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Controlling Sliding Droplets with Optimal Contact Angle Distributions
and a Phase Field Model
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We consider the optimal control of a droplet on a solid by means of the static contact angle between the contact line and the
solid. The droplet is described by a thermodynamically consistent phase field model from [Abels et al., Math. Mod. Meth.
Appl. Sc., 22(3), 2012] together with boundary data for the moving contact line from [Qian et al., J. Fluid Mech., 564, 2006].
We state an energy stable time discrete scheme for the forward problem based on known results, and pose an optimal control
problem with tracking type objective.
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1 Introduction

We are concerned with optimal control of droplets where the static contact angle between solid and droplet serves as a
control variable. As a mathematical model we consider the Navier–Stokes Cahn–Hilliard equations with a moving contact line
model. The bulk model is the thermodynamically consistent model from [1], while the boundary data are taken from [2] and
contain generalized Navier boundary conditions for the Navier–Stokes equation together with dynamically advected boundary
conditions for the moving contact angle. In this model the two phases forming the contact line are described by a phase field
function ϕ together with a chemical potential µ. The velocity field is denoted by v together with a pressure field p.

2 The time discrete forward model

We consider the following time discrete system and refer to [3] for more details. Let Ω ⊂ Rn with boundary ∂Ω and
t0 < t1 < . . . < tm−1 < tm < . . . tM be an equidistant subdivision of the time interval [0, T ] with tm − tm−1 =: τ .
Moreover, let ϕ0 and v0 be given. For m = 1, . . . ,M we solve the following system of equations

1

τ

(
ρm + ρm−1

2
vm − ρm−1vm−1, w

)
+ a(km−1, vm, w) + (2ηm−1Dvm, Dw)− (divw, pm)

+(ϕm−1∇µm, w)− (gρm−1, w) + (lm−1vmtan + rBm∇ϕm−1, w)∂Ω = 0, (1)

−(div vm, q) = 0, (2)
1

τ
(ϕm − ϕm−1,Ψ)− (vm−1 − τ(ρm−1)−1ϕm−1∇µm, ϕm−1∇Ψ) + b(∇µm,∇Ψ) = 0, (3)

σε(∇ϕm,∇Φ) +
σ

ε
(W ′(ϕm−1) + SW (ϕm − ϕm−1),Φ)− (µm,Φ)

+
(
rBm + γ′(ϕm−1) + Sγ(ϕm − ϕm−1),Φ

)
∂Ω

= 0, (4)

where w, q, Ψ, and Φ are suitable test functions. We abbreviate (u, v) :=
∫

Ω
uv and (u, v)∂Ω :=

∫
∂Ω
uv. Here lm−1 :=

l(ϕm−1), ρm−1 := ρ(ϕm−1), and ηm−1 := η(ϕm−1), denote the evaluations of given functions l, representing the slip
length, ρ, representing the density, and η, representing the viscosity. Further abbreviations are km−1 := ρm−1vm−1 −
b ∂ρ∂ϕ (ϕm−1)∇µm−1,Bm :=

(
1
τ (ϕm − ϕm−1) + vm · ∇ϕm−1

)
, and a(u, v, w) = 1

2

(∫
Ω

(u · ∇)v · w dx−
∫

Ω
(u · ∇)w · v dx

)
.

The tangential part of vm is denoted vmtan.
Further constant parameters are the gravitational acceleration g, the mobility b, the scaled surface tension σ = cWσ12,

where cW is a scaling constant depending on the free energy potential W = 1
4 (1 − ϕ2)2 and σ12 denotes the surface tension

between the two phases, the interfacial thickness parameter ε, and a relaxation parameter r.
The contact line energy γ(ϕ) is given by γ(ϕ) = 1

2 (σs1 + σs2) + σ cos θsϑ(ϕ), where ϑ satisfies ϑ(−1) = − 1
2 and

ϑ(1) = 1
2 such that γ(−1) = σs2 and γ(1) = σs1 holds by Young’s law, where σs1/s2 denote the surface tension between

solid and phase 1, respectively phase 2, and ϑs denotes the static contact angle.
The existence of a solution to (1)–(4) follows by Galerkin approach and Brouwer’s fixpoint theorem, following [4].
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3 The optimal control problem

In the following we identify um(x) := cos(θs(tm, x)), m = 1, . . . ,M , as control variable that can be chosen freely in space
and time on some portion Γc ⊂ ∂Ω to influence the distribution of ϕ. Notice that this especially means, that the static contact
angle can be chosen arbitrarily in space and time. In practice physical and manufacturing constraints apply. On ∂Ω \ Γc we
use a given static contact angle. Let ϕd(t, x) denote a desired distribution of the droplet over space in time.

We consider the following optimization problem.

min
u∈(L2(Γc))M

τ

2

M∑

m=1

∫

Ω

|ϕm − ϕd(tm)|2

such that (1)− (4) with cos(θs) =: um

cos(θmin) ≤ um ≤ cos(θmax).

Here θmin and θmax are given minimum and maximum static contact angles.

initial shape/position
ϕ0

desired shape/position
ϕd at time t

Control with u = cos(θs(t, x))

Fig. 1: Setup of the optimal control
problem.

4 Numerical results

For a numerical realization we discretize (1)–(4) in space using piecewise quadratic finite elements for v and piecewise linear
elements for ϕ, µ, and p. These are provided by the finite element library FEniCS [5] together with the linear algebra package
PETSc [6]. The adjoint and the gradient are derived by automatic differentiation using dolfin-adjoint [7]. The software
IPOPT [8] is applied for the solution of the optimization problem. As a test example, we consider a single droplet on a flat
surface, see Figure 1. The top row in Figure 2 shows the desired shape and position of the droplet for specific time intervals.
We specify an asymmetric ϕd which changes three times over the optimization horizon. The second row shows the calculated
shape of the droplet whereas the third row shows the optimal distribution of θs.
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Fig. 2: Desired and calculated shapes and positions of the droplet ϕd respectively ϕ (top and second row) together with the optimal contact
angle distributions (bottom row) at four different instances of time.

This is a first prove of concept that the static contact angle can be used to control a droplet. An investigation of the influence
of the droplet properties on the optimal contact angle distribution and the ability to reach the objective is subject to future work.
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