Montana Tech Library

Digital Commons @ Montana Tech

National Lab Day

Lectures

10-9-2019

Proppant/Rock Interactions

Jonathan Moore

Follow this and additional works at: https://digitalcommons.mtech.edu/national-lab-day

Proppant / Rock Interactions

Johnathan Moore

Principal Research Scientist with LRST at NETL

What is proppant?

- Injected during hydraulic fracturing to maintain permeability following stimulation
- Intent to flow/place proppants into tributary fractures from main perforations and wellbore
- Typically sand but can be a combination of novel materials
 - I. Sand, resin coated sand, ceramics, coated ceramics
- Variable mesh size and shape (sphericity & roundness)

Mesh	70/140	20/40	10/20	8/12			
Screen (mm)	0.11 – 0.21	0.42 – 0.84	0.84 – 2	1.68 – 2.38			

- Geochemical interactions in fractured unconventional reservoirs
- Proppant embedment/impingement and the influence of hydrofracturing additives
- Characterization of proppant behaviors under in-situ stress regimes in unconventional reservoir rock
- Time Permitting: Additional unconventional reservoir research

Geochemical Interactions

Test conditions set to approximate Marcellus shale reservoir conditions

- Temperature 150°F (65.6°C)
- Confining (overburden) pressure 3,000 PSI (20.68 MPa)
- Pore pressure 2,800 PSI (19.3 MPa)
- Inject rate (Q) of 0.03 ml/min
- Injection bottle purged with N₂ to prevent oxidation

Aqueous Sampling

- Samples collected at 2, 24, 48, 72, and 96 hours after injection start
- Aqueous samples analyzed by/for
 - 1) Inductively Coupled Plasma Mass Spectroscopy (ICP-MS)
 - 2) Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
 - 3) Ion Chromatography (IC)
 - 4) pH

Proppant Embedment

- Marcellus shale, Bakken shale, Eagleford shale
- Confining pressure up to 3000 psi (20.9 Mpa), pore pressure <20 psi, room temperature, brine as pore fluid in second series with 5% KCl
- Tested wet and dry systems to evaluate impacts of hydration on embedment
- Saw cut fracture
- Results of dry and wet experiments show some proppant embedment in CT images and SEM

SEM of same samples

3 images below: Proppant embedded in core (reflected light)

Hydraulic Fracturing Fluids

Proppant Embedment

- Marcellus shale from (MSEEL.org) MIP 3H well in Morgantown, WV, depth 7,488 feet
- Experiments under dry conditions, wet (deionized water) and exposed to fracturing fluid
- 2,400 psi (16.5 Mpa), room temperature
- Results of dry, DI wet and fracturing fluid exposure all show proppant embedment and gouging; highest density of embedment in samples exposed to fracturing fluid
- Secondary fractures form at site of proppant impingement

Impingement in CT cross section

- Collaborative study with LLNL to evaluate proppant movement and behavior under loading (Walsh et al. 2016)
 - I. Marcellus shale was artificially fractured with Brazilian technique
 - II. Resin-coated proppant 20-40 Mesh (ø ≈ 0.59 mm)
 - III. Sample was loaded into a Hassler style core holder within the industrial CT scanner at NETL
 - IV. Sample was stressed in sequential steps up to 10,000 PSI
 - a. Samples were CT scanned at each step
 - b. Relative slip was measured at each step (shear)
 - c. Image registration and PIV was utilized to evaluate proppant movement

Stress Effects on Proppant Behavior Cont.

Images modified from (Walsh et al. 2016)

Enhancing Hydrocarbon Recovery through Fundamental Knowledge of the Reservoir and Well System

Improve Fundamental Understanding of Shale to Enable Decision-Making for Enhanced Hydrocarbon Recovery

Ensure Wellbore Integrity during Drilling, Completions, and Production

Geobiology

• What role does geobiology play in

unconventional reservoir performance?

function in unconventional wells?

for reservoir and well processes?

Laboratory and field-based studies to address –

· What is the microbial ecology and biological

· Can DNA be applied as an effective marker

- PH - PH - PH - PH

VH OVH

100

TL Statute

 Review of existing literature characterized data gap for laboratory experimental data needed to predict field performance of enhanced oil recovery techniques in shales

through fractures? Laboratory-based studies to address -

· What is the impact of shale microfabric on sheared fracture alteration? · How do proppant embedment and

clay/kerogen content influence shale fracture closure? · Core characterization and cataloguing

Coupled Effects of Mechanics + Chemistry

• Which micro-scale geochemical processes affect reservoir-scale processes (focus on HFTS1)? • Multilab Project - LBNL, LLNL, SLAC, NETL

Fracture Modeling

Nflow?

Hydraulic stimulation of hot reservoir with cold water

 How can geochemical processes affect flow through fractures? Laboratory-based studies to address-

· What geochemical species (isotopes, organics) and parameters (redox, pH) can be applied to quantify impactful changes? Field-based studies to address relationship between laboratory results and field observations

Coupled Effects of Chemistry + Biology

• When do geochemical and geobiological processes take precedence - during hydraulic fracturing or production (focus on HFTS II)? Collaboration with GTI

How can geophysical signals be better leveraged to develop an improved understanding of near-well fracture

networks and hydrocarbon recovery?

Understanding the Wellbore

What biogeochemical processes control mineral scale precipitation within wellbore steel casing? Laboratory-based experiments and characterization of field samples to address -

- Where, and under what conditions, will mineral scale form on wellbore steel casing?
- Can techniques be developed to prevent problematic mineral scale from forming?

· What processes affect wellbore

mechanics across the life cycle of the well?

· Laboratory-based experiments and modeling to address -

- How does wellbore cement strength develop under conditions relevant to onshore unconventional reservoirs?
- · How do dynamic changes in pressure and temperature affect steel-cementrock interfaces during the well's lifetime?

Maximizing Hydrocarbon Value and Produced Water Beneficial Use

Current: Application of systems analysis to evaluate successful end-use strategies for hydrocarbons and water produced from the well. Future: Leverage experimental and field capabilities to confirm results.

Resulting Data

Combined logs

mhandandan	- 11162 - 11164 - 11166 - 11168 11170 Jay P. S API: 47-0	Smith #1 099-01572 Company	Measurements Departm	performed at the US ent of Energy	Analysis By: Dusti and Sarah Brown	n Crandall, Johnathan M	oore, Equipment: Mg Sus Cool tek MultSensor Core Le	scer	11162 11164 11164 11166 11168 11168 11170 Jay API: 4	P. Smith #1 47-099-01572 2010 Company	2	Measurem	ents performed a	at the US	Analysis By: Dustin and Sarah Brown	Crandall, Johnathar	n Moore,	Evidence of soft sediment deformation Equipment: Mag. Sus - Gool's Multi-Sensor Core Logger - Gool's Multi-S
ntonionionionionioni	- 11146 - 11148 - - 11150 - 11152 - 11154 - 11156 - 11158 -	V/ WWW /V		M my why he	h how may h	W Mr y we w			11146 11148 11150 11152 11152 11156 11156 11158 11158	V/ WMW / N			I W W M I		and the second second			More organic-rich, dark shale with less light, calconous layers, several burrows preserved in 3D
ատաստան	11134 - 11136 - 11138 - 11140 - 11142 - 11144	W/ // //	North W	w W ww	Mm H M	WWW WW			11134 11136 11138 11138 11140 11142 11142	W W V		f N	MM Nr M					Layered shale interbedded with lighter thin sandistone units. Lighter units have rounded clasts and folds and evidence for soft sediment deformation and bioturbation. Very chaotic layering and direuplot bods with rounded clasts of lighter materal moted in; well proserved worm barrows
0 0	Depth L	Magnetic Susceptibility (SI*10*) a ā	Light Elem N.O.F. Keal (%) Computed C. E. Tomography Scans	nts S Ce (%) E 8 8 3 5 5	Si (%) Si (%) Si (%) Si (%)	Remaining (%)	Remaining XRF Legend S Fe Mg P Ai K Ti Zn	Mn V	Depth (feet)	Magnetic Susceptibility (SI * 10 ⁶)	Dual Computed Scans	I Energy Density (g/cc) 2.36	P-Wave Velocity (m/s) 8 8 8 8 8 8	Ce/Si	Cavai	K/AI	Fe/S	6 11

Technical Report Series

Internally reviewed grey literature

Collaboration Opportunities

OAK RIDGE INSTITUTE FOR SCIENCE AND EDUCATION

Shaping the Future of Science

NRC RESEARCH ASSOCIATE

Office of Science Graduate Student Research (SCGSR) Program

11/18/2019