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Abstract: Albicidin is a recently described natural product
that strongly inhibits bacterial DNA gyrase. The pro-

nounced activity, particularly against Gram-negative bacte-
ria, turns it into a promising lead structure for an antibac-

terial drug. Hence, structure–activity relationship studies
are key for the in-depth understanding of structural fea-

tures/moieties affecting gyrase inhibition, antibacterial ac-
tivity and overcoming resistance. The 27 newly synthe-
sized albicidins give profound insights into possibilities for

variations of the C-terminus. Furthermore, in the present
study, a novel derivative has been identified as overcom-

ing resistance posed by the Klebsiella-protease AlbD.
Structural modifications include, for example, azahistidine

replacing the previous instable cyanoalanine as the central

amino acid, as well as a triazole amide bond isostere be-
tween building blocks D and E.

The rise and spread of antimicrobial resistance poses one of

the greatest threats to public health. According to a recent
study, the number of annual deaths attributable to drug-resist-

ant infections could reach 10 million by the year 2050.[1] The
World Health Organization (WHO) and its member states have

recognized the devastating prospect of a post-antibiotic era
and outlined the objectives to combat antimicrobial resistance
(AMR) in a Global Action Plan. A Priority Pathogens List (PPL)

was drawn up in a bid to promote research and development
of new antibiotics, because the current clinical pipeline is insuf-
ficient to diminish the threat posed by AMRs.[2] Since the ma-
jority of new drugs are merely modifications of existing ones,
more investment is sorely needed to foster innovation, in par-
ticular, for therapeutics targeting the more challenging Gram-

negative pathogens. Novel antibiotic agents are classified inno-

vative if they fulfil at least one of the following criteria : ab-
sence of cross-resistance to existing antibiotics, new chemical

class, new target or new mechanism of action.[3]

Exhibiting antibacterial activity at nanomolar concentrations

against both Gram-positive and -negative microorganisms, the

oligoaromatic peptide antibiotic albicidin (1), which is pro-
duced by the sugarcane pathogenic bacterium Xanthomonas

albilineans, represents a promising lead structure in the search
for a new class of therapeutically useful anti-infectives

(Figure 1).[4] The phytotoxin albicidin is a potent inhibitor of
DNA gyrase, which has been similarly found for the structurally

related cystobactamids[5] and coralmycins.[6] With a half maxi-

mum inhibitory concentration (IC50) of 40 nm, albicidin exhibits
an inhibitory activity similar to that of DNA gyrase-inhibiting

quinolones and coumarins.[4, 7] Its unique structure is composed
of a cinnamoyl residue at the N-terminus (building block A)

and a dipeptidic moiety at the C-terminus (building blocks E
and F). The latter consists of two para-aminobenzoic acids

(pABAs), each decorated with adjacent methoxy and hydroxy
groups. The only stereocenter of albicidin is featured in an un-
usual l-cyanoalanine (building block C), which has been found

to be prone to hydrolysis. Lastly, two unsubstituted pABAs
(building blocks B and D) connect the central building block C
with the two termini.[8]

Figure 1. Structures of albicidin (1), azahistidine-albicidin (2) and its novel
derivatives 3–28. The individual fragments of the peptide are assigned a
letter from A to F. For the identity of the residues investigated, see Table 1.
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To maximize the bioactivity of albicidin while minimizing the
effects of known resistance factors structure–activity relation-

ship (SAR) studies are imperative. The first total synthesis of al-
bicidin[9] paved the way for initial SAR studies, which included

variations of the cinnamoyl residue (building block A)[10] and
the incorporation of various a-amino acids at the central build-

ing block C.[11] We believe that albicidin’s C-terminal dipeptidic
moiety (E–F) is a key pharmacophoric region. As of yet, there
has been no extensive and systematic investigation of the SAR

for this important part of the molecule. Herein, we report the
synthesis of 26 new albicidin derivatives with variations of the

C-terminal dipeptidic group and their antimicrobial activities
against a broad panel of pathogens, including members of the
increasingly resistant ESKAPE (Enterococcus faecium, Staphylo-
coccus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,

Pseudomonas aeruginosa, Enterobacter spp.) group. All ana-
logues were additionally tested for their capacity to inhibit
DNA gyrase and for their lack of sensitivity towards two of albi-

cidin’s most important resistance factors, the binding protein
AlbA[12] and the serine protease AlbD.[13]

Based on our previous investigations[11] we first sought a
viable replacement for the hydrolytically unstable b-cyanoala-

nine as building block C. The noncanonical amino acid 2-

amino-3-(1H-1,2,3-triazol-4-yl)propanoic acid (azahistidine) ap-
pealed to us as a suitable substitute as it mimics the cyanoala-

nine and methoxy-asparagine moieties present in the naturally
occurring variants of albicidin (1).[14] Indeed, the synthetic var-

iant 2 exhibited superior antibacterial activity against the
tested E. coli, S. typhimurium, B. subtilis and M. luteus strains, as

well as an eight-fold higher activity against ciprofloxacin (CIP)

sensitive K. pneumoniae (Supporting Information, Table S1).
Consequently, we used azahistidine-albicidin 2 as a template

structure for the subsequent SAR study: The first set of ana-
logues (3–17) arises from sequential deletion of the methoxy

and hydroxy groups present in the C-terminal dipeptidic pABA
moiety (Table 1, green). Removing any number of substituents

leads to a varying spectrum of potency but generally reduces

overall activity. The MIC values for trisubstituted variants 3–6
suggest that the methoxy group in E is the most critical one

regarding single deletions. Its absence leads to a significant
drop of activity for compound 3 against both CIP sensitive and
resistant S. aureus, B. subtilis and M. luteus, while potency
against the remaining panel, including all E. coli strains, is simi-
lar for 3–6. In general, potency against Gram-positive patho-

gens gradually decreases with an increasing number of dele-
tions of functional groups in E and F, leading to a loss of activi-
ty for unsubstituted variant 17 and monosubstituted deriva-
tives 13–16. Despite the lack of all substituents, the overall ac-
tivity against Gram-negative pathogens only slightly decreases
for 17. Contrary to the remaining analogues from the deletion

sequence, compound 16—bearing a single methoxy group in
E—shows an exceptionally low potency against all tested
Gram-negative pathogens.

Previous findings have shown a tolerance for iso-propoxy
groups as methoxy-substitutes.[14, 15] Therefore, we hoped that

more hydrophobic alkoxy groups in building blocks E and F
might help boost activity. To test this hypothesis, the methoxy

moieties of the parent compound 2 were successively replaced

by ethoxy groups to produce synthetic analogues 18–20
(Table 1, blue). Although each of the three compounds inhibit-

ed DNA gyrase and showed high to very high activities
throughout the series of tested pathogens—except for Klebsiel-

la strains—the doubly substituted analogue 20 stands out
(Figure 2). It displays an increased spectrum of activity and the

highest potency against Gram-positive B. subtilis, M. phlei and

most importantly CIP sensitive and resistant S. aureus. Remark-
ably, variant 20 is highly potent on a CIP resistant strain of

Gram-negative A. baumannii, with MIC values below those of
compound 2 by up to a factor of 65.

To expand the chemical space for the SAR study, heterocyclic
derivatives 21–23, in which the phenolic core structures of E

and F are replaced by pyridines, were also synthesized (Table 1,

purple). While introducing a methoxypyridine as the building
block E only had a minor effect on the overall activity of 21, a

significant drop in activity—particularly against very important
P. aeruginosa strains—and loss of the ability to inhibit gyrase

was observed for variants 22 and 23 (Supporting Information
Table S1 and S2). Possibly, the deleterious effect caused by the

Table 1. Assignment of the residues for albicidin analogues with sequen-
tial deletion of the substituents of the C-terminal dipeptidic moiety (3–
17), sequential replacement of the methoxy groups with ethoxy groups
(18–20), sequential replacement of the phenolic core structure with pyri-
dines (21–23), and with replacement of the carboxylic acid group with a
sulfonic acid group (24). All derivatives contain azahistidine as building
block C.
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pyridine in building block F (compound 22) is predominant

and explains the poor activity observed for compound 23. One
could conclude that the hydroxy group in building block F is
imperative, but a direct comparison of 22, for example, with

the trisubstituted and still active analogue 6, negates that as-
sumption and makes adverse electronic effects and H-bonding
interactions between the nitrogen atom of the pyridine and
the adjacent carboxyl group more likely.

Since we have previously found that the amide bond be-
tween the C-terminal dipeptide (E–F) and the pABA (D) is hy-

drolysed by the protease AlbD[13] a series of analogues contain-
ing amide isosteres was synthesized in an effort to escape en-
zymatic cleavage. These included triazole 25, sulfonamide 26,

urea derivative 27 and the N-methyl amide 28 (Figure 1).[16] All
but the triazole-containing analogue 25 were either poorly

active or completely inactive in the MIC and supercoiling
assays (Supporting Information, Tables S1 and S2). In contrast,

compound 25 not only turned out to be highly potent against

Gram-negative strains of E.coli DSM 1116 and S. typhimurium
TA100, with values in the range of the parent compound 2,

but unlike the former it also maintained its activity in the pres-
ence of the serine protease AlbD as confirmed by agar diffu-

sion assays (Supporting Information, Figure S4). The adverse re-
sults presumably stem from an altered geometry of the mole-

cule upon introduction of an amide bond surrogate: The

sulfonamide is considerably larger than an amide and likely in-
duces a pronounced kink to compound 26. The three-atom

urea link is longer than the two-atom amide link and possibly

leads to a disfavoured conformation of 27 caused by an al-
tered intramolecular H-bonding network compared to 2. The

latter reason might also hold true for analogue 28, because N-
methylation appears to disrupt the H-bonding required to sta-
bilize a favoured conformation. The same is true for the tri-
azole-containing analogue 25, which is much larger than the
amide and lacks the ability to serve as an H-bond donor. What

appears to be a contradiction at first only strengthens the as-
sumption that a certain degree of linearity is required for activ-
ity—the cyclic triazole moiety seems to confine a favoured ge-
ometry; however, to a lesser extent than intramolecular H-
bonding enabled by the amide. Additional MS-cleavage experi-
ments in the presence of AlbD were conducted for the biologi-

cally inactive compounds 26–28 to examine the stability of the
respective surrogates (Supporting Information, Figures S8–
S10). While the sulfonamide and urea linkers in analogues 26
and 27 proved to be stable towards AlbD, simple N-methyl-
ation of the amide bond did not suffice to impede enzymatic

cleavage of compound 28.

Figure 2. Minimum inhibitory concentrations (MICs) are given in mg mL@1 for selected albicidin derivatives. Values are shown for CIP resistant strains of E. coli,
A. baumannii, P. aeruginosa, S. aureus, and a CIP sensitive strain of E. faecium. Gram-negative bacteria are highlighted in purple and Gram-positive ones in
green. The capacity of the variants to inhibit bacterial DNA gyrase is indicated with a green (++) for active and a light red (@) for inactive. For a complete list
of investigated compounds, see Supporting Information, Tables S1 and S2.
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Scheme 1. Synthetic pathways for the preparation of dipeptidic building blocks (A–E) and assembly of final albicidin derivatives (F–J). The C-terminal dipep-
tidic building blocks inherent to compounds 3–15 and 21–23 have been prepared analogously to previously reported protocols. The assembly of the final al-
bicidin derivatives was in line with that of azahistidine albicidin 2. For detailed schemes with reagents and conditions, see Supporting Information, Schemes
S1 and S2.
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Due to favourable solubility characteristics offered by a sul-
fonic acid group,[17] we intended to identify a derivative with a

substituent in place of the C-terminal carboxylic acid that
would improve the poor aqueous solubility of albicidin. How-

ever, compound 24 did not exhibit any antibacterial activity or
gyrase inhibition (Supporting Information, Tables S1 and S2).

The reason for the lack of activity might be the higher acidity
of the benzenesulfonic acid (pKa&4) or simply the larger steric
demand of a sulfonic acid group disfavouring interaction with

the molecular target.[18]

With regard to the synthesis, our efforts were enormous,
since the synthesis strategies for the preparation of the individ-
ual building blocks had to be adapted continuously. A [2++4]-

coupling strategy turned out to be the most viable for the
convergent total syntheses of novel albicidin derivatives, com-

bining an N-terminal dipeptidic cinnamoyl residue (A–B) with a

set of preassembled C-terminal tetrapeptides (C–D–E–F).
As described in the literature,[19] orthogonally protected aza-

histidine 30 was easily prepared in two steps from commercial-
ly available propargylglycine 29. Contrary to the cyano group

present in the natural product, the robust triazole ring is stable
towards basic conditions, allowing for convenient cleavage of

the pivaloyloxymethyl (POM) protecting group of the side

chain with aq. KOH after completed assembly of the albicidin
analogues. A simple single-step conversion of 30 afforded the

dipeptidic aryl alkyne 31, which served as a substrate for a
subsequent click-reaction to form the triazole linker present in

tetrapeptide 49 (Scheme 1 A,G). The synthesis of the tetrasub-
stituted pABA building block 36 from regioselectively protect-

ed dihydroxybenzoic acid 34 was achieved in a multigram

scale following an alternative route compared to the original
synthetic strategy. The key intermediate 35 served as a univer-

sal precursor for O-alkylation, which enabled simple introduc-
tion of ethyl groups (Scheme 1 C). By omitting the hydroxy

group in building block F, an acid-labile sulfonate protecting
group strategy could be adopted for the preparation of dipep-

tide 40, leading to the corresponding albicidin analogue 24 via

tetrapeptide 47 (Scheme 1 D,G).[20] Synthesis of N-methyl
amide 28 required selective monomethylation of aniline 41 in
the presence of methyl iodide. This was achieved by installing
a trifluoroacetyl protecting group prior to methylation to gen-

erate compound 42. The protecting group could easily be re-
moved afterwards with K2CO3 in MeOH to afford the desired

dipeptide 43 (Scheme 1 E). In the final step of the assembly, all
tetrapeptides were coupled to the active ester 33, which had
been prepared in two steps from previously reported cinnamo-

yl building block 32 (Scheme 1 B). Activation of the A–B dipep-
tide with pentachlorophenol (PCP), rather than previously used

HATU, led to higher yields and considerably facilitated the final
purification step by reversed-phase preparative HPLC.

In summary, we have carried out the first systematic SAR

study for albicidin’s C-terminal dipeptidic pABA moiety. Initially,
our extensive endeavour unearthed a new lead structure, aza-

histidine albicidin 2, exhibiting both superior antibacterial ac-
tivity and chemical stability to the natural product 1. The

doubly ethoxy-substituted compound 20 exhibits outstanding
potency and a broadened spectrum of activity, including a CIP-

resistant strain of A. baumannii. The triazole moiety in com-
pound 25 was identified as a viable structural motif to over-

come cleavage by the Klebsiella-protease AlbD while preserv-
ing biological activity. Prospectively, our results will help im-

prove a structure–activity guided drug design approach on the
path to develop an urgently needed new clinical candidate.
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