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Abstract 

Phasic activity of dopaminergic (DA) neurons in the ventral tegmental area or 

substantia nigra compacta (VTA/SNc) has been suggested to encode reward 

prediction error signal for reinforcement learning. Recent studies have shown that the 

lateral habenula (LHb) neurons exhibit similar response, but for nonrewarding or 

punishment signals. Hence the transient signalling role of LHb neurons is opposite 

that of DA neurons, and also that of several other brain nuclei such as the border 

region of the globus pallidus internal segment (GPb) and the rostral medial 

tegmentum (RMTg). Previous theoretical models have investigated the neural circuit 

mechanism underlying reward-based phasic activity of DA neurons, but the feasibility 

of a larger neural circuit model to account for the observed reward based phasic 

activity in other brain nuclei such as the LHb has yet to be shown. Here we propose a 

large-scale neural circuit model and show that parallel excitatory and inhibitory 

pathways underlie the learned neural responses across multiple brain regions. 

Specifically, the model can account for the phasic neural activity observed in the GPb, 

LHb, RMTg and the VTA/SNc. Based on sensitivity analysis, the model is found to 

be robust against changes in the overall neural connectivity strength. The model also 

predicts that striosome plays a key role in the phasic activity of VTA/SNc and LHb 

neurons by encoding previous and expected rewards. Taken together, our model 

identifies the important role of parallel neural circuit pathways in accounting for 

phasic activity across multiple brain areas during reward and punishment processing.  

 
  



Introduction 

 

The ability to adapt to uncertainty is critical for survival and key to wellbeing. To 

investigate the underlying neural correlates and mechanisms, many experimental 

studies and computational studies using stochastic scheduling of reward have been 

carried out (Schultz et al., 1997; Fiorillo et al., 2003; Kuhnen and Knutson, 2005; 

McCoy and Platt, 2005; Matsumoto and Hikosaka, 2007; Hong and Hikosaka, 2008; 

van Duuren et al., 2009; Hong et al., 2011; Monosov and Hikosaka, 2013). 

Experimental studies have demonstrated that dopaminergic (DA) neurons in the 

ventral tegmental area or substantia nigra compacta (VTA/SNc) and the lateral 

habenual (LHb) play important roles in encoding uncertainty of reward and 

punishment (Schultz et al., 1997; Matsumoto and Hikosaka, 2007). 

 

As illustrated schematically in Figure 1 (top row), given some unexpected reward (the 

presence of an unconditioned stimulus US such as food), DA (LHb) neurons exhibit a 

phasic peak (dip) upon the presence of the US (Schultz et al., 1997; Matsumoto and 

Hikosaka, 2007). After several trials of learning in the presence of a cue/stimulus, 

conditioning takes place. The (expected) conditioned cue/stimulus (CS) becomes 

associated with reward, and the DA (LHb) neurons exhibit a phasic peak (dip) in 

activity upon the onset of the CS (Figure 1, second row) (Schultz et al., 1997; 

Matsumoto and Hikosaka, 2007). Note that the DA and LHb neurons now do not 

respond to the unconditioned stimulus (US) with a rewarding outcome (Schultz et al., 



1997; Matsumoto and Hikosaka, 2007). One can view of this as post reinforcement 

learning – the agent has learned to completely associate the cue/stimulus CS with the 

US (e.g. an auditory tone with food), and the latter is no longer needed for further 

learning. However, if there is an omission of reward (e.g. absence of food), there is an 

additional dip (peak) in activity for the DA (LHb) neurons (Figure 1, third row) 

(Schultz et al., 1997; Matsumoto and Hikosaka, 2007). 

 

Instead of the unexpected rewarding outcome US, if we now replace it with an 

unexpected nonrewarding or aversive stimulus US (e.g. no food or mild electric 

shock), in the initial phase of the reinforcement learning produces a phasic dip (peak) 

in the DA (LHb) neurons (Schultz et al., 1997; Matsumoto and Hikosaka, 2007) 

(Figure 1, fourth row). After learning, this information is transferred to the CS, in 

which the DA (LHb) neurons exhibit a phasic dip (peak) activity upon CS 

presentation while maintaining at baseline activity level during US (Figure 1, fifth 

row). When there is a sudden unexpected omission of such US or that the US has 

become rewarding, then there is a peak (dip) in activity of the DA (LHb) neurons 

(Schultz, et a.,1997; Matsumoto and Hikosaka, 2009; Bromberg-Martin et al., 2010) 

(Figure 1, bottom row). In summary, the phasic activities of DA and LHb neurons 

signal uncertainty in reward and punishment. Such signalling is also reflected in other 

brain regions such as the border region of the globus pallidus internal segment (GPb), 

the internal segment of the globus pallidus (GPi), and the rostral medial tegmentum 



(RMTg) (Hong and Hikosaka, 2008; Hong et al., 2011). However, it is not clear how 

this information is transmitted within a larger neural circuit.  

 

Figure 1. Schematic diagram of phasic activity of DA neurons (left orange part) and LHb neurons (right yellow 

part) given rewarding CS(upper) and non-rewarding/aversive CS(bottom). Each row denotes one situation of 

outcome 

To understand the underlying computation, previous theoretical and computational 

studies have applied temporal difference learning (Sutton and Barto, 1981; Sutton, 

1988; Schultz et al., 1997; Niv et al., 2005; Glimcher, 2011) and neural circuit 

modeling to understand the phasic activity of DA neurons (Brown et al., 1999; Tan 

and Bullock, 2008) with the basis that the phasic activity of DA neurons acts as a 

form of reward prediction error signal (Schultz et al., 1997). In particular, in the 

model by Brown et al. (1999), there are parallel pathways: one pathway from the 

cortex through the striosome to VTA/SNc; and another pathway from the cortex 

through the ventral striatum (VS) to pedunculopontine nucleus (PPTN) and VTA/SNc. 



These two pathways cooperatively control the activity of DA neurons (Figure 2). 

However, the phasic activity of LHb neurons has not been taken into consideration yet, 

especially given that LHb has substantial projects to DA neurons in the VTA/SNc 

(Matsumoto and Hikosaka, 2007). 

 

In this work, we propose a large-scale neural circuit model by extending the Brown et 

al. (1999) model to investigate the phasic activity of not only DA and LHb neurons, 

but also the extended parts of the network such as the GPb, GPi and RMTg. In 

addition to the neural circuit pathways in Brown et al. (1999) that control DA 

signalling (see above), our model also included pathways from the striosome and the 

VS to the LHb, and also one pathway from the LHb to the VTA/SNc via RMTg. 

These additional pathways are necessary to account for the observed phasic activity of 

LHb neurons (Figure 2). Further, the pathway from LHb to VTA/SNc via RMTg 

provides inhibition to the DA neural activity when expected reward was omitted or 

when there is an aversive outcome. These inter areal connectivity are constrained by 

currently available knowledge from physiological studies (see below for supporting 

evidences).  

 

Based on simulation results, our model can account for various experimental 

observations of phasic activations with rewarding or nonrewarding CS, together with 

or without reward outcomes. Specifically, the model can account for a shift of 

VTA/SNc and LHb neuron responses from outcome to CS, which agrees with 



experiments. In addition, the model can also account for the phasic activity of GPb 

and RMTg neurons, whose responses are similar to those of LHb neurons. Our model 

shed light on the mechanism of VTA/SNc and LHb phasic activity at the neural 

circuit level, with important roles from the parallel excitatory and inhibitory pathways 

on the learned responses, namely, that: (i) the VS-PPTN-VTA/SNc pathway excites 

DA, while the striosome-VTA/SNc pathway inhibits DA; (ii) VS-VP-GPb-LHb 

pathway inhibits LHb, while striosome-GPi-GPb-LHb pathway excites LHb; and (iii) 

LHb-RMTg-VTA/SNc pathway magnifies the phasic activity of VTA/SNc. The 

model is also rather resilient to overall changes in the inter-regional connections. 

Finally, our model predicts that the striosome is important since it may remember the 

timing of the previous reward and provide the comparison signal with the present 

reward. 

Materials and methods 

 

Model architecture: 

Our proposed neural circuit model is schematically shown in Figure 2, which is an 

extended version of the model proposed by Brown et al. (1999). Namely, we included 

the GPb, LHb and RMTg neural populations into the model based on more recent 

experimental findings (Hikosaka, 2010;Hong and Hikosaka, 2008; Hong et al., 2011；

Jhou, et al., 2009). The details of each part of our model are described as follows.  



 

Figure 2. Model circuit. Orange arrowheads denote excitatory pathways, blue circles denote inhibitory pathways, 

and hemidisks denote synapses at which learning occurs. Black dashed lines denote dopaminergic signals. 

Evidences (Hong and Hikosaka, 2013) show that ventral striatum (VS) excite PPTN and ventral pallidum (VP). 

Striosome neurons project to GPi neurons which in turn project to GPb. Dopamine neurons (DA) are excited by 

cortical inputs ( ) encoding conditioned stimuli and lateral hypothalamus inputs ( ) encoding unconditioned 

stimuli via the path: VS-VP-GPb-LHb-RMTg-VTA/SNc and the path: VS-PPTN-VTA/SNc path. DA neurons are 

inhibited by  via the path: striosome-VTA/SNc. Note that striosome contains an adaptive spectral timing 

mechanism and can learn to generate lagged, adaptively timed signals (Brown et al., 1999). LHb neurons are 

excited by  via the path: striosome-GPi-GPb-LHb. LHb neurons are inhibited by  and  via the path: 

VS-VP-GPb-LHb.  

 

1) LHb inhibits SNC/VTA via RMTg.  Most LHb neurons are glutamatergic 

(Kalen et al.,1986), but experiments showed that LHb inhibits DA neurons. Firstly, in 

vivo recordings demonstrate that most LHb neurons are excited by a 
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nonreward-predicting cue and are inhibited by a reward-predicting cue when rhesus 

monkeys perform a visually guided saccade task (Matsumoto and Hikosaka, 2007). 

The phasic activity of LHb neurons is opposite to that of DA neurons in terms of 

responding to outcome valence–LHb (DA) neurons are excited (inhibited) by 

nonreward/punishment outcome/cue and inhibited (excited) by reward outcome/cue 

(Schultz et al., 1997; Matsumoto and Hikosaka, 2007). Secondly, LHb neurons excite 

earlier than the inhibition of DA neurons in unrewarded trials (Matsumoto and 

Hikosaka, 2007). Thirdly, stimulating LHb neurons will inhibit DA neurons (Hong 

and Hikosaka, 2013). The inhibition of LHb on DA neurons may arise from the direct 

projection from LHb neuron to inhibitory interneurons in the VTA/SNc (Brinschwitz, 

et al., 2010) or indirectly through some inhibitory nucleus. In fact, experiments has 

revealed a path from the LHb to DA neurons through RMTg and neurons in the 

RMTg seem to encode aversive stimuli (Jhou et al, 2009; Hikosaka, 2010). At the 

same time, the RMTg transmits negative reward-prediction errors signal of LHb 

neuron to positive reward-prediction errors signal of DA neurons (Hong et al., 2011). 

For simplicity, we only include the indirect path from LHb to DA neurons via 

GABAergic RMTg.  

 

2) GPb excites LHb.  Low intensity electrical stimulation in GPb can evoke a short 

latency excitatory response in LHb neurons (Hong and Hikosaka, 2013). The 

excitation of GPb neurons on LHb may be mediated by acetylcholine or glutamate 

(Hong and Hikosaka, 2008), or by disinhibition through intra-LHb interneurons 



considering the complex microcircuitry within the GP (Hong and Hikosaka, 2008; 

Sadek et al, 2007). In addition, glutamatergic projections to LHb from entopeduncular 

of rat or primate’s GPb neurons have been observed in experiment on non-human 

primates (Shabel et al., 2012; Shabel et al.,2014). In brief, there are excitatory 

projections from GPb to LHb and form a pathway from GPb to VTA/SNC via LHb 

and RMTg (Hikosaka,2010). 

 

3) Conjectured inputs to GPb from GPi. It has been demonstrated that GPb neurons 

receive input from the striatum, presumably from the striosome (Rajakumar, et 

al.,1993). Hong and Hikosaka (2013) have observed that typical neurons in the 

external and internal segments of the globus pallidus (GPe and GPi) are first inhibited 

by striatal stimulation but GPb neurons are often (but not always) excited or 

disinhibited by striatal stimulations. They proposed that signals to GPb should be 

mediated through inhibitory axon collaterals within the striatum (Tremblay and Filion, 

1989) or GPe (Sadek et al., 2007). Based on these observations, we conjecture that 

striosome projects to LHb through GPi.  

4) VP inputs to GPb. In the Brown, et al. (1999) model, VP neurons are inhibited by 

the expectation of reward. However, recent experiments observe that the majority of 

VP neurons are excited by the expectation of a large reward (Hong and Hikosaka, 

2013). Thus VP-LHb connections could possibly be inhibitory (Hong and Hikosaka, 

2013). Therefore, we assume that reward-related signals are transmitted to the LHb 

through excitatory connections from the GPb and inhibitory connections from the VP. 



 

5) Excitatory inputs from VS to VP and PPTN. Although VS neurons are usually 

identified as GABAergic and inhibit downstream neurons, Hong and Hikosaka (2013) 

showed that the striatal (GABAergic) neurons excite PPTN and VP neurons. The 

excitation by VS neurons can be mediated by substance P (Napier et al., 1995; 

Blomely et al.,2009). Thus, we assume that VS directly excites PPTN and VP.  

 

Dynamical equations, input-output functions and numerical method: 

We assume neuronal homogeneity within each brain regions, such that each neural 

population’s firing rate activity within a brain region or nucleus can be dynamically 

described by ordinary differential equations typically with a decay term plus a term 

with an input-output function – firing-rate type model (Wilson and Cowan, 1976; see 

Mathematics and Equations section). Specifically, the neural population firing rate 

(output) is normalized, ranging from zero to one. The input includes constant 

background input to generate the spontaneous baseline firing activity for each neural 

population (and brain region), and synaptic terms in the form of coupling strengths to 

provide the interaction between different neural populations (see Mathematics and 

Equations). Some of the coupling strengths are subjected to change (i.e. plastic) 

dependent on the presence of reward (see Figure 2). Further modeling details can be 

obtained from original Brown et al. (1999) model. The model variables are 

summarized in Table 1. Parameters are adjusted to fit the observed responses of 

neurons. Parameter values used for simulations are given in Table 2. In all simulations, 



numerical integration of the ordinary differential equations was performed with 

fourth-order Runge-Kutta method (Press, et al., 2007) using a custom Python code. 

Codes are available upon request. 

 

Figure 3. Model simulation protocol. (A) Different inputs are applied to simulate different conditions. We 

simulated a total of 200 trials. In the first 99 trials, we present reward CS input and reward US input to simulate 

the learning process, which associates the reward CS with the reward US. In the 100th trial, we present reward CS 

input but nonreward US input, thus one predicts a reward but does not receive it. In the next 99 trials, we present 

nonreward CS input and nonreward US input to simulate the learning process, which associates the nonreward US 

with the nonreward CS. In the 200th trial, we present nonreward CS input but reward US input simulating the 

situation where one predicts nonreward but receives it. (B)~(E) Different inputs. The yellow dashed line indicates 

the time at which CS appear (2.0 s), and the green dashed line indicates the time at which rewards are released or 

not (3.4 s). (B) Reward CS input. (C) Nonreward CS input. (D) Reward US input. (E) Nonreward US input.  



 

Simulation protocol. We simulate 200 trials in one block (Figure 3A). Every trial 

lasts for 10 simulated seconds (Figures 3B-E). In each trial, we apply different inputs 

to simulate different conditions as follows. First, we simulate the first to the 99th trial 

with rewarding CS and rewarding US – learning trials. The network can associate the 

rewarding CS to the rewarding US. The 100th trial is a “test” trial and the network 

receives rewarding CS and nonrewarding US. We then simulate the unexpected 

reward condition, i.e., nonrewarding CS and rewarding US. From the 101th trial to 

199th trial, the network receives nonrewarding CS and nonrewarding US. The 

network associates the nonrewarding CS to the nonrewarding US. At the 200th trial, 

the network receives non-rewarding CS but rewarding US. See Figure 3A for a 

summary of the learning protocol. 

 

We implement different inputs from the cortex to the VS and striosome based on the 4 

conditions: reward CS, nonreward CS, reward US, and nonreward US. The 

rewarding/nonrewarding CS and US are shown in Figure 3 and their mathematical 

expressions are given in the Mathematics and Equations section. Note that the inputs 

from the cortex is always larger than zero value (firing rate activity cannot be negative 

in value). 

 

The motivation for such an implementation is based on some observed evidences. 

First, neurons in the orbitofrontal cortex fire most strongly for cues that predict large 



reward (with small penalty) and least strongly for cues that predict large-penalty (with 

small reward) relative to neutral conditions (small reward and small penalty) (Roesch 

and Olson, 2004; Morrison and Salzman, 2011). Second, cortical neurons, including 

the frontal cortex, are known to exhibit flexibility and mixed response properties, i.e. 

different cortical neurons could have different response to identical stimuli (Mante et 

al.,2013; Fusi et al.,2016). For instance, an identical tone could result in different 

responses from different cortical neurons which could in turn separately transmit 

information to the same neurons “downstream” e.g. in the midbrain. Third, the 

expectation values of cue signalling are stored in the cortex but not in the basal 

ganglia or LHb (Padoa-Chioppa and Assad,2006; Padoa-Chioppa and Conen,2017). 

The phasic activity of DA neurons can result in plasticity in the cortex and change the 

representation of cue signaling (Pascoli,et al, 2015). In fact, the activity profile in 

Figures 3D and E look similar to that of DA release or non-release (as measured e.g. 

in voltammetry (Phillips et al., 2003)). Also, the sustained or persistent activity in 

Figure 3B could represent (working) memory of the cue, a commonly observed 

phenomenon in the frontal cortical neurons (Miller et al.,1996; Padoa-Chioppa and 

Assad,2006; Padoa-Chioppa and Conen,2017), while the suppressed activity in Figure 

3C can be thought of as some inhibitory effect with respect to the response in Figure 

3B. 

 

Results 

Shift of phasic response from US to CS 



Many experimental and theoretical studies have reported the shift of DA neurons 

response from US to CS (Ljungberg et al., 1992; Schultz, 1998; Pan et al., 2005). As 

discussed previously, the initial phase of learning, DA neurons are phasically 

activated from baseline upon the presentation of an unpredicted reward. An 

accompanied cue is associated to the rewarding outcome through a learning 

process. After learning, the phasic activity at reward outcome subsequently 

decreases to baseline, while a phasic activity now appears upon cue onset 

(Figure 1). 

Our simulation can replicate this trend (Figure 4). When the network receives the 

rewarding CS and rewarding US (during the first 99 trials), DA neurons exhibit phasic 

activity upon the US in the first trial (Figure 4A). In the second and the subsequent 

trials, the peak appears upon the CS onset and the previous peak activity upon US 

onset disappears (Figures 4B and C). 

 

Figure 4. The shift of DA and LHb neurons’ responses from US to CS. At the beginning of our simulation, the 

model circuit receives a reward CS and a reward US. FR: Neural firing rate activity. (A) Response of dopamine 

neurons in the first trial: DA neurons exhibit a phasic peak upon US and does not respond to CS in the first trial. 

(B) Response of DA neurons in the second trial: the activity of DA neurons shows a peak upon CS, and a peak 



upon US. The response upon US is weaker than the response in the 1st trial. The responses of DA neurons in the 

3rd to 98th trials are similar to (B), but the peak upon US gets weaker over trials. (C) Response of DA neurons in 

the 99th trial: the activity of DA neurons shows a peak upon CS, but baseline responding to US after learning. (D) 

Response of LHb neurons in the first trial: LHb neurons exhibit a phasic dip upon US and does not respond to CS. 

(E) Response of LHb neurons in the second trial: the activity of LHb neurons shows a dip upon CS, and a dip upon 

US. The response upon US is weaker than the response in the 1st trial. The responses of DA neurons in the 3rd to 

98th trials are similar to (E), but the dip upon US get weaker trial by trial. (F) Response of LHb neurons in the 99th 

trial: the activity of LHb neurons shows a dip upon CS, but baseline responding to US after learning. (A) (B) (C) 

show the shift of DA neural response from US to CS after learning, while (D) (E) (F) show the shift of LHb neural 

response. The yellow dashed line indicates the time at which CS appears and the green dashed line indicates the 

time at which rewards are released or not.  

 

The parallel pathways in our model can account for the shift in neural response from 

US to CS. At the beginning of the learning phase, CS-to-VS synaptic weights WiS and 

CS input-to-striosomal synaptic weights Zij are very small or near zero. Thus, the 

activity of striosome is maintained at baseline level but the activity of VS has a peak 

upon US onset. The peak activity of VS then propagates to the LHb through the 

VS-VP-GPb-LHb pathway, which results in a dip of the LHb activity upon US. 

Meanwhile, a phasic input to DA neurons through the 

VS-VP-GPb-LHb-RMTg-VTA/SNc pathway and VS-PPTN-VTA/SNc pathway leads 

to a phasic activity of DA neurons upon reward US. The phasic activity of DA 

neurons upon reward US in turn enhances the positive reinforcement learning signal 



N+ (Eq.7) which leads to stronger synaptic strengths of afferent inputs to VS and 

striosome from the cortex: the increased synapse WiS and Zij will enhance CS signal 

pathways from VS to DA via the PPTN (VS-PPTN-VTA/SNc) and VP 

(VS-VP-GPb-LHb-RMTg-VTA/SNc), the pathway from striosome to DA 

(striosome-VTA/SNc), and the pathway from striosome to DA via GPb 

(striosome-GPi-GPb-LHb-RMTg-VTA/SNc). 

 

The striosome in the model has an adaptive timing spectrum, encoding the timing and 

the amount of reward associated with the CS (Fiala et al., 1996; Brown et al., 1999; 

Burke and Tobler, 2017) (see Eqs 10-14). Therefore, through the 

VS-PPTN-VTA/SNc pathway, rewarding CS can trigger phasic activity of DA 

neurons (Figures 4A-C) while nonrewarding CS can trigger a dip in activity (Figures 

5C-D). The signal of rewarding US through the striosome inhibits DA neurons at the 

time when the rewarding US is expected to be present, but the excitation of reward 

US through the VS to VTA/SNc pathway via PPTN cancels the inhibition of the CS, 

leading to a baseline activity of DA neurons to reward US (Figure 4C, Figure 5A). On 

the contrary, nonrewarding US cannot trigger enough excitation to cancel the 

inhibition caused by CS in DA neurons, leading to a dip activity upon nonrewarding 

US onset (Figure 5B).  

 

Experimental studies have shown that the phasic activity of LHb is opposite to that of 

DA neurons in terms of response to reward valence, but a similar shift in activity as 



DA phasic activity. In our model, LHb neurons are inhibited and show a dip in their 

activity upon rewarding US onset (Figure 4D). The dip of LHb neural activity shifts 

from US to rewarding CS in the following and subsequent trials (Figures 4E-F). As 

mentioned previously, unexpected rewarding US can switch on the pathways: 

striosome-GPi-GPb-LHb and VS-VP-GPb-LHb. However, before they are switched 

on, the rewarding US will inhibit LHb neurons through the VS-VP-GPb-LHb pathway 

(Figure 4D). Once the striosome-LHb pathway and VS-LHb pathways are switched 

on, the reward CS will effectively inhibit LHb neurons through the VS-VP-GPb-LHb 

pathway, leading to a dip at the time of the rewarding CS. But the inhibition caused 

by the rewarding US will be canceled by excitation from the striosome-GPi-GPb-LHb 

pathway leading to a baseline activity of LHb neurons at the time of the rewarding US 

(Figure 4F).  

Neural pathways underlying learned phasic activity of DA neurons 

The phasic activity of DA neurons has been suggested to encode reward prediction 

error and play a pivotal role in reinforcement learning (Schultz et al. 1997; Morris et 

al. 2004; Bayer and Glimcher, 2005). DA neural activity in our model shows reward 

prediction error that is consistent with experimental observations (Figure 5F). For 

instance, after 99 trials of training, the network already can associate the rewarding 

CS to the rewarding US. The DA neurons show a phasic activity upon CS onset (at 

time 2 s in Figure 5A). But at the 100th trial, we simulate the condition where the 

expected reward is omitted. DA neurons are excited right after CS onset (2 s) while 

inhibited at US presentation (3.6 s) (Figure 5B). The network now re-associates the 



CS with the nonrewarding US after the training from the 101th to 199th trials. The 

activity of DA neurons then shows a dip at the time when nonrewarding CS is 

presented at 2 s and shows baseline activity when the nonrewarding US is presented at 

3.6 s (Figure 5C). Finally, at the 200th trial, we present both the nonrewarding CS and 

rewarding US to simulate an unexpected reward condition. DA neurons are inhibited 

upon CS presentation (2 s) but excited at the time when rewarding US is presented 

once again (3.6 s) (Figure 5D). The overall activity profile of DA neurons is 

summarized in Figure 4E, which are consistent with experimental observations 

(Figure 5F). 

 

Figure 5. Acquired response of DA neurons. (A) The 99th trial: From the first to 99th trials, the model circuit 

receives a rewarding CS and a rewarding US. The result shows that after learning, DA neurons exhibit a phasic 



peak upon rewarding CS and a baseline in response to reward outcome. (B) The 100th trial: The model circuit 

receives rewarding CS and nonrewarding US. The result shows that DA neurons exhibit a phasic peak when 

rewarding CS appear and exhibit a phasic dip at the time the reward is expected. (C) The 199th trial: From 101st to 

199th trials, the model circuit receives nonrewarding CS and a nonrewarding US. The result shows that after 

learning, the DA neurons exhibit a phasic dip upon nonrewarding CS and a baseline when there is no reward 

released at this trial. (D) The 200th trial: the model circuit receives nonrewarding CS and rewarding US. The result 

shows that DA neurons exhibit a phasic dip when nonreward CS appear and exhibit a phasic peak upon reward US. 

(E) The phasic activity of DA neurons under different situations. The thick red line indicates the activity of DA 

neurons at 99th trial, the narrow blue line indicates the activity of DA neurons at 100th trial, the thick blue line 

indicates the activity of DA neurons at 199th trial, and the narrow red line indicates the activity of DA neurons at 

the 200th trial. The yellow dashed line indicates the time at which CS appear and the green dashed line indicates 

the time at which rewards are released or not. (F) The physiological experimental result reprinted with permission 

from Matsumoto and Hikosaka (2007). Red lines indicate reward trials, and blue lines indicate no reward trials. 

Full lines indicate reward CS-to-reward US (red) and nonreward CS-to-nonreward US (blue), while dashed lines 

indicate reward CS-to-nonreward US (blue) and nonreward CS-to-reward US (red).  

 

The above phasic responses of DA neural activity associated with the learned stimuli 

can be understood based on the two parallel pathways in the circuit: the 

VS-PPTN-VTA/SNc and striosome-VTA/SNc pathways. It should be noted that after 

the 1st trial, the synaptic strengths WiS and Zij are not zero, so VS responds to both 

rewarding CS and rewarding US. Then the DA neurons are excited by the rewarding 

CS through the VS-PPTN-VTA/SNc pathway. When rewarding US is presented, the 



signal of rewarding CS triggers the activity of striosomal neurons and directly inhibits 

DA neurons. However, this inhibition is canceled out by the excitation from 

rewarding US through the VS-PPTN-VTA/SNc pathway. Thus the activity of DA 

neurons is effectively maintained at baseline (Figure 5A). By the 99th trial, the 

network has already associated the rewarding CS with rewarding US.  

 

Now if the rewarding US is omitted (at the 100th trial), no excitation counterbalances 

the direct inhibition from striosome, leading to a dip of the activity of DA neurons 

(Figure 5B). This continues until the 199th trial. When the network is presented with a 

nonrewarding CS followed by nonrewarding US, the direct inhibitory pathway from 

striosome to DA neurons have been turned off, DA neurons show phasic activity upon 

nonrewarding CS onset while the activity of DA neurons is maintained at baseline at 

the time of nonrewarding US (Figure 5C). With a subsequently unexpected rewarding 

US in trial 200, DA neurons are now excited through the VS-PPTN-VTA/SNc 

pathway while the nonrewarding CS still causes a dip in the activity (Figure 5D).  

 

Neural pathways underlying learned phasic activity of LHb neurons 

Experimental studies have shown that phasic activity of LHb behaves in opposite way 

to that of DA neurons (Matsumoto and Hikosaka, 2007). Hence, it has been suggested 

that LHb neurons play key role in the coding of the aversive/negative signals (Meye et 

al., 2013; Song et al., 2017). Experiments have been carried out to investigate the 

activity of several brain nuclei, such as GPb (Hong and Hikosaka, 2008) and RMTg 



(Hong et al., 2011), to explore the possible functional relationship with these brain 

regions.  

 

Figure 6. Acquired response of LHb neurons. (A) The 99th trial: From the 1st trial to the 99th trial, the model 

circuit receives rewarding CS and rewarding US. The result shows that after learning, LHb neurons exhibit a 

phasic dip upon rewarding CS and a baseline activity in response to rewarding outcome. (B) The 100th trial: The 

model circuit receives rewarding CS and nonrewarding US. The result shows that LHb neurons exhibit a phasic 

dip when rewarding CS appear and exhibit a phasic peak at the time when the reward should be released. (C) The 

199th trial: From the 101th trial to the 199th trial, the model circuit receives nonrewarding CS and nonrewarding US. 

The result shows that after learning, LHb neurons exhibit a phasic peak upon nonrewarding CS and a baseline 

activity due to omission of reward at this trial. (D) The 200th trial: The model circuit receives nonrewarding CS 

and rewarding US. The result shows that LHb neurons exhibit a phasic peak when nonrewarding CS appear and 



exhibit a phasic dip upon rewarding US. (E) The phasic activity of LHb neurons under different situations. The 

thick red line indicates the activity of LHb at the 99th trial, the narrow blue line indicates the activity of LHb at the 

100th trial, the thick blue line indicates the activity of LHb at the 199th trial, and the narrow red line indicates the 

activities of LHb at the 200th trial. The yellow dashed line indicates the time at which CS appear and the green 

dashed line indicates the time at which rewards are released or not. (F) The physiological experimental results 

reprinted from Hong and Hikosaka (2008). Red lines indicate reward trials, and blue lines indicate no reward trials. 

Thick lines indicate reward CS-to-reward US (red) and nonreward CS-to-nonreward US (blue), while narrow lines 

indicate reward CS-to-nonreward US (blue) and nonreward CS-to-reward US (red). 

 

Here, we simulate the activity of these nuclei and the results are consistent with the 

experimental observations. Our simulations show that the phasic responses of LHb 

neurons shift from US to CS. LHb neurons show a phasic dip when the unexpected 

rewarding US was presented in the first trial (Figure 4D). In the following trials, the 

dip shifts to the time when the rewarding CS presented (Figures 4E-F) and baseline 

activity is observed with rewarding CS (Figure 6A) and a small phasic activity upon 

nonrewarding US (Figure 6B). After the training of nonrewarding CS from the 101th 

to the 199th trials, LHb neurons show a phasic activity upon nonrewarding CS (2 s) 

while maintaining at baseline level at the time of the nonrewarding US (Figure 6C). 

At the 200th trial, LHb neurons show a peak activity with the nonrewarding CS but a 

big dip in activity given an unexpected rewarding US (Figure 6D). The overall 

activity profile of LHb neurons (Figure 6E) agrees with the experimental observations 

(Figure 6F).  



 

The above mentioned learned phasic activity of LHb neurons can be explained with 

the two parallel pathways: striosome to LHb pathway via GPi and GPb and the VS to 

LHb pathway via VP and GPb. For instance, at the 99th trial, the synaptic strengths 

WiS and Zij are not zero, which means that the network has already completely 

associated the rewarding CS with rewarding US. The rewarding CS can inhibit LHb 

neurons through the inhibitory striatum-VP-GPb-LHb pathway. When the rewarding 

US appears, the inhibition through the striatum-VP-GPb-LHb pathway will be 

canceled out by the excitation from the striosome-GPi-GPb-LHb pathway, resulting in 

a baseline level of LHb neural activity upon reward omission. At the 100th trial, LHb 

neurons show a dip in the presence of the rewarding CS. But the omission of reward 

implies that the excitation through striosome-GPb-LHb pathway cannot be canceled 

out, which leads to a small phasic activity of LHb neurons upon reward omission. At 

the same time, the synaptic strength Zij from cortex to striosome decreases to zero. 

When next the nonrewarding CS is paired with a nonrewarding US (from the 101th to 

200th trial), LHb neurons show a phasic activity at the time of the nonrewarding CS 

onset because of the inhibition through the striatum-VP-GPb-LHb pathway. In the 

200th trial, unexpected rewarding signal switches on the inhibitory pathway 

striosome-GPb-LHb, which leads to a dip in activity of the LHb neurons. 

 

Learned phasic activity of GPb and RMTg 



Experiments have shown that the GPb and RMTg neurons display phasic responses to 

CS and US. In our model, the interaction between striosome-GPi-GPb pathway and 

VS-VP-GPb pathway leads to the phasic activity of GPb neurons upon CS and US 

presentation. In particular, the GPb, LHb and RMTg are also connected with 

effectively excitatory synapses (Figure 2), and hence their phasic activities should be 

correlated with that of the LHb, with the same explanations of activity profiles as for 

the LHb (Figures 7 and 8). Moreover, the LHb-RMTg-VTA/SNc pathway only 

magnifies the phasic activity of DA neurons and does not qualitatively change the 

activity profile of DA neurons.  

 

 



Figure 7. Acquired response of GPb neurons. (A) ~ (E): similar to Figure 6. (F) The physiological experimental 

result reprinted from Hong and Hikosaka (2008).  

 

 

Figure 8. Acquired response of RMTg neurons. (A) ~ (E): similar to Figure 6. (F) The physiological 

experimental result from Hong et al. (2011). 

 

Robustness analysis of two parallel pathway model 

Having shown the important role of the parallel circuit pathways in reproducing the 

phasic activities observed in experiments, we next further investigate the robustness 

of the phasic activities in our model with respect to connectivity strength variation. 



Specifically, we increase or decrease all synaptic weights by 10% and monitor how 

the phasic activities change.  

 

First, we found that the phasic activities of DA and LHb neurons did not change 

substantially when we increased or decreased the following synaptic weights by 10%: 

WSVP,WRS,WSP,WPD,WSOG,AZ, and 𝐶"#
$%& (data not shown). Second, weights of 

synapses on the pathway VP-GPb-LHb-RMTg-VTA/SNc was found to influence the 

tonic baseline activity of DA neurons, which we define as 𝐷. Hence we change 𝐷 

while maintaining the phasic activity of DA and LHb neurons when we increase or 

decrease the weights of the synapses along this pathway (see Table 3). In Figures 9 

and 10, we show the activity of DA neurons and LHb neuron given three different sets 

of synaptic weights from VP to GPb and corresponding baseline activities 𝐷. We can 

see that DA and LHb neurons continue to demonstrate their characteristic phasic 

activity profiles. In brief, our neural circuit model is robust to the variation of synaptic 

weights.  



 

Fig 9. The phasic activity of DA neurons given different weight of synapse from VP to GPb. Yellow lines 

indicate the activity of DA neurons when  equals 1.00 and  equals 0.19431, blue lines indicate the 

activity when  equals 1.10 and  equals 0.20307, and red lines indicate the activity when  

equals 0.90 and  equals 0.18608. (A) Trial 1: Phasic peak activity responds to unconditional reward. (B) Trial 

2: The phasic activity shifts to the cue. (C) Trial 99: The phasic activity upon the cue and baseline activity upon 

the reward. (D) Trial 100: The dip activity upon reward omission. (E) Trial 199: The dip activity upon 

nonrewarding cue. (F) Trial 200: The peak activity upon unexpected reward. 
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Figure 10. The phasic activity of LHb neurons given different weight of synapse from VP to GPb. Yellow 

lines indicate the activity of LHb neurons when  equals 1.00 and  equals 0.19431, blue lines indicate 

the activity when  equals 1.10 and  equals 0.20307, and red lines indicate the activity when  

equals 0.90 and  equals 0.18608. (A) Trial 1: Phasic dip activity responds to unconditional reward. (B) Trial 2: 

The phasic activity shifts to the cue. (C) Trial 99: The phasic activity upon the cue and baseline activity upon the 

reward. (D) Trial 100: The peak activity upon reward omission. (E) Trial 199: The peak activity upon 

nonrewarding cue. (F) Trial 200: The dip activity upon unexpected reward. 
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Discussion 

 

We extended a previous neural circuit model (Brown et al., 1999) by incorporating 

the nuclei GPb, LHb and RMTg, and the model could account for various 

experimental data from separate works. Specifically, the model could exhibit the shift 

of DA and LHb neural responses from US to CS presentation times. Our simulations 

also replicated the phasic activity of DA, LHb, GPb and RMTg neurons observed in 

experiments. The DA (LHb) neurons exhibited a phasic peak (dip) upon reward CS, 

and maintenance of baseline activity in response to a rewarding outcome but a phasic 

dip (peak) if the reward is omitted. By contrast, the DA (LHb) neurons exhibited a 

phasic dip (peak) in response to a nonrewarding CS or punishment CS, and 

maintenance of baseline activity in response to the nonrewarding US, but a phasic 

peak (dip) if a reward occurs or the aversive US is omitted. The acquired responses of 

GPb and RMTg neurons are similar to that of LHb neurons. These acquired responses 

are consistent with experimental data (W. Schultz et al., 1997; Matsumoto and 

Hikosaka, 2007; Hong and Hikosaka, 2008; Hong et al., 2011) and behavioral 

experiments (Danna et al., 2013).  

 

Our model provides insights to the neural circuit mechanism of DA and LHb phasic 

activity. In particular, parallel excitatory and inhibitory pathways underlie the learned 

responses: striatum-to-PPTN-to-VTA/SNc pathway excites DA, while 

striosome--VTA/SNc pathway inhibits DA; striatum-to-VP-to-GPb-to-LHb pathway 



inhibits LHb, while striosome-to-GPb-to-LHb pathway excites LHb; 

LHb-to-RMTg-to-VTA/SNc pathway magnifies the phasic activity of DA. Under 

different task conditions, we apply different CS input and US input to the model. The 

model has a feedback loop in which DA can modulate the cortico-striatal synapses 

and the cortico-striosome synapses. This will in turn affect the DA responses, closing 

the loop. After learning, the weights of these synapses stabilize and remain unchanged. 

This led to the emergent phasic activity profiles of the nuclei in the circuit – with the 

parallel pathways balancing out one another. In addition, we found striosome to be a 

key brain nucleus which remembers the timing of previous rewards and encodes the 

predicted rewards. In fact, there is a recent experimental works (Takahashi et al., 2016) 

that supports our model prediction.  

 

In our model, we predict neurons in the striosome to encode expected reward, but 

there are alternative theories. For example, Cohen et al. (2012) found that were three 

types of VTA neurons and VTA GABAergic neurons may signal expected reward, 

which could be a key variable for dopaminergic neurons to calculate reward 

prediction error. Recent works (Stauffer, 2015; Yoo et al., 2016; Morales and 

Margolis, 2017) highlight the importance of VTA GABAergic neurons. Averbeck and 

Costa (2017) proposed that the amygdala can learn and represent expected values like 

the striatum, and they predicted that the amygdala may play a central role in 

reinforcement learning and the ventral striatum may play less of a primary role. 

Wagner et al. (2017) suggested that the cerebellar granule cells may encode the 



expectation of reward. Luo et al. (2015), Li et al. (2016) and Hayashi et al.(2015) 

found that serotonin neurons in the dorsal raphe  nucleus can encode reward signals. 

Some physiological and theoretical works (Tan and Bullock, 2008; Humphries and 

Prescott, 2010; Keiflin and Janak, 2015; Hikida et al., 2016) focus on D1 and D2 

receptors in the ventral striatum and suggested that they play important role in 

computing reward prediction error. Future neural circuit modeling effort would need 

to incorporate such findings. 

 

To obtain the results consistent with experiments, we have adopted several 

assumptions. First, we assumed that the striatal neurons excite the PPTN and ventral 

pallidum. Striatal neurons are usually identified as GABAergic and inhibitory, but 

they may excite downstream neurons through disinhibitory effect or substance P 

released by striatal neurons (Napier et al., 1995; Blomeley et al. 2009). In fact, it has 

been demonstrated that substance P mediates the excitatory interaction between 

striatal neurons to VP neurons (Napier et al., 1995) and striatal projection neurons 

(Blomeley et al. 2009). Second, we hypothesized that the striosome projects to the 

GPi which in turn projects to the GPb. Although we have no direct evidence, Hong 

and Hikosaka (2013) have observed that typical GPe and GPi neurons are first 

inhibited by striatal stimulation and GPb neurons are often (but not always) excited by 

striatal stimulation. They proposed that inputs to GPb were mediated through 

inhibitory axon collaterals within the striatum (Tremblay and Filion,1989) or GPe 

(Sadek et al., 2007). 



 

While developing the model, we have tried to add minimal features to the previous 

Brown et al. (1999) model. Hence, it is worthy of note that we have ignored several 

factors to simplify the model. Specifically, we ignored the connections between some 

brain nuclei, such as the cortex-to-GPb (Hong and Hikosaka, 2008), VP-to-RMTg 

(Hong et al., 2011), LHb-to-LHb, and cortex-to-LHb (Meye et al., 2013), and 

DA-to-striatum (Parker et al., 2016) pathways. We also did not consider the direct 

LHb-to-VTA (Poller et al., 2013) and VTA-to-LHb (Stamatakis et al., 2013) 

connections in our simulation, but we mimicked the overall inhibition of LHb on 

VTA. We have also ignored the different types of activity of many brain nuclei. For 

instance, studies have suggested three types of GPb neurons: reward-postive type, 

reward-negative type and direction selective type (Hong and Hikosaka, 2008). Our 

model only considers the reward-negative type since the majority of the 

reward-negative type is in the GPb and may be key to 

 

Despite the assumptions in the model, our neural circuit model can still implement the 

computation for reward based phasic signaling and reinforcement learning, as 

observed in a variety of experiments. The phasic activities in multiple brain regions 

represent prediction error signals, which not only associates the cue to outcome but 

also memorizes the specific time interval between the two. This requires the neural 

system to hold the information predicted by the cue, compare the information with the 

outcome, and report the result of the comparison. In our model, the time spectrum of 



the striosome and the parallel excitatory and inhibitory pathways provided the 

platform for such computation. The peak activity of DA and LHb neurons function in 

complementary roles–encoding reward and nonreward/punishment information 

separately–and alleviating any flooring (limiting) effect of the dip in activity of either 

neuron types. Our novel neural circuit model with parallel pathways provides an 

instantiation instance of such complex neural computation.  
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Mathematics and Equations 

 

This section lists the mathematical equations of the model (Figure 2). We give the 

model circuit different inputs to simulate different conditions. We use differential 

equations to simulate the firing rates (or the activity levels) of the neurons in different 

brain areas. The model variables are summarized in Table 1, and the fixed parameters 

are summarized in Table 2. Table 3 summarizes the synaptic strength changed to test 

the robustness of the model. 

 

Table 1. Model variables 

 

The activation level of ventral striatal neurons 

 

The ith CS input signal 

 

The US input signal 

 

CS-to-VS synaptic weights 

 

Calcium signal 

 

Above-baseline dopamine burst signal 

 

Below-baseline dopamine dip signal 

 

Striosomal metabotropic response 

 

Striosomal activity buildup rate parameter 

 

Striosomal calcium concentration 

 CS input-to-striosomal synaptic weights 

 The level of substance P exciting PPTN 

S

iI

RI

iSW

WSG

N +

N -

ijx

jr

[ ]ij ijG Y +

i jZ

pre exciteP -



 The level of GABA inhibiting PPTN 

 The level of substance P exciting VP 

 The level of GABA inhibiting VP 

 The activation level of PPTN neurons 

 The activation level of VP neurons 

 The net effect of substance P and GABA into PPTN 

 The net effect of substance P and GABA into VP 

 The activation level of GPb neurons 

 The activation level of LHb neurons 

 The activation level of RMTg neurons 

 

The activation level of DA neurons 

 

Table 2. Model parameters 

Symbol Description Value 

 

Baseline of CS input 0.30 

 

Baseline of US input 0.20 

 

exponentially decaying time constant of CS/US input 20.0 

 

The time constant of VS neurons 36.0 

 

The time constant of the change of weight   6 

 

CS-to-VS weight learning rate 13.0 

 

Maximum CS-to-VSsynaptic weight 4.00 

 

CS-to-VSweight decay rate 13.00 
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 The baseline activation level of DA neurons 0.194 

 Phasic dopamine signal threshold 0.001 

 Striosomal spectrum spacing 16.5 

 Striosomal spectrum offset 30.9 

 Calcium activation rate 3.00 

 

Calcium concentration maximum 5.00 

 Calcium spike threshold 0.37 

 Calcium passive decay rate 12.00 

 Calcium recovery rate 0.108 

 Activity-dependent calcium inactivation rate 48.0 

 Calcium inactivation threshold 0.18 

 Striosomal learning rate 500.00 

 Striosomal output threshold 0.27 

 Maximum CS input-to-striosomal synaptic weight 20.0 

 CS input-to-striosomal synaptic weight decay rate 40.0 

 The time constant of the change of  36.00 

 The time constant of the change of  6.00 

 VS-to-pre-PPTN synaptic weight 1.00 

 The time constant of the change of  36.00 

 The time constant of the change of  6.00 

 VS-to-pre-VP synaptic weight 1.00 

 The background input to the PPTN 0.10 
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YG

Za
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1Pt pre exciteP -
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SPW
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 VS-to-PPTN input weight 3.00 

 PPTN neurons response time constant 36.00 

 The background input to the VP 0.10 

 VS-to-VP input weight 3.00 

 VP neurons response time constant 36.00 

 The difference signal threshold of the excitatory and 

inhibitory effects previous to PPTN 

0.006 

 The difference signal threshold of the excitatory and 

inhibitory effects previous to VP 

0.006 

 GPb neuron response time constant 36.00 

 The background input to the GPb 0.60 

 VP-to-GPb synaptic weight 1.00 

 Striosome-GPb synaptic weight 0.35 

 LHb neuron response time constant 36.00 

 The background input to the LHb 0.10 

 GPb-to-LHb synaptic weight 5.00 

 GPb output signal threshold 0.45 

 RMTg neuron response time constant 36.00 

 The background input to the RMTg 0.10 

 LHb-to-RMTg synaptic weight 2.00 

 LHb output signal threshold 0.25 

 DA neuron response time constant 36.00 
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 The background input to the D 0.40 

 RMTg-to-VTA/SNc synaptic weight 0.80 

 PPTN-to VTA/SNc synaptic weight 1.00 

 PPTN output signal threshold 0.10 

 Maximum hyperpolarization of DA neurons 0.10 

 

Table 3 Changes of synaptic weights to test the robustness of the phasic activity  

Synaptic weight +10% -10% 

𝑾𝑽𝑷𝑮 0.20307（4.508%） 0.18608（-4.235%） 

𝑾𝑮𝑳 0.17691（-8.955%） 0.21327（9.758%） 

𝑾𝑳𝑹 0.18006（-7.334%） 0.20875（7.431%） 

𝑾𝑹𝑫 0.16571（-14.719%） 0.22102（13.746%） 

 

The mathematical expressions are below: 

(i) Different inputs in each trial (Figure 2) 

The cortex, especially, the orbitofrontal cortex(OFC) encodes the expectation future 

outcome and their response reflect the value conveyed by the combination of reward 

and punishment of the cue(Padoa-Chioppa and Assad,2006; Padoa-Chioppa and 

Conen,2017). Furthermore, OFC neurons fired most strongly for cues that predict 

large reward or small penalty and least strongly for cues that predict large penalty or 

small reward relative to neutral conditions (Roesch and Olson,2004; Morrison and 

Dbackground

RDW

PDW

PG

Dh



Salzman, 2011). Therefore, we set a larger value for rewarding cue and smaller but 

positive value for nonrewarding cue as follows. 

Reward CS input: 

  (1) 

We set  and . 

When the network receives a reward CS, the inputs from cortex increase abruptly and 

last until the time the expected reward should be given. Then, the inputs decay 

exponentially to baseline activity level. 

Nonreward CS input: 

  (2) 

 

Reward US input: 

  (3) 
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We set . 

When the network receives a reward US, the inputs from lateral hypothalamus 

increase abruptly and last for a very short duration. Then, the inputs decay 

exponentially to baseline activity level. 

 

Nonreward US input: 

  (4) 

If the network doesn’t get reward, or get nonreward (aversion or punishment), we 

assume the inputs in this trial do not change, and the inputs remain at baseline level. 

 

 (ii) Differential equations 

First, the changes of activation level of ventral striatal cells (S) are governed by 

(Brown et al., 1999): 

   (5) 

The activity level of striatal cells changes in the wake of its passive decay and 

excitation from CS inputs and US inputs. The weight  is fixed while the weight 

 can be changed. 

The weight  is governed by (Tan and Bullock, 2008): 

  (6) 

The synaptic weight changes are induced by phasic dopamine burst or dip signal,  

and  (defined below in Equations 7 and 8). Learning is gated by delayed release 
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of a second messenger and calcium signal  is governed by Equations 9 and 11 

(below) at a rate r=12.5. 

The positive reinforcement-learning signal  derives from excitatory phasic 

fluctuations of the dopamine signal above the baseline: 

   (7) 

The complementary negative reinforcement-learning signal  derives from 

inhibitory phasic fluctuations of the dopamine signal below baseline: 

  (8) 

Second, strisomes play an important role in the phasic activities of DA neurons and 

LHb neurons because of its timing spectrum mechanism: a spectrum of striosomal 

MSPN second messenger activities respond to the ith input at rates : 

  (9) 

where the second messenger buildup rates are given by 

  (10) 

 

The activities  induce intracellular calcium dynamics within a given spine (j) at 

delays determined by . The intracellular calcium spike is represented by the quantity

, where 

   (11) 

and 

GWS
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  (12) 

In Equation 11,  is a step function: 

   (13) 

 

In the brief interval when the calcium concentration at a particular spine exceeds a 

threshold activity , CS-striosomal weight  at that particular spine becomes 

eligible for change that may be induced by dopaminergic bursts ( ) or dips ( ). 

  (14) 

Third, the changes in the level of PPTN (P) are described by the following differential 

equations: 

  (15) 

  (16) 

   (17) 

where 

  (18) 

 and  can be regarded as the effect of substance P and GABA on 

PPTN. Ventral striatum neurons can secrete substance P and GABA. Substance P 

excites the following neurons, while GABA inhibits the following neurons. 
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 denotes the net effect of substance P and GABA. The author believe that 

this explanation is more realistic, but it needs more physiological experiments to be 

testified. The changes of the activity level of PPTN neurons depend on the 

background inputs, its decay and the net effect from the striatum. 

 

Fourth, the changes in the level of ventral pallidum (VP) are described by the 

following differential equations: 

  (19) 

  (20) 

  (21) 

where 

  (22) 

The explanation is similar to Equations 15 ~ 18. The changes of the activity level of 

VP neurons result from the background inputs, its decay and the net effect from the 

striatum. 

 

Fifth, changes in the level of GPb neurons are described by the following differential 

equation: 
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(23) 

The changes of the activity level of GPb neurons are determined by the background 

inputs, its decay, and the inhibitory effect from VP neurons and the disinhibitory input 

from striosome. 

 

Sixth, changes in the level of LHb neural activity are described by the following 

differential equation: 

  (24) 

The changes of the activity level of LHb neurons result from the background inputs, 

its decay and the excitatory input from the GPb. 

 

Seventh, changes in the level of RMTg neurons are described by the following 

differential equation: 

  (25) 

The changes of the activity level of RMTg neurons depend on the background inputs, 

its decay and the excitatory input from the LHb. 

 

Eighth, changes in the level of dopaminergic neurons (D) are described by the 

following differential equation: 

1
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(26) 

The changes of the activity level of dopaminergic neurons depend on the background 

inputs, its decay, the inhibitory effect from RMTg neurons and striosomes and the 

excitatory input from the PPTN. 


