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Abstract: The polarization fields and electro-optical response of PIN-diodes based on nearly
lattice-matched InGaN/GaN and InAlN/GaN double heterostructure quantum wells grown on
(0001) sapphire substrates by metalorganic vapor phase epitaxy were experimentally quantified.
Dependent on the indium content and the applied voltage, an intense near ultra-violet emission
was observed from GaN (with fundamental energy gap Eg = 3.4 eV) in the electroluminescence (EL)
spectra of the InGaN/GaN and InAlN/GaN PIN-diodes. In addition, in the electroreflectance (ER)
spectra of the GaN barrier structure of InAlN/GaN diodes, the three valence-split bands, Γ9, Γ7+, and
Γ7−, could selectively be excited by varying the applied AC voltage, which opens new possibilities
for the fine adjustment of UV emission components in deep well/shallow barrier DHS. The internal
polarization field Epol = 5.4 ± 1.6 MV/cm extracted from the ER spectra of the In0.21Al0.79N/GaN DHS
is in excellent agreement with the literature value of capacitance-voltage measurements (CVM) Epol =

5.1 ± 0.8 MV/cm. The strength and direction of the polarization field Epol = −2.3 ± 0.3 MV/cm of the
(0001) In0.055Ga0.945N/GaN DHS determined, under flat-barrier conditions, from the Franz-Keldysh
oscillations (FKOs) of the electro-optically modulated field are also in agreement with the CVM results
Epol = −1.2 ± 0.4 MV/cm. The (absolute) field strength is accordingly significantly higher than the

Epol strength quantified in published literature by FKOs on semipolar
(
1122

)
oriented In0.12Ga0.88N

quantum wells.
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1. Introduction

Engineering of efficient light emitting diodes (LEDs) and laser diodes (LDs) in the deep ultraviolet
(UVC) range (100–280 nm) is a main goal of nanooptoelectronics and photonics [1–18]. A vast variety
of applications includes water purification and availability of safe drinking water, which is a vital
natural resource especially in developing countries. A proven physical disinfection method in drinking
water purification is the use of ultraviolet (UV) light with wavelengths of 200–300 nm to inactivate
micro-organisms. Based on the ability of UV light to function as a broad-spectrum antimicrobial agent
with short contact times and minimal disinfection by-product formation, it is a viable alternative to
chemical disinfectants. The wavelength of the applied UV light depends on the implemented UV
emitter. Conventionally, low- and medium-pressure mercury lamps are used; however, in water
purification applications, particularly in discontinuously operated, decentralized, and mobile water
systems, UV light emitting diodes have certain advantages compared to conventional UV emitters: they
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do not contain mercury, which may contaminate the water, and need lower voltages than conventional
mercury lamps, therefore offering the option to be operated with solar cells or rechargeable batteries.

Extensive research efforts are thus devoted to the quantification and possible optimization of
processes in ultra-violet light emitting diodes (UV LEDs) inclusive the control of electric fields [19–31],
which ultimately affect the LED properties. Except for InGaN with very high In content, the binary
members of group-III nitrides, AlN and GaN, and their alloys with InN are all wide-bandgap materials
and can crystallize in both wurtzite and zinc-blende polytypes. The bandgaps of the wurtzite polytypes
are direct and range from ≈0.7 eV for InN to 3.4 eV for GaN and 6.1 eV for AlN. GaN alloyed with
AlN and InN may span a continuous range of direct-bandgap energies throughout much of the visible
and deep into the ultraviolet spectrum. The entire visible spectrum (400–700 nm) can theoretically
be covered by the InAlGaN quaternary nitrides. This makes the nitride system highly attractive for
optoelectronic device applications such as LEDs, LDs, and UV-detectors and sets it on focus of intensive
research and development (R&D) studies. Commercialization of bright blue and green LEDs and the
possibility of yellow LEDs paved the way for the development of full-color displays with compactness,
long lifetime, and relatively low power consumption. Additional possible applications include the use
of LEDs in agriculture as light sources for accelerated photosynthesis and in health care for diagnosis
and treatment. In this context, group-III nitrides provide an incredibly expanding material source, in
particular due to their impressive optical properties being much less affected by the presence of lattice
defects and dislocations than arsenides and phosphides [6,7,9]. Lateral mismatched substrates may
still lead to substantial densities of misfit and threading dislocations in broad-area epitaxially deposited
GaN on foreign substrates in the range of 109–1010 cm−2; InGaN, the primary material system for
efficient green and blue light emitters, however, exhibits dislocation densities typically in the order of
107–109 cm−2, which in fact accelerated its commercialization. Difficulties still present in the ternary
InGaN growth include the degradation of the material quality of InGaN films with increasing indium
content due to the re-evaporation of indium from the instantaneous grown surface.

By precise control of the relative amounts of In and Ga in indium gallium nitride (InGaN) alloy
crystals, the band gap increases smoothly and continuously as the proportions shift away from In
in favor of Ga until reaching the well-established value of 3.4 eV for pure GaN. This extraordinary
range of band gaps in a single kind of alloy material suggests among others its use for solar cells [8];
alloys with varying proportions of In and Ga could bracket the entire solar spectrum from the near
infrared to the deep ultraviolet [13]. GaN is rather difficult to grow and to dope in order to create
p-type material. Indium does not mix evenly with gallium in the alloy. Instead, it agglomerates to
tiny indium-rich clusters that emit light efficiently though the material is riddled with defects. Defects
usually ruin the optical properties of a semiconductor by trapping charge carriers and dissipating their
energy as heat. The fact that InGaN operates as an emitter suggests that its defect tolerance may be
adopted and should be of great advantage in solar cells. To exploit the alloy correspondence to the
sunlight spectrum requires a multi-junction cell with layers of different composition. Lattice matching
in multi-junction cells is a rather difficult task. The optoelectronic properties of nitride materials,
however, show insensitivity to defect dislocations generated by the lattice mismatch. InGaN can be
grown on transparent substrates including sapphire (Al2O3) or silicon carbide (SiC), has tremendous
heat capacity, and as other group-III nitrides is extremely resistant to radiation. These properties are
ideal for the solar arrays that power communications satellites and other spacecraft. Assuming that
the production costs are of the same order of magnitude as for light emitters, inexpensive nitride based
efficient solar cells are expected to revolutionize space and simultaneously play a key-role in the use of
solar power for terrestrial applications.

The strongest feature of group-III nitride semiconductors compared to other wide-bandgap
counterparts is the heterostructure technology that it can support: quantum wells, modulation-doped
heterointerfaces, and heterojunctions can all be made, in this system, giving access to new spectral
regions for optical devices and new operational regimes for electronic devices [18]. The growth
of InGaN quantum dots (QDs) containing multilayers appears to be profitable for pursuing higher
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emission rates and broader spatial and spectral resonances. High density, self-organized InGaN/GaN
quantum dots grown by plasma-assisted molecular beam epitaxy exhibit strong emission ranging from
430 to 524 nm at room temperature.

Most UV-LED heterostructures are grown on (0001) oriented c-plane sapphire substrates. Owing
to the large volumes of sapphire substrates that are being used for blue LED production, sapphire
wafers have become very inexpensive. Most importantly, sapphire is fully transparent across the
entire UVA, UVB, and UVC spectral range because of its large bandgap energy of 8.8 eV. Considering
that group-III nitrides are prepared on foreign substrates, since low-cost native substrates are not yet
available, precise measurements of the mechanical, thermal, electrical, and optical properties of the
group members are imperative for further advances. The common epitaxial growth of III–V nitrides in
the direction normal to the c-plane of the hexagonal wurtzite structure results in polarization charges
present at the layer interface and thus spontaneous electric fields affecting the optical and electrical
properties of nitride material based devices [3,6,7,32–34]. The strength and direction of the internal
electric fields depend also on piezoelectric fields induced by the mismatch strain between the deposited
film and the substrate [35–38]. One of the most demanding physical aspects of nitride emitters is the
presence of large piezoelectric fields in these materials. Because of the hexagonal lattice symmetry
without a center of inversion, the piezoelectric coefficients for wurtzite nitrides are non-zero. InGaN
QWs are under biaxial compressive stress due to the larger lattice constant of InGaN compared to GaN.
Consequently, InGaN QWs grown along the crystallographic c-axis exhibit an internal piezoelectric
field in the MV/cm range [16]. Spontaneous electric and superimposed piezoelectric fields affect
the material band gap (Eg) through the quantum confined Stark effect (QCSE) [39–41] and thus the
optical properties and emission efficiency of the devices [42,43]. The strong piezoelectric field causes
a current-dependent red-shift in the emission and significantly contributes to the notoriously low
efficiency of green InGaN LEDs. Under controllable piezoelectricity conditions, the blue-green nitride
heterostructures and QWs can be grown along crystallographic directions where the piezoelectric field
is small or zero. In fact, the piezoelectric field can be cancelled out for certain oblique crystal directions,
as for example in case of non- and semipolar GaN crystal orientations. For GaN optoelectronics, an
entirely new approach towards different rapidly expanding activities in the area of nonpolar and
semipolar nitrides has latterly been initiated, with more and more groups worldwide joining this new
facet of nitride semiconductor research [30].

Direct predetermination of the material band gap and the device efficiency by selecting the
semiconductor or metal element fraction is not possible. Therefore, a closer look at the nature of
the inherent electric fields generated by the incorporation of a controlled heterostructure inside the
intrinsic region of a PIN-LED is expected to decipher the optical response and efficiency and reveal
the phenomena behind them. Accordingly, in the present work, the electro-optical response of model
PIN-diodes based on group-III nitride double heterostructure (DHS) quantum wells (QWs) is studied
by electroreflectance (ER) and electroluminescence (EL) spectroscopy and associated, for calibration
purposes, with the internal electric fields. In addition, the strength and orientation of fields extracted by
ER and EL modulation techniques are compared to field properties determined by capacitance-voltage
measurements (CVM) on the model diodes in [44–46]. The materials used are exclusively wurtzite
III-nitrides: AlN, InN, GaN, and ternary combinations of the binary compounds grown in the direction
of the c-plane normal. Accurate determination of emission energies and efficiencies in dependence
of bias-voltage and frequency are acquired for the correct interpretation of the electro-optical device
properties, which is a prerequisite for the implementation of III nitride materials based devices with
favorable design parameters and sufficient output.

2. Materials and Methods

InGaN/GaN and InAlN/GaN PIN-diodes with In0.055Ga0.945N and three different InxAl1-xN
compositions (In0.15Al0.85N, In0.18Al0.82N, and In0.21Al0.79N), in a double heterostructure (DHS) grown
on (0001) sapphire substrate by metalorganic vapor-phase epitaxy (MOVPE), were fabricated and
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structurally characterized as described elsewhere [44–46]; the thickness of the central ternary nitride
layer was determined there by high-resolution transmission electron microscopy (HRTEM). A PIN-diode
with a GaN layer instead of InGaN or InAlN served as a reference sample. Schematic side-view
representations of the reference and the DHS samples are illustrated in Figure 1a,b, respectively.
In addition, distant and close top-view photos of the PIN-diodes are shown in Figure 1c,d, respectively.
A brief description of the DHS samples is given in the following:
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The quantum well layer of nominal thickness 9.5 nm InGaN in InGaN/GaN and 4 nm InAlN in
InAlN/GaN is sandwiched between two intrinsic GaN layers (i-GaN); the total thickness of the intrinsic
(unintentionally doped) region is 23 nm in both the DHS and the GaN reference. The composition
of the InGaN and InAlN layers was obtained from high-resolution x-ray diffraction scans (HRXRD)
of the (0002) reflection [44–46]. The adjacent n- and p-GaN layer sequences contain, at the n-side, on
top of the (0001) sapphire substrate: n-doped GaN:Si layer (200 nm, 3 × 1018 cm−3), graded n-doped
GaN:Si layer (100 nm, 1018–1017 cm−3), low n-doped GaN:Si layer (400 nm, 1 × 1017 cm−3); at the
p-side: p-doped GaN:Mg (150 nm, 3 × 1018 cm−3) capped with highly p-doped GaN:Mg contact layer
(10 nm, 1 × 1020 cm−3). Following the epitaxial heterostructure growth, PIN-diodes were fabricated
by standard lithography and metallization techniques using Ni/Au as p-contact and Ti/Al/Ti/Au as
n-contact [47].

The ER and EL measurements were performed using a self-developed modulation spectrometer
equipped with a Xe arc spectral lamp (Oriel 75 W), two single diffraction grating monochromators,
installed the first one (CVI DK240 1/4 m) in the path of the incident and the second one (SPEX
1704 1 m) in the path of the detected light beam, and a Si-diode detector. In the ER experiments,
a function generator (Thurlby-Thander TG215 2 MHz) was used to modulate the InGaN/GaN and
InAlN/GaN reflectance at AC voltages of 2, 4, and 6 Vp-p and frequencies of 10, 30, and 60 Hz. In
the EL experiments, the function generator supplied the DC voltage of the PIN-diodes ranging from
the diode threshold-voltage 1.6–2.5 V up to 4 V. The PIN-diodes were contacted on a large planar
n-contact and 200 × 200 µm2 semi-transparent p-contacts. The detected reflectance changes (∆R), in
the ER experiments, and the electroluminescence emission, in the EL experiments, were amplified by
lock-in amplifier (Stanford Research Systems SR530) techniques.
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3. Results and Discussion

3.1. PIN-Diodes Based on InGaN/GaN DHS with 5.5% In

The electric performance of the group-III nitride semiconductor PIN-diodes analyzed in the present
work by electroreflectance (ER) and electroluminescence (EL) spectroscopy in view of performance
relevant electro-optical field effects was initially approached by capacitance-voltage measurements
(CVM) in [44]. A brief review of the CVM measurement principles applied in [44–46] on the PIN-diodes
studied by ER and EL is given in the following, since it has delivered the built-in potential Vbi used to
evaluate the polarization fields by ER.

The capacitance C of a PIN-diode is directly related to the area and interspace of the equivalent
capacitor (Equation (1)), in this case the (intrinsic) unintentionally doped (du) inclusive the depletion
(dd) region width d (=du + dd) and the area A of the diode defined by the p-contact and the mesa area:

C =
ε0εrA

d
(1)

Various methods utilizing the equivalent circuit characteristics can be addressed for accurate
determination of the capacitance and the herewith related material and device properties, as reported
in previous and recent publications [44–60]. By application of CVM techniques, the capacitance C
can be determined from the current in dependence of voltage I(V) characteristics using an equivalent
circuit model to evaluate the resistances [46] or alternately fitted to the impedance complex function of
a PIN-diode equivalent circuit [44]:

Z(ω) = RS +
1/RP − iωC

1/R2
P +ω2C2

(2)

where C is the measured capacitance, RS, RP are the series and parallel resistance of the equivalent
circuit, respectively, Z(ω) is given by Im(Z(ω)) =

∣∣∣Z(ω)∣∣∣sinθ and
∣∣∣Z(ω)∣∣∣= VAC/IAC with VAC, IAC the

rms-values of current and voltage, respectively, θ is the phase-shift of current with respect to voltage,
and ω is the frequency.

The main observable in CVM is the inverse of the capacitance square (1/C2), which depends
linearly on the applied voltage [44–46]. The 1/C2 dependence of the GaN reference on the applied
bias-voltage is depicted in Figure 2. The slope of the 1/C2(V) curve is inversely proportional to the
effective dopant concentration 1/NA + 1/ND of the PIN-diode, which in principle defines the width d
of the unintentionally doped and the depletion region (d = du + dd) [45]:

d =

√
d2

u
(ND −Ni)(NA + Ni)

NDNA
+

2ε0εr

q

(
ND + NA

NDNA

)(
Vbi −V −

2kT
q
− EpoldQW

)
(3)

Inserting Equation (3) in Equation (1) results in an explicit relationship of the squared inverse
capacitance dependence on voltage 1/C2(V) described by Equation (4):

1
C2 =

d2
u

ε2
0ε

2
r A2

(
(ND −Ni)(NA + Ni)

NDNA

)
+

2
ε0εrqA2

(
ND + NA

NDNA

)(
Vbi −V −

2kT
q
− EpoldQW

)
(4)

where C is the capacitance, V is an externally applied bias voltage, Vbi is the built-in potential, and
Epol is the polarization field of group-III nitrides. Ni, NA, and ND are the intrinsic, the donor, and the
acceptor dopant concentrations, respectively, dQW is the thickness of the central ternary nitride (InGaN
or InAlN) layer of the DHS, and du is the thickness of the unintentionally doped binary nitride (GaN)
in the reference and ternary nitride (InGaN or InAlN) DHS based PIN-diodes. A is the p-contact area
that equals the diode surface area, q is the elementary charge, T is the temperature in Kelvin, and k is
the Boltzmann constant; ε0, εr are the vacuum and relative permittivity, respectively.
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For a constant doping profile, the slope of 1/C2(V) is constant. The built-in potential Vbi and the
polarization field Epol of group-III nitrides can thus be accurately determined, as demonstrated in
recent publications [44–46]:

Vbi = V +
2kT

q
+

 ∂∂V
1

C2
re f (V)


−1 d2

u,re f

ε2
0ε

2
r,re f A2

re f

(ND −Ni)(NA + Ni)

NAND
−

1
C2

re f

 (5)

Epol =
1

dQW

Vbi −V −
2kT

q
+

(
∂
∂V

1
C2(V)

)−1 1
C2 −

d2
u

ε2
0ε

2
r A2

(ND −Ni)(NA + Ni)

NDNA

 (6)

The built-in potential Vbi deduced by CVM from the 1/C2(V) characteristic curve of the GaN
reference sample exhibited a relatively weak dependence on applied voltage with Vbi (1/C2 (V = 0))
= 3.28 ± 0.22 V, which is relevant for all processes close to equilibrium. This value is used in the
determination of Epol by CVM in [44,45] and by ER in this work.

The polarization field Epol, which is a strictly decreasing function of the indium content, promotes
interface charge generation and, therefore, the increase of the capacitance. Dependent on the sign and
strength of the polarization fields, the 1/C2(V) characteristics of the InxGa1-xN/GaN, x = 0.055, and
InxAl1-xN/GaN, x = 0.15, 0.18, 0.21, PIN-diodes are expected to be: the former higher and the latter
lower than the 1/C2(V) of the GaN reference.

Group-III nitride semiconductors possess direct band gaps over a large energy range. It is the
ability to create direct gap ternary alloys such as InxGa1-xN, AlxGa1-xN or InxAl1-xN with energies
beyond those of the constituent binary III nitrides that makes them profitable for use in optoelectronic
devices. A band diagram of the wurtzite (WZ) crystal structure [33] in a simplified E(k) representation
at k = 0 (Γ-point) involves a non-degenerate conduction band (CB) and three separate valence split
bands (VBs) upon degeneracy removal due to the hexagonal crystal field ∆cr and the spin–orbit
interaction ∆so, as demonstrated in Figure 3 (left side). In reality, the bands extend over a larger range
of momentum with non-parabolic dispersions and there may also be more than one confined states for
both the CB and VBs. The top of the valence band is split into twofold- and single-degenerate states
originated by the hexagonal crystal field ∆cr; the former is labeled Γ6 and the latter Γ1 [61–63]. In case
of GaN, Γ6 is higher than Γ1, while in case of AlN, the Γ1 level is higher. The two-fold degenerate Γ6

state is split into Γ9 and Γ7 by the spin–orbit interaction ∆so; the single degenerate state has also Γ7

symmetry. Hence, the two Γ7 states are mixed by the spin–orbit coupling. The hole masses of the
three states: Γ9, Γ7+, and Γ7− have a large k dependence [61,62], and are labeled HH (heavy-holes), LH
(light-holes), and CH (or SO) (crystal field split-off holes) [62,64], as shown in Figure 3. Near the band
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edges, the E(k) relationship can be approximated by a quadratic equation, where m* is the associated
effective mass [65,66]:

E(k) =
}2k2

2m∗
(7)
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Figure 3. (left) Crystal field and spin–orbit interaction in wurtzite GaN [33,61–64] leading to the
sub-bands of heavy (HH), light (LH), and crystal-field split-off holes (CH); (right) valence band structure
of wurtzite GaN with three-split valence bands reproduced from [64] with the permission of AIP
Publishing (in the wurtzite structure, crystal-field splitting appears due to the structural anisotropy
parallel and normal to the c-axis).

A quantum well (QW) formed by two heterojunctions or three layers confines the free carriers in a
two-dimensional (2D) system within the two well cladding barrier regionsΦb. The pinning of nodes at
the boundaries of a well with infinite barrier height Φb and width dQW leads to the quantization of n
sub-bands; with respect to the band edges, each sub-band has bottom energy of:

En =
}2n2π2

2m∗dQW2 (8)

Carriers reside on these sub-bands instead of the band edges of the initially continuous conduction
band. The effective energy gap for interband transitions inside the quantum well becomes larger than
the bulk Eg.

Studies on interband excitonic transitions in wurtzite single-crystal GaN films [67], InGaN
alloys [68], InGaN/GaN [69,70], and InGaAs/GaAs [71–73] single and multi-quantum well structures
have already been reported, among them several using ER techniques [74–83]. However, no reports
on the polarization fields of InGaN/GaN double heterostructure quantum wells determined by
electro-modulation (ER) in complement with capacitance-voltage (CVM) techniques have been
available up to now. The ER spectra of the PIN-diodes based on the In0.055Ga0.945N double quantum
well and the GaN reference structure are presented in Figure 4a,b, respectively. The three-split valence
bands associated with the combined effect of crystal field ∆cr and spin-orbit ∆so splitting can clearly be
seen, with the respective energies, Ea, Eb, and Ec, assigned to the sub-bands of heavy holes (HH), light
holes (LH), and split-off holes (SO). The transition energies of both the binary GaN and the ternary
In0.055Ga0.945N compounds are in the energy range expected for x = 0 and x = 0.055 indium content [7].



Appl. Sci. 2020, 10, 232 8 of 24

Appl. Sci. 2020, 9, x FOR PEER REVIEW 8 of 23 

thus Franz–Keldysh oscillations (FKOs) of barrier regions of the InGaN/GaN DHS stimulated in the 
intermediate field regime. The main features of these spectra are the high-electric-field induced 
Franz–Keldysh oscillations above the E0 transition, the broadening of the excitonic E0 transition, and 
the clearly observed E0 +ΔE0 In0.055Ga0.945N direct transition between the spin-orbit splitted valence 
band and the conduction band. The extrema of FKOs are given by [90,94,95]: 

π φ − = +  Θ 

3
204

3
m

FKO
E Em  (9) 

where mFKO is the index of the m-th extremum, φ is an arbitrary phase factor, Em is the photon energy 
of the m-th oscillation, E0 is the energy gap, and Θ  is the electro-optic energy given by: 

( )
μ

Θ = 
2 2 2

3

//2
eq F  (10) 

with eq  the electron elementary charge and μ// ( )( )= +* * * *
e hh e hhm m m m  the reduced interband effective 

mass for the electron and heavy-hole pair in the direction of F. The electric field F can, therefore, be 
obtained directly from the period of the FKOs, if μ//  is known. 

 

 
Figure 4. ER spectra of PIN-diodes based on (a) the GaN reference sample and (b) the 
In0.055Ga0.945N/GaN DHS with three-split valence bands Ea, Eb, and Ec of the wurtzite crystal structure. 

A plot of the FKO extrema Em as a function of redefined index ( ) π =  
2 3

3 4 FKOm m  (Figure 5) 

yields a straight line with slope Θ  = 0.01536 eV and ordinate-intercept the Ea transition energy 
(fundamental gap energy E0) of the In0.055Ga0.945N/GaN quantum well heterostructure, E0 = 3.260 ± 
0.002 eV, averaged over several measurements, <E0> = 3.248 ± 0.006 eV. The bandgap energies of 

Figure 4. ER spectra of PIN-diodes based on (a) the GaN reference sample and (b) the
In0.055Ga0.945N/GaN DHS with three-split valence bands Ea, Eb, and Ec of the wurtzite crystal structure.

Extensive research studies of the optical properties of bulk semiconductors and semiconductor
microstructures under the application of modulation spectroscopy, in the past, are being renewed at
present [84–93]. Electromodulation is the most useful of various optical modulation methods since it
yields, in general, the sharpest spectral features and is sensitive to surface (interface) electric fields.
In the presence of relative stark internal fields, oscillations at energies above the band gap energy
are ascribed to the Franz–Keldysh effect [94–99]. Oscillations at energies 3.29–3.37 eV, in Figure 4b,
are thus Franz–Keldysh oscillations (FKOs) of barrier regions of the InGaN/GaN DHS stimulated in
the intermediate field regime. The main features of these spectra are the high-electric-field induced
Franz–Keldysh oscillations above the E0 transition, the broadening of the excitonic E0 transition, and
the clearly observed E0 + ∆E0 In0.055Ga0.945N direct transition between the spin-orbit splitted valence
band and the conduction band. The extrema of FKOs are given by [90,94,95]:

mFKOπ = φ+
4
3

(Em − E0

}Θ

) 3
2

(9)

where mFKO is the index of the m-th extremum, ϕ is an arbitrary phase factor, Em is the photon energy
of the m-th oscillation, E0 is the energy gap, and }Θ is the electro-optic energy given by:

(}Θ)3 =
q2

e}2F2

2µ//
(10)
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with qe the electron elementary charge and µ//

(
= m∗em∗hh/

(
m∗e + m∗hh

))
the reduced interband effective

mass for the electron and heavy-hole pair in the direction of F. The electric field F can, therefore, be
obtained directly from the period of the FKOs, if µ// is known.

A plot of the FKO extrema Em as a function of redefined index m = [(3/4)mFKOπ]
2/3 (Figure 5)

yields a straight line with slope }Θ = 0.01536 eV and ordinate-intercept the Ea transition energy
(fundamental gap energy E0) of the In0.055Ga0.945N/GaN quantum well heterostructure, E0 = 3.260 ±
0.002 eV, averaged over several measurements, <E0> = 3.248 ± 0.006 eV. The bandgap energies of
III–V ternary compounds have an approximately quadratic dependence on the alloy composition x:
E0(AxB1-xC) = x E0(AC) + (1 − x) E0(BC) + p(A–B) x(1 − x) [7,100]. According to recently published
literature on the fundamental properties of III–V ternary and quaternary alloys [100], the band-gap
energies of the related III–V binaries at 300 K and the bowing parameter p(A–B), in case of AxB1-xC
= InxGa1-xN, are: E0(InN) = 1.1 eV, E0(GaN) = 3.42 eV, and p(In–Ga) = −1.64. Considering that the
(fundamental) energy band gap of bulk InGaN with 5.5% In-fraction is Eg(In0.055Ga0.945N) = 3.207 eV,
the excess energy ∆E = (3.248−3.207 eV =) 0.041 ± 0.006 eV originates from the band gap broadening
of the InGaN/GaN QW heterostructure as described by Equation (8). For the respective interband
transition, rearrangement of the terms in Equation (8) yields the width LW (n = 1) of the InGaN/GaN
quantum well heterostructure:

LW =
h√

8µ// ∆E
(11)

where ∆E = 0.041 eV (1 eV = 1.602 × 10−19 J) is the band broadening due to quantum confinement and
µ// is the reduced effective mass in In0.055Ga0.945N set equal to µ// in GaN.
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Figure 5. Linear fitting of the Franz–Keldysh oscillation (FKO) extrema of the ER spectrum of the
In0.055Ga0.945N/GaN DHS of Figure 4b (inset: electric field in the barrier and depletion region interface
in dependence of bias-voltage).

For the calculation of the internal electric field F with Equation (10) and the QW width dQW (= LW)

with Equation (11), the effective mass of electrons and holes in In0.055Ga0.945N was set equal to
m∗e = 0.20m0 and m∗hh = 2.20m0 in GaN [101], with the free electron rest mass m0 = 9.109 × 10−31 kg,
the elementary charge qe = 1.602 × 10−19 C, and Planck’s constant } = h/2π, h = 6.626 × 10−34 m2 kg/s.

The calculated QW width dQW = dInGaN = 7.09 ± 1.04 nm converges to the value of nominal
thickness (9.5 ± 0.5 nm) striven.
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The calculated values of the In0.055Ga0.945N/GaN field F in the barrier interface region (F = FB) are
plotted in the inset of Figure 5 in dependence of the modulation voltage. FKOs are usually related
to surface/interfaces, thus barrier regions of heterojunctions, and, in this case, to the field FB existing
at the InGaN/GaN interface barrier, which is expected to be weaker than the (total) field Epol. For a
pin structure, there are three contributions to the FKOs [99]: one from the unintentionally doped QW
barriers that have a uniform electric field of FB; the other two from the depletion regions, at the p- and
n-sides, that have non-uniform electric fields with the maximum fields equal to FB. Under small AC
modulation, the period of the FKOs originating in the depletion region is determined by the maximum
electric field FB [95,99].

In general, if a quantum well (QW) structure is incorporated in the intrinsic region of a p-i-n diode,
an external field can be applied, leading to an expression of the voltage drop across the DHS [72]:

Vappl + Vbi + EwLw + EbLb = 0 (12)

where Vappl and Vbi are the externally applied bias and the built-in potential, Lw(Lb) and Ew(Eb) are the
well (barrier) length and well (barrier) field, respectively.

The QW-structure, however, has an internal envelope electric field,
→

E int, across the DHS that
opposes the conventional built-in field [73]:

Eint =
EwLw + EbLb

Lw + Lb
(13)

As a result, the energy minima and envelope functions of all sub-bands supported by the QW are

strongly modified relative to the ideal flat-band case (
→

Ew =
→

Eb = 0) through the quantum-confined
Stark effect.

The majority of approaches to determine the internal electric field have relied upon
counterbalancing the quantum-confined Stark effect with an externally applied reverse bias Vappl and
measuring properties of the quantum well as a function of this applied reverse bias. At low bias, the
well is skewed due to the internal field. At a critical bias, the contributions from the applied bias and

the internal field are equal and opposite [28]. The total field (
⇀
F =

→

E total) in the DHS is approximated as
follows:

Etotal = Eint −Vappl/(du + dd) (14)

Eint(du + dd) = Vbi − EwLw − EbLb (15)

du = Lw + Lb (16)

where
→

E int represents the fields due to the piezoelectric effect and the spontaneous polarization in the
unintentionally doped (intrinsic) and depletion regions with spatial widths du and dd, respectively, and
Vbi is the built-in voltage from the p-n junction.

Considering that on (0001) substrates the electric fields in the wells and barriers are of equal
strength (Ew = Eb = Epol) [72], Equations (14)–(16) yield:

F = Etotal =
(Vbi −Vappl − Epoldu)

(du + dd)
(17)

Hence, for a QW sandwiched inside a p-n junction (p-i(QW)-n), the electric field
⇀
F (=

→

E total) is

related to the polarization field
⇀
Epol and bias voltage Vappl by Equation (17). The first term of Equation

(17) is the background field written as the total voltage drop divided by the distance (du + dd) over
which that drop occurs. The externally applied voltage is negative for reverse bias.
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At a flat-barrier (FB) condition, the electric field in the barrier-interface region (
⇀
F =

⇀
FB) is zero

and the polarization field
⇀
Epol can be determined by solving Equation (17) for FB(= F) = 0 [99]:

Epol =
Vbi −VFB

du
(18)

where VFB is the bias voltage at flat-barrier condition. In the vicinity of flat-barrier, FB(= F) approaches
a linear relation with bias voltage.

For the In0.055Ga0.945N/GaN field studied in this work, the flat-barrier condition is sustained for
voltages below the emission threshold voltage of the respective PIN-diode of 4 V AC, as demonstrated
in Figure 6. The field is maintained in the voltage-plateau 4–6 V, and is overwhelmed above 8 V, where
FKOs are almost buried in the superimposed UV emission. In the inset of Figure 5, a fit of the electric
field in dependence of voltage FB(V) with a straight line up to FB = 0 intersects the x-axis at a flat-barrier
voltage of VFB = 8.47 ± 0.58 V. Using the built-in potential value selected at 0 V in capacitance-voltage
measurements Vbi = 3.28 ± 0.22 V (part 3 Results and Discussion), since all equations were derived close
to equilibrium [65], and du = 23.0 ± 2.0 nm (Figure 1b), the polarization field in the In0.055Ga0.945N/GaN
DHS is found to be Epol = −2.26 ± 0.33 MV/cm in the same direction as the built-in field.
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modulation voltage.

The field F experienced by carriers with concentration NInGaN and charge qe across the InGaN/GaN
DHS under application of an external voltage VAC can be approximated by [90]:

F =

√(
2qeNInGaN

εInGaNε0

)(
Vbi −VAC −

kT
qe

)
(19)

where εInGaN = 10.518 is the relative permittivity of the intrinsic InGaN layer [26] and ε0 = 8.854 × 10−12

F/m is the vacuum permittivity. The field F modulated with VAC = 2 V is according to Equation (10)
F = 4.18 × 106 V/m.
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The carrier concentration determined by Equation (20) after term-reorder of Equation (19):

N =

(
εInGaNε0 F2

)
2qe (Vbi −VAC − kT/qe)

(20)

is NInGaN = 4.04× 1015 cm−3, which is a realistic value considering that the InGaN layer is unintentionally
doped with dopant concentration typically in the range 1015–1016 cm−3, and that FKOs are generally
observed in this doping range [90].

Oscillations at energies below the band gap energy, as demonstrated in Figure 7, are thickness
interferences [102–105] and can be used to determine the thickness of the GaN layer, alternately, the
thickness of the GaN/InGaN/GaN layer region penetrated by the incident beam:

t =
Nλ1λ2

2(λ1 − λ2)
√

n2
f − (sinθ)2

(21)

where t is the thickness of the film, λ1 and λ2, λ1 > λ2, are the begin- and end-wavelength of the
spectral region where the oscillations appear, N is the number of oscillations within this region, nf is
the refractive index of the film, and θ is the angle between the incident beam and the normal to the
surface [104]. For N = 10 oscillations in the range 2.583–3.107 eV (400–480 nm), at angle of incidence
θ = 45◦, a thickness of t = 4.5 µm was calculated by inserting nInGaN ≈ nGaN = 2.82 [89,106–109] in
Equation (21), which accounts for both the GaN and the InGaN DHS based PIN-diode layer thickness
in Figure 1a,b.
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3.2. PIN-Diodes Based on InAlN/GaN DHS with 15, 18, 21% In

Opposite to the InxGa1-xN/GaN DHS with shallow well/high barrier, in case of the InxAl1-xN/GaN
DHS with deep well/shallow barrier, no Franz–Keldysh oscillations were observed. The Ea, Eb, and
Ec transition energies of the GaN barrier showed instead a remarkable dependence on the applied
modulation voltage in the range of 2–6 V AC, as depicted in Figure 8a. An ER spectrum with good
resolved transitions between the three-split valence band and the conduction band of InxAl1-xN was
recorded only in case of the PIN-diode based on the In0.21Al0.79N/GaN DHS with the maximum of
the investigated indium fractions of 21% In; the respective transition energies of Ea = 3.695 eV, Eb =
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3.723 eV, and Ec = 3.748 eV can be evidenced in Figure 8b. An approximated value of the polarization
field in the quantum well and the barrier interface can be deduced directly from the measured Ea

energy as EW
pol = Ea/dQW = 3.695 V/4 nm = 9.24 MV/cm and EB

pol = Ea/du = 3.695 V/23 nm = 1.61 MV/cm,
respectively. The mean value of Epol = 5.42 ± 1.63 MV/cm obtained by ER is in excellent agreement with
the value determined by CVM as Epol = 5.1 ± 0.8 MV/cm [45]. Line-shape analysis of the ER spectra
would exceed the objectives of the present work.
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3.3. Results of Comparative Studies of Polarization Fields by Electroreflectance (ER) Spectroscopy and
Capacitance-Voltage Measurements (CVM)

The values of the polarization fields Epol of the In0.055Ga0.945N and the In0.15Al0.85N, In0.18Al0.82N,
In0.21Al0.79N DHS determined by ER in this work are compared, in Figure 9, with the values determined
by CVM in [44–46] and with theoretically predicted values [19,26,38]. The analytical approach indicates
moderate polarization fields of In0.055Ga0.945N (−1.2 ± 0.4 MV/cm) and high polarization fields of
In0.15Al0.85N (5.9 ± 0.8 MV/cm), In0.18Al0.82N (5.4 ± 0.9 MV/cm), and In0.21Al0.79N (5.1 ± 0.8 MV/cm)
determined by CVM. The (total) polarization field of In0.055Ga0.945N (−2.3 ± 0.3 MV/cm) determined
by ER is in agreement, within the experimental and calculation errors, with the CVM result. The
same holds for the polarization field of In0.21Al0.79N (5.4 ± 1.6 MV/cm) extracted from the ER spectra.
The field values predicted theoretically by F. Bernardini et al. [19], O. Ambacher et al. [26], and A. F.
Wright [38] are of the same order of magnitude. Nevertheless, they also foresee a field decrease with
the increase of the In-content higher than experimentally measured, which could be indicative of an
underestimation of the piezoelectric field contribution to the total polarization field. On the other hand,
the experimental error is quite large, which is partially due to the particularly small InAlN and InGaN
layer thickness of 10 nm maximal.
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3.4. Comments on Formalism of Polarization Field Determination

A basic property of nitride semiconductors, which directly affects the electronic, transport, and
optical properties of heterostructures, is the presence of strong spontaneous PSP and piezoelectric
PPE polarizations. The orientation of both PSP and PPE polarizations along the c-axis depends on
the sequence of atomic layers in the crystal. The compositional dependence and large magnitude of
PSP and PPE play an important role in the optoelectronic device physics of nitride semiconductors
due to the associated polarization charge distributions. A surface charge distribution results in the
formation of an electrostatic field perpendicular to the interface. In heterostructures, polarization
charges are induced on each heterojunction and can produce large internal electric fields that strongly
bend the conduction- and valence-band edges near the interface. The electric fields produced by the
polarization charges in heterostructures can be evaluated using principles of electrodynamics. In case
of multiple-quantum-well (MQW) structures, which are used routinely in most optoelectronic device
applications, the well and barrier materials can be InGaN and GaN, AlGaN and GaN, or InAlN and
GaN, as in the present case, and their properties are denoted by the subscripts w and b, respectively.

In accordance with Maxwell’s theory of the electromagnetic field, the electric displacement
→

D of

a material of dielectric permittivity ε subjected to electrical polarization
→

P under the influence of an

(external) electric field
→

E is given by:

→

D = ε
→

E = (1 + χ)
→

E =
→

E + χ
→

E =
→

E +
→

P (22)

Continuity of the displacement flux across each interface of a well-barrier pair requires that:

→

Ew +
→

Pw =
→

Eb +
→

Pb (23)
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A simple analytical solution for the fields in well
→

Ew and barrier
→

Eb can be obtained in the limit of
an infinitely periodic structure, where the intrinsic voltage drop across each well/barrier pair must be
zero [110]:

→

EwLw +
→

EbLb = 0 (24)

with L = Lw + Lb being the layer thickness.
Combining Equations (23) and (24) yields the polarization-induced built-in electric field in the

well layers:

→

Ew =

(
→

Pb −
→

Pw

)
Lb

Lw + Lb
(25)

Very large values of up to a few MV/cm are typically computed for these fields in c-plane nitride
heterostructures. As a result, the energy minima and envelope functions of all sub-bands supported

by the QWs are strongly modified relative to the ideal flat-band case (
→

Ew =
→

Eb = 0) through the
quantum-confined Stark effect. The existence of strong piezoelectric fields results thus in a red-shift
of the excitonic transitions within strained QWs. Application of an external bias can modulate these
fields to obtain a blue-shift of the absorption edge.

If a multiple-quantum-well (MQW) structure is incorporated in the intrinsic region of a p-i-n
diode, an external field can be applied leading to the expression [72]:

EwLw + EbLb = −
(
Vbi + Vappl

)
(26)

where Vappl and Vbi are the applied and built-in potentials, respectively.
Combining Equations (23) and (26) gives the polarization-induced built-in electric field in the

well layers under the influence of an external field:

EwLw + EwLb + (Pw − Pb)Lb = −
(
Vbi + Vappl

)
(27)

On (100) substrates, the electric fields in the wells and barriers are of equal strength, while, for

structures grown on substrates other than (100), the piezoelectric field
→

Ep can be expressed as [72]:

→

Ep ≡
→

Ew −
→

Eb (28)

Taking into consideration Equation (23), it can also be expressed as:

→

Ep ≡
→

Pb −
→

Pw (29)

By substitution of Equation (29) into Equation (27), the well and barrier fields for a p-i-n structure,
grown so that the p-doped layer is uppermost, are:

Ew =
−

(
Vbi + Vappl

)
+ (Pb − Pw)Lb

Lw + Lb
= −

(Vbi + Vappl)

L
+

EpLb

L
(30)

Eb =
−

(
Vbi + Vappl

)
− (Pb − Pw)Lw

Lb + Lw
= −

(Vbi + Vappl)

L
−

EpLw

L
(31)

Equations (30) and (31) indicate that for a given external bias Vappl, the well
→

Ew and barrier
→

Eb fields are dependent on the i-region length and the lengths of the barrier and the well material,
respectively. The magnitude of the overall well field is reduced as more wells are incorporated into an
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i-region of a p-i(MQW)-n diode structure of a given thickness; likewise the barrier fields must increase
accordingly:

Ew = −
(Vbi + Vappl)

L
+

Ep nLb

L
(32)

Eb = −
(Vbi + Vappl)

L
−

EpnLw

L
(33)

and
L = n(Lw + Lb) (34)

where Lw is the length of a single QW and n is the number of wells.
Using Equation (34), Equation (32) can be then rewritten as:

Ew = −
(Vbi + Vappl)

L
+

Ep (L− nLw)

L
= −

(Vbi + Vappl)

L
−

Ep nLw

L
+ Ep (35)

In the absence of illumination, the electric field
→

Ew within the wells amounts [73]:

Ew = −
Vbi
L

+
Ep (L− nLw)

L
= −

Vbi
L
−

Ep nLw

L
+ Ep (36)

The internal electric field is determined by counteracting the quantum-confined Stark effect
(QCSE) with an externally applied reverse bias; the reverse bias Vappl acts to oppose the internal field

and attenuate the induced QCSE. A decrease of the internal polarization field
→

Ep implies cancellation

of the piezoelectric field
→

Epiezo by the reverse bias. The piezoelectric field is set, in principle, against the
built-in Vbi and reverse bias field Vappl.

In [69], the total internal field (
→

E total) in the well layer was approximated as follows:

Etotal = Ei −
Vappl

(du + dd)
+ Epiezo (37)

Vbi = Ei(du + dd) + EpiezoNLw (38)

where Vbi, Vappl,
→

Epiezo, and
→

E i represent the built-in potential, the applied voltage, the piezoelectric
field, and the internal field in the undoped and depletion regions, respectively. The thicknesses of the
undoped region, depletion region, the well width, the barrier width, and the number of quantum wells
are represented as du, dd, Lw, Lb, and N, respectively.

Solving Equation (38) with respect to the internal field

Ei =

(
Vbi − EpiezoNLw

)
(du + dd)

(39)

and inserting Equation (39) in Equation (37) results in Equation (40), which coincides with Equation (35):

Etotal =
Vbi −Vappl − EpiezoNLw

du + dd
+ Epiezo (40)

The internal field
→

E i is the sum of the fields due to the piezoelectric effect and the spontaneous
polarization. The background field written as the total voltage drop divided by the distance, over
which that drop occurs, has led to the replacement of the MQW-width L = n(Lw + Lb) in Equation (35)
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by (du + dd) in Equation (40). Apparently, the width of the intrinsic region du is given by the sum of
the unintentionally doped multiple well and barrier widths:

du = N(Lw + Lb) = L (41)

The depletion width dd is the sum of the p- and n-type depletion widths and varies with the
applied bias. The depletion width dd, in a p-i-n structure, can be approximated by [99]:

dd = −du +

√√
d2

u + 2
(

ND + NA
NDNA

)ε0ε
(
Vbi −Vappl − EpdQW

)
q

(42)

dQW = NLw

where dQW is the sum of the multiple QW widths and NA, ND are the acceptor and donor doping
density, respectively.

3.5. Electrooptical Response of PIN-Diodes Sensed by Electroluminescence (EL) Spectroscopy

The EL emission spectra of the PIN-diodes based on the GaN reference structure and the
In0.055Ga0.945N/GaN, In0.15Al0.85N/GaN, In0.18Al0.82N/GaN, and In0.21Al0.79N/GaN quantum well
heterostructures are presented in Figures 10 and 11; evidently, both the excitonic- and defect-related
emission depend on the applied bias-voltage (DC, AC, or a combination of both DC and AC). The
excitonic emission in the UV spectral range is facilitated at higher voltages, whereas at voltages
slightly above the EL emission-threshold of the PIN-diodes, only the defect-related emission due to the
donor–acceptor pair recombination (DAP) in the VIS range is present, as demonstrated in Figure 10a,b.
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The EL emission characteristics of PIN-diodes based on the GaN reference structure and the
In0.055Ga0.945N/GaN DHS exhibit a vast change by variation of the DC voltage in the range 2–4 V
under maintenance of the AC voltage at 2 Vp-p. An intensity-tuning of the ratio of the excitonic- to
defect-related emission in UV–VIS is thus easily achieved in conjunction with the applied forward
bias. In fact, group-III nitride based QW heterostructures exhibit much larger optical gains in case the
optical matrix element is largely enhanced due to the disappearance of the internal field [111]. The
exact emission energies of the EL components in UV–VIS and VIS–NIR were obtained by fitting the EL
spectra with Gaussians. In case of the GaN PIN-diode operated at 2.4 V DC and 2 Vp-p AC, the UV
emission is composed of a high intensity component at the GaN fundamental gap energy Ea (=E0) =

3.414 eV, with particularly narrow bandwidth (FWHM) of Γ = 0.054 eV, and a broader low intensity
component at EDAP = 3.299 eV, Γ = 0.283 eV. In case of the PIN-diode of the In0.055Ga0.945N/GaN
DHS, an additional EL component related to the excitonic emission of the InGaN/GaN quantum well
heterostructure was observed. Following the trend of the UV emission of GaN, this additional EL band
was enhanced as the DC voltage progressively increased.

The EL emission characteristics of PIN-diodes based on the In0.15Al0.85N/GaN, In0.18Al0.82N/GaN,
and In0.21Al0.79N/GaN DHS were shadowed by the emission of the low energy gap GaN over-layers.
The excitonic- and defect-related emission of GaN in dependence of the DC voltage, in Figure 11a,b,
follows the same trend, as previously discussed. By comparison of the EL emission energy of
InxAl1-xN/GaN PIN-diodes with x = 0.15, 0.18, and 0.21, at a fixed bias-voltage, a red-shift of the GaN
barrier emission with the increase of indium content was evidenced, which indicates that the overall
emission characteristics of the InxAl1-xN/GaN DHS appear red-shifted by an increase of indium in
consistency with published literature [112].

4. Conclusions

Studies of the electro-optical response of PIN-diodes based on In0.055Ga0.945N/GaN and
In0.15Al0.85N/GaN, In0.18Al0.82N/GaN, In0.21Al0.79N/GaN quantum well heterostructures revealed
selective excitation of the three valence-split bands of the GaN barrier structure, Ea, Eb, and Ec, in
deep well/shallow barrier InAlN/GaN DHS, which opens new possibilities for the fine adjustment of
UV emission components. The strength of the polarization field extracted from the ER spectra of the
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In0.21Al0.79N/GaN DHS Epol = 5.4 ± 1.6 MV/cm is in excellent agreement with the field value measured
by CVM Epol = 5.1 ± 0.8 MV/cm [45]. The strength and direction of the internal polarization field Epol
= −2.3 ± 0.3 MV/cm determined from Franz–Keldysh oscillations, in the electro-modulated spectra
of the In0.055Ga0.945N/GaN DHS under flat-barrier conditions, are in agreement, within experimental
and calculation errors, with the capacitance-voltage measurement results Epol = −1.2 ± 0.4 MV/cm,
which justifies the application of both optical and electrical characterization techniques for comparative
studies of polarization fields in group-III nitrides. In addition, the (total) polarization field strength of
InxGa1-xN (x = 0.055) obtained by ER and CVM and the strength Epol = −0.50 ± 0.07 MV/cm obtained by
CVM on InxGa1-xN (x = 0.08), in a previously published work [46], are in agreement, within statistical
fluctuations, with the theoretically predicted values [19,26,38]. As expected, the (absolute) polarization
field value extracted from the FKOs of (0001) oriented In0.055Ga0.945N/GaN, in this work, is significantly
higher than the value Epol = −0.575 ± 0.150 MV/cm measured by FKOs on a semipolar

(
1122

)
oriented

In0.12Ga0.88N quantum well [99].
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