
1

Optimization of University Course Scheduling Problem using Particle Swarm

Optimization with Selective Search

Sk. Imran Hossain1, M. A. H. Akhand1, M. I. R. Shuvo1, Nazmul Siddique2 and Hojjat Adeli3

1Department of Computer Science and Engineering, Khulna University of Engineering & Technology,

Bangladesh, e-mail: imran@cse.kuet.ac.bd; akhand@cse.kuet.ac.bd; insan_shuvo@cse.kuet.ac.bd;

2 School of Computing, Engineering and Intelligent Systems, Ulster University, United Kingdom, e-mail:

nh.siddique@ulster.ac.uk;

3Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, USA, e-mail:

adeli.1@osu.edu;

Abstract:

University Course Scheduling Problem (UCSP) is a highly constrained real-world combinatorial optimization

problem. Solving UCSP means creating an optimal course schedule by assigning courses to specific rooms,

instructors, students and timeslots by taking into account the given constraints. Several researches have reported

solution for UCSP using Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Harmony Search

(HS). Among them a few PSO based methods with different adaptations are proved to be effective solving UCSP.

In general, the existing methods consider relatively simple UCSPs where the UCSP is first transformed into

numeric domain then apply PSO to solve it. In this study, Particle Swarm Optimization with Selective Search

(PSOSS), a novel PSO based method has been proposed for solving highly constrained UCSP by introducing

swap sequence-based velocity, selective search and forceful swap application with repair mechanism. The

proposed method has been tested for optimising course schedule of Computer Science and Engineering

Department of Khulna University of Engineering & Technology which is relatively complex with many hard and

soft constrains. Experimental results show the superiority of the proposed method compared to other prominent

methods (e.g., GA, HS) for tackling the UCSP.

Keywords: University Course Scheduling, Particle Swarm Optimisation, Selective Search, Forceful Swap

Application, Swap operator, Repair Mechanism.

1. Introduction

The timetabling is a real-life optimization problem that deals with scheduling of events of fixed number of

timeslots and resources satisfying the soft and hard constraints and the necessary objectives as close as possible

(Chiarandini et al., 2006; Mencia et al., 2016; Tang et al., 2018). The timetabling problem is NP-hard requiring a

huge volume of computation for finding solutions, which grows exponentially with increasing problem size (Yue

et al., 2017). Timetabling problem has to satisfy two kinds of constraints namely hard and soft constraints where

hard constraints are the conditions that must be satisfied for a working timetable whereas the soft constraints are

conditions that may be violated but they affect the solution quality (Pongcharoen et al., 2008).

Timetabling problem has found many applications in different domains such as employee allotment, transport

systems, educational organizations, sports activities and industrial applications. An organization may come up

with different timetabling problems for different applications. In higher educational institutions, examination and

course scheduling are two important common and challenging tasks for optimizing physical and human resources

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287885656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:imran@cse.kuet.ac.bd
mailto:akhand@cse.kuet.ac.bd
mailto:insan_shuvo@cse.kuet.ac.bd
mailto:nh.siddique@ulster.ac.uk
mailto:adeli.1@osu.edu

2

(Mushi, 2006). Among the various timetabling problems, university course scheduling is the most complex task

requiring a set of soft and hard constraints to be satisfied. This task is well-known as University Course Scheduling

Problem (UCSP) in the literature.

The goal of UCSP is to assign all theoretical classes and laboratory sessions to instructors, rooms and time

slots considering the hard and soft constraints in a way such that there is no dispute in these assignments (Feizi-

Derakhshi et al., 2012). The challenges of the UCSP are the constraints, for example, instructors’ dispositions,

educational policies of the school, students’ cohort, availability of teaching staffs and other physical resources. In

UCSP, each instructor can teach one class at a time slot and students can just go to one class at any given time.

Other similar kind of constraints are treated as hard constraints that must be satisfied. The common soft constraints

of the UCSP are instructors’ preferences for favoured days and timeslots, and preferences for the maximum length

of breaks between teachings, which must be satisfied to the extent possible. In the UCSP the main issue is to

handle room allocation for lectures considering maximum capacity of room, number of enrolled students in a

course or class and other related facilities (Shiau, 2011; Azimi, 2005). Both the hard and soft constraints may vary

from institution to intuition based on their resources and facilities. Any resource modification or update (including

capacity alteration in resources) requires rescheduling of classes, which is very common at the beginning of a

term. UCSP is a more complex combinatorial optimization problem than other combinatorial problems such as

Travelling Salesman Problem (TSP). Although almost all metaheuristic methods have been applied to TSP, the

number of studies on UCSP is much fewer than that of TSP because too many constraints must be satisfied in

UCSP.

A number of meta-heuristic approaches (Yang et al., 2016) have been applied to the UCSP in the last few

years. Among them are genetic algorithm (GA) (Wang, 2003; Pongcharoen, 2008; Martinez‐alvarez et al., 2016;

Li et al., 2017; Zhao et al., 2018), integer linear programming (Boland et al., 2008), tabu heuristic Search (Mushi,

2006), simulated annealing (Abramson et al, 1991), hybrid evolutionary algorithm (Prieto et al., 2016) with

variable neighborhood search (Abdullah et al., 2007), hybrid GA with local search (Yang and Jat, 2011), hybrid

evolutionary approach with nonlinear great deluge (Obit et al., 2012) and hybrid electromagnetism-like

mechanism with great deluge (Turabieh et al., 2009) and Harmony Search (HS) algorithm (Al-Betar et al., 2012;

Al-Betar et al., 2009). Wang et al. (2003) investigated GA for the UCSP with multiple constraints, which resulted

in a timetable more acceptable to instructors. Mushi (2006) proposed a Tabu Search algorithm for UCSP with

emphasis on the University of Dar-assalaam that generates schedule by heuristically minimizing penalties over

infeasible solutions. Chiarandin et al. (2006) describe a metaheuristic algorithm based on the set of benchmark

instances of ‘International Timetabling Competition’. The method combines heuristics, simulated annealing,

variable neighborhood descent and tabu search.

Recently, various swarm intelligence (SI) based optimization methods have been investigated for UCSP such

as Ant Colony Optimization (ACO) (Ayob and Jaradat, 2009; Li and Zhang, 2013), honey-bee mating

optimization algorithm (Sabar et al., 2012). Among different SI methods, Particle Swarm Optimization (PSO) is

the most popular due to its simplicity and adaptation ability (Alexandridis et al., 2017). Various PSO based

strategies have been examined for UCSP. Shiau (2011) proposed an algorithm considering a bunch of constraints

and a repair mechanism for all infeasible solutions. Tassopoulos and Beligiannis (2012) proposed a hybrid PSO

algorithm for generating timetable. Chen and Shih (2013) investigated two different versions of PSO, the inertia

weight version and the constriction version. Osman (2015) proposed a PSO approach for UCSP of Najran

3

University. The algorithm consists of two steps: first, the representation of the solutions as particle (i.e. particle

encoding) and second the adjustment of the fitness function. The author used the basic PSO equations to adjust

each particle’s position and velocity.

The main objective of this paper is to solve the highly constrained UCSP problem using a modified PSO

based technique. Existing methods transform UCSP to numeric domain and then apply PSO for obtaining a viable

solution (Tassopoulos and Beligiannis, 2012; Chen and Shih, 2013). In these cases, the conventional PSO method,

used for function optimization, is chosen for the given UCSP. Instead of transforming the UCSP to numeric

domain, a better approach would be the modification of the algorithm. Moreover, current methods considered

simple instances of UCSP, which fail to provide quality solution for highly constrained scenario. In this paper,

swap sequence has been adapted for velocity calculation in UCSP and selective search as well as forceful swap

application with repair mechanism has been introduced for handling highly constrained nature of UCSP.

The proposed algorithm for the solution of the UCSP has been applied to the scheduling of department of

Computer Science and Engineering of Khulna University of Engineering & Technology (KUET). The UCSP-

KUET is considered a highly constrained realistic environment, where course scheduling is a difficult job. The

rationale for working with UCSP-KUET is that: resource is much scarcer in KUET compared to western

universities which makes it a more difficult task to create an optimal schedule. Experimental study shows that our

proposed technique performs better compared to other traditional methods such as GA, HS, Producer-Scrounger

Method (PSM) and PSO.

The rest of the paper is structured as follows: Section 2 describes the proposed method for UCSP. Section 3

presents the experimental studies with comparative analysis among algorithms. Finally, section 4 provides some

concluding remarks.

2. Optimising UCSP using PSOSS

The following sections contain a brief overview of PSO and detailed description of the proposed PSOSS

method for solving UCSP.

2.1 Overview of PSO

PSO developed by Kennedy and Eberhart (1995; 2001) is an optimization algorithm based on the social

behaviour of swarms. In PSO, a bird of a flock or fish of a school is represented by a particle, and the swarm is a

collection of particles (Chen and Shih, 2013). Every particle in the swarm indicates a candidate solution to the

optimization problem. Every particle adjusts its position in the multidimensional search space based on the

experience of its adjacent particles and personal experience. Particle uses its personal best position and the best

position among its neighbours to move towards an optimal solution. The fitness of each particle is calculated using

a fitness function which is associated with the problem at hand. PSO has been a popular technique for solving

different constrained optimization problems.

 Initially, PSO creates a population of particles randomly. The number of particles to be used in a population

is problem dependent. Every particle representing a solution to the problem has three parameters namely velocity,

position and fitness. At every iteration, a particle uses its personal best position and also the best position among

its neighbours to update its position. This process continues until it reaches a stopping criterion.

4

Consider a search space of D dimensions consisting of M particles. If a particle’s current position is 𝑋𝑝,

personal best position is 𝐵𝑝 and global best position among all the particles is 𝐺 then, velocity of a particle 𝑉𝑝 is

calculated using

 𝑉𝑝
(𝑡)

= 𝑖𝑉𝑝
(𝑡−1)

+ 𝑙1 ∗ 𝑟1 (𝐵𝑝 − 𝑋𝑝
(𝑡−1)

) + 𝑙2 ∗ 𝑟2(𝐺 − 𝑋𝑝
(𝑡−1)

) (1)

where, 𝑖 is the inertia factors, {𝑙1, 𝑙2} are learning factors, and },{ 21 rr are random values ranging from 0 to 1.

The position of the particle is updated using

𝑋𝑝
(𝑡)

= 𝑋𝑝
(𝑡−1)

+ 𝑉𝑝
(𝑡)

× 𝑇 (2)

where, 𝑇 represents time and is assumed to be unity. Position of a particle represents a solution and initially each

particle is given a random position and a random velocity. In every iteration, updated velocity of each particle is

determined using Eq. (1) and particle’s position is updated according to Eq. (2). The fitness value of each particle

is updated for the new position and the personal best position 𝐵𝑝 gets updated if a better fitness value is found

compared to the previous one. The global best position G is also updated in the same manner. G is considered as

the final result after termination of the operation. The algorithm ends when the stopping criterion is satisfied

(Montero et al., 2011).

2.2 PSOSS for solving UCSP

Proposed PSOSS method works with a population of particles in which individual particle represents a feasible

solution, calculates velocity of each individual particle using swap sequence and updates each particle with the

computed velocity through selective search and forceful swap application. The particle encoding, swap operator

and swap sequence, velocity computation, forceful swap application with repair mechanism, selective search,

fitness calculation and other operations are described in the following sections.

A. Particle Encoding

PSOSS works with a population of particles and each particle represents the complete schedule for instructors,

students, classrooms and laboratories. A particle’s solution (Sp) is represented by instructor-wise solutions in a

Sp I1 I2 I3 …. Im-1 Im

(a) Instructor-wise summary view of a particle.

45 timeslots X m instructors

45 timeslots 45 timeslots 45 timeslots

1 2 3 … 44 45 41 42 43 … 89 90 …… 45(m-1) +1 45(m-1) +2 … 45m-1 45m

Instructor 1 Instructor 2 Instructor m

Course

Code

Course

Type

Batch

Information

Group

Id

Room

No

Instructor

Id

(b) Detailed view of particle

Figure 1: Particle representation of UCSP for KUET instance.

5

one-dimensional matrix as shown in Fig.1. There are 45 continuous timeslots for each instructor and each timeslot

identifies one of the nine teaching periods in a day for five working days in a week. Figure 1(a) is the summary

view of instructors’ solution where I1, I2, and I3 denote the 1st, 2nd and 3rd instructor respectively. Figure 1(b)

shows the detailed particle view of 45 time slots for each instructor. The total number of time slots is 45 × 𝑚 for

m instructors; timeslots 1–45 for the first instructor, 46–90 for the second instructor, and so on. Each slot comprises

of assigned course type, course code, batch information, group id, room no and instructor id as shown in Fig. 1(b).

Figure 2 represents mapping of time slots of a particle in days and periods. As an example, slot 44 represents 5th

working day’s 8th period of the first instructor.

B. Swap Operator and Swap Sequence

A Swap Operator (SO) denotes the index of items to be swapped in a list.

Consider the following list L,

a b c d

 0 1 2 3

A SO(1,3) produces a new list L’ as follows:

L’ = L + SO(1,3)

a d c b

 0 1 2 3

here, ‘+’ does not mean any arithmetic operation rather it means the swap operation SO(a,b) on L.

A Swap Sequence (SS) is a group of SOs defined as follows:

𝑆𝑆 = { 𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, . . . 𝑆𝑂𝑛} (3)

Employment of a SS means application of all the SOs in a SS in that very particular order. Moreover, if

applying SS on a list A yields a list B (i.e., B = A + SS), then it can be written as

𝑆𝑆 = 𝐵 − 𝐴 (4)

For example, if SS = {(1,3), (2,0)} then,

index

L

L’

Figure 2: Mapping of time slots of a particle in days and periods.

6

L’ = L + SS

Figure 3: Instructor wise Swap Sequences (SSs) of complete SS.

C. Velocity Computation using Swap Operator and Swap Sequence

SO and SS has been used in the proposed PSOSS method for velocity calculation. The SS to convert one

particle’s solution to another particle’s solution is a collection of swap sequences which is measured in an

instructor-to-instructor basis. Consider a UCSP consisting of two instructors I1 and I2 each having two courses

C1 , C2 and C3 , C4 respectively. Figure 3 shows two different solutions A and B for the UCSP in consideration.

In solution A, instructor I1 has a course C1 in slot no 1 and another one C2 in slot no 3 whereas in solution B,

course C1 is at slot no 0 and C2 is at slot no 2. So, the required SS for converting the schedule of I1 in solution A

to schedule of I1 in solution B is SSI1 = {(1,0), (3,2)}. Similarly, SSI2 = {(0,3), (2,1)}. So the complete SS for

converting solution A to solution B is SS = {SSI1 , SSI2}.

In the proposed method, swap sequence SS is treated as velocity to update a particle’s position at each iteration

which is calculated using Eq. (5)

𝑆𝑆 = 𝛾𝑆𝑆𝑃𝐴 𝛼(𝑆𝐺𝐵 − 𝑆𝑃) 𝛽(𝑆𝑃𝐵 − 𝑆𝑃) 𝛼, 𝛽, 𝛾𝜖[0,1] (5)

where 𝑆𝑆𝑃𝐴 is the previously applied velocity, 𝑆𝑃𝐵 is the previous best solution of the particle, 𝑆𝐺𝐵 is the global

best solution of the swarm and },,{ are selection probabilities for selecting a bunch of SOs from the

corresponding SS. The equation SSGB(=SGB – Sp) represents instructor-wise SSs to reach SGB from SP and SSPB(SPB

- Sp) is the instructor-wise SSs to reach SPB from SP. However, such simple SS calculation and operation is not

suitable for solving UCSP. In UCSP, the solution for one instructor depends on others and intended swapping in

an instructor’s solution may not be feasible due to unavailability of slots and resources which is held by others.

To make the operation useful, Eq. (5) is represented in a different form as follows:

𝑆𝑆 = 𝛼(𝑆𝐺𝐵 − 𝑆𝑃) + 𝛽(𝑆𝑃𝐵 − 𝑆𝑃) 𝛾𝑆𝑆𝑃𝐴 (6)

As SSGB = SGB – Sp and SSPB = SPB - Sp , Eq. (6) can be written as:

𝑆𝑆 = 𝛼 ∗ 𝑆𝑆𝐺𝐵 + 𝛽 ∗ 𝑆𝑆𝑃𝐵 𝛾𝑆𝑆𝑃𝐴 (7)

After selection of SOs with },,{ , 𝑆𝑆 becomes

 I1 I2

0 C1

1 C1

2 C2

3 C2

 I1 I2

0 C1

1 C2

2 C2

3 C1

 𝑆𝑆I1 = {(1,0), (3,2)}

𝑆𝑆I2 = {(0,3), (2,1)}

A B
𝑆𝑆 = {𝑆𝑆I1, 𝑆𝑆I2}

7

𝑆𝑆 = 𝑆𝑆𝑆𝐺𝐵 + 𝑆𝑆𝑆𝑃𝐵 𝑆𝑆𝑆𝑃𝐴 = 𝑆𝑆𝑆𝐺𝐵 + 𝑆𝑆𝑀 (8)

where, 𝑆𝑆𝑆𝐺𝐵 , 𝑆𝑆𝑆𝑃𝐵 , 𝑆𝑆𝑆𝑃𝐴 are the selected SS from 𝑆𝑆𝐺𝐵 , 𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑃𝐴 respectively and 𝑆𝑆𝑀 is the swap

sequence resulting from merger of 𝑆𝑆𝑆𝑃𝐵 with 𝑆𝑆𝑆𝑃𝐴.

As 𝑆𝑆𝑆𝐺𝐵 and 𝑆𝑆𝑀 can contain redundant SOs, redundant swaps are removed from them and 𝑆𝑆𝑆𝐺𝐵 and 𝑆𝑆𝑀

become 𝑆𝑆𝑀𝑆𝐺𝐵 and 𝑆𝑆𝑀𝑀, respectively, after removing redundant SOs. Finally, SS becomes:

𝑆𝑆 = 𝑆𝑆𝑀𝑆𝐺𝐵 + 𝑆𝑆𝑀𝑀 (9)

This final velocity SS is then applied using forceful swap application with repair mechanism (described in section

2.2C) and selective search (described in section 2.2D).

C. Forceful Swap Application with Repair Mechanism

In the proposed method, SS for solving UCSP consists of swaps to global best (SSGB), swaps to personal Best

(SSPB) and Previously Applied Swaps (SSPA). UCSP is highly constrained in nature and most of the constrains are

interrelated. Consequently, if a class needs to be shifted to a new time slot then all the involved members such as

instructor, students and room need to be free in that time slot. As a result, most of the selected swaps can’t be

applied because of violation of constrains. Therefore, a portion of SSGB is forcefully applied to present solution SP

to ensure that SP moves a little towards SSGB. Forcefully applying a SO can result in conflicts so, a repair

mechanism is involved in forceful SO application to make sure that no invalid solution results in that process. The

repair mechanism works by randomly moving conflicting courses to non-conflicting positions.

D. Selective Search

In proposed method, velocity SS is applied using selective search mechanism. In selective search, each

solution generated by applying a SO of SS is considered as an intermediate solution and the sequence of SOs

generating the best intermediate solution is considered as the final velocity which becomes the previously applied

velocity for the next iteration.

Suppose, 𝑆𝑆 = {𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, . . . 𝑆𝑂𝑛} then the selective search can be written as

 𝑆𝑝
1 = 𝑆𝑝 + 𝑆𝑂1

 𝑆𝑝
2 = 𝑆𝑝

1 + 𝑆𝑂2 = 𝑆𝑝 + 𝑆𝑂1 + 𝑆𝑂2

………………………………………………..

 𝑆𝑝
𝑛 = 𝑆𝑝

𝑛−1 + 𝑆𝑂𝑛

In the above cases, 𝑆𝑝
1, 𝑆𝑝

2, … . . , 𝑆𝑝
𝑛 are the intermediate solutions and the intermediate solution having the highest

fitness becomes the final solution 𝑆𝑝 in selective search as defined by the following equation:

𝑆𝑝 = max {𝑆𝑝
𝑗
}, 𝑗 = 1,2, … 𝑛 (10)

Finally, the velocity is SS = {𝑆𝑂1 , 𝑆𝑂2, 𝑆𝑂3, . . . 𝑆𝑂𝑗}, 1 < j ≤ n.

The ultimate solution 𝑆𝑝 in selective search is the intermediate solution possessing the highest fitness value. Thus,

the selective search technique explores the opportunity of getting better solution from the intermediate solutions.

E. Fitness Calculation

8

Each instructor’s preference for conducting a class in a particular time slot is represented by an integer value

as shown in Fig. 4. A higher value corresponds to a higher preference of an instructor to conduct the class in that

particular time slot. Whereas, a negative value shows the instructor’s non-preference. The fitness of a particle’s

solution is calculated by considering fitness of each of the instructors’ solution which belongs to that particle’s

solution using following equation:

𝐹𝐺𝑆 = ∑ 𝐹𝐼𝑆𝑖

𝑚

𝑖=0

(11)

where, FGS is the fitness of the particle’s solution, and FIS is the fitness of the instructors’ solution.

Now, fitness of each instructor’s solution is calculated by considering quality and violation of the instructor’s

solution using the following equation:

𝐹𝐼𝑆 = 𝑄𝐼𝑆 − 𝑉𝐼𝑆 (12)

where, QIS is the quality of the instructors’ solution, and VIS is the violation of the instructor’s solution.

Preference values of corresponding positions where courses were assigned to an instructor are summed up to

calculate the satisfaction of each instructor’s solution. Violation of the instructors’ solution is calculated using the

following equation:

𝑉𝐼𝑆 = ∑ 2𝑠𝑖

𝑛

𝑖=1

(13)

where, n is the total number of blocks of consecutive classes in an instructor’s solution and s is the number of

classes in a block.

2.3 PSOSS Algorithm for UCSP

The proposed PSOSS algorithm for solving UCSP is shown in Algorithm 1. The notations and inputs of the

proposed algorithm are listed at the beginning of the Algorithm 1.

Algorithm 1: UCSP-PSOSS

Input:

Instructors’ Information, Batches’ Information,

Courses’ Information, Classrooms’ Information, Break Times’ information,

N - total number of iteration

NP - total number of particles

α - selection probability of a swap from swap sequence to global best solution

β - selection probability of a swap from swap sequence to personal best solution

Figure 4: Sample preference values for Instructors.

9

γ - selection probability of a swap from previously applied swap sequence

Fp - percentage of swaps to be forced towards global best solution

Output: An optimal solution of UCSP

Variables:

SPB - personal best solution

SGB - global best solution

SP - current solution

SR - A random solution

SSCA - currently applied swap sequence

SSPA - previously applied swap sequence

SSR - random swap sequence for all Instructors

SSH - swap sequence holder for selective search

SH - solution holder for selective search

P - set of particles

T - set of Instructors

CC - set of conflicting classes

1. create NP particles and append them to P

2. for all p ϵ P do

3. SP ← a random solution

4. calculate fitness of SP as described in section 2.2E

5. SPB ← SP //initially current solution is assigned as personal best solution

6. SSPA ← Ø

7. end for

8. SGB ← solution(max P) //select solution having highest fitness among all the particles

9. for i←1 to N do

10. for all p ϵ P do

11. SSH ← Ø

12. SH ← Ø

13. if SSPA = Ø then

14. SSPA ← SSR

15. end if

16. SSGB ← SGB – SP

17. SSPB ← SPB – SP

18. SSSGB ← α * SSGB

19. SSSPB ← β * SSPB

20. SSSPA ← γ * SSPA

21. SSM ← SSPB ⊕ SSPA //merge SSSPB with SSSPA

22. SSSMGB ← swapMinimizer(SSSGB) //remove redundant swaps

23. SSMM ← swapMinimizer(SSM)

24. for all t ϵ T do

25. SSGBt ← SSSMGB[t] //select swap sequence for Instructor t

26. NSF ← Fp * |SSGBt|

27. for a ← 1 to NSF do

28. Sp ← SP + SSGBt[a] forcefully //apply SSGBt[a] forcefully to SP

29. CC ← list of conflicting classes in SP resulting from SSGBt[a] application

30. if CC ≠ Ø then

31. for all cc ϵ CC

32. move cc to a randomly selected non-conflicting position

33. end for

34. SSCA ← SSCA ∪ {SSGBt[a]}

35. selectiveSearch(SP, SSCA, SH, SSH)

36. end for

37. for a ←NSF +1 to | SSGBt| do

38. if SSGBt[a] applicable then

39. Sp ← SP + SSGBt[a]

40. SSCA ← SSCA ∪ {SSGBt[a]}

41. selectiveSearch (SP, SSCA, SH, SSH)

42. end if

10

43. end for

44. end for

45. for all t ϵ T do

46. SSMt ← SSMM[t]

47. for a ←1 to |SSMt| do

48. if SSMt[a] applicable then

49. Sp ← SP + SSMt[a]

50. SSCA ← SSCA ∪ {SSGBt[a]}

51. selectiveSearch (SP, SSCA, SH, SSH)

52. end if

53. end for

54. end for

55. SP ← SH

56. SSPA ← SSH

57. calculate fitness of SP as described in section 2.2 D

58. if fitness(SP) > fitness(SPB) then

59. SPB ← SP

60. end if

61. end for

62. SGBT ← solution(max P)

63. if fitness(SGBT) > fitness(SGB) then

64. SGB ← SGBT

65. end if

66. end for

Algorithm 1.1 selectiveSearch

Input: SP, SSCA, SH, SSH

1. if SH = Ø ∨ fitness(SH)<fitness(SP) then

2. SH ← SP

3. SSH ← SSCA

4. end if

In the proposed algorithm, initial population of particles is generated by creating specified number of

particles. Each particle’s current solution SP gets initialized by a random solution. The fitness of each particle’s

current solution is calculated as described in section 2.2E. SP also becomes the personal best solution SPB initially.

Also, the previously applied swap sequence SSPA is initially empty. Then, the solution having the highest fitness

among all the particles is selected as the global best solution SGB. In each iteration, for each particle SH and SSH

are emptied to be used for selective search. SH is used to hold best intermediate solution and SSH holds the swap

sequence that produces SSH. A random swap sequence is assigned to SSPA if it is empty. Then instructor-wise

swap sequences to reach SGB and SPB from SP are calculated which are represented by SSGB(=SGB – SP) and

SSPB(=SPB – SP) respectively. Some swaps are selected for each instructor from SSGB based on the selection

probability α denoted by SSSGB(=α * SSGB). Similarly, SSSPB(=β * SSPB) and SSSPA(=γ * SSPA) are the selected swaps

from SSPB and SSPA respectively. SSSPB and SSSPA are merged together to SSM(=SSPB ⊕ SSPA). Redundant swaps

are removed from SSSGB and SSM using swapMinimizer() function, results of which are denoted by SSSMGB and

SSMM respectively. After that, for each instructor a portion of SSSMGB is selected using the equation Fp * | SSGBt |,

where FP is the force percentage and SSGBt is the swap sequence corresponding to an instructor t. Swaps of this

selected portion are forcefully applied to SP and resulting conflicts are resolved by randomly moving the

conflicting classes to non-conflicting positions. Rest of the swaps are applied to SP if they do not create any

conflicts. Similarly, the swaps from SSMM are applied only if they are applicable. Each applied swap gets added

11

to SSCA which holds currently applied swap sequence and. The selective search technique is used after applying

each swap to ensure that best intermediate solution is retained. Algorithm 1.1 shows the required steps of selective

search. It simply updates SH and SSH with SP and SSCA respectively only if SP is found better than SH. Finally,

after the application of all the swaps the best intermediate solution SH becomes particle’s solution SP and the

swap sequence SSH that produces SH becomes SSPA for next iteration. Then SPB is updated if SP is found better

than SPB. Finally, SGB is recalculated and algorithm goes to next iteration. The algorithm uses a predefined number

of iterations N as the termination criteria. After termination SGB is considered as the final solution.

2.4 Illustration of the Mechanism of PSOSS with a Sample Problem

Figure 5: Illustration of the mechanism of PSOSS with a sample problem.

12

A schematic representation of the proposed method in shown in Fig. 5. Suppose, a system consisting of three

instructors I1, I2 and I3, each having five weekly slots that need to be scheduled. In Fig. 5, SP is a particle’s present

solution which consists of individual solution of all three instructors, SGB is the global best solution and SPB is the

particle’s personal best solution. SSGB(=SGB – Sp) represents instructor-wise swap sequences to reach SGB from SP

, and SSPB(SPB - Sp) is the instructor-wise swap sequences to reach SPB from SP. SSPA is the previously applied

instructor-wise swap sequences. The circle (○) symbol inside the swap sequences represents a swap operator.

In the first step, some swaps are selected for each instructor from SSGB based on the selection probability α

denoted by SSSGB(=α * SSGB). Similarly, SSSPB(=β * SSPB) and SSSPA(=γ * SSPA) are the selected swaps from SSPB

and SSPA respectively. The redundant swaps are removed from SSSGB using swapMinimizer() function, result of

which is denoted by SSSMGB (swaps numbered 1, 2, 3, 4, 5 and 6 in Fig. 5) . Then, SSSPB and SSSPA are merged

together to SSM(=SSPB ⊕ SSPA) before removing the redundant swaps from them. The redundant swaps are

removed from SSM using swapMinimizer() function, result of which is denoted by SSMM (swaps numbered 7, 8,

9, 10, 11 and 12 in Figure 5). After that, a portion of SSSMGB is selected using the equation Fp * | SSSMGB | , where

FP is the force percentage. This selected portion of SSSMGB is denoted by SSSMGBFA (swaps numbered 1, 3 and 5 in

Fig. 5) and the rest of the swaps are denoted by SSSMGBTA (swaps numbered 2, 4 and 6 in Fig. 5). Swaps of SSSMGBFA

are forcefully applied to SP and then the swaps of SSSMGBTA are applied to SP if they do not create any conflicts.

Any conflict resulting from forceful swap application is handled by repair mechanism as described in section

2.2C. Similarly, the swaps from SSMM are applied only if they are applicable. In Fig. 5, a solution resulting from

application of a swap is represented by assigning that swap number above the solution. For example, if a swap

say 1 is applied on solution SP then it becomes 𝑆𝑃
1 and similarly applying swap 3 on 𝑆𝑃

1 makes it 𝑆𝑃
3. In the example

shown in Fig. 5, swaps numbered 1, 3 and 5 are forcefully applied on initial solution SP making it 𝑆𝑃
5 . Then swap

numbered 2 gets applied on 𝑆𝑃
5 resulting in 𝑆𝑃

2 as there is no conflicts. Solution stays at 𝑆𝑃
2 because swaps numbered

4, 6 and 7 are not applied because of conflicts. Then rest of the swaps 8, 9, 10, 11 and 12 are applied because then

do not give any conflicts. The best one among these solutions is then picked as particle’s solution. Accordingly,

SPB and SGB are updated for the next iteration.

3. Experimental Studies

This section investigates the effectiveness and performance of the PSOSS algorithm on UCSP-KUET instance

for obtaining a viable timetable. The performance of the proposed algorithm has been compared with the

performances of GA, HS, PSO and PSM for the same UCSP-KUET instance with the same experimental and

parameter settings. This section also contains an experimental analysis for better understanding of the performance

of the proposed method.

GA is a search and optimization algorithm mimicking natural selection and genetic mechanisms which includes

crossover and mutation (Pillon et al., 2016; Kyriklidis and Dounias 2016; Padillo et al., 2018). The main notion

of GA is the survival of the fittest (Rostami Neri, 2016). GA obtains a solution with the highest fitness after several

iterations, which is considered the optimal solution (Adeli and Hung, 1995; Siddique and Adeli, 2013; Siddique,

2014). For ease of implementation, single point crossover is used in this paper with a crossover probability of

0.70. Mutation is performed by randomly changing the time slot of a course for a randomly selected instructor

with mutation rate of 0.20. Elitism is also considered for implementation with an elite list of size 2.

HS algorithm is based on the notion of harmonic phenomena in musical performance. It is a population based

algorithm inspired by improvisation process of musicians [Siddique and Adeli, 2017; 2015a; 2015b; 2015c]. There

13

are two unique operators in HS: Harmony Memory Consideration Rate (HMCR) and Pitch Adjustment Rate

(PAR) which are used to produce and modify a solution, respectively [Wang et al., 2015]. HS is implemented

with a HMCR of 0.95 and a PAR of 0.1 respectively.

In PSM, solution having the best fitness becomes the producer, some solutions having the worst fitness become

dispersed members and the rest of the solutions are considered as scroungers. In each iteration, producer tries to

find a better solution, scroungers move toward the producer with the hope of finding better solution and dispersed

members move randomly for finding new solutions [Akhand et al., 2015]. PSM is implemented with a swap

selection probability of 0.3 in this paper.

Standard PSO is also investigated for comparison in this paper. Picked values of the tuning parameters alpha,

beta and gamma for implementation of PSO and PSOSS are 0.3, 0.5 and 0.2 respectively. Also a force rate of

100% has been used for PSOSS.

The hard constraints of UCSP-KUET instance are:

- A student can only go to a single class in a timeslot.

- An instructor cannot conduct multiple classes in a timeslot.

- Courses cannot be assigned to break periods.

- Courses requiring multiple slots such as laboratory courses cannot include break periods.

- Courses can be assigned to allowed rooms only.

The soft constraints of UCSP-KUET instance are:

- Maintain preference of instructor as much as possible.

- Keep the amount of consecutive classes as few as possible for instructors.

The algorithm has been implemented in Visual C++ of Microsoft’s Visual Studio 2013 on Windows 10

platform on Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz processor, and 8 GB RAM.

3.1 Experimental Environment

In the experimental environment, both instructors’ flexibility, and students’ flexibility are considered. The

weekly time slots for instructors and their preferences are given in Fig. 2 and Fig. 4 respectively. The preferences

varied from -1 to 5, where -1 means the lowest preference and 5 means the highest preference. Experiments with

real-world input data taken from the department of Computer Science and Engineering (CSE) of Khulna

University of Engineering & Technology (KUET) have been conducted. In KUET, there are 5 days for teaching

in a week and each teaching day is divided into 9 teaching time slots of 45 minutes duration. The theory and

laboratory classes are conducted by a single instructor and the duration of each laboratory session as well as an

M.Sc. class is three consecutive time slots.

3.2 Input Data Preparation

Table 1 lists the used preference values of all the instructors. There are five batches of students in the CSE

Department at KUET: four batches in the undergraduate level and one batch at the postgraduate (MSc) level. In

total 38 courses are taught by 27 instructors. Odd-numbered courses represent theory courses and even-numbered

courses represent laboratory courses. Table 2 shows which courses belong to which batch, the required credit

hours for each course, number of weekly classes required for a course, time duration of a class, course type and

the number of registered students of a course.

Table 3 shows the number of courses assigned to an instructor, the courses allocated to each instructor and

the weekly workload of each instructor. Table 4 shows the class room id, room type, maximum seating capacity

and allowable courses that can be taught in the class room. There are two types of class rooms: lecture room and

14

laboratory room. As the laboratory rooms support a maximum of 30 students, a batch of 60 students needs to be

divided into two subgroups of 30 students.

15

T
ab

le 1
: In

p
u
t p

referen
ce v

alu
es fo

r in
stru

cto
rs.

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

I1

-1

-1

0

2

2

1

4

4

4

1

1

2

5

5

5

4

4

4

-1

1

1

5

5

5

4

4

2

2

2

2

5

5

5

4

4

4

4

4

3

2

1

0

-1

-1

-1

I2

1

1

1

2

2

1

4

4

4

2

2

2

5

5

5

4

4

4

0

1

1

5

5

5

4

4

2

2

2

2

5

5

5

4

4

4

4

4

3

2

1

0

-1

-1

-1

I3

-1

-1

0

2

2

1

4

4

4

1

1

2

5

5

5

4

4

4

-1

1

1

5

5

5

4

4

2

2

2

2

4

5

5

4

4

4

4

4

3

2

1

0

1

1

1

I4

1

1

1

2

2

3

4

4

4

2

2

2

5

5

5

4

4

4

0

1

1

5

5

5

4

4

2

2

2

2

4

5

5

4

4

4

4

4

3

2

1

0

-1

-1

-1

I5

-1

-1

0

-1

-1

3

1

1

1

-1

-1

0

1

1

2

2

2

1

-1

2

2

1

2

2

4

2

-1

2

2

2

4

2

2

2

2

2

1

2

3

5

1

0

-1

-1

-1

I6

-1

-1

0

2

2

3

2

2

2

0

1

2

2

1

2

2

2

1

-1

2

2

2

2

2

4

2

-1

2

2

2

4

2

2

2

2

2

1

2

4

5

1

0

-1

-1

-1

I7

1

1

1

2

2

3

2

2

2

0

2

2

2

2

2

2

2

1

0

2

2

2

2

2

4

2

1

2

1

2

4

2

2

2

2

2

1

2

4

5

1

0

1

1

1

I8

-1

-1

0

2

2

3

2

2

2

0

2

2

2

2

2

2

2

1

-1

2

2

2

2

2

4

2

1

2

1

2

4

2

2

2

2

2

1

2

4

5

1

0

-1

-1

-1

I9

1

1

1

2

2

3

2

2

2

0

2

2

2

2

2

2

2

2

0

2

2

2

2

2

4

2

-1

2

1

2

4

2

2

2

2

2

2

4

4

2

1

0

-1

-1

-1

I1
0

-1

-1

0

2

2

3

2

2

2

0

2

2

2

2

2

2

2

2

-1

2

2

2

2

2

4

2

-1

-1

1

2

4

2

2

2

2

2

2

4

4

2

1

0

-1

-1

-1

I1
1

-1

-1

0

2

2

3

2

2

2

0

2

2

2

2

2

2

2

2

-1

2

2

2

2

2

4

2

-1

-1

4

2

4

2

2

2

2

2

2

4

4

2

1

0

1

1

1

I1
2

1

1

1

2

2

3

2

4

2

0

2

2

2

2

2

2

2

2

0

2

2

2

2

2

4

2

-1

-1

4

2

4

2

2

2

2

2

2

4

4

2

1

0

-1

-1

-1

I1
3

-1

-1

0

2

2

3

2

4

2

0

2

2

2

4

2

2

2

2

-1

2

2

2

4

2

2

4

-1

-1

4

2

4

2

2

2

2

2

-1

2

4

2

1

0

-1

-1

-1

I1
4

1

1

1

2

2

3

2

4

2

0

4

2

1

4

2

2

2

2

1

2

2

1

4

2

2

4

1

-1

4

2

4

2

2

2

2

2

-1

2

3

2

1

0

-1

-1

-1

I1
5

-1

-1

0

2

2

2

1

4

2

0

4

2

2

4

2

2

2

2

-1

2

2

2

4

2

2

4

1

1

1

2

4

2

2

2

2

2

-1

2

3

2

1

0

1

1

1

I1
6

-1

-1

0

2

2

2

1

4

2

0

4

2

2

4

2

2

2

1

-1

2

2

2

4

2

2

4

1

1

1

2

4

2

2

2

2

2

-1

2

3

2

1

0

-1

-1

-1

I1
7

1

1

0

2

2

2

1

4

2

0

4

2

2

4

2

2

2

1

1

2

2

2

4

2

2

4

1

1

1

2

4

2

2

2

2

2

0

4

3

2

1

0

-1

-1

-1

I1
8

-1

-1

0

2

2

2

3

4

2

0

4

2

2

2

4

2

2

1

-1

2

2

2

4

2

2

4

1

2

1

2

4

2

2

2

2

2

0

4

3

2

1

0

-1

-1

-1

I1
9

1

1

1

2

2

2

3

4

2

0

4

2

2

2

4

2

2

1

1

2

2

2

4

2

2

4

1

2

4

2

4

2

2

2

2

2

0

4

3

2

1

0

1

1

1

I2
0

-1

-1

0

2

2

2

3

2

2

0

4

2

2

2

4

2

2

2

-1

2

2

2

4

2

2

4

1

2

4

2

4

2

2

2

2

2

0

4

2

2

1

0

-1

-1

-1

I2
1

-1

-1

0

2

2

2

3

2

2

0

4

2

4

2

4

2

2

2

-1

2

2

4

4

2

2

2

1

2

4

2

4

2

2

2

2

2

-1

2

2

2

1

0

-1

-1

-1

I2
2

1

1

1

2

2

3

2

2

2

0

2

2

4

2

4

2

2

2

1

2

2

4

4

2

2

2

1

2

1

2

4

2

2

2

2

2

-1

2

2

2

1

0

-1

-1

-1

I2
3

-1

-1

0

2

2

3

2

2

2

-1

0

2

4

2

4

2

2

2

-1

2

2

4

4

2

2

2

1

2

1

2

4

2

2

2

2

2

-1

2

2

2

1

0

1

1

1

I2
4

1

1

1

2

2

3

2

2

2

-1

0

2

4

2

4

2

2

2

0

2

2

4

4

2

2

2

1

2

1

2

4

2

2

2

2

2

-1

2

2

2

1

0

-1

-1

-1

I2
5

-1

-1

0

2

2

3

2

2

2

-1

0

2

4

2

4

2

2

2

-1

2

2

4

2

2

2

2

1

2

4

2

4

2

2

2

2

2

-1

2

2

2

1

0

-1

-1

-1

I2
6

1

1

1

2

2

3

2

2

2

-1

0

2

2

2

4

2

2

2

0

2

2

2

2

2

2

2

1

2

4

2

4

2

2

2

2

2

-1

2

2

2

1

0

1

1

1

I2
7

-1

-1

0

2

2

3

2

2

2

-1

0

2

2

2

4

2

2

2

-1

2

2

2

2

2

2

2

1

2

4

2

4

2

2

2

2

2

1

2

3

2

1

0

-1

-1

-1

16

3.3 Experimental Results and Analysis

The size of the initial population of all the algorithms investigated in this study (i.e. GA, PSO, PSM, HS and

PSOSS) is kept equal. The population size is one of the important parameters. Its impact is evaluated as the

computation cost increases with growing population size. A second parameter is the maximum number of

iterations for convergence to an optimal solution. On the other hand, individual algorithms have their own

parameters. In this section, first the effect of the number of iterations and population size on the algorithms is

investigated. Next, algorithms are compared based on instructors’ satisfaction followed by the sample timetables

generated for an instructor by the algorithms.

Table 2: Batch and course information.

Batch

Name

Course No. Credit Nos / Week Hrs /

Class

Type of

Course

No of

Students

B1 /

1st

Year

CSE 1201 3.0 3 1 Theory 60

CSE 1202 1.5 2 3 Laboratory 30

CSE 1203 3.0 3 1 Theory 60

CSE 1204 1.5 2 3 Laboratory 30

EEE 1217 3.0 3 1 Theory 60

EEE 1218 0.75 1 3 Laboratory 30

CHEM 1207 3.0 3 1 Theory 60

CHEM 1208 0.75 1 3 Laboratory 30

MATH 1207 3.0 3 1 Theory 60

ME 1270 0.75 1 3 Laboratory 30

B2 /

2nd

Year

CSE 2200 1.5 2 3 Laboratory 30

CSE 2201 3.0 3 1 Theory 60

CSE 2202 1.5 2 3 Laboratory 30

CSE 2207 3.0 3 1 Theory 60

CSE 2208 0.75 1 3 Laboratory 30

CSE 2213 3.0 3 1 Theory 60

EEE 2217 3.0 3 1 Theory 60

EEE 2218 1.5 2 3 Laboratory 30

MATH 2207 3.0 3 1 Theory 60

B3 /

3rd

Year

CSE 3200 1.5 2 3 Laboratory 30

CSE 3201 3.0 3 1 Theory 60

CSE 3202 1.5 2 3 Laboratory 30

CSE 3203 3.0 3 1 Theory 60

CSE 3204 0.75 1 3 Laboratory 30

CSE 3207 3.0 3 1 Theory 60

CSE 3211 3.0 3 1 Theory 60

CSE 3212 0.75 1 3 Laboratory 30

ECE 3215 3.0 3 1 Theory 30

B4/

4th

Year

CSE 4207 3.0 3 1 Theory 60

CSE 4208 0.75 1 3 Laboratory 30

CSE 4211 3.0 3 1 Theory 60

CSE 4212 0.75 1 3 Laboratory 30

CSE 4239 3.0 3 1 Theory 60

IEM 4227 3.0 3 1 Theory 60

HUM 4207 3.0 3 1 Theory 60

B5/

M.Sc.

CSE 6225 3.0 1 3 Theory 10

CSE 6465 3.0 1 3 Theory 10

CSE 6471 3.0 1 3 Theory 10

17

For better understanding of the effect of varying population size on the algorithms, fitness values are

calculated by varying the population size from 5 to 300 while keeping the iteration number fixed at 100. The

results of varying population sizes are shown in Fig. 6. It is clear from the figure that PSOSS outperforms all the

other algorithms for varying population sizes because of the use of the force in PSOSS that assures all the particles

Table 3: Course information for each instructor.

Instructor

ID

No. of

Courses

Course Code Weekly Workload

(Hrs/Week)

I1 4 CSE 1203, CSE 1204, CSE 2201, CSE 2202 18

I2 4 CSE 3211, CSE 3212, CSE 4239, CSE 6225 12

I3 2 CSE 3201, CSE 3202 9

I4 1 CSE 3200 6

I5 3 CSE 4211, CSE 4212, CSE 6471 9

I6 2 CSE 4207, CSE 6465 6

I7 1 CSE 2207 3

I8 1 CSE 1201 3

I9 1 CSE 2208 3

I10 2 CSE 2200, CSE3207 9

I11 1 CSE 3203 3

I12 1 CSE 1202 6

I13 1 CSE 4208 3

I14 1 CSE 2213 3

I15 1 CSE 3204 6

I16 1 EEE 1217 3

I17 1 EEE 1218 3

I18 1 EEE 2217 3

I19 1 EEE 2218 6

I20 1 MATH 1207 3

I21 1 MATH 2207 3

I22 1 ECE 3215 3

I23 1 ME 1270 3

I24 1 IEM 4227 3

I25 1 CHEM 1207 3

I26 1 CHEM 1208 3

I27 1 HUM 4207 3

Figure 6: Variation effect of Population Size.

280

320

360

400

440

480

0 50 100 150 200 250 300

Fitness Varying Population for Iteration =100

GA PSO PSM HS PSOSS

Population

Fi
tn

es
s

18

move a little towards the global best and the personal best solutions as described in section 2.2C. Among the other

algorithms PSM works well for low population size because the producer improves its fitness in each iteration.

The effect of varying iterations on the algorithms is shown in Fig. 7. The maximum number of iterations is

varied from 5 to 300 while keeping the population size fixed at 50. It is clear from the figure that PSOSS performs

better than other algorithms for all max number of iterations. Standard PSO is the second best performer.

One of the objectives of optimizing UCSP is to satisfy the demands of instructors’ having high workload as

much as possible. Therefore, algorithms are compared based on the percentage of instructors’ satisfaction. The

percentage of satisfaction for an instructor is computed using the formula:

𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛𝐼 =
𝐹𝐼𝑆

𝑀𝐹𝐼𝑆

∗ 100
(13)

Table 4: Information for classrooms and laboratories.

Room ID Room Type Room capacity Allowable Courses

CR1 Lecture 60

Any Theoretical Subjects

CR2 Lecture 60

CR3 Lecture 60

CR4 Lecture 60

CR5 Lecture 60

LB1 Laboratory 30 CSE 2200, CSE 3202, CSE 4208, CSE 4212

LB2 Laboratory 30 CSE2200, CSE4212, CSE3212, CSE2208, CSE3202

LB3 Laboratory 30 CSE 1202, CSE 2202

LB4 Laboratory 30 CSE1204

LB5 Laboratory 30 CSE3204

LB6 Laboratory 30 ME1270

LB7 Laboratory 30 EEE1218, EEE2218

LB8 Laboratory 30 CHEM1208

Figure 7: Variation effect of Iterations.

280

320

360

400

440

480

0 50 100 150 200 250 300

Fitness Varying Iteration for Pop=50

GA PSO PSM HS PSOSS

Iteration

Fi
tn

es
s

19

where, 𝑀𝐹𝐼𝑆 is the maximum possible fitness of an instructor’s solution, 𝐹𝐼𝑆 is the achieved fitness of an

instructor’s solution as described by Eq. (12).

Table 5 shows the achieved satisfaction value (in %) for all the instructors for all the algorithms. It also

includes weekly work load for each instructor. It is seen from the table that the instructor I1 has the highest

workload among all others and PSOSS achieved the highest satisfaction value (in %) for instructor I1 which is

also the case for the second highest work load for instructor I2. Though for some instructors with some less work

load, the satisfaction value achieved by PSOSS is not higher than other algorithms but the average satisfaction

value achieved by PSOSS is much higher than other algorithms. This shows a significant performance indicator.

Table 6 shows the timetable for instructor I1 generated by the algorithms GA, PSO, HS, PSM and PSOSS.

In the generated timetable G0 denotes a batch and G1 and G2 represent subgroups. From the generated timetable

by PSOSS shown in Table 6 (e), it can be seen that I1 has a Laboratory class CSE 1204 in timeslots 7, 8 and 9 on

Sunday which is desirable because I1 has maximum preference of 4 in these periods for Sunday as stated in Table

1. Similarly, timetable for other days also adheres to instructor I1’s preference in most of the cases. Overall, the

timetable generated by PSOSS for instructor I1 is satisfactory compared to timetables generated by other

algorithms. It is to be noted that KUET has working days from Sunday to Thursday.

Table 5: Instructors’ satisfaction values achieved by implemented algorithms

Instructor Course

Load

Achieved satisfaction values (in %)

GA PSO HS PSM PSOSS

I1 18 71.6 64.2 76.54 83.95 95.06

I2 12 87.72 71.93 56.14 82.46 89.47

I3 9 70.45 75 65.91 72.73 93.18

I4 6 80 53.33 80 60 80

I5 9 74.07 70.37 33.33 85.19 85.19

I6 6 54.55 54.55 59.09 68.18 81.82

I7 3 46.15 46.15 46.15 69.23 69.23

I8 3 46.15 30.77 46.15 76.92 100

I9 3 41.67 25 41.67 41.67 66.67

I10 9 77.78 77.78 51.85 70.37 81.48

I11 3 25 66.67 66.67 100 75

I12 6 62.5 66.67 37.5 75 75

I13 3 83.33 50 83.33 50 66.67

I14 3 75 50 66.67 58.33 66.67

I15 6 50 29.17 45.83 62.5 62.5

I16 3 41.67 25 66.67 83.33 66.67

I17 3 58.33 25 66.67 50 66.67

I18 3 66.67 50 50 66.67 50

I19 6 62.5 79.17 37.5 70.83 75

I20 3 83.33 58.33 41.67 66.67 66.67

I21 3 100 66.67 41.67 66.67 100

I22 3 41.67 75 50 83.33 75

I23 3 83.33 50 58.33 66.67 83.33

I24 3 66.67 66.67 75 66.67 83.33

I25 3 50 66.67 33.33 66.67 75

I26 3 41.67 50 50 50 66.67

I27 3 58.33 58.33 25 75 100

Avg.

Satisfaction

 67.14 60.07 56.89 72.44 81.63

20

 Table 6: Sample Timetable for Instructor 1 generated by GA, PSO, HS, PSM and PSOSS.

(a) GA

Day
Time Slot

1 2 3 4 5 6

L
U

N
C

H

 B
R

E
A

K

7 8 9

Sun CSE1204 (LB4|B1|G1|I1)
CSE1203

(CR1|B1|G0|I1)

Mon
CSE2201

(CR4|B2|G0|I1)

CSE2201

(CR5|B2|G0|I1)

Tue
CSE1203

(CR5|B1|G0|I1)
 CSE2202 (LB3|B2|G0|I1)

Wed CSE1204 (LB4|B1|G2|I1)
CSE1203

(CR2|B1|G0|I1)

Thu
CSE2202

(LB3|B2|G1|I1)

CSE2201

(CR1|B2|G0|I1)

(b) PSO

Day
Time Slot

1 2 3 4 5 6

L
U

N
C

H

 B
R

E
A

K

7 8 9

Sun CSE2202 (LB3|B2|G0|I1)

Mon
CSE1203

(CR5|B1|G0|I1)

CSE2201

(CR3|B2|G0|I1)

Tue
CSE2201

(CR1|B2|G0|I1)

CSE1203

(CR4|B1|G0|I1)
 CSE2202 (LB3|B2|G1|I1)

Wed CSE1204 (LB4|B1|G1|I1)
CSE1204

(LB4|B1|G2|I1)

Thu
CSE2201

(CR4|B2|G0|I1)

CSE1203

(CR4|B1|G0|I1)

(c) HS

Day
Time Slot

1 2 3 4 5 6
L

U
N

C
H

 B

R
E

A
K

 7 8 9

Sun
CSE2201

(CR4|B2|G0|I1)
 CSE1204 (LB4|B1|G1|I1)

Mon
CSE2201

(CR4|B2|G0|I1)

CSE2201

(CR3|B2|G0|I1)

Tue CSE2202 (LB3|B2|G0|I1)

Wed
CSE1203

(CR4|B1|G0|I1)

CSE2202

 (LB3|B2|G1|I1)

CSE1204

(LB4|B1|G2|I1)

Thu
CSE1203

(CR3|B1|G0|I1)

CSE1203

(CR1|B1|G0|I1)

(d) PSM

Day
Time Slot

1 2 3 4 5 6

L
U

N
C

H

 B
R

E
A

K
 7 8 9

Sun
CSE1203

(CR2|B1|G0|I1)

CSE1203

(CR2|B1|G0|I1)

Mon
CSE1204

(LB4|B1|G2|I1)

CSE2201

(CR3|B2|G0|I1)
CSE2202 (LB3|B2|G1|I1)

Tue CSE1204 (LB4|B1|G1|I1)

Wed CSE2202 (LB3|B2|G0|I1)
CSE2201

(CR4|B2|G0|I1)

CSE1203

(CR5|B1|G0|I1)

Thu
CSE2201

(CR5|B2|G0|I1)

(e) PSOSS

Day
Time Slot

1 2 3 4 5 6

L
U

N
C

H

 B
R

E
A

K
 7 8 9

Sun CSE 1204 (LB4|B1|G1|I1)

Mon
CSE2202

(LB3|B2|G2|I1)

CSE1203

(CR3|B1|G0|I1)

Tue
CSE2201

(CR5|B1|G0|I1)

CSE2201

(CR3|B2|G0|I1)

CSE1203

(CR5|B1|G0|I1)

Wed CSE2202 (LB3|B2|G1|I1)
CSE2201

(CR1|B2|G0|I1)

CSE1203

(CR5|B1|G0|I1)

Thu CSE 1204 (LB4|B2|G2|I1)

21

4. Conclusions

In this paper, a PSO based innovative technique PSOSS has been proposed to solve UCSP. The proposed

method differs from existing methods, including many variants of PSO-based approaches, where UCSP is

transformed into an equivalent numerical domain. The proposed PSOSS approach uses a swap sequence based

discrete PSO with a number of modifications. The velocity swap sequence is managed in two different parts:

sequences for global best; and sequences combining personal best and previous velocity. A portion of global

sequence portion is considered to be applied forcefully with repair mechanism to change other dependent

schedule. After applying SOs one by one, the best intermediate solution is considered as the final solution based

on selective search. The results obtained by our proposed method show significant improvement in respect of

quality of solutions compared to other traditional methods.

References

[Chiarandini et al., 2006] M. Chiarandini, M. Birattari, K. Socha and O. Rossi-Doria, Olivia (2006), “An effective hybrid

algorithm for university course timetabling”, Journal of Scheduling, vol. 9, no. 5, pp. 403- 432.

[Mencia et al., 2016] R. Mencıa, M.R. Sierra, C. Mencıa, and R. Varela (2016), “Genetic algorithms for the scheduling problem

with arbitrary precedence relations and skilled operators,” Integrated Computer-Aided Engineering, vol. 23, no. 3, pp.

269-285.

[Tang et al., 2018] Tang, Y., Liu, R., Wang, F., Sun, Q., and Kandil, A.A. (2018), “Scheduling Optimization of Linear Schedule

with Constraint Programming,” Computer-Aided Civil and Infrastructure Engineering, vol. 33, no. 2, pp. 124-151.

 [Yue et al., 2017] Yue, Y., Han, J., Wang, S., and Liu, X. (2017), “Integrated Train Timetabling and Rolling Stock Scheduling

Model Based on Time-Dependent Demand for Urban Rail Transit,” Computer-Aided Civil and Infrastructure

Engineering, vol. 32, no. 10, pp. 856-873.

[Pongcharoen et al., 2008] P. Pongcharoen, W. Promtet, P. Yenradee and C. Hicks (2008), “Stochastic Optimisation

Timetabling Tool for university course scheduling”, International Journal of Production Economics, vol. 112, no. 2,

pp.903-918.

[Mushi, 2006] A. R. Mushi (2006), “Tabu Search Heuristic for University Course Timetabling Problem,” African Journal of

Science and Technology (AJST), Science and Engineering Series, vol. 7, no. 1, pp. 34 – 40.

[Feizi-Derakhshi et al., 2012] M. Feizi-Derakhshi, H. Babaei and J. Heidarzadeh (2012), “A Survey of Approaches for

University Course Timetabling Problem,” Proceedings of 8th International Symposium on Intelligent and

Manufacturing Systems (IMS) , Adrasan, Antalya, Turkey, pp. 307-321.

[Shiau, 2011] D. Shiau (2011), “A hybrid particle swarm optimization for a university course scheduling problem with flexible

preferences,” Expert Systems with Applications, vol. 38, pp. 235–248.

[Azimi, 2005] Z. N. Azimi (2005), “Hybrid heuristics for Examination Timetabling problem”, Applied Mathematics and

Computation, vol. 163, pp. 705–733.

[Yang et al., 2016] Z. Yang, M. Emmerich, T. Baeck, and J. Kok (2016), “Multiobjective Inventory Routing with Uncertain

Demand Using Population-based Metaheuristics,” Integrated Computer-Aided Engineering, vol. 23, no. 3, pp. 205-220.

[Wang, 2003] Y. Wang (2003), “Using genetic algorithm methods to solve course scheduling problems,” Expert Systems with

Applications, vol. 25, pp. 39-50.

[Martinez‐alvarez et al., 2016]A. Martinez‐alvarez, R. Crespo Cano, A. Diaz-Tahoces, S. Cuenca-Asensi, J.M. Ferrandez

Vicente, and E. Fernandez Jover (2016), “ Automatic Tuning of a Retina Model for a Cortico Visual Neuroprosthesis

Using a Multi‐objective Optimization Genetic Algorithm,” International Journal of Neural Systems, vol. 26, no. 7.

[Li et al., 2017] Li, W., Pu, H., Schonfeld, P., Yang, J., Zhang, H., Wang, L., and Xiong, J. (2017), “Mountain railway

alignment optimization with bidirectional distance transform and genetic algorithm,” Computer-Aided Civil and

Infrastructure Engineering, vol. 32, no. 8, pp. 691-709.

[Zhao et al., 2018]Zhao, W., Guo, S., Zhou, Y., and Zhang, J. (2018), “A Quantum-Inspired Genetic Algorithm-Based

Optimization Method for Mobile Impact Test Data Integration,” Computer-Aided Civil and Infrastructure Engineering,

vol. 33, no. 5, pp. 411-422.

[Boland et al., 2008] N. Boland, B. D. Hughes, L. T .G. Merlot, P. J. Stuckey (2008), “New integer linear programming

approaches for course timetabling”, Computers & Operations Research, vol. 35, no. 7, pp. 2209-2233.

22

[Abramson et al, 1991] Abramson, D. (1991), “Constructing School Timetables Using Simulated Annealing: Sequential and

Parallel Algorithms.” Management Science, vol. 37, no. 1, pp. 98–113.

[Prieto et al., 2016] A. Prieto, F. Bellas, P. Trueba, and R.J. Duro (2016), “Real-Time Optimization of Collective Non-

separable Problems through Distributed Embodied Evolution,” Integrated Computer-Aided Engineering, vol. 3, no. 3,

pp. 237-253.

[Abdullah et al., 2007] S. Abdullah, E. K. Burke and B. McCollum (2007), "A hybrid evolutionary approach to the university

course timetabling problem," IEEE Congress on Evolutionary Computation, Singapore, pp. 1764-1768.

[Yang and Jat, 2011] Shengxiang Yang, and Sadaf Naseem Jat (2011), "Genetic Algorithms With Guided and Local Search

Strategies for University Course Timetabling," IEEE Transaction on systems, Man, and Cybernetics-part C:

applications and reviews, vol. 41, no. 1, pp.93-106.

[Obit et al., 2012] Joe Henry Obit, Djamila Ouelhadj, Dario Landa-Silva and Rayner Alfred (2012), “An Evolutionary Non-

Linear Great Deluge Approach for Solving Course Timetabling Problems,” IJCSI International Journal of Computer

Science Issues, vol. 9, no 2.

[Turabieh et al., 2009] Turabieh H., Abdullah S., McCollum B. (2009), “Electromagnetism-like Mechanism with Force Decay

Rate Great Deluge for the Course Timetabling Problem,” In: Wen P., Li Y., Polkowski L., Yao Y., Tsumoto S., Wang G.

(eds) Rough Sets and Knowledge Technology. RSKT 2009. Lecture Notes in Computer Science, vol 5589, Springer,

Berlin, Heidelberg.

[Al-Betar et al., 2012] Al-Betar, Mohammed Azmi and Ahamad Tajudin Abdul Khader (2012), “A harmony search algorithm

for university course timetabling.” Annals of Operations Research, vol. 194, pp. 3-31.

[Al-Betar et al., 2009] Al-Betar, Mohammed & Khader, Ahamad Tajudin (2009), “A hybrid harmony search for university

course timetabling,” Proceedings of the 4nd Multidisciplinary Conference on Scheduling: Theory and Applications

(MISTA).

[Ayob and Jaradat, 2009] M. Ayob and G. Jaradat (2009), "Hybrid Ant Colony systems for course timetabling problems," 2nd

Conference on Data Mining and Optimization, Kajand, pp. 120-126.

[Li and Zhang, 2013] H. Li and H. Zhang (2013), “Ant colony optimization-based multi-mode scheduling under renewable

and nonrenewable resource constraints,” Automation in Construction, vol. 35, pp. 431-438.

[Sabar et al., 2012] N. R. Sabar, M. Ayob, G. Kendall, R. Qu (2012), “A honey-bee mating optimization algorithm for

educational timetabling problems,” European Journal of Operational Research, vol. 216, pp. 533–543.

[Alexandridis et al., 2017] A. Alexandridis, E. Paizis, E. Chondrodima and E. Aliaj, (2017) “A particle swarm optimization

approach in printed circuit board thermal design,” Integrated Computer-Aided Engineering, vol. 24, no. 2, pp. 143-155.

[Tassopoulos and Beligiannis, 2012] I. X. Tassopoulos and G. N. Beligiannis (2012), “A hybrid particle swarm optimization

based algorithm for high school,” Applied Soft Computing, vol. 12, pp. 3472–3489.

[Chen and Shih, 2013] R. Chen and H. Shih, “Solving University Course Timetabling Problems Using Constriction Particle

Swarm Optimization with Local Search (2013),” Algorithms, vol. 6, pp. 227-244.

[Osman, 2015] A. Osman, “Particle Swarm Optimization Based Najran University Course Timetable Scheduling (2015),”

NNGT Int. J. on Artificial Intelligence, vol. 2.

[Kennedy and Eberhart, 1995] J. Kennedy and R. C. Eberhart, “Particle swarm optimization (1995),” Proceedings of IEEE

international conference on neural networks, pp. 1942–1948.

 [Montero et al., 2011] E. Montero, M. C. Riff and L. Altamirano (2011), "A PSO algorithm to solve a Real Course+Exam

Timetabling Problem," International conference on swarm intelligence, Cergy, France, pp. 14-15.

[Pillon et al., 2016] P. E. Pillon, E. C. Pedrino, V. O. Roda, M.C. Nicoletti (2016), “A hardware oriented ad-hoc computer-

based method for binary structuring element decomposition based on genetic algorithm,” Integrated Computer-Aided

Engineering, vol. 23, no.4, pp. 369-383.

[Kyriklidis and Dounias 2016] C. Kyriklidis and G. Dounias (2016), “Evolutionary Computation for Resource Leveling

Optimization in Project Management,” Integrated Computer-Aided Engineering, vol. 23, no.2, pp. 173-184.

[Padillo et al., 2018] Padillo, F., Luna, J.M., Herrera, F., and Ventura, S (2018), “Mining Association Rules on Big Data

through MapReduce Genetic Programming,” Integrated Computer-Aided Engineering, vol. 25, no.1, pp. 31-48.

[Rostami Neri, 2016] S. Rostami and F. Neri (2016), “Covariance Matrix Adaptation Pareto Archived Evolution Strategy with

Hypervolume-sorted Adaptive Grid Algorithm (2016),” Integrated Computer-Aided Engineering, vol. 23, no.4, pp. 313-

329.

[Adeli and Hung, 1995] Adeli, H. and Hung, S.L. (1995), Machine Learning - Neural Networks, Genetic Algorithms, and

Fuzzy Systems, John Wiley and Sons, New York.

[Siddique, N. and Adeli, H., 2013] Siddique, N. and Adeli, H. (2013) Computational Intelligence: Synergies of Fuzzy Logic,

Neural Networks and Evolutionary Computing, John Wiley and Sons, New York.

http://www.sciencedirect.com/science/article/pii/S0926580513000976#!

23

[Siddique, N., 2014] Siddique, N. (2014), “Intelligent Control: A Hybrid Approach based on Fuzzy Logic, Neural Networks

and Genetic Algorithms”, Studies in Computational Intelligence, vol. 517, Springer Verlag.

[Siddique, N. and Adeli, H., 2017] Siddique, N. and Adeli, H. (2017) “Nature Inspired Computing: Physics and Chemistry

based Algorithms”, CRC Press/Taylor & Francis Group.

[Siddique, N. and Adeli, H., 2015a] Siddique, N. and Adeli, H. (2015), “Harmony Search Algorithm and Its Variants,”

International Journal of Pattern Recognition and Artificial Intelligence, vol. 29, no.8.

[Siddique, N. and Adeli, H., 2015b] Siddique, N. and Adeli, H. (2015), “Hybrid Harmony Search Algorithms,” International

Journal on Artificial Intelligence Tools, vol. 24, no.6.

[Siddique, N. and Adeli, H., 2015c] Siddique, N. and Adeli, H. (2015), “Applications of Harmony Search Algorithms in

Engineering,” International Journal on Artificial Intelligence Tools, vol. 24, no.6.

[Wang et al., 2015] Wang, Xiaolei & Gao, Xiao-Zhi & Zenger, Kai. (2015). An Introduction to Harmony Search Optimization

Method.

[Akhand et al., 2015] M. A. H. Akhand, Pintu Chnadra Shill, Md. Forhad Hossain, A.B.M Junaed (2015), “Producer-Scrounger

Method to Solve Traveling Salesman Problem,” I.J. Intelligent Systems and Applications, vol. 3, pp. 29-36.

