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Abstract:
Results are presented from the optimal operation of a fully automated robotic liquid handling
station where parallel experiments are performed for calibrating a kinetic fermentation model.
To increase the robustness against uncertainties and/or wrong assumptions about the parameter
values, an iterative calibration and experiment design approach is adopted. Its implementation
yields a stepwise reduction of parameter uncertainties together with an adaptive redesign
of reactor feeding strategies whenever new measurement information is available. The case
study considers the adaptive optimal design of 4 parallel fed-batch strategies implemented
in 8 mini-bioreactors. Details are given on the size and complexity of the problem and the
challenges related to calibration of over-parameterized models and scarce and non-informative
measurement data. It is shown how methods for parameter identifiability analysis and numerical
regularization can be used for monitoring the progress of the experimental campaigns in terms of
generated information regarding parameters and selection of the best fitting parameter subset.
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1. INTRODUCTION

The development from product to manufacturing is known
to be the bottleneck in the bio-industry (Neubauer et al.
(2013)). Hence there is a strong interest in biotechnol-
ogy to accelerate, systematize, and increase the reliabil-
ity of bioprocess development. Recently, the advances in
miniaturization, speed, and parallelization of experiments
has set the path for a faster and cheaper generation of
relevant process information to support consistent bio-
process development. Liquid Handling Stations (LHS) for
High Throughput Screening (HTS) and High Throughput
Bioprocess Development (HTBD) have been created ex-
ploiting the fast development in robotics, automation, and
sensor technology (Wiendahl et al. (2008)).

The challenge now is to design experimental campaigns
that exploit the capabilities of these facilities in an optimal
way. Although there is a community devoted to research in
this direction (see e.g. Unthan et al. (2015); Nickel et al.
(2017)), most approaches work only for single timepoint
(static) experiments and do not consider the dynamic
evolution of biological systems properly. This is a relevant
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issue, not only because microorganisms have a very com-
plex dynamical interaction with the environment, but also
because most industrial processes run in highly nonlinear
conditions. It is generally recognized that kinetic (dy-
namic) modeling and model based analysis are in principle
of very high value for industrial biotechnology supporting
the rational design of cell factory properties and the design
of the bioreactor or fermentation process (Almquist et al.
(2014)). However, several challenges remain before kinetic
modeling will reach the degree of maturity required for
routine application in industry, see Almquist et al. (2014).

This contribution focuses on systematic approaches for
planning, execution and analysis of parallel experiments
for kinetic model development purposes, making optimal
use of robotic liquid handling stations. For doing so, Op-
timal Experimental Design (OED) for model calibration
is used to maximize the information content in measured
data generated by process analytics and online sensors
during a fed-batch running experiment, see e.g. Versyck
et al. (1997). The OED seeks experimental feeding strate-
gies that minimize the uncertainty of the model param-
eters recovered from Parameter Estimation (PE). These
optimally designed experiments can noticeable reduce the
experimental effort compared to conventionally or heuris-
tically designed ones (Bauer et al. (2000)).
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Typical kinetic models are nonlinear in the parameters
and the experimental design is sensitive to parametric
uncertainties. To perform a design, an initial guess of
the parameters, i.e. the best available parameter values,
is used. Thus, the quality of a computed optimal design
depends on the quality of this parameter guess (Bauer
et al. (2000)). A widely used approach to cope with un-
certainties in the parameter estimates is based on the
iterative refinement of the experimental design whenever
new measurements and parameter estimates are available.
This means that experiments are designed, executed and
analyzed in a sequence (Bauer et al. (2000)). This step-
wise reduction of the parameter uncertainty leads to more
reliable model predictions and designs that are closer to a
truly optimal experiment. The most efficient implementa-
tion of this approach for dynamic systems is the online or
adaptive experimental redesign, an idea which was already
discussed in the early 70ies, see Mehra (1974). Here the
experiment is iteratively re-designed and parameters are
re-estimated as information is generated. By this, it is
possible to exploit new measurement information as soon
as it is generated by the running experiment minimizing
the mismatch between calculated and real outputs.

When multiple equipment pieces are available, running
parallel experiments is highly advantageous in terms of
time and use of resources. Unfortunately, when planning
a large number of experiments in parallel, the number of
designs with uncertain parameters is also large (the stud-
ied experimental platform can operate up to 48 reactors in
parallel). In the worst case, in parallel settings all experi-
ments are computed with very poor initial guesses, where
even the order of magnitude might be wrong. This makes
the quality of the information in the generated data for
parameter identification highly unreliable. Moreover, over-
parameterized models and scarce informative experimental
data in quantity as well as in quality additionally present
serious challenges, especially in online or real-time applica-
tions with recursive estimation and optimization settings
(Barz et al. (2016)). Corresponding ill-posed problems are
highly problematic as they might destabilize the solution
and affect the reliability of the estimates. Furthermore, in
the presence of ill-posed PE problems a redesign of optimal
inputs (for parameter precision improvement) leads to
ineffective and/or meaningless designs (López Cárdenas
et al. (2015)).

The paper is organized as follows. First, the mathemat-
ical problem of the adaptive experimental redesign for
calibration of a kinetic E. coli fermentation model in a
parallel robotic liquid handling station is presented. It
is discussed how to integrate an identifiability and ill-
conditioning analysis in the framework. The fed-batch
fermentation case study is briefly presented and informa-
tion on the dimensionality of the mathematical problem
is given. Experimental results from the adaptive optimal
robot operation are presented. Focus is on the numerical
condition of the re-estimation and redesign problems and
the implications for parameter identifiability during the
experimental run. Finally, conclusions and directions for
further research are given.

2. MATHEMATICAL PROBLEM FORMULATION

Kinetic models in industrial biotechnology are formulated
as systems of nonlinear differential equations (Almquist
et al. (2014)). For each reactor r ∈ R the model reads:

ẋr(t) = f (xr(t), ur(t), θ)
yr(t) = Axr(t)
xr(t0) = x0,r

}
∀r ∈ R (1)

where t ∈ [t0, tend] ⊆ R is the time, xr(t) ∈ Rnx are
dependent state variables, ur(t) ∈ Rnu are the time-
varying inputs (or experimental design variables) and θ ∈
Rnθ the unknown parameter vector and initial conditions
are given by x0,r. The vector yr(t) ∈ Rny are the predicted
response variables (for which sensors are available) whose
elements are defined by the selection matrix A ∈ Rny×nx .
For partially observed models ny < nx (not all states are
measured).

The experimental setup of the parallel robotic platform
consists of

• nr parallel experiments R := {1, · · · , nr}, which are
executed in r ∈ R reactors numbered from 1 to nr.

The robot simultaneously feeds all reactors R at

• nf discrete feeding times F := {t1, · · · ,tnf
}, where

nf is the total number of feeds(=injections) into one
reactor and t0 ≤ ti ≤ tend.

The robot continuously monitors/takes samples from all
reactors R at

• ns discrete measurement times M := {τ1, · · · , τns},
where nf is the total number of recorded measure-
ments from one reactor 1 and t0 ≤ τj ≤ tend.

Each reactor r ∈ R has its individual feeding strategy,
defined by the discrete inputs ur(ti) ∈ Rnu with ti ∈ F .
The discrete inputs represent injections and are collected
in the vector:

ur =



ur(t1)

...
ur(tnf

)


 ∈ Rnu·nf (2)

with the number of individual species to be injected nu

and the total number of injections nf .
From each reactor r ∈ R measurements ymr,j ∈ Rny are
recorded. These discrete measurements are obtained from
continuous and/or at-line concentration analysis at time
instances τj ∈ M. They are collected in the vector:

ymr =



ymr,1
...

ymr,ns


 ∈ Rny·ns (3)

with the number of measured states ny and the number of
samplings taken by the robot ns. Corresponding predicted
response variables yr(τj , ur, θ) ∈ Rny (simulated measure-
ments) are evaluated at the same time instances τj ∈ M.
They are collected in the vector

1 Note that, for the sake of simplicity, it is assumed that all measure-
ments are recorded at same/identical measurement times. In practice
oxygen is monitored continuously (high frequency measurements)
whilst concentrations are analysed from liquid samples taken by the
robot (low frequency measurements).
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The experimental setup of the parallel robotic platform
consists of

• nr parallel experiments R := {1, · · · , nr}, which are
executed in r ∈ R reactors numbered from 1 to nr.

The robot simultaneously feeds all reactors R at

• nf discrete feeding times F := {t1, · · · ,tnf
}, where

nf is the total number of feeds(=injections) into one
reactor and t0 ≤ ti ≤ tend.

The robot continuously monitors/takes samples from all
reactors R at

• ns discrete measurement times M := {τ1, · · · , τns},
where nf is the total number of recorded measure-
ments from one reactor 1 and t0 ≤ τj ≤ tend.

Each reactor r ∈ R has its individual feeding strategy,
defined by the discrete inputs ur(ti) ∈ Rnu with ti ∈ F .
The discrete inputs represent injections and are collected
in the vector:

ur =



ur(t1)

...
ur(tnf

)


 ∈ Rnu·nf (2)

with the number of individual species to be injected nu

and the total number of injections nf .
From each reactor r ∈ R measurements ymr,j ∈ Rny are
recorded. These discrete measurements are obtained from
continuous and/or at-line concentration analysis at time
instances τj ∈ M. They are collected in the vector:

ymr =



ymr,1
...

ymr,ns


 ∈ Rny·ns (3)

with the number of measured states ny and the number of
samplings taken by the robot ns. Corresponding predicted
response variables yr(τj , ur, θ) ∈ Rny (simulated measure-
ments) are evaluated at the same time instances τj ∈ M.
They are collected in the vector

1 Note that, for the sake of simplicity, it is assumed that all measure-
ments are recorded at same/identical measurement times. In practice
oxygen is monitored continuously (high frequency measurements)
whilst concentrations are analysed from liquid samples taken by the
robot (low frequency measurements).
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yr(ur, θ) =



yr(τ1, ur, θ)

...
yr(τns

, ur, θ)


 ∈ Rny·ns (4)

The predicted responses are obtained from the solution of
(1) for each reactor r ∈ R and therefore depend on the
corresponding discrete inputs ur and the parameters θ.

In the following uR is used to combine all discrete inputs
of all reactors R in one vector.

uR = [uT1 , · · · , uTnr
]T ∈ Rnr·nu·nf (5)

2.1 Parameter estimation and experimental design

We assume that the deterministic model in (1) is an exact
structural model and that corresponding discrete inputs ur
and initial state variables x0,r are known. Measurements
(taken from each reactor r ∈ R at measurement time
instant τj ∈ M) are assumed to be normally distributed
with zero mean and known covariance matrix V ∈ Rny×ny .
Correlations between errors in different reactors and au-
tocorrelation (or serial correlation) are not considered.
With the assumptions above, the weighted least squares
objective delivers a maximum-likelihood estimate of the

parameters. Accordingly, parameter estimates θ̂ are ob-
tained from the solution of the unconstrained problem
Bard (1974):

θ̂ = argmin
θ

φ(uR, θ) (6)

The objective function in (6) is defined by weighted least
squares with the weights given by the inverse of V:

φ(uR, θ) =
1

2

∑
r∈R

∑
τj∈M

er(τj , ur, θ) ·V−1 · (er(τj , ur, θ))T

(7)

with the residual vector defined as

er(τj , ur, θ) = yr(τj , ur, θ)− ymr,j (8)

If the estimate θ̂ is the unconstrained minimum of (6),
then the covariance matrix of the estimates can be ap-
proximated by Bard (1974):

C(uR, θ̂)∼=


∑

r∈R

∑
τj∈M

Sr
T (τj , ur, θ̂)·V−1 ·Sr(τj , ur, θ̂)




−1

(9)

where Sr(τj , ur, θ̂) is the sensitivity matrix, with

Sr(τj , ur, θ̂) = −∂er(τj , ur, θ̂)

∂θ
∈ Rny×nθ (10)

C(uR, θ̂) gives information on the precision of the maximum-

likelihood estimate θ̂. Designing an optimal experiment for
improving parameter precision means to minimize some
criterion on this matrix by optimally choosing the discrete
inputs uR (Bauer et al. (2000)):

u∗R := argmin
uR

ψA(uR, θ̂) (11)

A commonly used metric is the so called A-optimal crite-
rion ψA (the trace), which yields the optimal experimental
design objective function:

ψA(uR, θ̂) :=
1

nθ
Tr

[
C(uR, θ̂)

]
(12)

2.2 Sequential re-estimation and experiment redesign

The experimental design criterion ψA is a (nonlinear) func-

tion of the current parameter estimates θ̂ in (6). Wrong as-
sumptions or outdated parameter estimates may therefore
severely affect the quality of an experimental design and
the OED criterion ψA may deteriorate. This is the case

if θ̂ differs from the initial (or prior) estimate for which
an optimal experiment was designed and realized. To in-
crease the robustness against parameter uncertainties, the
OED method is implemented as adaptive experimental
redesign. 2 This iterative strategy takes full advantage of
new available information on the parameter values.

Consider additional

• n+
f feeding times F+ := {tnf+1, · · · ,tnf+n+

f
}, with

corresponding feeds u+
r (ti), with ti ∈ F+ and r ∈ R,

• n+
s measurement times M+ := {τns+1, · · · , τns+n+

s
},

and corresponding measurements ymr,j ∈ Rny , with

τj ∈ M+ and r ∈ R.

In the same way as in (2) and (5), the additional discrete

inputs are collected as u+r ∈ Rnu·n+
f , and combined:

u+R = [u+T
1 , · · · , u+T

nr
]T ∈ Rnr·nu·n+

f (13)

The current state of knowledge concerning the parameter
values results from the prior estimation, i.e. solution of
(6). The objective function of the re-estimation problem
for (ns + n+

s ) measurement time instances reads:

φupd(u+R, θ) = φ(θ) + φ+(u+R, θ) (14)

φ+(u+R, θ) contains the additional ny · n+
s residuals:

e+r (τj , u
+
R, θ) = y+r (τj , u

+
R, θ)− ym+

r,j (15)

with r ∈ R, τj ∈ M+

Note that in (14) and (15) there are no dependencies on
past uR, these past inputs have already been realized and
therefore are considered as constant. The solution to the
re-estimation problem updates the prior estimate θ̂ with

the posterior estimate θ̂upd. The covariance matrix of θ̂upd

can be approximated by:

C+(u+R, θ̂upd) ∼=
((

C(θ̂upd)
)−1

(16)

+
∑
r∈R

∑
τj∈M+

Sr
T (τj , u

+
R, θ̂upd) ·V−1 · Sr(τj , u

+
R, θ̂upd)

)−1

where the first term represents information from the prior
measurements and the second term represents information
gained by the additional future measurements.

The optimal redesign of experiments computes future in-
puts u+R by maximizing the information content in future
measurements taken at τj ∈ M+ whenever new param-
eter estimates are available. However, since these future

measurements have not been taken yet, θ̂upd is not known.
Thus, in order to optimize these future measurements, the

2 The parameters are sequentially re-estimated and the feeding
strategy is adaptively refined (i.e. future input variables are re-
optimized) during the course of an experiment. The frequency of
these re-estimations and re-optimizations depends on the complexity
of the involved numeric computations and the systems dynamics and
sampling rates, i.e. the availability of new informative measurements.
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redesign problem is solved for the prior estimate θ̂ in place

of θ̂upd (Bard (1974)). Applying the A-optimal criterion
to the covariance matrix in (16), the objective function of
the experiment redesign problem reads:

ψA(u+R, θ̂) =
1

nθ
Tr

[
C+(u+R, θ̂)

]
(17)

The design variables u+R influence future measurements at
sampling time instances M+ only, and thus the second
term in (16). Thus, the first term in (16) is a constant ma-
trix. As soon as the new measurements are taken, param-
eters are re-estimated and the iteration repeats/continues

with the updated parameter estimate in the role of θ̂.

2.3 Identifiability and ill-conditioning analysis

The analysis is performed locally based on the sensitivity
matrix (10), which contains useful information for numeri-
cal analysis of the PE and OED problem (López Cárdenas
et al. (2015)): In derivative-based solution methods for PE,

the sensitivity matrix S̃R, see (18), is used for the calcula-
tion of the step direction, i.e. computation of the Jacobian
and Hessian. Thus, the condition of S̃R characterizes the
condition of the PE problem. Moreover, there exists a
direct relationship between the singular values of S̃R and
the commonly used criteria for parameter identifiability
and OED, see (11), namely the eigenvalues of the Hessian
and of the parameter covariance matrix, see (9).

S̃R is scaled and is updated (quasi continuously) for every

new measurement and the current parameter estimate θ̂:

S̃r(τj , ur, θ̂) =
(
V

1
2

)−1

Sr(τj , ur, θ̂) (18)

where the weighting matrix V
1
2 ∈ Rny×ny is the square

root of the measurement covariance matrix V (compare
with (7)). Note that it is assumed that parameter values
are normalized by their respective initial guesses. Sensi-
tivities corresponding to all discrete measurements of one
reactor r ∈ R are collected as:

S̃r(ur, θ) =



S̃r(τ1, ur, θ)

...

S̃r(τns
, ur, θ)


 ∈ R(ny·ns)×nθ (19)

and combining the results for all reactors R gives:

S̃R(uR, θ) =




S̃1(u1, θ)
...

S̃nr (unr , θ)


 ∈ R(nr·ny·ns)×nθ (20)

The numerical problem analysis is done by computation
of the singular values (SVs) of S̃R. Note that the com-
putation of the SVs must/can be done numerically stable
also for ill-posed PE and OED problems. Indicators for
the identifiability and ill-conditioning analysis are derived
from the analysis of the singular value spectrum, condition
number, and collinearity index of S̃R. A rank-revealing
singular value decomposition (SVD) is computed:

S̃R =

nθ∑
i=1

µiςiv
T
i (21)

with ςi being the i-th singular value of S̃R (ordered ac-
cording to magnitude as ς1 ≥ ς2 ≥ · · · ≥ ςnθ

≥ 0), and the

left and right singular vectors µi ∈ Rnr·ny·ns and vi ∈ Rnθ ,
respectively. The number of linearly independent param-
eters corresponds to the numerical ε-rank rε of S̃R. rε is
defined by the maximum number of ςi with i = 1, · · · , nθ

for which the sub-condition number κi = ς1/ςi and the
sub-collinearity index γi = 1/ςi are below a critical thresh-
old. Corresponding upper bounds, namely the maximum
condition number (large ratio in SVs) and the maximum
collinearity index (smallness in SVs) are defined by empir-
ical values, κmax = 1000 and γmax = 1010 . . . 1015, respec-
tively. 3 Accordingly, κmax assures numerical stability and
γmax controls linear dependencies.

A useful graphic representation is a plot of the SVs against
their index i. This gives the so called SV spectrum. For an
ill-posed problem this spectrum can be partitioned in the
first SVs which define a well posed problem (their number
equals rε by definition) and the remaining ill-conditioned
SVs. Accordingly, well-conditioned SVs are above a lower
bound, namely the ε-threshold, which is defined by

ε = max

{
εκ =

ς1

κmax(S̃R)
, εγ =

1

γmax(S̃R)

}
(22)

A forward selection method using orthogonal projections
of S̃R is used to assess parameter identifiability. This
widely used approach for parameter subset selection seeks
an ordering of parameters according to the linear indepen-
dence of the columns of S̃R by applying QRP decomposi-
tion (see López Cárdenas et al. (2015)). The result is the
selection of a well-conditioned parameter subset. It is here
also used as adaptive regularization strategy, transforming
ill-conditioned into well-conditioned (but reduced) PE and
OED problems.

3. CASE STUDY

The case study considers the optimal operation of a paral-
lel robotic liquid handling station (see fig. 1) for calibration
of a macro-kinetic E. coli fermentation model. The reader
is referred to Nickel et al. (2017) for details on the exper-
imental facility and to Cruz Bournazou et al. (2017) for
details on the modeling and optimal operation. The exper-

Fig. 1. Deck layout of the Freedom Evo LHS: bioreactor 48;
reactor section, feeding section, samples, robot arm.

imental facility was set to run 8 fed-batch cultivations in 4·2
parallel mini BioReactors with a total working volume of
9-14 mL. The strain used is the widely studied Escherichia
coli W3110. This wild type is known for its fast replication

3 It should be noted that while κi is scale invariant, γi is not.
Moreover, it has been found that tuning of these maximum values
might be useful in the particular application.
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redesign problem is solved for the prior estimate θ̂ in place

of θ̂upd (Bard (1974)). Applying the A-optimal criterion
to the covariance matrix in (16), the objective function of
the experiment redesign problem reads:

ψA(u+R, θ̂) =
1

nθ
Tr

[
C+(u+R, θ̂)

]
(17)

The design variables u+R influence future measurements at
sampling time instances M+ only, and thus the second
term in (16). Thus, the first term in (16) is a constant ma-
trix. As soon as the new measurements are taken, param-
eters are re-estimated and the iteration repeats/continues

with the updated parameter estimate in the role of θ̂.

2.3 Identifiability and ill-conditioning analysis

The analysis is performed locally based on the sensitivity
matrix (10), which contains useful information for numeri-
cal analysis of the PE and OED problem (López Cárdenas
et al. (2015)): In derivative-based solution methods for PE,

the sensitivity matrix S̃R, see (18), is used for the calcula-
tion of the step direction, i.e. computation of the Jacobian
and Hessian. Thus, the condition of S̃R characterizes the
condition of the PE problem. Moreover, there exists a
direct relationship between the singular values of S̃R and
the commonly used criteria for parameter identifiability
and OED, see (11), namely the eigenvalues of the Hessian
and of the parameter covariance matrix, see (9).

S̃R is scaled and is updated (quasi continuously) for every

new measurement and the current parameter estimate θ̂:

S̃r(τj , ur, θ̂) =
(
V

1
2

)−1

Sr(τj , ur, θ̂) (18)

where the weighting matrix V
1
2 ∈ Rny×ny is the square

root of the measurement covariance matrix V (compare
with (7)). Note that it is assumed that parameter values
are normalized by their respective initial guesses. Sensi-
tivities corresponding to all discrete measurements of one
reactor r ∈ R are collected as:

S̃r(ur, θ) =



S̃r(τ1, ur, θ)

...

S̃r(τns
, ur, θ)


 ∈ R(ny·ns)×nθ (19)

and combining the results for all reactors R gives:

S̃R(uR, θ) =




S̃1(u1, θ)
...

S̃nr (unr , θ)


 ∈ R(nr·ny·ns)×nθ (20)

The numerical problem analysis is done by computation
of the singular values (SVs) of S̃R. Note that the com-
putation of the SVs must/can be done numerically stable
also for ill-posed PE and OED problems. Indicators for
the identifiability and ill-conditioning analysis are derived
from the analysis of the singular value spectrum, condition
number, and collinearity index of S̃R. A rank-revealing
singular value decomposition (SVD) is computed:

S̃R =

nθ∑
i=1

µiςiv
T
i (21)

with ςi being the i-th singular value of S̃R (ordered ac-
cording to magnitude as ς1 ≥ ς2 ≥ · · · ≥ ςnθ

≥ 0), and the

left and right singular vectors µi ∈ Rnr·ny·ns and vi ∈ Rnθ ,
respectively. The number of linearly independent param-
eters corresponds to the numerical ε-rank rε of S̃R. rε is
defined by the maximum number of ςi with i = 1, · · · , nθ

for which the sub-condition number κi = ς1/ςi and the
sub-collinearity index γi = 1/ςi are below a critical thresh-
old. Corresponding upper bounds, namely the maximum
condition number (large ratio in SVs) and the maximum
collinearity index (smallness in SVs) are defined by empir-
ical values, κmax = 1000 and γmax = 1010 . . . 1015, respec-
tively. 3 Accordingly, κmax assures numerical stability and
γmax controls linear dependencies.

A useful graphic representation is a plot of the SVs against
their index i. This gives the so called SV spectrum. For an
ill-posed problem this spectrum can be partitioned in the
first SVs which define a well posed problem (their number
equals rε by definition) and the remaining ill-conditioned
SVs. Accordingly, well-conditioned SVs are above a lower
bound, namely the ε-threshold, which is defined by

ε = max

{
εκ =

ς1

κmax(S̃R)
, εγ =

1

γmax(S̃R)

}
(22)

A forward selection method using orthogonal projections
of S̃R is used to assess parameter identifiability. This
widely used approach for parameter subset selection seeks
an ordering of parameters according to the linear indepen-
dence of the columns of S̃R by applying QRP decomposi-
tion (see López Cárdenas et al. (2015)). The result is the
selection of a well-conditioned parameter subset. It is here
also used as adaptive regularization strategy, transforming
ill-conditioned into well-conditioned (but reduced) PE and
OED problems.

3. CASE STUDY

The case study considers the optimal operation of a paral-
lel robotic liquid handling station (see fig. 1) for calibration
of a macro-kinetic E. coli fermentation model. The reader
is referred to Nickel et al. (2017) for details on the exper-
imental facility and to Cruz Bournazou et al. (2017) for
details on the modeling and optimal operation. The exper-

Fig. 1. Deck layout of the Freedom Evo LHS: bioreactor 48;
reactor section, feeding section, samples, robot arm.

imental facility was set to run 8 fed-batch cultivations in 4·2
parallel mini BioReactors with a total working volume of
9-14 mL. The strain used is the widely studied Escherichia
coli W3110. This wild type is known for its fast replication

3 It should be noted that while κi is scale invariant, γi is not.
Moreover, it has been found that tuning of these maximum values
might be useful in the particular application.
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time of ≈ 60 min and high acetate production rate. Using
the enzymatic glucose release system from EnBaseTM,
the concept of glucose-limited fed-batch cultivation was
emulated which is commonly used in industrial processes.
Additionally, cycles of culture medium, enzyme, acetic
acid, and glucose were added (feeding strategy, three times
per hour) by the pipetting channel. The sampling was
done every 20 minutes to obtain measurements of glucose,
optical density, and acetate. The delay between sampling
and analytics of the enzymatic assays was 80 minutes. The
pH was controlled, dissolved oxygen and temperature were
measured online (the data was recorded every 1 min).

Table 1. Problem characteristics.

Number of Quantity Comment

Reactors nr=4·2 Four reactors individually
operated, each with a duplication.

Feeds nu=4 Medium, enzyme, acetate, glucose.
Samples ny=1+3 Oxygen; biomass, acetate, glucose.

Frequency: 60/hour + 3/hour.
States nx=7 Individual reactor model.
Parameters nθ=25 17 valid for all reactors,

1·8 specific for individual reactors.

A summary of the characteristic problem variables is given
in table 1. The total length of the experimental run was
6 hours of operation, this makes a total number of

• 288 (= 6 · nu · nf · nr/2) experimental design vari-
ables, representing four individual feeding strategies;

• 3312 (= 6 · ny · ns · nr) measurement data points, rep-
resenting data from all eight reactors;

• 56 (= nx · nr) state variables/equations, which allows
for individual analysis of reactor duplicates.

4. RESULTS

An exemplarily plot of the final OED and the final fitting
of generated experimental data is depicted in Fig. 2.
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Fig. 2. Results from the adaptive optimal robot operation
for reactors r = 1 and r = 2 (duplicates). First and
second subplot show the fitting of the cell dry weight
(X, in grams per liter) and the dissolved oxygen
tension (DOT, in % of saturation). Third subplot
shows realized feeding/ sampling strategy, where feed
and extracted sample volumes are depicted with bars
(semi-log graph in micro liters).

It turns out that compared to a heuristically chosen design,
the realized OED generates data which reduces the average

coefficient of variation of the parameter estimates by a
factor of 50 considering all 23 (out of 25) identifiable
parameters (Cruz Bournazou et al. (2017)).

Fig. 3 shows results from the identifiability and ill-
conditioning analysis. The analysis is performed repeat-
edly to monitor changes in: the SV spectrum, the number
of identifiable parameters, and the selected identifiable
parameters. Note that logarithmic axes are used for time
and SV. In Fig. 3 top, it can be seen that during the
first half hour of the experiment the sensitivity matrix
S̃R, see (21), has very low rank (maximum rank is 25
equal to nθ). However, the rank is increasing fast and
finally reaches 20. This behavior can be explained by the
low number of measurements (at the very beginning the
number of measurements is even smaller than the number
of parameters) and low parameter sensitivities. The PE
and OED problem can be classified as rank-deficient. The
reduction of the parameter space can generate new better-
conditioned problems. In Fig. 3 bottom, it is shown that up
to the first parameter re-estimation, parameters are con-
secutively added to the identifiable subset (activated). For
parameters 16 and 19 there are inconsistencies (activation,
deactivation, activation) which result from shortcomings
in the forward selection method. Note that the problem
rank before and after the first parameter re-estimation
drops from 21 to 16, for the second re-estimation it in-
creases from 17 to 23. This unwanted behavior results from
limitations by the local analysis of the nonlinear model. It
presents a big problem as it can destabilize the iterative
design and estimation approach, see Barz et al. (2016).

Fig. 4 shows a theoretical evolution of SV and parameter
sets assuming that the finally identified parameters are
known from the beginning. During the last last five hours
the rank improves only by two, reaching finally 23. Here
the problems are of ill-determined rank, due to insufficient
measurement data and/or correlations in the parameters.
Remarkably, the OED is not able to attract additional
parameters to the identifiable region.

5. CONCLUSIONS AND OUTLOOK

The extensive requirements in biotechnology for experi-
mental validation makes methods to compute and perform
efficient experiments highly relevant. Adaptive methods
for optimal design of parallel systems are definitely an
important step towards fast and cheap calibration of ki-
netic models in bioengineering. The results of this work
show that it is currently possible to fit kinetic models to
experimental data while this is being generated. By this
a validated model of a specific process is available before
the end of the actual calibration experiment.

Interesting challenges are related to adaptive regulariza-
tion strategies, which: support the iterative identification
of a best-fitting identifiable parameter subset; improve the
problem condition and attract unidentifiable parameters
to the identifiable region; guarantee a numerically robust
and stable iterative identification and experiment redesign;
and, are applicable right from the start of the experimental
campaign (i.e. are applicable for both, rank-deficient and
ill-determined rank problems).
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Fig. 3. Results from identifiability and ill-conditioning
analysis during optimal robot operation. Time points
where parameters are re-estimated (and feeding
strategies are redesigned) are indicated by arrows.
Top: The evolution (in time) of the singular value
spectrum {ς1, · · · , ςnθ

} is severely affected by chang-
ing parameter values due to re-estimations. Bottom:
Corresponding parameter set selection. Active pa-
rameters belong to the identifiable parameter subset.
This subset changes significantly after parameter re-
estimation 1 and 2.
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