring the delicate balance required of
maternal antiviral immunity in the context of congenital
infection (118). Uncontrolled viral replication and dysre-
gulated cytokine signaling in Ifnar1-/- mice result in high
serum concentrations of type I IFN (60,86), which could
contribute to severe infection-induced pathology in Ifnar1+/-

fetuses within Ifnar1-/- dams. Moreover, type I IFN-
mediated pathology is not a ZIKV-specific effect, as fetal
pathology in Ifnar1+/- fetuses can be induced by poly(I:C)
(118). Other flaviviruses are able to produce congenital in-
fection and fetal pathology in mice (52,89), so type I IFN-
mediated fetal pathology may be a general effect of infec-
tion and morbidity in pregnant mice. Conversely, fetal and
placental type I IFN signaling may reduce the severity of
maternal viral infection (93). Type I IFN induction also is
associated with preterm birth in mice following lymphocytic
choriomeningitis virus or L. monocytogenes infection, as
well as treatment with poly(I:C) or LPS (17). One mecha-
nism for IFN-induced placental pathology could include
ISGs that interfere with placental physiology. For example,
IFITM proteins inhibit viral infection by interfering with
membrane fusion (101), but IFITM expression in the pla-
centa can disrupt cell fusion required for syncytiotropho-
blast formation (15,120). Accordingly, mice lacking IFITMs
are protected from IFN-induced pregnancy pathology (15).

Although Ifnar1-/- mice have worsened disease out-
comes in the context of viral infection, Ifnar1-/- mice have
reduced bacterial burdens following L. monocytogenes or
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C. muridarum infection (3,13,76). Accordingly, L. mono-
cytogenes infection is controlled more effectively in preg-
nant Ifnar1-/- dams compared to wild-type dams, including
reduced bacterial burdens in the placenta and spleen as well
as reduced fetal reabsorption rates (3).

NHP Models of Congenital ZIKV Infection

NHPs are a more physiologically relevant animal model
for studying congenital ZIKV infections as they have
singleton pregnancies, a hemochorial discoid placenta, and
a long gestation (23 weeks in rhesus macaques). Pregnant
rhesus macaques develop prolonged ZIKV viremia com-
pared to nonpregnant macaques (30,65,77), consistent with
prolonged viremia observed in ZIKV-infected pregnant
women (29,83). Congenital ZIKV infection in rhesus ma-
caques produces disease outcomes corresponding to those
observed in humans, including fetal infection, placen-
tal pathology, neuropathology, ocular disease, and fetal
loss (30,45,65,66,72,77). Rhesus macaques have become
the most common NHP model of congenital ZIKV infec-
tion, although studies in pregnant pigtail macaques, olive
baboons, and marmosets also observed restricted fetal
brain growth, viral neuroinvasion, and neuroinflammation
(1,2,42,102).

ZIKV infection induces a robust systemic adaptive im-
mune response in both pregnant and nonpregnant NHP
characterized by IFN-c induction, leukocyte expansion,
and ZIKV-specific IgG and IgM antibodies (30,45,46,62).
During acute ZIKV infection in nonpregnant NHP, pe-
ripheral blood mononuclear cells (PBMC) exhibit rapid
upregulation of type I and type II IFN, as well as ISGs
(e.g., OASL, OAS2, IFIT1, MX1, MX2, and TRIM5) and
proinflammatory cytokines and chemokines (e.g., TNFA,
IL1, IL18, CCL2, and CCL20) (4). PBMC type I and type
III IFN transcript levels correlate with the level of ZIKV
viremia (4). ZIKV infection at the maternal-fetal interface
also results in robust immune responses in the maternal
decidua and in fetal tissues. Following infection, levels of
IFN-c and other proinflammatory cytokines (e.g., IL-2, IL-
12, MIF, IL-1B, IL-2, IL-12, and IL-1RA) increased in the
fetal blood (45).

During normal pregnancy, immunity in the decidua is
tightly regulated to allow trophoblast invasion into decidual
tissue and to prevent rejection of the semiallogeneic placenta.
Once placentation is complete (the end of the first trimester,
*3 weeks in rhesus macaques) (25), an anti-inflammatory
immune milieu is maintained in the maternal decidua. De-
cidual leukocytes are dominated by a unique subset of NK
cells with reduced cytotoxic potential, as well as Treg cells
and M2-like macrophages (121). In ZIKV-infected pregnant
rhesus macaques, inflammatory leukocytes, including non-
classical monocyte subsets and CD4+ T cells, were increased
in the decidua and placental villous trees compared to unin-
fected controls late in gestation (135 days) (45). Although
classical MHC molecules are not expressed on trophoblasts,
Treg and Th2-type immune responses are necessary to pre-
vent rejection of the fetus. Induction of IFN-c and a proin-
flammatory Th1-type immune response at the maternal-fetal
interface, for example resulting from viral infection, may
contribute to placental damage and fetal demise during con-
genital ZIKV infection.

Th1-type immune responses also may be induced fol-
lowing ZIKV infection in mice. A subset of Th1-type T cells
generally is excluded from the decidua during pregnancy
due to epigenetic silencing of Cxcl9, Cxcl10, and Ccl5
(121). However, Cxcl9 and Cxcl10 were induced in the
maternal decidua of ZIKV-infected mice, further suggesting
that ZIKV infection disrupts the immune balance at the
maternal-fetal interface (14).

Ex Vivo and Cell Culture Models
of Placental Infection

ZIKV infection and IFN responses and production have
been modeled using primary placental and decidual tissues
cultured ex vivo. Explants from human mid-gestation and
term placentas cultured ex vivo constitutively secrete type
III IFN (10,18), which is among the mechanisms that render
syncytiotrophoblasts refractory to viral infection (11,26).
Following ZIKV infection, mid-gestation decidual explants
produced type I and type III IFN (112) and placental mac-
rophages produced IFN-a (but not IFN-b or IFN-k) (92),
suggesting additional sources of type I and III IFNs at the
maternal-fetal interface. As maternally derived decidual
cells respond to type I and type III IFNs, placenta-derived
IFNs could induce an antiviral state on both sides of the
maternal-fetal interface (18,49). Since type III IFN induces a
less potent antiviral response than type I IFN, type III IFN
signaling at the maternal-fetal interface may produce an
antiviral state without the immune pathology induced by
type I IFN (61). Accordingly, IFN-b induced pathological
morphological changes (syncytial knots and sprouts) in
human mid-gestation chorionic villous explants, whereas
IFN-k3 caused no pathology (118).

Dysregulated IFN Signaling in Autoimmunity
and Adverse Pregnancy Outcomes

Women with dysregulated type I IFN signaling (sustained
IFN production or impaired receptor downregulation) ex-
hibit poor pregnancy outcomes. These include preeclampsia
as well as neurodevelopmental defects similar to those in-
duced by congenital infection, altogether consistent with a
role for dysregulated type I IFN responses in placental
damage (7,21,69,99). Elevated type I IFN levels during
pregnancy may be pathogenic, since diseases involving in-
creased production of type I IFN are associated with mis-
carriage (21,73). This association is most apparent in
patients with systemic lupus erythematosus, a rheumatologic
disease characterized by activation of the type I IFN re-
sponse (9). Transcriptomic analysis of PBMCs from preg-
nant lupus patients revealed that preeclampsia and other fetal
complications were associated with high ISG expression, in
contrast to the downregulation of type I IFN responses ob-
served during healthy pregnancy and in uncomplicated lupus
pregnancy (47). A subset of patients with lupus develop
antiphospholipid antibody syndrome, a disease that is asso-
ciated with miscarriage, and in which patients produce an-
tibodies that prolong clotting times in laboratory testing, but
cause clots in vivo (32). Although lupus patients produce
autoantibodies, the potentially pathogenic role of some au-
toantibodies remains uncertain. Nevertheless, one of the
most compelling arguments for the pathogenicity of auto-
antibodies in lupus is the association between anti-SSA and
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anti-SSB autoantibodies and the development of neonatal
lupus, a disease characterized by rash and other features of
lupus in the first few months of life until maternal antibodies
are cleared from the neonatal circulation (54). Neonatal lupus
also can result in permanent damage to the conduction sys-
tem of the developing heart, requiring pacemaker placement
(39,71,105). Although the presence of maternal anti-SSA and
SSB autoantibodies is strongly associated with risk of neo-
natal lupus, expression of high levels of type I IFN also may
contribute to this disease entity (71,78). IFN-a may limit
angiogenesis and affect the pathogenesis of preeclampsia in
lupus pregnancy (7). In further support of the idea that IFN-a
may contribute to neonatal lupus, IFN-a treatment in preg-
nancy was associated with IUGR and facial rash consistent
with neonatal lupus in one case (34).

Rare monogenic diseases associated with increased pro-
duction of type I IFN, known as interferonopathies, also pro-
vide insight into contributions of type I IFN to human disease
pathogenesis. Some of the classic examples of monogenic
interferonopathies include Aicardi-Goutieres Syndrome and
STING-associated vasculopathy with onset in infancy (SAVI)
(20,21,63). Both of these diseases are caused by mutations that
upregulate the type I IFN response downstream of the TREX1-
cGAS-STING pathway (24,116). Although these diseases are
thought to be mediated by enhanced type I IFN production,
this has not been definitively demonstrated in humans with
monogenic interferonopathies. However, in an animal model
of SAVI (heterozygous STING N153S knockin mice), disease
is associated with lethality in pregnant dams and upregulation
of ISGs in adult mice, although the mechanism of impaired
survival during pregnancy was not determined (111). Auto-
immunity in this model of interferonopathy also may reflect
effects on adaptive immunity. For example, in addition to
upregulation of the type I IFN response, STING N153S mice
exhibit severe lung disease mediated primarily by T cells
(64,114). Indeed, some features of the disease develop inde-
pendent of IFNAR1, IRF3, and IRF7 (64), underscoring the
complexity of defining the precise contributions of type I IFN
in human studies, even when there is an associated type I IFN
signature in patient cells.

Summary

Type I, II, and III IFNs serve important roles during
pregnancy, both in controlling normal physiology at the
maternal-fetal interface and in preventing transmission of
maternal pathogens to the fetus. However, excessive or
dysregulated IFN signaling may be pathogenic during
pregnancies complicated by viral infection or systemic in-
terferonopathies related to autoimmunity. Understanding the
balance between protective and pathogenic effects of IFNs
during pregnancy may lead to novel therapies to improve
outcomes in complicated pregnancies associated with tera-
togenic infections or excessive production of IFN.
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