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Abstract. Emergent cyber-attacks and exploits targeting Operational
Technologies (OT) call for a proactive risk management approach. The
convergence between OT and the Internet-of-Things in industries intro-
duces new opportunities for cyber-attacks that have the potential to
disrupt time-critical and hazardous processes. This paper proposes a
methodology to adapt traditional risk management standards to work in
a continuous fashion. Monitoring of risk factors is based on incident and
event management tools, and misbehaviour detection to address cyber-
physical systems’ security gaps. Another source of information that can
enhance this approach is threat intelligence. Risks are calculated using
Bayesian Networks.
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1 Introduction

In automated and smart industries, a certain level of cyber-risk is usually ac-
cepted, especially if security controls have conflicts with safety, performance,
or availability [4]. For example, security updates can compromise reliability of
operations [8], defences against brute force attack can lock out valid users in
the middle of a crisis, and control flow integrity checks can present throughput
overheads [15]. Finding methods to monitor cybersecurity risks continuously is
relevant to allow better preparedness in the case of cyber-threats, particularly
in cases of risks with a low likelihood but a high impact.

Many companies are engaging in Industry 4.0, or connecting their existing
Operational Technologies (OT) to their information systems. This paradigm,
also known as the Industrial Internet of Things (IIoT), is used in various busi-
ness domains including industries such as electrical, utilities, transport, manu-
facturing, and building management, among others. These systems differ from
typical IT because their core functionalities are based on cyber-physical sys-
tems. Industrial operations have requirements that introduce challenges in the
application of security controls and many legacy cyber-physical systems were
not originally designed having security in mind [15][5]. Limitations on memory
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and processing capabilities plus real-time response requirements restrict having
strong authentication or encryption. The attack surface is also larger than in tra-
ditional IT because of the additional communication and information processing
layers. Multiple access points, and numerous nodes make difficult to monitor and
control all the devices connected to the network and who accesses them. They
also work with specific purpose communication protocols which are unknown to
traditional network security tools [7]. Some widely used protocols, such as Mod-
bus, Profinet, and Bacnet, among others, do not consider basic security controls
such as authentication and data integrity checking.

Compensating controls such as rigorous physical security, network segmen-
tation, and continuous monitoring can counteract the lack of built-in security in
Industrial Control Systems (ICS) [2]. However, access points enabled for main-
tenance, configuration and support activities performed by external or internal
personnel can also be a threat vector for an incident either malicious or unin-
tended. However, even if rigorous security controls are in place, organisations
still will need to assume a certain level of risk, since it is impossible to cover
all the possible flanks of attack. Therefore, the main objective of our research is
to find mechanisms to continuously monitor security risks and increase cyber-
situational awareness in IIoT. Our key questions are: What information do you
need to know in order to monitor security risks in ICS? How can that informa-
tion be derived from what you can actually measure? How can existing cyber-risk
management frameworks be adapted for a more dynamic risk monitoring? How
can these modifications be introduced?

In a previous paper we presented a proposal for a continuous risk assess-
ment method for ICS/IIoT [1]. Detection of anomalies or misbehaviour in the
system’s physical measurements is considered as a mean to fill gaps left by typ-
ical intrusion detection methods. The present paper proposes a process oriented
view of this approach based on workflow and descriptions of activities with their
expected inputs and outputs. Through this perspective, we identify which ac-
tivities are covered by a traditional risk management process and which need
to be defined. Using the ISO/IEC 27005 [11] standard as a reference, workflows
are presented together with a blueprint of how to integrate standard cyber-risk
management frameworks with a continuous risk assessment paradigm.

2 Why continuous risk management for ICS?

Risk management deals with the fact of not being able to control all aspects of a
situation. Often decisions need to be made with incomplete information. Internal
and external conditions are always changing, and so is the availability and accu-
racy of information. Thus, monitoring risks can help to validate assumptions and
to check if a risk is becoming more likely to materialise than initially thought, or
even transforming into an imminent issue. A cybersecurity programme address-
ing known vulnerabilities should help avoiding to become an easy target and
deter opportunistic attackers, but not those who might go the extra mile to de-
velop elaborate exploit mechanisms. Examples of this are targeted ICS malware
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such as Stuxnet, TRITON, and LockerGoga. In the case of ICS, a cyber-attack
can cause material or environmental damage and even compromise human lives
and safety. Abuse of privileges from an insider is also considered an important
threat in ICS.

Monitoring risks is “maintaining ongoing awareness of an organisation’s risk
environment, risk management program, and associated activities to support risk
decisions” [3]. Typically this is done as a periodic and discrete activity that is not
integrated with operational processes. We propose that risk monitoring should
make use of near-real time operational data. Signs of an attack in IIoT can be
discovered by monitoring not only network and software related variables, but
also sensor’s data. Then, if traditional cybersecurity controls are bypassed, the
status of physical variables can give signs that an unusual situation is happening.

Figure 1 proposes an architecture to support a continuous risk monitoring
and re-assessment methodology. A risk calculation engine updates key risk in-
dicators based on different sorts of inputs, some of them are updated in a con-
tinuous stream and others on a batch basis. The effect of different events on
the risk scores is determined by a Bayesian Network which is defined in a setup
process establishing relationship between different events. The data capture and
processing and alert generation are performed by a SIEM (Security Information
and Event Management) tool which is fed by different sources of data. The ap-
proach also applies anomaly and misbehaviour detection techniques to physical
variables in order to provide independent evidence of possible security issues.

Fig. 1. Architecture of the approached proposed.

A combination of expert’s knowledge and machine learning techniques is
used to model the system’s behaviour. For example, an operations expert should
provide business rules and functional requirements, including forbidden states
and safety considerations, a control and automation expert should know par-
ticularities of the programming language of controllers, their memory handling
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mechanisms, and communication protocols. This would enable the definition of
what is normal and abnormal for parameters in different components of a sys-
tem. Suspicious events in the IT components such as unusual logs, brute force
attack access, and malicious code can be identified by a cybersecurity operations
expert and monitored by regular off the shelf tools. Continuous updates aim for
a better integration of operational processes, risk management, and security pro-
cesses. This should allow shortening response times. A more detailed description
of our ideas on continuous risk assessment for ICS can be found on our previous
paper [1].

3 Users, relevant stakeholders, and related processes

The methodology is designed for risk analysts. However, as shown in Figure 1, the
results can be shared with the Security Operations Centre (SOC) or equivalent
area. Therefore, some of the alerts generated by the continuous risk assessment
should be forwarded to them. Any suspicious event or behaviour that changes
normal trends or any abrupt changes should be also escalated to the appropriate
stakeholders, such as process owners.

Risk management processes in practice are often defined and performed by
a separate area from the one dealing with security operations. This has different
reasons including that often risk analysts work at a more strategic level and
security analysts at a tactical level. Nevertheless, cybersecurity standards regard
risk management as an integral part of a cybersecurity management system
[10][8][11]. Lack of integration between security risks and operations management
can take away the purpose of doing a risk assessment in the first place. Figure
2 represents how cybersecurity risk management should not just overlap but
contain security operations management. Updated security metrics can reduce
the levels of uncertainty involved in a risk analysis. In our approach, we define
three categories of indicators depending on the degree of confidence they can give
to predict an attack:Indicators of Risk (IoR), which can modify the estimation of
likelihood of an attack, Indicators of Compromise (IoC), which are a type of IoR
that can reveal a possible breach in any of its stages, and alerts, that indicate
with a high degree of certainty an imminent issue.

Fig. 2. Indicators hierarchy in a Cybersecurity Management System
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Frequent updates of risks can also support decision-makers to make informed
and rational choices. Think on a manufacturing company where plant A uses
legacy systems, and plant B uses new generation IIoT with built-in security.
Plant B is more efficient so they are evaluating to use the same technology in
plant A, but the capital expenditure is high. Quantitative information about
reduction of cybersecurity risks can contribute in supporting the business case
for the migration by increasing the return on the investment calculation.

4 Related work

Given the need of having a better visibility in ICS, it is not surprising to see
work proposing continuous assessment methods for cyber-physical security risks.
The work done in [14] and [9] propose real-time risk analysis methods based on
the human immune system. However, their focus is mostly on network security
rather than addressing all the layers of the system, which is required in order to
consider all possible cybersecurity risks.

Original approaches have been proposed, as well, to detect anomalies in IoT
systems based on their behaviour by analysing sensor data and correlating events
[13] [4] and detecting invalid or “prohibited” states of the system [16]. Their work
is highly related to the ideas we are proposing and confirms that monitoring risk
factors in cyber-physical systems (IoT, IIoT, ICS) in operational or near real
time is not a misbegotten idea, despite the practical challenges it may offer.

Among other related research that we have taken into account is the work
done in [7] and [5] which highlights challenges and requirements and describe
techniques for intrusion detection in industrial cyber-physical systems. Work has
been done in this regard by proposing methods to generate dynamic security
metrics, including risk metrics in order to help deciding or automatically choose
among alternatives for countermeasures [6]. Some of these even go further and
suggest ways to deal with unknown threats [12]. This is also a consideration
taken in our methodology. Some of these approaches can provide potentially
useful techniques and methods to capture real-time security metrics which will
be key inputs for our risk calculations. An example of this is the use of Bayesian
Networks [18] and fuzzy logic [12] [18]. Nonetheless, many of them cannot be
considered as an holistic cyber-risk assessment either by their limited scope [14]
[9] or lack of consideration of the context and business impact [18].

To the best of our knowledge, this is the first paper to present a method-
ological view which, as well adapts the traditional risk management process to
continuous operation. This does not contradict the fact that, overall, our work
gathers ideas already presented in different publications that have been reviewed
as part of the state of the art and that were mentioned in this section.

5 The Continuous Risk Assessment Methodology

Industry standards do not define processes for a continuous risk assessment.
However, we found that our approach does not have fundamental contradictions
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with the contents of frameworks such as IEC 624433, ISO 270005, NIST 800-37,
or OG86. Most Risk Management models describe risk assessments as a PDCA
cycle (Plan-Do-Check-Act) where risk monitoring (check) has the purpose of
identifying changes in risk factors in an early stage [11]. For this, an organisation
should identify the reassessment frequency and triggering criteria for cyber-risks
where the period reflects the fast-changing nature of cyber security [10]. Rather
than re-defining the traditional risk management process we propose to extend
it to support methods that work on a continuous basis.

Fig. 3. Macro-process of the methodology.

Our approach proposes three phases: the baseline (initial) risk assessment
phase, the transition phase, and the continuous risk assessment phase, performed
during normal operation. The baseline risk assessment follows a standard pro-
cess, as defined by the ISO/IEC 27005 standard. However, additional activities
and work products are added as a preparation for the continuous risk assessment.
In particular, information needed to model the system’s functional behaviour
under normal operation is gathered during the Context Establishment. In the
transition phase the metrics that will be gathered during the continuous risk as-
sessment are defined and the supporting tools for the continuous risk assessment
are configured. In the continuous risk assessment phase the information from
the baseline risk analysis gets updated based on operational data. Risk scores
are modified when a significant change is detected. Figure 3 shows a workflow of
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the “macro-process” of the methodology. A modified version of BPMN, which is
a widely-used notation for workflow modelling, is used to represent in separate
lanes which activities are covered by the ISO/IEC 27005 standard and which
are added by us. This is done just for modelling and representation purposes
with the understanding that lanes are originally meant to separate roles. In the
following sub-sections different sub-process are described for each phase.

5.1 Baseline Risk Assessment

In this phase a risk analysis is undertaken to generate baseline risk scores. Figure
4 shows the different sub-processes involved. In the context establishment all the
information relevant to risk management is gathered [11]. This is critical for the
success of any risk assessment since it sets the priorities, methods, and risk
tolerance level. As it is not feasible to analyse all the possible risks, a scope
needs to be defined to focus in the most critical assets, also known as “crown
jewels” [2]. Involvement of experts is crucial to define the variables of the system
that can be monitored in the continuous phase, and to model their behaviour.
The availability of operational data of the system under normal conditions is also
important to model the system’s behaviour. Characteristics of the infrastructure,
network architecture, business rules, and configuration of the controllers need to
be known. Outputs of the Context Establishment added in our approach are a list
of sources of data to identify risk factors including online and batch automatic
input feeds, as well as manual ones. This information will be used later to define
the IoRs.

Fig. 4. Sub-Processes of the Baseline Risk Assessment.

The following step is the risk identification, which is not shown in Figure 4,
since it is exactly as in ISO/IEC27005, which means it encompasses the identi-
fication of assets, threats, security controls, vulnerabilities, and impacts. In the
Risk Analysis process, a threat model should be developed to describe different
possible attacks. An attack taxonomy specific to cyber-physical systems needs
to be considered, such as the one proposed in [17]. This taxonomy differenti-
ates a ”change” which is an effect at a system level from an ”impact”, which is



8

the implication for the business. Changes that relate to each threat are used to
define IoRs, IoCs and alerts. The likelihood of a risk is estimated based on avail-
able data such as pentesting results and CVSS scores, for quantification of the
vulnerability level, and threat intelligence sources to estimate levels of threat. A
Bayesian Network is used to link the dependencies between different factors and
their likelihood of occurrence given a series of conditions.

In the Risk Evaluation process, risks are prioritised and categorised. The risks
above the acceptable level must be considered for further review and treatment.
Risk acceptance should only happen when risks are below a defined threshold.
When a risk is reduced to an acceptable level instead of being eliminated it is
known as a “residual” risk. In exceptional cases, the organisation might decide
to accept a risk that is higher than their accepted level. It must be noted that to
acknowledge a high level of risk and accepting it is totally different, in principle,
from underestimating a risk. Optimism bias is common when risks are not prop-
erly analysed, and can lead to an organisation to be unprepared to deal with
security issues when they arise. On the other hand, accepting a risk implies that
there is awareness about its potential consequences, but a decision to accept it is
formally made. In these cases, risk monitoring becomes a compensating control
that allows actions to be taken promptly if there is evidence that the risk is
rising to become an issue. In the cases where the risk treatment plan, or parts of
it, requires more time to be put in place or to show results, the risk scores will
remain over the threshold until the controls are effectively working on reducing
it. The Risk Evaluation and Risk treatment processes that we define do not have
major variations from the ISO/IEC 27005 standard. The definition of baseline
risk scores, provides a benchmark that is based on the available information
of the condition of the system in a certain point of time. For this reason, this
methodology considers the results of the initial risk assessment not a definitive
evaluation but just the setting of initial scores for the continuous risk assessment.

5.2 Transition Phase

In this phase the variables that will be monitored in continuous risk assessment
are linked to the risks analysed in the previous stage. The attack model done
during the risk analysis should provide a record of the means of detection or
inferring possible changes that different elements of the system can suffer in
different stages of an attack, as well as the pre-conditions that can allow a certain
attack method to be executed. Each change and precondition can be related to
a risk metric that termed an IoR.

For indicators related to physical variables, a misbehaviour detection model
needs to be defined to address specific needs of ICS. Commonly used means of
detection will usually not be sufficient to alert of changes in physical variables.
Analysing data from sensors and actuators can allow to detect physical effects
of cyber attacks. This is highly relevant, since insiders present important threats
in ICS [2] and, as these actors will have valid access, they can bypass traditional
security controls. Tools need to be configured, including firewalls, Intrusion De-
tection Systems (IDS), malware detection, network monitoring, log monitoring,
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as well as misbehaviour detection. A SIEM will be used to process information
and handle alerts. The modules that need to be setup and configured for the
next phase are the misbehaviour detection module, the pre-processing of risk
metrics and calculation of IoRs.

The transition phase can be complex considering the amount of tools, vari-
ables, and methods that the methodology comprises. To overcome this, it is
possible to approach it as a project where incremental changes are applied at
different stages. For example, start with a reduced scope (e.g. only critical pro-
cesses and systems). A training period will be necessary for users, as well as for
detection algorithms. Tools settings and parameters will need to be adjusted,
and calibrated in order to maximise accuracy, and minimise false positives.

5.3 Continuous Risk Assessment

The main processes that interact in this phase are the Continuous Monitoring
of Risk Factors, the Continuous Risk Analysis and the generation and report of
security and risk alerts. The difference between a security alert and a risk alert
is that while the first requires immediate action, the other might not. Figure
5 shows the continuous risk monitoring process where inputs are monitored in
order to identify significant changes. At this stage there might be conditions that
trigger immediately a security alert that is reported to the SOC, prior to the
risk analysis as shown in Figure 3.

Significant changes reported during the continuous risk monitoring process
will lead to new values of IoRs and IoCs, and to trigger alerts, if applicable.
Adjustments can be either because previous assumptions have been proven in-
accurate or biased, or because of internal and external changes. Awareness about
relevant changes will be provided by continuous processing and analysis of data
from different sources including security sensors and logs, and threat and vulner-
ability intelligence sources. The use of a SIEM will allow an important amount of
the data used for monitoring is supplied in near real time, or in a batch modal-
ity, but automatically. However, manual inputs, such as uploading data files and
manually changing parameters in absence of the adequate tools, can also be
considered. For example, when there is information from a zero-day vulnera-
bility coming from another source this can make it necessary to make manual
modifications to some parameters.

Figure 6 shows the continuous risk analysis, where indicators are mapped
with their corresponding risk scores whose values are consequently updated.
The risk calculation engine recalculates risk scores every time that a condition
in the system requires an IoR to change its value. As conditions are monitored
continuously, risk scores can be updated at any moment. If any updated risk
score exceeds the acceptable level ”risk alert” is triggered. As it is not possible
to capture all the possible attack mechanisms in the threat modelling, a special
risk score will be defined to represent unknown or zero-day attacks. Combinations
of IoRs that cannot be linked to a known risk will be linked to this score.

All alerts get reported to the risk analyst to be analysed in order to consider
the implementation of additional security and risk mitigation measures. In the
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Fig. 5. Continuous Risk Monitoring

case of security alerts and risk alerts that are judged to require some sort of
immediate reaction the SOC analyst is informed. Security alerts can be raised
automatically by rules managed by the SIEM, by the results of the risk calcula-
tions or by the risk analyst. While this approach does not deal with any of the
processes related to the SOC operations, it contributes on giving an instance of
collaboration between risk management and security operations.

Fig. 6. Continuous Risk Analysis

6 Using Bayesian Networks in risk estimations

The initial risk quantification is based on Bayesian Network whose nodes rep-
resent events that can lead to one or more risks. An incidence matrix indicates
whether or not there is a relationship between nodes. In the graphical represen-
tation of the network the nodes are linked by arrows. For each existing relation-
ship a table of conditional probabilities is defined to calculate the likelihood of
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an event ”A” given the occurrence of an event ”B”. The overall likelihood of a
risk is estimated based on a chain of events. An analogous process is done to link
the IoRs to each action allowing to update likelihoods in the presence of IoRs
during the continuous risk analysis.

In [1] an example of a temperature control in a Data Centre, supervised and
controlled by a Building Management System (BMS) is used as use case to ex-
plain continuous risk assessment. A BMS controls environmental variables such
as temperature, pressure, and humidity, and it could also monitor variables re-
lated to the use of the building such as perimeter security and access control, and
utilities consumption, among others. In some contexts the environmental control
of the building can be critical, for example in a chemical or nuclear plant. In data
centres the environmental control system is used to keep temperature and hu-
midity within levels that allow the servers to perform at their best capacity, and
to prevent overheating and other unsafe conditions. In the case of temperature
this is usually 25 degrees Celsius.

In this example it is assumed that the temperature setting may be changed
from a small number of privileged accounts, which may be accessed remotely.
ICS tend to have restricted remote access or to be isolated from corporate and
public access networks either physically or through the configuration of a DMZ
(demilitarised zone). Nevertheless, it can be the case that remote access enabled
for a system’s administrator [2]. It is also often that cyber-hygiene measures that
are considered to be basic in IT systems are not be implemented in ICS because
they conflict with the availability, integrity and even safety of an operation.
For example, a typical defence against brute force attacks is locking access to
the system after a number of failed login attempts. However, in an emergency
situation which can be time-critical, locking an ICS system because of human
mistake such as a forgotten password could be riskier than exposing the system
to a brute force attack.

Figure 7 shows a simplified representation of a Bayesian Network to quantify
cyber-risks for this case study. Two possible attacks on the temperature control
allow an attacker to achieve the goal of disturbing the normal operation of the
data centre. The first attack is based on changing the temperature setting to a
considerably higher value than the acceptable limit, which is 30 degrees Celsius.
The second attack consists of disabling the temperature control. All nodes have
states that depend on the achievement of certain goals by the attacker. In each
node, the conditional probabilities of an attacker’s goal been achieved is regis-
tered in a table given each of the possible combination of states of the previous
nodes. When a change is observed, then the likelihood of a possible estate can
increase which will means that the estimation of the probabilities that certain
attacker’s goal can be achieved increases, as well. This will be computed and, if
applicable, presented to the user as an IoR. An attack goal can be associated to
more than one IoR and each IoR can be associated with more than one attack
goal. Hence, an IoR by itself is not conclusive to detect a certain type of attack,
but by having a combination of them the level of uncertainty can be reduced.
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Fig. 7. Example of Bayesian Network

In Figure 7 the nodes represent different attack goals and the figure represents
a combination of possible kill-chains. The arrows indicate that the probability
that the destination action has been performed is directly influenced by whether
the source action has been performed. In Figure 8, the nodes on the left hand
side of each diagram are associated with actions (as in Figure 7), but the nodes
in the right are associated with observations (termed IoR). The arrows denote
that the probability that the relevant phenomenon has been observed depends
directly on whether the action has been performed. Inferencing is ”forward” in
Figure 7, and ”backward” in the two diagrams of Figure 8, so that in the initial
risk analysis inputs nodes are the actions and output nodes the likelihood of a
risk and in the continuous risk analysis the input nodes are the IoRs which allow
calculating the likelihood of particular actions in a kill chain taking place as well
as the associated risks.

Not all means of detection are deterministic and Bayesian Networks allow
calculation of the probability of an action being detected. An IoR is not nec-
essarily related to a single action, but can be a symptom of several causes. A
Bayesian Network can help inferring a set of possible malicious actions and the
likelihood of each one of them taking place. If we take as an example ”traffic
from an unusual location” as an IoR, from the diagram at the left in Figure 8
it can be observed that it is related to three nodes. So if traffic from an unusual
location is detected, this could be evidence of a brute force attack to gain access,
or of malicious access, and also could be indicative of a Denial of Service attack
(DoS) in its early stages. Nevertheless, when this indicator is correlated with
other indicators it can give a more precise information. For example, if there are
also multiple failed access attempts followed by a successful one this increases
the probability that unauthorised access was gained through a successful brute
force attack.

In the case of an insider attack, a different approach needs to be taken since
in this scenario an agent that can be either malicious, or coerced to act ma-
liciously, will have valid access credentials. This means that there will be no
anomalies at a network or software level. For these cases, it is necessary to count
on IoRs that can detect a functional misbehaviour in the system. The diagram
at the right in Figure 8 shows a Bayesian network for different IoRs that are
calculated through misbehaviour detection. In a sophisticated attack it could be
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Fig. 8. Link between Changes and Indicators of Risk (IoR)

possible that the attacker tampers with the temperature values displayed in the
BMS preventing alerts being triggered directly by the change in the tempera-
ture values or settings. An example of this is the case of Stuxnet where normal
operational values were replayed in the system while the frequency of the mo-
tor drives of the nuclear centrifuges was changed. To address this, anomalies in
other variables, such as unusual behaviour in electrical power consumption or in
server’s performance, could raise an alert concerning the temperature.

A key challenge of risk management is trying to quantify what you do not
know. Sometimes there is enough information to identify and analyse a risk by
making plausible assumptions. However, at other times there is no prior infor-
mation at all. This is the case of zero-day attacks. As it is not possible to identify
all possible risks in the baseline risk assessment, it is important to consider a
likelihood of an undesirable event with undefined characteristics. To address this,
every IoR will have among its possible causes an unknown or undefined cause as
shown in Figure 9. This has not been included explicitly in previous figures for
simplicity of presentation. When a combination of IoRs cannot be mapped to
any known risk, the likelihood of an unknown risk unfolding is increased. One or
more nodes could also be defined to represent non-cybersecurity related triggers
for an IoR.

7 Future work

As the present paper provides just a conceptual approach, considerable work
needs to be done to prove specific methods can work under the proposed frame-
work. Future work will focus on further demonstration of the methodology using
different use cases related to ICS and IIoT. One of our goals is to explore the
correlation of data from physical variables (sensor and actuator data) to reveal
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Fig. 9. Addressing Unknown attacks

information about the physical system that is not directly observable and that
an attacker might be trying to obfuscate.

Due to the breadth and complexity of our proposal, several challenges need to
be addressed including proving the potential scalability of the approach. Select-
ing appropriate methods, rules, and training mechanisms to detect misbehaviour
and avoid false positives is another challenge for which a good level of under-
standing about the expected normal behaviour of the system is required. It is
proposed to formalise expert knowledge during the initial risk assessment where
context and business rules should be captured. This should include specifica-
tions about normal behaviour of key processes of the system, a list of relevant
variables to be monitored and availability of monitoring mechanisms. Possible
correlations between physical variables should be identified and analysed, such
as temperature and pressure. Additionally, machine learning techniques can be
used to model patterns of behaviour that cannot be defined mathematically by
experts. It must be noted that when data is gathered to model the normal be-
haviour of the system, this is done under the assumption that it has not yet been
compromised.

Minimising cyber-security risks requires being up to date with new threats
and vulnerabilities, as well as with new cyber-security tools and methods for
prevention, detection, response, and recovery. As the methodology aims to be
technology agnostic, it should be possible to introduce new monitoring and de-
tection tools after the initial implementation.

In many industries cyber-security in ICS and IIoT systems has been neglected
and there is lack of personnel equipped to deal with it. The continuous moni-
toring of cyber-risks should help increase cyber-security awareness and identify
cybersecurity weaknesses. This also should include processes, people and train-
ing, since not all risks are technical since cybersecurity vulnerabilities can also
be related to processes and procedures.

An more advanced approach will be to define the likelihood in terms of a dis-
tribution rather than a single point estimation, using Monte Carlo techniques.
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This can give a more realistic view of the uncertainty level than single point prob-
abilities. The specific technique and algorithm used to calculate the baseline risk
scores should be defined during the context establishment. This methodology is
general enough to work with different emerging approaches and ideas. Exam-
ples of this are deep learning and artificial intelligence, threat intelligence, and
Security Orchestration, Automation and Response (SOAR).

8 Conclusions

Methods to maintain continuous cyber-risk awareness can support rational and
well informed decisions as well as improve times and effectiveness of reactions in
the event of an incident. The methodology proposed links detection mechanisms
with risk assessment by using security metrics to calculate risk indicators in
real time. Through this, we postulate the idea that integrating risk management
with the security operations should enable a better prioritisation of security
resources and more timely reactions. Current availability of off-the-shelf tools
for real time data analytics also can constitute a powerful resource to make this
approach feasible.

This paper regards continuous risk management as an extension of ISO/IEC
27005 in alignment with IEC 62443 and other frameworks rather than defining it
as a totally different process. Because each ICS will have its own requirements, it
is not possible to generate a one-size-fits-all solution. However, defining steps for
each organisation to develop their own continuous risk assessment strategy can
serve as a guideline that can be used broadly across different systems. Expert
knowledge and contextual information are captured during initial assessment
and transition phases. It is not possible to provide a general answer to some
of our questions since our risk analysis approach needs to be tailored to the
particularities of each system.

As in many cases the data gathered from security controls and IT elements
of the system does not tell the whole story, and may itself be compromised by
an attacker. Anomaly and misbehaviour detection techniques based on physical
variables, such as temperature and power consumption, address this gap which
can help to overcome different challenges in ICS cybersecurity, such as detection
of physical attacks, detection of malicious insiders, and detection of unknown
threats and zero day attacks.

Cybersecurity and OT operations, including safety management, have been
developed on totally separate tracks. However, much of the knowledge in the
field of control engineering and safety can be useful in the implementation of
cybersecurity controls, as well as in the development of a future continuous risk
assessment paradigm.
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