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Abstract
Over the last 2 decades, face identification has been an active field of research in computer vision. As an important class of 
image representation methods for face identification, fused descriptor-based methods are known to lack sufficient discriminant 
information, especially when compared with deep learning-based methods. This paper presents a new face representation 
method, multi-descriptor fusion (MDF), which represents face images through a combination of multiple descriptors, result-
ing in hyper-high dimensional fused descriptor features. MDF enables excellent performance in face identification, exceeding 
the state-of-the-art, but it comes with high memory and computational costs. As a solution to the high cost problem, this 
paper also presents an optimisation method, discriminant ability-based multi-descriptor selection (DAMS), to select a subset 
of descriptors from the set of 65 initial descriptors whilst maximising the discriminant ability. The MDF face representation, 
after being refined by DAMS, is named selective multi-descriptor fusion (SMDF). Compared with MDF, SMDF has much 
smaller feature dimension and is thus usable on an ordinary PC, but still has similar performance. Various experiments are 
conducted on the CAS-PEAL-R1 and LFW datasets to demonstrate the performance of the proposed methods.

Keywords  Face identification · Face recognition · Feature extraction · Feature selection · Objective optimisation

1  Introduction

Over the last 2 decades, face recognition has been an active 
field of research in computer vision and pattern recogni-
tion. Face verification, one form of face recognition that is 
to verify whether two images are of the same person, has 
achieved excellent performance in recent years that is better 
than achieved by humans. According to the latest experimen-
tal results on the benchmark LFW dataset [1], the state-of-
the-art methods have achieved over 99.50% in accuracy (e.g. 
DeepID3—99.53% [2], FaceNet—99.63% [3] and Baidu—
99.77% [4]), which are above human performance—97.53% 
[5].

Face identification, another form of face recognition, is 
to identify the ID of a person, which is however still an 
unsolved problem. For the same methods, face identifica-
tion is always less accurate than face verification [6]. In the 
case of close-set face identification on LFW, the accuracy 
of DeepID3 [2] and Baidu [4] drop to 98.03% and 96.00%, 
respectively. And the accuracy of Baidu drops further to 
92.09% if it is a open-set identification task on LFW [4]. 
Therefore, as an important branch of face recognition, face 
identification is still a challenging task.

Similarly to face verification, face identification has two 
key processes—face representation and face classification. 
The state-of-the-art methods for face representation mainly 
include two types: fused descriptors [7–9] and deep learn-
ing-based methods [10–12]. Deep learning-based methods 
have shown excellent performance in recent years; however, 
they usually use not only the specified training data but also 
outside data.1 By contrast, fused descriptors are also com-
petitive [14, 15], especially when there is no outside data 
available.
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1  In terms of LFW dataset, “outside data” is defined as the data that 
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comparison of different methods on LFW [13].
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In the field of computer vision, an image descriptor is the 
description of the visual features in an image or video [16]. 
These visual features can be shape, colour, texture, movement 
or other abstract features. Among a variety of image descrip-
tors, local binary patterns (LBP) [17–19] is a popular choice 
and has been studied extensively in the face recognition litera-
ture. LBP represents images on the basis of the grey-value dif-
ferences between neighbouring pixels, which is quite effective 
in face identification and robust to illumination variance. Some 
further image descriptors have been proposed in recent years, 
including chain code-based local descriptor (CCBLD) [20], 
discriminative embedding method based on the image-to-class 
distance (I2CDDE) [21], quaternionic local ranking binary 
pattern (QLRBP) [22] and feature descriptor using entropy 
rate (FDER) [23]. Different from LBP, which is created based 
on fixed sampling points in a rectangular or circular region, 
CCBLD builds a chain by repeatedly searching the maximum 
or the minimum neighbour around the current position. As a 
fully supervised local descriptor learning algorithm, I2CDDE 
tries to learn compact but highly discriminative local feature 
descriptors based on the image-to-class distances. QLRBP 
combines Quaternionic Ranking and LBP, and proposes a new 
quaternionic ranking function to determine the order of two 
colour pixels. Different from the above-mentioned descriptors, 
FDER uses a graph structure to describe the image patches 
generated by the nonsubsampled Contourlet transform, and 
applies the entropy rate of random walks on the graph to build 
the final descriptor. In summary, different descriptors manifest 
in various forms, but all of them are targeted on obtaining 
highly-discriminative features and invariant features.

In addition, as an assistive technique, feature fusion can 
alleviate the unreliability brought about by using a single 
set of features and can introduce additional discriminant 
information. Feature fusion for image representation can be 
done at different levels by fusing either the same type of 
descriptors or different types of descriptors [24]. When image 
descriptors are combined with a feature fusion technique, 
they form the so-called fused descriptors. In [25], Nikan 
et al. proposed a method using feature fusion at the decision 
level. It divides each facial image into M ∗ N blocks, then 
uses local phase quantisation (LPQ) and multiscale LBP for 
feature extraction. In [26], Gao et al. fused local features and 
global features extracted by gabor wavelet transforms (GWT) 
and discrete cosine transforms (DCT). These features are 
fused through a weighted sum at the feature level. Instead of 
fusing features from different image descriptors, Wei et al. [8] 
fused features from the same LBP image descriptors obtained 
with different parameters. The base value in computing an 
LBP pattern is changed from the intensity of a pixel to the 
mean intensity of a neighbourhood of the pixel, thus the 
resulting LBP pattern is less sensitive to noise. Multiple LBP 
feature vectors are constructed at different spatial scales and 
combined into a weighted distance function. However, the 

identification accuracies using such representation methods 
are usually not the state-of-the-art, due possibly to the lack 
of sufficient discriminant information in those descriptors. 
To enhance the discriminative ability of fused descriptors, 
in this paper dual-cross patterns (DCP) [15] is applied as 
the basic encoder which aims to maximise the joint Shan-
non entropy; moreover, we proposed a method called multi-
descriptor fusion (MDF) to generate the hyper-high dimen-
sional descriptor features. After that, we try to find a strong 
and robust classifier for fully utilising the power of MDF.

In face classification, classification methods include C4.5 
[27], sparse representation classifier (SRC) [28], k-nearest 
neighbour classifier (kNN) [29], support vector machine 
(SVM) [30], neural network (NN) [31], and Naive Bayes 
[32], among which SRC is a popular choice. SRC works by 
representing each probe image (i.e. an image that is to be 
classified) as a linear combination of gallery image sam-
ples and optimising the linear combination to minimise the 
residual. SRC is good for dealing with local facial occlu-
sion (such as random pixel corruption), but it is poor at 
handling continuous occlusion (due to artefacts such as a 
hat and sunglasses). Therefore, numerous extensions have 
been proposed, for example, structured sparse error coding 
(SSEC) [33], regularized robust coding (RRC) [34], and 
robust kernel representation with statistical local features 
(SLF-RKR) [35]. These extensions significantly enhance the 
robustness of SRC to face occlusion, but they may overfit 
the occluded training images and decrease the recognition 
accuracy of SRC on non-occluded data [36]. So Huang et al. 
[36] proposed kernel extended dictionary (KED), which 
combines kernel discriminant analysis (KDA) and SRC. It 
has been shown that KED achieves impressive results on 
both occluded data and non-occluded data, while using 
fewer dictionary atoms compared with similar methods like 
extended sparse representation-based classifier (ESRC) [37] 
and superposed sparse representation classifier (SSRC) [38]. 
Due to the excellent performance of KED, if not specified, 
we take KED as the default classifier for the proposed MDF.

To reduce the memory and computational costs of MDF, 
we also propose a novel optimisation method called dis-
criminant ability-based multi-descriptor selection (DAMS), 
which aims to find a specific number of descriptors from 
the entire descriptor set while maximising the discriminant 
ability. The new face representation, which is refined by 
DAMS, is called selective multi-descriptor fusion (SMDF). 
The main contributions of our work are as follows:

1.	 We proposed MDF, by which we achieve higher identifi-
cation accuracy than the state-of-the-art methods. Using 
dual-cross patterns (DCP) [15] as the basic encoder, 
MDF fuses a large number of global features and land-
mark-based local features, and thus it is robust to differ-
ent types of variance including facial occlusion, illumi-
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nation variance, expression variance, and pose variance. 
By combining MDF with KED, on the one hand, we take 
full advantage of the merits of KED, so MDF + KED can 
cope with the case of one sample per person (OSPP), and 
just requires a little time to update the whole model when 
new samples are added into the image gallery. On the 
other hand, we avoid the demerits, for example, the lack 
of sufficient discriminant features and robust classifiers. 
The experimental results on the CAS-PEAL-R1 [39] and 
LFW dataset [1] show that the performance of MDF is 
better than DCP, KED and the state-of-the-art methods.

2.	 We also propose a novel optimisation method called 
DAMS to reduce the memory and computational costs 
of MDF. DAMS is designed to be a general optimisa-
tion method for searching an optimum subset of feature 
blocks,2 where a new objective function is built and a 
trick based on block matrix operation is utilised to effec-
tively speed up the optimisation process and make it pos-
sible in practice. The new face representation, refined by 
DAMS, is called SMDF. Compared with MDF, SMDF 
has much smaller feature dimension, which results in 
a much lower configuration requirement. However, 
SMDF still achieves excellent performance compared 
with other methods.

The remainder of the paper is organised as follows. In Sect.  
2, firstly we introduce the proposed initial face representa-
tion method—MDF; then the optimisation method—DAMS 
is presented in detail. The experimental results on two com-
monly used datasets are given in Sect. 3. Finally, we sum-
marize our method and the results in Sect. 4.

2 � Selective multi‑descriptor fusion

2.1 � Initial feature extraction

In this section, the implementation details of MDF are 
described. As illustrated in Fig. 1, MDF consists of four 
parts. In part 1, the supervised descent method (SDM) pro-
posed by Xiong et al. [40] is introduced for landmark loca-
tion. Xiong et al. trained their landmark detector with 66 
landmarks on MPIE [41] and LFW-A&C [42] datasets, but 
only evaluated their landmark detector with 49 of the 66 
landmarks on RU-FACS dataset [43], as RU-FACS dataset 
only provides the ground truths of 49 landmarks. To have 
a reliable operation, we only use these 49 landmarks in the 
paper. Alternatively, it may be also possible to use a subset 
of the 49 landmarks. But at the first stage of our method—
initial feature extraction, the control of dimensionality is 
not our concern. Our top priority at this stage is to generate 
enough features that contain as much discriminative infor-
mation as possible. Feature selection will be done at the next 
stage to reduce the dimensionality. Besides, these 49 land-
marks lie on the areas of eyes, nose, mouth, and eyebrow. 

Fig. 1   The pipeline of the proposed methods can be divided into 
three stages: initial feature extraction, descriptor selection and clas-
sification. In the first stage, we employ supervised descent method 
(SDM) [40] for facial landmark location and extract a large number 
of global features and landmark-based local features through dual-

cross patterns (DCP) [15]. In the second stage, DAMS is applied for 
descriptor selection. In the final stage, all the features are fused into 
the classifiers (like KED) for classification. It is worth noting that 
MDF includes P1, P2, P3 and P5, DAMS refers only to P4, while 
SMDF consists of P1–P5

2  Here, a feature block means a group of features which normally 
cannot be divided. The features of an instance can consist of many 
feature blocks. Searching an optimum subset of feature blocks is to 
find a subset of feature blocks among all feature blocks that can max-
imise the objective function.
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These areas contain very rich features. From our experience, 
the locations of all these 49 landmarks are important in a 
facial portion. Neglecting any of these 49 landmarks may 
lead to a decrease in recognition accuracy. Considering the 
reasons above, we use all the 49 landmarks in the paper. 
For each face image, 49 landmarks are located, as shown in 
Fig. 2a. Being a state-of-the-art method, SDM has very reli-
able performance on landmark location, which lays a good 
foundation for subsequent feature extraction.

In part two, DCP [15] is applied to extract the global fea-
tures for all face images. For each pixel O, Dual-cross encoder 
is used to obtain the value of each sampling point around 
it, as illustrated in Fig. 3. Dual-cross encoder [15] includes 
two types of patterns, namely, DCP1 and DCP2 . Around each 
pixel, there are a total of 8 sampling points distributed on two 
circles. In this paper, the radii of these two circles are denoted 
by rin and rex , respectively. Before the global feature extrac-
tion, each image is divided into multiple blocks (see P2 of 
Fig.1), which introduces two parameters—block number of 
each row (BNR) and block number of each column (BNC). In 
order to obtain sufficient global DCP features, we adjust the 
four variables BNR, BNC, rin and rex . Then the corresponding 
DCP histogram is calculated for each block; the DCP histo-
grams under the same variable combination are concatenated 
to form one large feature histogram. In this way, we generate 

16 large feature histograms3 as the global features for each 
face image. Here, choosing 16 global descriptors is mainly 
due to two aspects. Firstly, the combination of the global 
descriptors and the local descriptors requires that their total 
dimensionalities should be of the same order of magnitude. 
Ample evidence shows that only in this way can the combina-
tion be effective [15, 44–46]. Secondly, the server we use to 
run the experiments has a memory of 24GB. And the maxi-
mum memory usage of MDF is 22GB after applying 16 global 
descriptors. We choose to maximise the usage of memory and 
generate as many global descriptors as possible so as to obtain 
more discriminative features. For the two reasons above, we 
finally choose to use 16 global descriptors.

In part three, the extraction process of the landmark-
based local features is described. As illustrated in Fig. 2a, 49 
landmarks are located for each face image. Centred on each 
landmark, we define a square patch which is divided into 
N ∗ N non-overlapping blocks as shown in Fig. 2b, where 
N = 2 in Fig. 2b. One DCP histogram is calculated for each 
block. Hence, N ∗ N DCP histograms are calculated for each 
landmark. All these N ∗ N DCP histograms are concatenated 
to build a large histogram as the local DCP features corre-
sponding to this landmark point. From landmark 1 to land-
mark 49, a total of 49 large DCP histograms are extracted for 
one face image. Benefiting from the maturity of facial land-
mark location techniques in recent years, the local features 
extracted in this part are robust to pose variance, expression 
variance and distance variance.

In part four, which is P5 in Fig. 1 (here, we skip P4 in 
Fig. 1, as P4 is an optional module and will be described in the 
next subsection), all the DCP histograms extracted in part two 
and part three are fused together by concatenation, and then 
input into classifiers for further processing. If KED is cho-
sen, the whole dataset will be grouped into three sets, namely, 
training set, gallery set and testing set. Firstly, the training set 
is used to obtain the s − 1 projections by KDA, where s is the 
number of subjects (namely the number of classes). After that, 
the normal frontal face images and the occluded face images 
in the training set are applied to learn p kernel principal com-
ponents which are called the occlusion model in KED. Here, 
p is set with the default value 10 as in the code exposed by the 
authors of KED. Please note that the subjects in the training set 

Fig. 2   a Landmarks located by SDM. b Landmark-based local fea-
tures

Fig. 3   Dual-cross encoder [15] has two types of patterns—DCP
1
 and 

DCP
2
 . Each pattern has 8 sampling points distributed on two circles, 

where r
in

 and r
ex

 are the radii of the inner and exterior circles, respec-
tively

3  Here the DCP histogram under a certain variable combination 
is denoted by DCP(BNR,BNC, r

in
, r

ex
) . In our method, we extract 

the following DCP histograms for each face image: DCP(6, 5, 2, 3), 
DCP(6, 5, 3, 4), DCP(6, 5, 4, 5), DCP(6, 5, 5, 6), DCP(5, 4, 2, 3), 
DCP(5, 4, 3, 4), DCP(5, 4, 4, 5), DCP(5, 4, 5, 6), DCP(4, 4, 2, 3), 
DCP(4, 4, 3, 4), DCP(4, 4, 4, 5), DCP(4, 4, 5, 6), DCP(3, 2, 2, 3), 
DCP(3, 2, 3, 4), DCP(3, 2, 4, 5) and DCP(3, 2, 5, 6). So we get 16 
DCP histograms in all for each face image. Please note that we didn’t 
carefully tune these four parameters. According to our experience, the 
setting of these four parameters will not significantly influence the 
performance.
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cannot exist in the gallery set, as the training set is used only 
for learning the KDA projections and the occlusion model. 
Then all gallery samples and occlusion model are projected 
by KDA projections to get the basic dictionary and extended 
dictionary, respectively. Finally, we use the sparse representa-
tion classifier to classify each probe image in the testing set 
by minimising the reconstruction residual. For more details of 
KED, please refer to [36].

2.2 � Descriptor selection

The excellent performance of MFD will be demonstrated in 
Sect.  3. However, it has a noticeable problem—high dimen-
sionality, which consequently leads to high memory cost and 
high computational cost. Therefore, in this section, we propose 
a novel optimisation method called discriminant ability-based 
multi-descriptor selection (DAMS) to reduce the dimensional-
ity of the feature set. The first issue that needs to be addressed 
is the manner of evaluating the discriminant ability. As we 
use kernel discriminant analysis in post-processing, keeping 
the descriptors that can maximise the discriminant ability is a 
reasonable choice. In discriminant analysis-based methods, the 
Fisher objective function is commonly used. Thus the follow-
ing Fisher objective function is initially considered to evaluate 
the discriminant ability of a set of descriptors:

where Sw and Sb are the within-class scatter matrix and the 
between-class scatter matrix, respectively.

By maximising J(W), a projective matrix W∗ can be found, 
that is:

It can be demonstrated that [47]:

where eigV denotes the eigenvalue matrix of S−1
w
Sb(n) , which 

has the form:

where �1, �2,… , �n denote the eigenvalues of S−1
w
Sb(n).

(1)J(W) =
|WTSbW|
|WTSwW| ,

(2)W∗ = arg max
W

J(W).

(3)J(W∗) = |eigV|,

(4)eigV =

⎡⎢⎢⎢⎣

�1 0 ⋯ 0

0 �2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ �n

⎤⎥⎥⎥⎦
,
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Based on the settings above, DAMS (Algorithm 1) is 
designed to select n descriptors from the initial 65 descriptors 
(16 global descriptors and 49 local descriptors) according to 
the discriminant ability of each descriptor subset. In DAMS, 
we formulate an objective function called DA (discriminant 
ability) according to the specific situation in the experiments. 
As shown by Eq. (5), DA is a variant of J(W∗) , where CFD is 
the current feature dimension, n is the number of descriptors 
in the objective subset, and 150 is the approximate mean size 
of all descriptor features.

For the numerator of DA, we extract the cube roots of all the 
diagonal elements of eigV as the range of |eigV| is wide and 
mostly beyond the range of the double-precision data type. 
Then the lg of ���

3
√
eigV

��� is calculated to make the numerator 
and denominator have the same order of magnitude. For the 
denominator, (|CFD − 150 ∗ n|∕100)2 is the penalty factor 
to balance the selection bias, as the sizes of different descrip-
tor features are different from each other. Without this pen-
alty factor, DA will tend to choose the descriptors that gener-
ate high-dimensional features because high-dimensional 
features usually have stronger discriminant ability, which 
goes against our original intention—dimensionality reduc-
tion. To accelerate the penalty growth and make the numera-
tor and denominator have the same order of magnitude, 
|CFD − 150 ∗ n| is divided by 100 and squared. From this 
penalty factor, it can be seen that the farther CFD deviates 
from 150 ∗ n the greater the denominator and the smaller 
DA. When CFD equals 150 ∗ n , the denominator degener-
ates to 1 and the penalty factor loses its efficacy.

Similar to the simulated annealing algorithm, DAMS 
also choose a worse DA with a certain probability, which 
can help DAMS to escape from a local optimum. The 
escape probability used in DAMS is computed as:

where DA and DA′ denote the discriminant abilities obtained 
at different stages, and k is the current number of iterations. 
As k increases, P(DA, k) tends to become smaller. When 
DA = DA� , P(DA, k) equals 0.5, which indicates that DA and 
DA′ have the same probability of being accepted.

To accelerate the running of DAMS, two measures are 
taken. Firstly, the features extracted by each descriptor are 
processed by PCA to keep 60% of the principal compo-
nent variances. Secondly, a novel method is presented to 

(5)DA =
lg( 3

√
J(W∗))

(�CFD − 150 ∗ n�∕100)2 + 1

(6)=
lg(� 3

√
eigV�)

(�CFD − 150 ∗ n�∕100)2 + 1
.

(7)P(DA, k) = 10−(DA−DA
�)∗k1.5 − 0.5,

accelerate the computing of Sw(n) and Sb(n) , where Sw(n) 
and Sb(n) are the within-class scatter matrix and between-
class scatter matrix based on the selected n descriptors, 
respectively. In DAMS, most of the time is spent on com-
puting |eigV| , where the majority of work is calculating 
Sw(n) and Sb(n) repeatedly. The new idea is to calculate 
Sw(65) and Sb(65) just for one time. After that, all the Sw(n) 
and Sb(n) ( 1 ≤ n ≤ 65 ) are generated directly from Sw(65) 
and Sb(65).

The matrices Sw and Sb are defined as below:

where s is the class number, Nj(j = 1, 2,… , s) is the instance 
number of the jth class, �j(j = 1, 2,… , s) is the mean vector 
of the jth class, and Xj(j = 1, 2,… , s) is the instance set of 
the jth class.

Let �j − � =
[
aT
1
aT
2
⋯ aT

65

]T , where a1, a2,… , a65 are the 
feature vectors extracted by the corresponding descrip-
tors, respectively. We note that a1, a2,… , a65 are all col-
umn vectors and that they may have different size. Then, 
(�j − �)T =

[
aT
1
aT
2
⋯ aT

65

]
.

Thus, Sb(65) can be denoted as

If we denote 
∑s

j=1
Njana

T
n
= AnA

T
n
(1 ≤ n ≤ 65) , then

It can be seen from (13) that any Sb(n) can be generated from 
Sb(65) by simply deleting the columns and rows that contain 
the corresponding descriptors in Sb(65) but out of Sb(n) . For 
example, Sb(6) involves descriptor 3 to descriptor 8, and so 
it can be generated by deleting the columns and rows that 
contain the descriptors 1, 2, 9, 10,… , 65 . As a result, we get 
the Sb(6) as follows:

(8)Sb =

s∑
j=1

Nj(�j − �)(�j − �)T ,

(9)Sw =

s∑
j=1

∑
x∈Xj

(x − �j)(x − �j)
T ,

(10)Sb(65) =

s∑
j=1

Nj(�j − �)(�j − �)T

(11)=

s�
j=1

Nj

⎡⎢⎢⎢⎣

a1a
T
1

a1a
T
2

⋯ a1a
T
65

a2a
T
1

a2a
T
2

⋯ a2a
T
65

⋮ ⋮ ⋱ ⋮

a65a
T
1
a65a

T
2
⋯ a65a

T
65

⎤⎥⎥⎥⎦

(12)Sb(65) =

⎡⎢⎢⎢⎣

A1A
T
1

A1A
T
2

⋯ A1A
T
65

A2A
T
1

A2A
T
2

⋯ A2A
T
65

⋮ ⋮ ⋱ ⋮

A65A
T
1
A65A

T
2
⋯ A65A

T
65

⎤⎥⎥⎥⎦
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It is worth mentioning that by experiment we found that 
DAMS spent 92.8% of the time ( n = 10 ) in calculating Sw(n) 
and Sb(n) before we use the trick of block matrix operation. 
Thus this trick is important in making DAMS feasible.

3 � Experiments

3.1 � Results on the CAS‑PEAL‑R1 Dataset

In this section, the performance of MDF and SMDF is evalu-
ated on the CAS-PEAL-R1 dataset [39]. The CAS-PEAL-R1 
dataset is constructed by the Chinese Academy of Sciences 
and contains 99,594 images from 1040 subjects (including 
595 males and 445 females). In our experiments, we use 
the following subsets: ‘Normal’, ‘Expression’, ‘Lighting’, 
‘Accessory’, ‘Background’, ‘Distance’ and ‘Aging’, which 
contain face images from 1040 subjects in total. Some exam-
ples from the CAS-PEAL-R1 dataset are shown in Fig. 4.

Following the standard experimental protocol [39], we 
use the whole ‘Normal’ subset as the gallery set; it consists 
of 1040 images from 1040 subjects (one sample per person). 
For the training set, we randomly select 400 images (100 
subjects, 4 samples per person) from the ‘Expression’ sub-
set, 800 images (200 subjects, 4 samples per person) from 
the ‘Lighting’ subset, 80 images (20 subjects, 4 samples per 
person) from the ‘Accessory’ subset; and for those subjects 
who appear in the above mentioned images, we also add 
their images in the ‘Normal’ subset into the training set. 
Excluding the face images used in the training set, the rest 
of the ‘Expression’, ‘Lighting’, ‘Accessory’, ‘Background’, 
‘Distance’ and ‘Aging’ subsets are used to create six probe 
sets respectively. The face portion of each image is cropped 
out and normalized to the size of 120*100 pixels. In order 

(13)Sb(6) =

⎡⎢⎢⎢⎣

A3A
T
3
A3A

T
4
⋯ A3A

T
8

A4A
T
3
A4A

T
4
⋯ A4A

T
8

⋮ ⋮ ⋱ ⋮

A8A
T
3
A8A

T
4
⋯ A8A

T
8

⎤⎥⎥⎥⎦

to ensure the veracity and reliability of our experimental 
results, each experiment is repeated ten times. Here the 
parameter – number of descriptors is set to be 6 in SMDF, as 
6 descriptors are already sufficient to achieve a good result.

3.1.1 � Comparison with SRC‑based methods

KED is an SRC-based method. To demonstrate the effective-
ness of combining MDF/SMDF(6) with KED, we compare 
MDF/SMDF(6) + KED with other SRC-based methods, 
including SRC [28], ESRC [37], KDA + SRC, KDA + 
ESRC and KED [36]. For initial features, we use the same 
Multiscale LBP (MLBP) features as in [36] so as to max-
imise the performance of these baseline methods. Table 1 
shows the results of different methods on three subsets. 
According to the results, we can observe the following:

1.	 All methods perform well on the Expression probe set. 
This is because SRC-based methods are robust to local 
variances such as expression and local occlusion [36].

2.	 MDF + KED and SMDF + KED significantly outper-
form other methods on the Accessory probe set; KED 
performs better than other methods, but it is inferior to 
MDF + KED and SMDF + KED. The Accessory probe 
set contains a large number of cases of contiguous occlu-
sion. SRC, ESRC, KDA + SRC and KDA + ESRC fail 
to handle these contiguous occlusions, so they perform 
poorly on this probe set.

3.	 All methods perform relatively poorly on the Lighting 
probe set, but MDF + KED and SMDF + KED are still 
better than other SRC-based methods by at least 2.4% 
and 1.7%, respectively. In this case, even though the 
standard deviation of MDF+KED reaches 1.6, it is still 
acceptable.

 

Fig. 4   Some examples from the CAS-PEAL-R1 dataset

Table 1   Comparison with SRC-based methods on the CAS-PEAL-
R1 dataset

The proposed methods are highlighted with asterisks and their 
results are marked in bold

Method Mean accuracy (%) ± std. dev.

Accessory Lighting Expression

MLBP + SRC 72.9 ± 0.6 17.3 ± 0.7 98.2 ± 0.4
MLBP + ESRC 87.1 ± 1.0 82.1 ± 0.4 99.7 ± 0.1
MLBP + KDA+SRC 80.8 ± 1.9 82.7 ± 0.6 99.7 ± 0.1
MLBP + KDA+ESRC 80.9 ± 1.9 83.0 ± 0.6 99.7 ± 0.1
MLBP + KED 91.0 ± 0.6 83.1 ± 0.5 99.7 ± 0.1
MDF + KED* 97.5 ± 0.3 85.5 ± 1.6 99.7 ± 0.1
SMDF(6) + KED* 95.2 ± 0.5 85.0 ± 1.3 99.4 ± 0.2
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3.1.2 � Comparison with other descriptors

We also compare the proposed method with other descrip-
tor-based methods. They are LBP [17], LTP [48], LPQ 
[49], POEM [50], local gabor XOR patterns (LGXP) [7], 
multiscale LBP [51], multiscale tLBP (MsTLBP) [52], 
multiscale dLBP (MsDLBP) [52] and DCP [15]. To max-
imise the performance of these baseline descriptors, we 
carefully choose the parameters and the distance functions 
(Chi-squared or histogram intersection) for each of them. 
The final results are reported in Table 2 with the param-
eters and distance functions that can maximise the average 
accuracy on all subsets. According to the results, we can 
observe the following:

1.	 MDF + KED has the best identification rates on all six 
probe sets, which demonstrates the superiority of the 
proposed method.

2.	 MDF + KED and SMDF + KED perform much better 
than DCP, which demonstrates the effectiveness of the 
fused descriptor features extracted by MDF and SMDF.

3.	 The results on the lighting and distance probe sets indi-
cate that the baseline methods misclassify a large pro-

portion of the probe images on these two probe sets. 
An explanation is that the images from these two probe 
sets are significantly overlapped in the feature space, and 
the baseline methods have insufficient features that have 
strong discriminant ability.

3.1.3 � Comparison with state‑of‑the‑art methods

Finally we compare the proposed MDF+KED and 
SMDF+KED with the state-of-the-art methods, including 
SSEC [33], RRC [34], SLF-RKR [35], MOST [53], KED 
and DCP. For the parameters of SSEC, they are set as in 
[33]: λE = 2 , λV = 0 , κ = 0.3 , and T = 5 . For the param-
eters of RRC, we followed the settings of [34]: � = (�∕�) , 
� = 8 , and τ = 0.8 . For SLF-RKR, we set S = 0 , P0 = 5 , and 
Q0 = 4 as presented in [35]. For the settings of KED and 
DCP, we followed [15, 36], respectively. The comparative 
results are shown in Table 3, from which we can observe 
the following:

1.	 Compared with the state-of-the-art methods, 
MDF+KED and SMDF + KED still have the best iden-

Table 2   Comparison with 
other descriptors on the CAS-
PEAL-R1 dataset

The proposed methods are highlighted with asterisks and their results are marked in bold

Method Recognition accuracy (%)

Accessory Lighting Expression Time Background Distance

LBP 91.82 46.90 94.27 100.00 99.46 44.60
LTP 91.77 47.17 94.39 100.00 99.46 44.68
LPQ 92.39 57.16 93.95 100.00 99.28 44.76
POEM 92.39 54.66 95.54 100.00 99.46 42.52
LGXP 91.33 63.26 94.97 100.00 99.28 22.91
MsLBP 92.04 47.75 95.16 100.00 99.46 44.88
MsTLBP 92.74 48.06 95.41 100.00 99.46 45.48
MsDLBP 90.63 48.11 92.42 100.00 99.28 37.03
DCP 92.82 50.25 96.11 100.00 99.10 51.30
MDF + KED* 97.47 85.49 99.67 100.00 99.94 100.00
SMDF(6) + KED* 95.66 85.09 99.73 100.00 99.39 100.00

Table 3   Comparison with 
state-of-the-art methods on the 
CAS-PEAL-R1 dataset

The proposed methods are highlighted with asterisks and their results are marked in bold

Method Mean recognition accuracy (%)

Accessory Lighting Expression Time Background Distance

SSEC TIP13’ 66.6 17.4 74.5 51.9 66.8 84.2
RRC TIP13’ 84.2 29.3 94.0 96.7 95.6 97.9
SLF-RKR TNNLS13’ 90.9 28.8 99.6 98.5 99.9 99.7
MOST TIP14’ 80.4 82.4 98.2 97.9 99.0 99.8
KED TNNLS16’ 91.0 83.1 99.7 99.7 99.9 99.9
DCP TPAMI16’ 92.8 50.3 96.1 100.0 99.1 51.3
MDF + KED* 97.5 85.5 99.7 100.0 99.9 100.0
SMDF(6) + KED* 95.7 85.1 99.7 100.0 99.4 100.0
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tification rates on all six probe sets, which again demon-
strates the good performance of the proposed methods.

2.	 Most methods perform well on Expression, Time and 
Background probe sets. However, they perform poorly 
on the Accessory probe set. MDF + KED achieves a bet-
ter result on the Accessory probe set than other methods.

3.	 DCP has good performance on Accessory, Expression, 
Time and Background probe sets, but cannot cope well 
with the Lighting and Distance probe sets. KED has 
excellent results on all six probe sets except the Acces-
sory probe set.

3.2 � Results on the LFW dataset

The LFW face dataset [1] consists of more than 13,000 facial 
images of 5749 subjects downloaded form the web, and has 
been created for research on unconstrained face recogni-
tion. The facial images in the LFW dataset have dramatic 
variations of illumination, occlusion, pose and expression; 
the only constraint is that all these faces were captured by 
the Viola-Jones face detector. Currently, there are four dif-
ferent versions of LFW, including the original version and 
three different types of “aligned” versions. In the following 

experiment we use the version called “LFW-a”. Some origi-
nal facial images from the LWF dataset are shown in Fig. 5. 
As preprocessing, all the images in LFWa are normalised 
to 120*100 pixels and processed by affine transform based 
on three fiducial marks (left eye centre, right eye centre and 
mouth centre) obtained by the SDM algorithm. We use the 
mean value of landmarks 20–25 to get the position of the left 
eye centre, use the mean value of landmarks 26–31 to get 
the position of the right eye centre, and use the mean value 
of landmarks 32, 38 and 44 to 49 to get the position of the 
mouth centre (see Fig.  2). In the processing of the affine 
transform, all the face images are aligned with the left eye 
centre, right eye centre and mouth centre mapped to (29, 42), 
(75, 42) and (53, 96), respectively.

To demonstrate the effectiveness of MDF and SMDF, we 
compare the proposed methods with PCA600 (reduce to 600 
dimensions by PCA), KDA + 1NN, KDA + SRC and KED. 
Different from the settings used on the CAS-PEAL-R1 
dataset, the Cosine KNN classifier is used for the proposed 
MDF and SMDF in this section. We explored a number of 
classifiers and Cosine KNN shows the best performance in 
this case. Following the experimental protocol in [35, 36], 
a subset of LFW is used in the experiments, which contains 
5425 images of 311 subjects with no less than six samples 
per subject. The parameters of these methods are the same 
as the settings in Sect. 3.1. To avoid overfitting, fivefold 
cross-validation is applied with all of the above methods.

Additionally, we also include comparable results on 
the same data by deep learning based methods—COTS-s1 
[54], COTS-s1+s4 [54], WST Fusion [55], DeepFace [10], 
and DeepID2+ [56]. Worthy of noting is that DeepFace 
and DeepID2+ are two representative deep learning-based 
methods for face recognition. The experimental results of 
different methods are presented in Table 4, arranged into two 
categories, according to the experimental routine of LFW, 
namely the methods with outside training data and the meth-
ods without outside training data.

1.	 Most methods do not achieve good results on the LFW 
dataset because of its unconstrained and dramatic vari-
ations.

2.	 MDF and SMDF significantly outperform the other 
methods without outside data, while the identification 
accuracy of MDF is slightly higher than SMDF.

3.	 Compared with deep learning-based methods, MDF 
and SMDF are still competitive. From the perspective 
of identification accuracy, MDF and SMDF are better 
than DeepFace and WST Fusion, but a little worse than 
DeepID2+.

Fig. 5   Some examples from the LFW dataset

Table 4   Comparison with state-of-the-art methods on the LFW data-
set

The proposed methods are highlighted with asterisks and their results 
are marked in bold

Method Recog-
nition 
accuracy

Without outside train-
ing data

PCA600 56.9
KDA+1NN 40.0
KDA+SRC 89.2
KED 89.2
MDF* 94.3
SMDF(11)* 91.7

With outside training 
data

COTS-s1 [54] 56.7
COTS-s1 + s4 [54] 66.5
DeepFace [10] 64.9
WST Fusion [55] 82.5
DeepID2+ [56] 95.0



	 International Journal of Machine Learning and Cybernetics

1 3

Fig. 6   The relationship between the identification accuracy and the number of descriptors on CAS-PEAL-R1 and LFW dataset

Table 5   Runtime evaluation on LFW dataset

PCA600 KDA + 1NN KDA + SRC KED MDF SMDF(14) SMDF(8) SMDF(6)

Initial feature dimension 17,110 17,110 17,110 17,110 247,808 51,200 52,224 53,248
Training time (h) 0.7 0.9 0.9 1 11.1 2.7 2.7 2.7
Classification time per instance (ms) 8 21 20 20 187 40 41 41
Max memory usage (GB) 2.6 2.3 2.3 2.4 22.0 6.0 6.2 6.3
Accuracy on LFW (%) 56.9 40.0 89.2 89.2 94.3 91.6 91.5 91.2
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3.3 � Stability and runtime evaluation

In this section, the stability of DAMS and the runtimes of 
the proposed methods are discussed. Firstly, we explore 
the relationship between the identification accuracy and 
the number of descriptors. The number of descriptors is an 
important parameter in DAMS, which determines the num-
ber of target descriptors, leading to different initial feature 
dimension and different identification accuracy. Therefore, 
the following experiments were conducted on the CAS-
PEAL-R1 and LFW datasets based on the same experimen-
tal settings asin Sects. 3.1 and 3.2. In this process, we run 
DAMS for 5 times based on different numbers of descrip-
tors and select the descriptor subsets that can maximise the 
objective function. As shown in Fig. 6, the identification 
accuracies on LFW and most subsets of CAS-PEAL-R1 vary 
little as the number of descriptors changes from 6 to 14. 
But the accuracies on Accessory and Lighting subsets show 
a slow downward trend. A reasonable explanation is that 
the proposed objective function—DA specifies the number 
of descriptors, but it does not specify the target dimension 
(it only uses a penalty factor to balance the selection bias). 
Whereas the global descriptors have higher dimensions than 
the local descriptors, they are more helpful in enhancing the 
value of DA. So DAMS tends to choose more global descrip-
tors rather than local descriptors as the number of descrip-
tors increases. However, local features can cope better with 
the Accessory and Lighting subsets, which include different 
type of occlusion and illumination variations. In summary, 
the number of descriptors is not a sensitive parameter, but 
it is worth selecting a value carefully when handling some 
specific situations like occlusion and illumination variations.

Using a single thread with 3.47 GHz CPU (Intel Xeon 
X5690), we conducted experiments on the LFW dataset and 
recorded the runtime and relevant details of the proposed 
methods and some other methods we implemented. Results 
are shown in Table 5. PCA600, KDA+1NN, KDA+SRC 
and KED have lower requirement on memory usage and 
runtime on training and classification, but they have much 
lower recognition accuracies. For example their recognition 
accuracies are all lower than 90%, while the proposed MDF 
and SMDF have accuracies of 94.3% and 91.6%, respec-
tively. Compared with MDF, SMDF has a much smaller fea-
ture set, which is only approximately one-fifth of the feature 
set of MDF. The reduction in feature dimension leads to 
lower computational cost and memory cost. The training 
time decreases from 11.1 to 2.7 h, while the classification 
time drops from 187 to 40 ms. Another important change 
is in the maximum memory cost, which is reduced to only 
approximately 6 GB in SMDF from the 22 GB in MDF. This 
enables a typical modern computer with 8 GB memory to 
run the proposed face identification algorithm. As a com-
promise, we lose 2.9% ± 0.2% accuracy, but even so, the 

performance of SMDF is still better than many of the state-
of-the-art methods, as illustrated in Table 4.

4 � Conclusion

To fully utilise the discriminant information and improve the 
discriminative ability of features, in this paper we propose a 
high-performance face image representation method—MDF, 
by which we achieved higher identification accuracy than the 
state-of-the-art methods. Further still, we propose a novel 
optimisation method, DAMS, which reduces the computa-
tional cost and the memory cost of MDF. Compared with 
MDF, the DAMS-optimised face representation, SMDF, has 
much smaller feature dimension, resulting in a much lower 
configuration requirement. However, SMDF still achieves 
excellent performance compared with other state-of-the-art 
methods.
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