Montana Tech Library Digital Commons @ Montana Tech

National Lab Day

Lectures

10-8-2019

Feedstock Supply and Logistics Research & Development

Chenlin Li, PhD

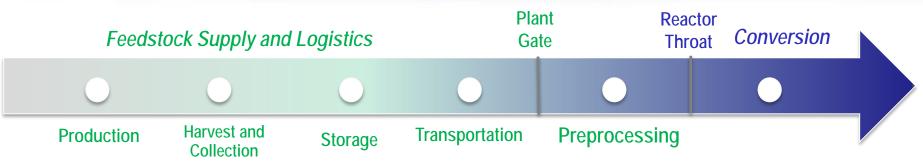
Follow this and additional works at: https://digitalcommons.mtech.edu/national-lab-day

Feedstock Supply and Logistics Research & Development

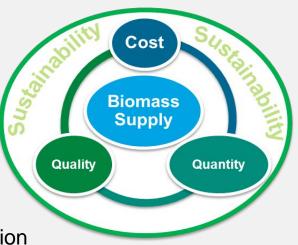
Chenlin Li, Ph.D.

Senior Research Engineer Bioenergy Program Deputy Lab Relationship Manager Idaho National Laboratory

> Oct 8, 2019 Montana DOE National Lab Day Meeting

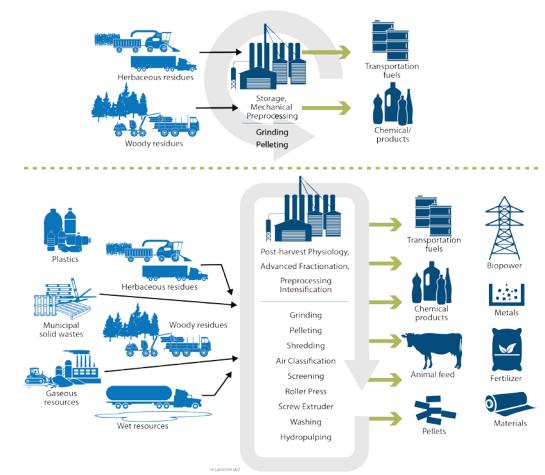


Vision: A System Capable of Supplying Conversion-Ready Biomass Feedstock



Feedstock Supply Chain Challenges

INL Feedstock R&D Focus Areas:


- Post Harvest Physiology and Chemistry
- Advanced Preprocessing and Fractionation
- Feedstock-Conversion Interface Consortium
- Bench to Engineering Scale R&D Development and Verification
- Feedstock Supply Chain Cross-Cutting Analysis and Sustainability

Changing the Paradigm from Cost to Value Using Fundamental Principles

Cost-Centered Feedstock Logistics Supply System

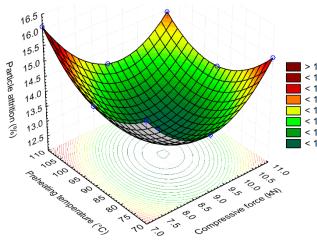
- Bottleneck is present due to a "one-size fits all" preprocessing approach used for multiple feedstocks and multiple conversion processes
- Expanding preprocessing operations provides multiple high- and lowvalue streams

Revenue-Centered Feedstock Logistics Supply

Post-Harvest Physiology—Value Add

Transforming storage from a cost-center to a valueadd operation

- Moisture management through engineered systems
 - Manage self-heating/coupled drying, pH shifts, and oxygen availability
- Control shrink by reducing CO₂ evolution
 - Redirecting metabolic function of communities
 - Developing models to predict degradation based on environmental factors
- Reducing recalcitrance
 - Collaborative efforts underway with NREL Algae and Conversion groups to assess downstream performance
 - Benefits observed in corn stover and algae



Preprocessing – Size Reduction, Drying and Densification

Breakthrough: Identified the root cause and reduced biomass particle attrition (generation of fines) during grinding and pelleting process.

Progression of particle attrition targets reduction

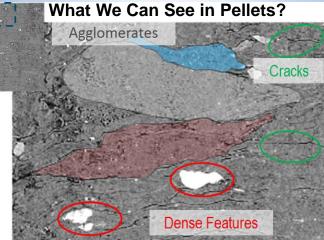
	FY-17 (current value in pellets produced	FY-18	FY19 (go-no-	FY-19	FY-20
	using conventional method)		go)		
Particle attrition	35-38	21	14	10.5	7
targets (%)					

Particle attrition caused by compression force and preheating temperature

Optimization of the pelleting process conditions and feedstock properties results in particle attrition values <14 % in the pelleted feedstock.

Optimized process conditions to minimize the attrition

4 9 4 9 4 9		Optimized pelleting process conditions	Predicted attrition (%)	go-no-go target
	Hammer mill screen size (inch)	7/16		
	Moisture content (%, w.b.)	19.93		
	Compressive force (kN)	9	11.94	<14
	Preheating temperature (°C)	91.23		
	Residence time (sec)	45		

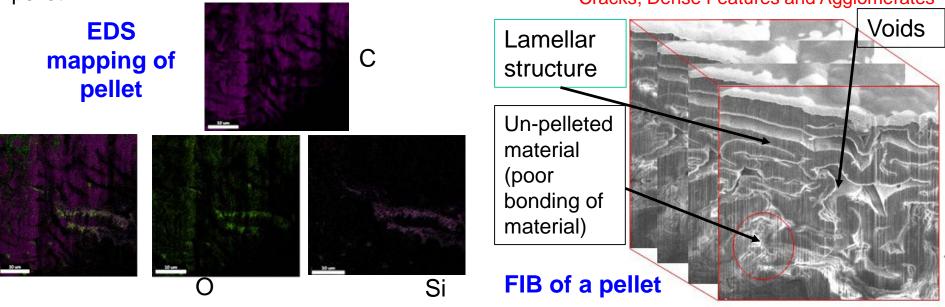


Advanced Characterization of Pellets

Pellet characterization studies

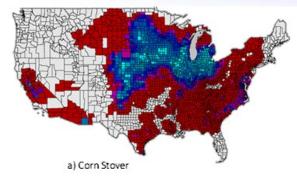
CT-scan: X-ray CT provides **3D non-destructive** images of pellets and enables spatial and morphological characterization without destroying pellet. Helps to understand the agglomerate size and surface area of the pellet particles.

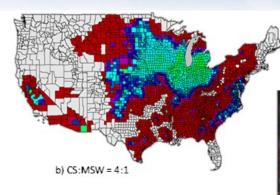
Focused Ion Beam Tomography: 3D analysis of the pellets. Helps to understand the material flow in the pellet die and in turn the microstructure formation.


CT-scan of a pellet

Energy-dispersive X-ray spectroscopy (EDS) Mapping:

Quantification of carbon, silicon and oxygen distribution in the pellet.


Cracks, Dense Features and Agglomerates


Primary Features Extracted:

Low-Cost MSW for Preprocessing and Formulation

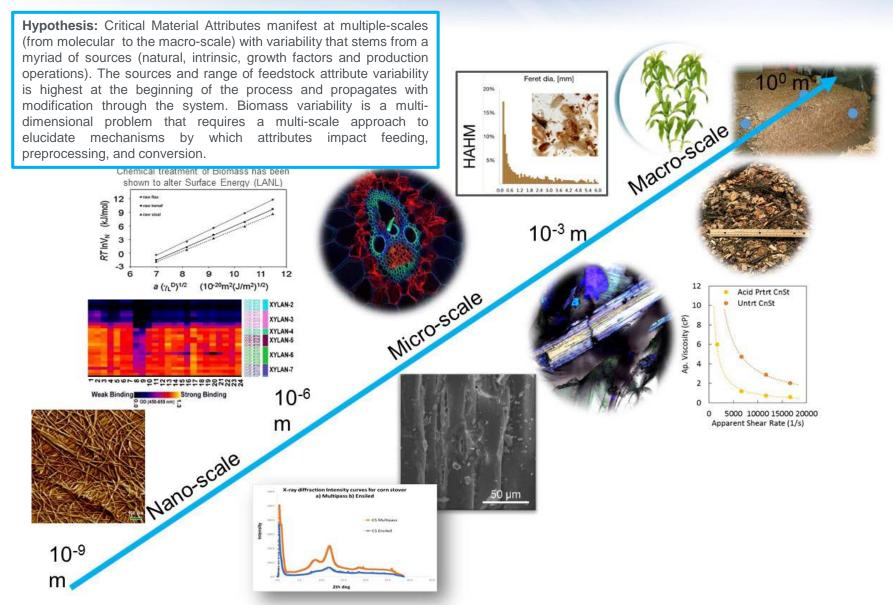
70\$/ton 80\$/ton >100\$/ton DOE target

Non-recyclable paper

MSW/CS blends show the great potential to meet the "cost target"

c) CS:MSW = 1:1

CS/MSW ratio	Ash (%)	Glucan (%)	Xylan (%)	Glucan+Xylan (%)
10:0	3.0	33.2	20.8 🕇	50.8
9:1	3.8	35.5	19.7	55.2
8:2	4.6	37.7	18.6	56.3
7:3	5.4	40.0	17.6	57.6
6:4	6.2	42.2	16.5	58.7
5:5	7.0	44.5	15.4	59.9
0:10	10.9	50.8 🗸	10.0	60.8

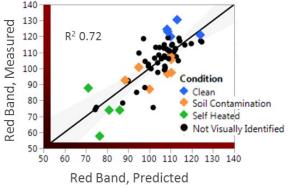

MSW/CS blends show the great potential to meet "quality requirements" for conversion

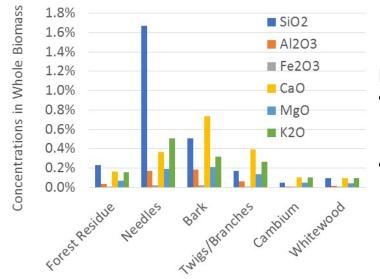
J Yan, et al., 2019. ChemSusChem. Article in Press.

C Li, et al., 2017. Biotechnology for Biofuels. DOI 10.1186/s13068-016-0694-8 L Liang, et al., 2017. RSC Advances. DOI: 10.1039/c7ra06701a rsc.li/rsc-advances N Sun, et al., 2015. Bioresource Technology.doi.org/10.1016/j.biortech.2015.02.087

Feedstock-Conversion Interface Consortium - Multi-scale Characterization

Idaho National Laboratory



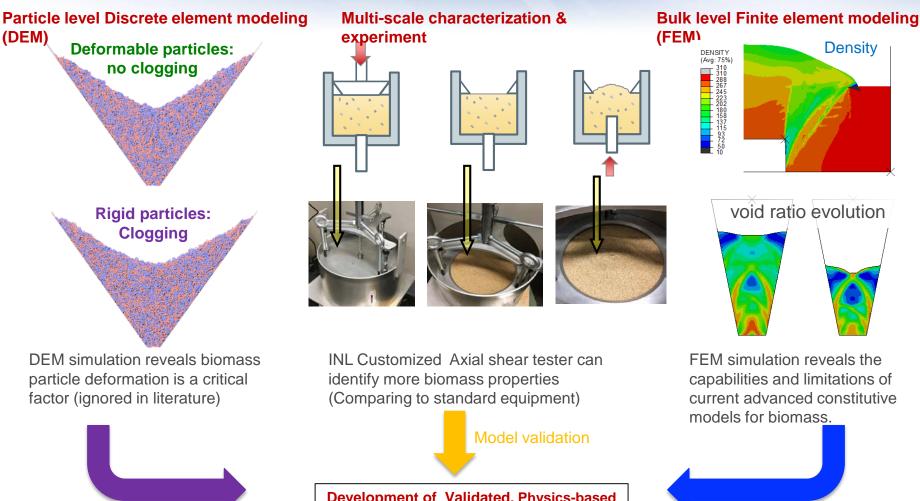

FCIC – Characterization Tool Developed to Assess Quality & Variability

FCIC — Task 2 Feedstock Variability

Highlight: rapid, simple, digital imaging approach developed and employed to provide quantitative analysis of bale 'quality'

Variability Identified at Anatomical Fractions Scale

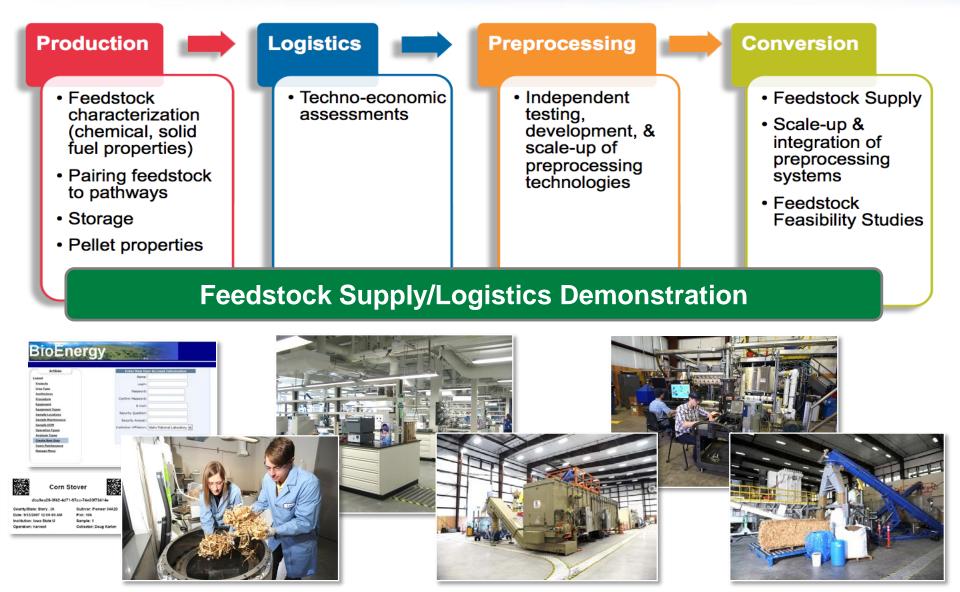
Highlight:


- Quantitation of inorganic species in anatomical fractions enables high-fidelity fractionation for targeted end use;
- Guides method development to discriminate between physiological and soil-derived, inorganic contaminants

https://bioenergylibrary.inl.gov/Home/Home.aspx

https://fcic.inl.gov/

FCIC – Biomass Flow Modeling Inform Behavior and Equipment Design


 Improve understanding of fundamental physics of biomass flow Development of Validated, Physics-based Constitutive Laws of Biomass Flow Behaviors

First-principles based equipment design tools for trouble-free feeding of feedstock

Model reformulation

Capabilities that Span the Biomass Supply Chain

Thank you!

Chenlin Li, Ph.D. Idaho National Laboratory

<u>Chenlin.Li@inl.gov</u> <u>https://www.linkedin.com/in/chenlin-li-1113a219</u> <u>https://scholar.google.com/citations?user=Lzt-IOoAAAAJ&hl=en</u>