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By means of a combination of equilibrium Monte Carlo and molecular dynamics simulations and
nonequilibrium molecular dynamics we investigate the ordered, uniaxial phases (i.e., nematic and
smectic A) of a model liquid crystal. We characterize equilibrium behavior through their diffusive
behavior and elastic properties. As one approaches the equilibrium isotropic-nematic phase transition,
diffusion becomes anisotropic in that self-diffusion D⊥ in the direction orthogonal to a molecule’s
long axis is more hindered than self-diffusion D∥ in the direction parallel to that axis. Close to
nematic-smectic A phase transition the opposite is true, D∥ < D⊥. The Frank elastic constants K1,
K2, and K3 for the respective splay, twist, and bend deformations of the director field n are no
longer equal and exhibit a temperature dependence observed experimentally for cyanobiphenyls.
Under nonequilibrium conditions, a pressure gradient applied to the smectic A phase generates
Poiseuille-like or plug flow depending on whether the convective velocity is parallel or orthogonal to
the plane of smectic layers. We find that in Poiseuille-like flow the viscosity of the smectic A phase
is higher than in plug flow. This can be rationalized via the velocity-field component in the direction
of the flow. In a sufficiently strong flow these smectic layers are not destroyed but significantly
bent. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4965711]

I. INTRODUCTION

Liquid crystals (LCs) have been a source of fascinatingly
abundant physics for more than a century. It all stems from
a simple molecular fact: the rigidity of their molecules
gives rise to anisotropic interactions, that is, their potential
energy depends on their mutual orientations. Macroscopically,
this anisotropy leads to a series of phase transitions that
break rotational and translational symmetries in a step-wise
fashion. For example, as the temperature is lowered from
an isotropic LC below the nematic transition, a macroscopic
molecular orientation emerges. At an even lower temperature,
one-dimensional layering of the molecular centers of mass
emerges, namely the smectic A phase.

Because of their capacity to reorient, also in response to
external fields, LCs are used in a wide range of applications:
from electronic displays, to microlasers1–3 and lubricants.4

LCs are ubiquitous in biological settings. Nucleic acids,
proteins, carbohydrates, and fats exhibit liquid-crystalline
mesophases.5,6 Biological LCs possess both structural and
functional properties. Biological membranes, for example,
are smectic A analogues7,8 and have flexoelectric responses,6,9

thus coupling sensing and actuation.6 Cytoskeletal filaments
can experience spatial order and alignment both at the level
of the mesh size (≃10 nm) and of the whole cell (≃10 µm),

a)Electronic mail: s.schlotthauer@mailbox.tu-berlin.de

leading to short- and long-range directionality.10,11 Finally,
LCs have also risen to an important role in biomedical
sciences and applications,12,13 and in our comprehension of
morphogenesis and evolution of living organisms.14

Hydrodynamic flow of an LC fundamentally perturbs its
equilibrium properties which is manifested in the interplay
of preferential orientation, surface anchoring, topological
defects, and flow velocity. Considerable interest in the flow of
LCs has grown15 for at least two reasons: (i) it gives access
to fundamental quantities as the viscosity coefficients and (ii)
novel methods of manipulation of liquids at the microscale and
lab-on-a-chip technologies can be ushered by the anisotropy
of LC interactions.

Although the hydrodynamics of nematic LCs has been
well studied,16,17 surprisingly much less is known about the
next LC phase with lower symmetry, that is, the smectic
A phase. Among the first experimental investigations of the
smectic A rheological properties is the work of Porter et al.
in 1966.18 Helfrich introduced the concept of permeation.19

When a smectic A phase flows in a capillary with velocity
perpendicular to the layers, the molecules will ‘permeate’
through the immobile smectic pattern, producing a plug flow.
The fundamental hydrodynamic equations for smectics were
written down by Martin, Parodi, and Pershan20 and later
considered in simplified form by de Gennes.21 More recently,
Bennett and Hess22 studied the Miesowicz, Helfrich, and
Leslie viscosities in proximity of the nematic to smectic
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phase transition. Walker and Stewart23 introduced a new
theoretical approach to smectic A flow. In addition, shear
flow experiments on systems close to the nematic-smectic
transition or well into the smectic phases have found complex
transformations of the layer structure. Typically, different
orientations of the layers coexist or the layer normal is
reoriented from the direction of the shear gradient to the
vorticity direction.24–27 Alternatively, undulations of the layers
are observed.25

The experimental picture up to date is broad and well
understood on a macroscopic length scale.27–29 Additionally,
theoretical approaches such as elasticity theory capture the
experimental picture adequately.21,30 Moreover, the interest
in equilibrium31,32 and nonequilibrium33,34 properties of LC
confined to mesoscopic or even nanoscopic geometries has
grown in the past years.35 On this length scale the elasticity
theory does not provide a correct quantitative description
anymore, such that molecular simulations are a vital tool to
further explore this emerging field.

Thus, there is a great need to have model potentials for
LCs that are both sufficiently realistic and computationally not
too demanding. For example, the well-established Gay-Berne
model of an LC (studied, for example, in Ref. 22) is based
essentially on a Lennard-Jones potential where the orientation
dependence of the interaction is built-in via an orientation
dependent van der Waals radius and depth of the attractive
well. It is this latter feature which renders the Gay-Berne
model particularly cumbersome. This is a consequence of the
relatively large shape anisotropy of the molecules which are a
notorious problem in computer simulations. In fact, not only
the computational effort of the rather complex potential but
also long equilibration phases limit the size of simulations.
Because we are interested in simulation setups that mimic
experimental conditions, we are faced with the challenge
to devise a model potential for a LC that reproduces its
phenomenology but that at the same time allows to study large
systems. We therefore introduce a novel model for smectic
A fluids (Section II). In Section III we describe the details
of the Monte Carlo and molecular dynamics simulations that
we have performed. Section IV is given to a description
of equilibrium and nonequilibrium properties of our model
smectic fluid. Finally, we discuss our results and conclusions
in Section V.

II. MODEL

A. Mesogens

We consider a LC composed of N molecules (i.e., meso-
gens) interacting via a pairwise additive potential such that
the total configurational potential energy may be cast as

Φmm (R,Ω) =
N−1
i=1

N
j=i+1

ϕmm
�
ri j,ω i,ω j

�
, (2.1)

where ri j = ri − r j is the distance vector connecting the centers
of mass of mesogens i and j located at ri and r j, respectively.
In addition to ri j, the interaction potential ϕmm depends on
the orientations ω i and ω j of the interacting mesogenic

pair. In Eq. (2.1) we use shorthand notation R = (r1, . . . ,rN)
and Ω = (ω1, . . . ,ωN) to indicate that Φmm depends on the
configuration of the N mesogens. On account of the uniaxial
symmetry of the mesogens, ω = (θ,φ) where θ and φ are
the polar and azimuthal angle specifying the orientation of
the mesogens’ symmetry axes in a space-fixed frame of
reference.

Because ϕmm is orientation dependent, we split it into an
isotropic and an anisotropic contribution according to

ϕmm
�
ri j,ω i,ω j

�
= ϕiso

�
ri j

�
+ ϕanis

�
ri j,ω i,ω j

�
, (2.2)

where ri j =
�
ri j

�
. More specifically, we take

ϕiso
�
ri j

�
= ε


a1

(
σ

ri j

)10

− a2
exp

�
−λri j

�

ri j


= ϕrep

�
ri j

�
+ ϕatt

�
ri j

�
, (2.3)

where ε is the depth of the attractive well, σ is the van
der Waals diameter of the spherically symmetric mesogenic
core, λ is the inverse Debye screening length of the attractive
Yukawa tail, and subscripts “rep” and “att” refer to repulsive
and attractive contributions to the isotropic-core potential,
respectively. We emphasize that Eq. (2.3) differs from ϕiso
used in previous work.36,37 In fact, here we take a Yukawa-
like instead of the Lennard-Jones potential for reasons to be
discussed later. Parameters

a1 =
1
10

1 + λσ

9 − λσ
, (2.4a)

a2 =
σ exp (λσ)

9 − λσ
(2.4b)

are introduced to guarantee that the minimum of ϕiso remains
at rmin

i j = σ and that ϕiso(rmin
i j ) = ε/10 regardless of λ.

For the anisotropic interactions, we follow Giura and
Schoen38 and expand ϕanis in terms of the so-called
rotational invariants.39 To proceed we employ symmetry
considerations, namely the invariance of ϕanis with respect
to the transformations ω i → ω′i = −ω i or ω j → ω′j = −ω j as
well as its invariance upon replacing ri j by −ri j. One may
then cast ϕanis as

ϕanis
�
ri j,ω i,ω j

�
= ϕatt

�
ri j

�
Ψ
�
ri j,ω i,ω j

�
, (2.5)

where ri j = ri j/ri j. Throughout this work the caret is used
to indicate a unit vector. If one limits the expansion of ϕanis
to the three leading terms,38 the anisotropy function can be
expressed as

Ψ
�
ri j,ω i,ω j

�
= ε1P2

�
u (ω i) ·u �

ω j

��

+ ε2
�
P2

�
u (ω i) ·ri j� + P2

�
u
�
ω j

�
·ri j

�	

(2.6)

where P2 (x) = 1
2

�
3x2 − 1

�
is the second Legendre polynomial

and the (dimensionless) anisotropy parameters 2ε1 = −ε2
= 4.0 are fixed throughout this work. Last but not least,
we take λσ = 3.0 such that ϕiso is short-range.

At this stage, a couple of comments are worthwhile. The
term proportional to ε1 in Eq. (2.6) corresponds to the orienta-
tion dependence of interactions in the celebrated Maier–Saupe
model.16 Notice that for fixed orientations of mesogens
i and j and for ε2 = 0, ϕmm is isotropic. Nevertheless,
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FIG. 1. Contour plot of ϕmm [see Eqs. (2.2)–(2.6)] for a pair of meso-
gens whose centers of mass are located in the x-y plane such that r12
= (x12, y12,0)T (T denotes the transpose). Both mesogens have the orientation
u(ω1)=u(ω2)= (1,0,0)T. The color bar indicates the value of ϕmm and the
black lines are equipotential lines along which ϕmm assumes the values given
in the figure.

nematic phases may form because configurations in which
u(ω i) ·u(ω j) = ±1 (head-tail symmetry) are energetically
most favorable.38 However, just including the Maier–Saupe
term in Eq. (2.6) would be insufficient if the formation of
smectic A phases is desired. In order to support both long-
range orientational and one-dimensional positional order, the
term proportional to ε2 is indispensable. More specifically,
terms proportional to ε2 can be understood as ellipsoidal
eccentricity of the mesogens’ shape. Notice that the anisotropy
parameters taken here are larger than in previous work.36,37 In
order to balance these rather strong anisotropic interactions,
we take advantage of the Yukawa-like potential [see Eq. (2.3)]
and use a weak [i.e., ϕiso(rmin

i j ) = ε/10] and short-ranged
(i.e., λσ = 3.0) potential. One immediately realizes that for
our present choice of ε1 > 0 and ε2 < 0 together with ε1 < |ε2|,
ϕanis is attractive on the one hand as long asu(ω i) ·u(ω j) = ±1
and in addition u(ω i) ·ri j = u(ω j) ·ri j = 0. If, on the other
hand, u(ω i) ·u(ω j) = u(ω i) ·ri j = u(ω j) ·ri j = ±1, ϕanis is
repulsive and therefore layer formation as in a smectic A
structure is supported. These features are illustrated by the
plot in Figure 1.

B. Confining walls

To investigate the impact of flow on ordered liquid-
crystalline structures, it is necessary to control the direction
in which this order emerges with respect to the direction of
flow. Experimentally, this is commonly achieved by placing
the liquid crystal between solid substrates. The surfaces of
these substrates are prepared in such a way that they anchor
the mesogens in their vicinity in a certain way. “Anchoring”
refers to an energetic discrimination of desirable orientations
of the mesogens with respect to the plane of the substrate.
The solid surfaces can either be prepared by the deposition of
chemicals40,41 or mechanically by rubbing the solid surface in
particular ways.42–45

We adopt this experimental concept here and place our
liquid crystal between plane parallel, atomically corrugated
solid substrates that are separated by a distance sz along the
z-axis. The contribution of the mesogen-substrate interaction
to the total configurational potential energy can then be cast
as

Φms (R,Ω; S) =
N
i=1

2Ns
j=1

ϕms

(
r ′i j,ω i

)
(2.7)

assuming each substrate to be composed of a monolayer of Ns
rigidly fixed atoms. In each monolayer, the atoms are arranged
according to the (100) structure of the face-centered cubic
lattice. We take the lattice constant to be given by ℓ/σ =

3√4
corresponding to an areal density of the substrate atoms
of ρsσ

2 = 2/ℓ2. Taking the configuration of substrate atoms
S = (s1, . . . ,s2Ns) to be fixed, r ′i j =

�
ri − s j

�
is the distance

between the center of mass of mesogen i and substrate atom
j. Moreover, the substrates are in registry, that is, each atom
in one substrate is exactly opposite to its counterpart in the
other substrate. In Eq. (2.7),

ϕms

(
r ′i j,ω i

)
= ε


*
,

σ

r ′i j
+
-

12

− *
,

σ

r ′i j
+
-

6

gα (ω i)

, (2.8)

where the distance dependence of the interactions is described
by the well-known Lennard–Jones potential.

The expression in Eq. (2.8) differs from the standard
Lennard–Jones potential by the anchoring function 0 ≤ gα ≤ 1
involved in the latter. One may view the anchoring function as
a mathematical “device” to realize alignment of the mesogens
with specific directions. In the smectic A phase, this allows
us to control the formation of individual layers such that the
layer normal points in a desired direction with respect to the
direction of flow. Throughout this work we will always keep
the direction of flow along the x-axis and therefore parallel to
both substrates. Here, we consider

gα (ω i) = [u (ω i) ·eα]2, (2.9)

where eα (α = x or y) is the versor (i.e., a unit vector) in the
α-direction. From Eqs. (2.9) and (2.8), it is immediately clear
that mesogen-substrate attraction is fully “switched on” if u
is parallel to the versor; on the contrary, if u is orthogonal to
the versor, fluid-substrate attraction is completely suppressed.

Finally, before concluding this section a few comments
seem appropriate. First, the atomically corrugated wall
employed here is computationally more demanding than a
smooth one. This is because in the latter case ϕms turns
out to be a one-body potential whereas the computation of
Φms from Eq. (2.7) involves at most the evaluation of a
double sum over 2N Ns terms. However, atomic corrugation is
indispensable because under flow, mesogens sufficiently close
to the substrate surfaces need to experience friction for the
entire system to eventually reach a steady state.

Second, an inspection of Figure 1 and of Eq. (2.8) reveals
that for gα = 1 the attractive wells of φmm and φms are equally
deep as far as side-side configurations of the mesogens are
concerned. This is crucial because then the mesogen-substrate
potential is on the one hand sufficiently strong to control the
global nematic director n0 over the course of a simulation,
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but, on the other hand, sufficiently weak to prevent the system
(or a part of it) from becoming dynamically arrested, as we
have verified.

III. COMPUTATIONAL DETAILS

We begin our presentation of results by first discussing
bulk properties of the (three-dimensional) liquid-crystal model
introduced in Section II A. These results are obtained from MC
simulations as far as static properties are concerned and from
equilibrium molecular dynamics (EMD) simulations where
we concentrate on self-diffusion as the key dynamic property
at equilibrium. Both types of simulations are carried out in
the isothermal-isobaric ensemble.

For the MC simulations we employ an adapted Metropolis
algorithm as, for instance, described in the book by Allen
and Tildesley.46 On account of the anisotropic shape of
the mesogens, the generation of a Markov chain proceeds
in two consecutive steps. First, it is decided with equal
probability whether to randomly displace the center of mass
of a sequentially chosen mesogen by a small amount or
to rotate it by a small angle increment about a randomly
chosen axis. Both processes are realized through a Metropolis
algorithm.46

Once all N mesogens have been considered, one attempt
is made to change the volume V of the system by a
small amount. Again, an energy criterion is employed to
decide whether to accept or reject that volume change.46

The ratio N :1 between attempted displacements/rotations
and volume change is prompted by the fact that the
latter is computationally much more demanding. This is
because for V → V ′, R → R′ = R 3√V/V ′which then requires a
recalculation of all N (N − 1)/2 terms in Eq. (2.1) in principle.
For displacements and rotations, this number is reduced to
just N as one can easily verify.

In practice, however, both these numbers are reduced
in absolute but not in relative terms because we employ a
potential cutoff rc = 3.0σ beyond which we neglect ϕmm;
no correction is applied for those neglected terms. Whereas
this already reduces the computational burden substantially,
we also employ a combination of a link-cell and Verlet
neighborlist.46 Thus, a mesogen is considered a neighbor of
another one if their center-of-mass distance is smaller than
or equal to rN = 3.8σ. This reduces the computational cost
associated with the search for mesogens that are within the
radius rc of the cutoff sphere centered on a reference mesogen.

The sequence of N + 1 attempts to change the posi-
tion/orientation of mesogens and system volume constitutes
a MC cycle. Our results are based upon 5 × 103 such cycles
for equilibration followed by another 5 × 104 cycles during
which ensemble averages are being computed. These runs are
sufficiently long because they have always been started from
quite well equilibrated configurations as we have verified in a
few cases.

In the complementary EMD simulations, we integrate
the classical equations of motion numerically employing the
velocity Verlet algorithm proposed by Ilnytskyi and Wilson.47

Forces and torques required by this algorithm are computed
by differentiating Φmm in Eq. (2.1) with respect to ri and ωi,

respectively. To generate trajectories in phase space that are
compatible with the isothermal-isobaric ensemble, we employ
a combination of a Nosé-Hoover thermostat48–50 and a Hoover
barostat.46 Similar to the MC simulations, a potential cutoff
and a neighborlist are employed here where the same values
of rc and rN are used. We equilibrate the system for 2.0 × 105

to 3.0 × 105 time steps followed by another 106 such steps
during which time averages are collected. In the equilibrium
simulations (MC and EMD) our systems comprise between
500 and 5000 mesogens.

After characterizing various mesophases of our LC model
through its equilibrium properties in Section IV A, we then
turn to a discussion of its nonequilibrium properties. We focus
here on the smectic A phase that we establish below for
our model at sufficiently low T . Our NEMD simulations are
carried out exclusively with N = 2.0 × 104 mesogens placed in
a rectangular nanofluidic channel of volume V = sxsysz, where
all three side lengths sα ≈ 24. Along the z-axis the liquid
crystal is confined by solid substrates where the mesogen-
substrate interaction potential is given in Eq. (2.8).

Based upon equilibrium results discussed in Section IV A
we choose T = 0.70 and P = 1.00 in the isothermal-isobaric
NEMD simulations to make sure that the liquid crystal is
sufficiently deep in the smectic A phase (see also Figure 2).
Under these conditions we obtain a mean number density of
ρσ3 ≃ 1.40.

In the NEMD simulations the equations of motion
are integrated numerically using again the velocity Verlet
algorithm proposed by Ilnytskyi and Wilson47 with a time step
of δt = 10−3. A steady-state flow is initiated and maintained
by applying a body force Fe = Feex to each mesogen and at
every time step. Every simulation is carried out according to
the following protocol:

(i) We equilibrate the system in the isothermal-isobaric
ensemble in the absence of flow.

(ii) A hydrodynamic flow is applied in a second equilibration
run under isochoric rather than isobaric conditions until
a steady state has been reached.

FIG. 2. Plot of the nematic S (red square) and smectic order parameter Λ
(blue circle) as functions of temperature T . (Black circle) demarcates the IN
phase transition (see text). Lines are fits intended to guide the eye.
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(iii) As in the second equilibration run, observables of interest
are finally recorded in a production run under isochoric
conditions.

Because of the external body force, the system needs
to be thermostatted permanently to achieve a stationary
nonequilibrium state. To that end, we employ a local
version of the Nosé-Hoover thermostat.48–50 To implement
this thermostat, one first needs to realize that the symmetry
of the system is broken along the z-axis on account of the
solid substrates. Therefore, we discretize the system along the
z-axis into slices of thickness 2.4σ and apply the thermostat
to each slice separately and independently. This assures that
momentum is conserved locally and no viscous heating occurs
throughout the system.

Finally, because we are not concerned with any specific
material all quantities will be given in dimensionsless
(i.e., “reduced”) units. For example, length will be expressed
in units of σ, energy in units of ε, mass in units of m,
and temperature in units of ε/kB, where kB is Boltzmann’s
constant. Other quantities such as time, pressure, or density
can be expressed in terms of combinations of the basic ones.46

IV. RESULTS

A. Phases at thermodynamic equilibrium

As the focus of this study is on ordered (i.e., nematic and
smectic A) phases, we introduce measures of order first. To
that end we follow Eppenga and Frenkel51 and introduce the
alignment tensor

Q (r) = 1
2ρ (r)

 N
i=1

[3u (ω i) ⊗u (ω i) − 1] δ (r − ri)


(4.1)

in its local version, where δ denotes the Dirac δ-function and

ρ (r) =
 N
i=1

δ (r − ri)


(4.2)

is the local density. In Eq. (4.1), Q is a traceless, symmetric
second-rank tensor where ⊗ denotes the tensor (i.e., dyadic)
product, 1 is the unit tensor, and ⟨. . .⟩ indicates an ensemble
average in the isothermal isobaric ensemble.

By analogy with Eq. (4.1) we also introduce the nonlocal
(volume averaged) tensor

QV =
1

2N

N
i=1

[3u (ω i) ⊗u (ω i) − 1] (4.3)

which satisfies the eigenvalue equation

QVnk = λknk (4.4)

and where nk is the kth eigenvector corresponding to
eigenvalue λk.

Because QV can be represented by a 3 × 3 matrix,
the secular equation corresponding to Eq. (4.4) is a cubic
polynomial in λk. Its roots can be found analytically using
Cardano’s52 formula.53 In an infinitely large system the
discriminant D3 of the cubic secular equation vanishes
indicating that all of its roots are real and two of them

are equal. In any system of finite size, D3 < 0 and therefore
the three eigenvalues are different. One can interpret this as an
ostensible biaxality which strongly depends on system size.37

Solving instead Eq. (4.4) with the ensemble averaged
tensor Q′V = ⟨QV⟩ gives the ensemble averaged eigenvalues�
λ ′
k

	
, where in general ⟨λk⟩ = λ ′

k
. Notice, however, that on

account of the head-tail symmetry of the mesogens,n′
k
, ⟨nk⟩.

Following Eppenga and Frenkel we then define the nematic
order parameter via S =

3
max
k=1

λ ′
k

and take the associated

eigenvector as the nematic director n0.
In the smectic A phase mesogens align themselves on

average with n0. In addition, one observes the formation of
layers where the layer normal also points alongn0. Therefore,
to quantify the degree of layer formation we introduce the
smectic order parameter via

Λ (d) = 1
N ⟨ ������� N

j=1

exp
(

2πir j ·n0

d

) ������� ⟩. (4.5)

This form of Λ is inspired by perceiving the local density in
a smectic A phase as a plane wave evolving in the direction
of n0. In Eq. (4.5), the a priori unknown parameter d is a
measure of layer spacing. It is closely related to the length of
a mesogen’s long axis (see Figure 1). However, the definition
of the latter is somewhat ambiguous in our model. This is
because ϕmm has no zeros for end-end configurations of a pair
of mesogens. Moreover, on account of thermal fluctuations the
layer spacing may vary slightly across the smectic A phase.
Hence, we adjust d for every configuration (R,Ω) such that
Λ is maximized.54 Over the range of temperatures for which
the smectic A phase is thermodynamically stable we obtain
d ≃ 1.58.

The temperature dependence of S and Λ across the
isotropic-nematic (IN) and the nematic-smectic A (NSmA)
phase transitions is illustrated by the plots shown in Figure 2.
Starting at high T , both S and Λ nearly vanish. They are not
exactly zero on account of a finite-size effect in the isotropic
phase. In the case of S this finite-size effect has been ratio-
nalized and analyzed in depth by Greschek and Schoen37 who
investigated a model system closely related to the present one.

A similar finite size effect is anticipated for the smectic
order parameter Λ. Consider first a smectic A phase at T = 0
assuming perfect smectic layers and no thermal fluctuations.
In this case, r j ·n0/d = n, where n ∈ N. Hence, the real part
of the complex exponential in Eq. (4.5) is one whereas the
imaginary part vanishes. On the contrary, r j ·n0/d is not an
integer but a real number in the absence of smectic layers
(for example, in the nematic phase where n0 is still well
defined). If in this case the limit N → ∞ is considered,∞

j=1 →
 1

0 dx exp (2πix) = 0. Hence for finite N , for which
the sum in Eq. (4.5) cannot be approximated by such an
integral, a small residual value of Λ remains.

As T is lowered, S suddenly rises indicating the IN phase
transition. Notice that for those T for which S is already quite
substantial, Λ ≤ 0.10. Hence, even though orientational order
is already long-range, positional order is not. The smectic
order parameter begins to rise at even lower T for which S
already begins to level off.
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FIG. 3. Plots of the second-order Binder cumulant g (0)
2 −1 as a function of

temperature T and for various system sizes: N = 500 (red square), N = 1000
(blue circle), N = 2500 (black triangle), N = 5000 (downward magenta tri-
angle). The horizontal line at the intersection of the curves marks the tem-
perature TIN≃ 0.87 at the IN phase transition. Inset is an enlargement in the
vicinity of TIN and lines are fits intended to guide the eye.

To locate the temperature TIN of the IN phase transition
more precisely, we follow Greschek and Schoen’s work and
perform a finite-size scaling analysis.37 To that end we solve
Eq. (4.4). Using the middle eigenvalue λ0 we then define the
second-order Binder cumulant as

g
(0)
2 ≡



λ2

0

�

⟨λ0⟩2 . (4.6)

Greschek and Schoen37 found and subsequently rationalized
that for a sufficiently weak discontinuous phase transition
g
(0)
2 − 1 for different N intersect at a unique value of the

thermodynamic field (P or T) driving the transition.
Plots in Figure 3 show that in the isotropic phase

cumulants for different system sizes are spread out. In fact,
here g(0)2 ∝ N .37 Thus, the larger N the larger is g(0)2 − 1. In the
nematic phase this dependence on system size is inverted. As
one can see from Figure 3, a unique intersection of all curves
exists demarcating the temperature TIN ≃ 0.87 of the IN phase
transition.

The plots in Figure 3 also indicate that order-parameter
fluctuations are decreasing substantially as one penetrates
deeper into the nematic phase. This is because g

(0)
2 − 1 is a

measure of these fluctuations relative to the mean value of
the order parameter as one can easily verify from Eq. (4.6).
Over the temperature range considered in Figure 3, these
fluctuations decay by about four orders of magnitude between
the isotropic and the nematic phase.

Moreover, TIN from the cumulant analysis agrees quite
well with the estimated inflection point of the curve S (T)
plotted in Figure 2. At TIN, SIN ≃ 0.35 from MC which agrees
very nicely with the universal value of SIN =

1
3 predicted by

Landau-de Gennes theory.55 Adopting the inflection point as
an alternative, operational definition of the value of T at which
a phase transition takes place, we obtain from the data for Λ
plotted in Figure 2, TNSmA ≃ 0.78 for the temperature at the
NSmA phase transition.

To further characterize disordered and ordered liquid-
crystalline phases in our model, we now turn to a discussion
of self-diffusion. Here, it seems interesting to distinguish
between self-diffusion in the direction to a mesogen’s long
axis and self-diffusion perpendicular to that axis. Let us
therefore define r∥i = [ri ·u (ωi)]u (ωi) and r⊥i = ri − r∥i . With
these quantities we introduce the mean-square displacements
(MSDs),

∆r2
∥,⊥ (t) =

1
N

N
i=1


r∥,⊥i (t0 + t) − r∥,⊥i (t0)

2

t0

, (4.7)

where ⟨. . .⟩t0 indicates an average over a set of different initial
times {t0} due to stationarity56 of the self-diffusion process.
With Eq. (4.7) we define

D∥ = lim
t→∞

∆r2
∥ (t)
2t

, (4.8a)

D⊥ = lim
t→∞

∆r2
⊥ (t)
4t

(4.8b)

as quantitative measures of self-diffusion at thermodynamic
equilibrium.

Plots of ∆r2
⊥ in Figure 4(a) indicate that regardless of

the nature of the phase in question, the MSD exhibits two
different regimes. At short times all three MSDs exhibit
ballistic motion of the mesogens, that is, ∆r2

⊥ ∝ t2. Ballistic
motion arises as long as intermolecular interactions do not
matter. Consequently, all three data sets plotted in Figure 4(a)
can be represented by a master curve for t . 0.1.

The time range over which the mesogens move
ballistically depends on the density of the system and
the kinetic energy of the mesogens. Hence, somewhere in
the range 0.1 . t . 1.0 intermolecular interactions become

FIG. 4. (a) Plots of the mean square displacements ∆r2
∥ (t) as functions of

time t on a double-logarithmic scale. (b) As (a), but for ∆r2
⊥(t). In both

parts of the figure (red square) T = 0.90 (isotropic), (blue circle) T = 0.84
(nematic), (black triangle) T = 0.70 (smectic A) (see also Figure 2). The
magenta solid line indicates a slope proportional to t .
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important and the motion of mesogens changes from ballistic
to diffusive. The latter is characterized by ∆r2

⊥ ∝ t which then
persists as t → ∞.

From plots in Figure 4(b), one notices similar features
of the MSD at short times and in the long-time regime as
far as isotropic and nematic phases are concerned. However,
for the smectic A phase the MSD changes from ballistic
to subdiffusive first (i.e., ∆r2

∥ ∝ tν, ν < 1) before eventually
becoming diffusive again at long times. The subdiffusive
regime at intermediate times reflects the one-dimensional
positional ordering in the smectic A phase. In other words,
self-diffusion in the direction of n0 is hindered because of
the one-dimensional solid-like structure in that direction.
However, because the structure within each smectic layer
remains fluidic, diffusive behavior eventually sets in but only
at markedly longer times compared with both the isotropic
and the nematic phase.

Because all MSDs plotted in Figure 4 exhibit diffusive
behavior at sufficiently long times, we compute D∥ and D⊥
from Eq. (4.8). Plots in Figure 5(a) show that with decreasing
T , D∥ and D⊥ are monotonically decreasing functions. In
the isotropic phase, D∥ ≈ D⊥ which makes sense because no
spatial direction is distinguished here.

As one enters the nematic phase, one sees from Figure 5(b)
that at higher T diffusional isotropy is no longer preserved.
More specifically, diffusion along the mesogens’ axes is larger
than the diffusion perpendicular to it such that D∥ > D⊥ as
found in experiments.57 However, as one approaches the
NSmA phase transition, diffusion along the mesogens’ axes
is inhibited by the formation of smectic layers, such that
D∥ ≈ D⊥ [see Figure 5(b)]. Deep in the smectic A phase at
low temperature this effect is more pronounced and D∥ < D⊥.

FIG. 5. (a) Semi-logarithmic plots of diffusion coefficients D∥ (red square)
and D⊥ (blue circle) as functions of temperature T . (b) Plots of the ratio
D∥/D⊥ (downward magenta triangle) as a function of T . Vertical lines (black
solid line and black dashed line) mark the IN and NSmA phase transitions,
respectively (see Figure 2).

Again this is in very good agreement with experimental
observations.57

As the density increases steadily with decreasing T ,
both diffusion coefficients become rather small. Because the
smectic layers become more robust with decreasing T , D∥
nearly vanishes at the lower end of the temperature range
considered in Figure 5(a) whereas D⊥ remains relatively
substantial reflecting the two-dimensional fluidic character of
the smectic layers.

At this stage we would like to emphasize that data shown
in Figures 2 and 5 are fully consistent with each other and give
a complete picture of the NSmA phase transition. The NSmA
phase transition appears rather rounded in comparison with the
corresponding IN phase transition in Figure 2. In the vicinity
of the NSmA phase transition the formation of smectic layers
is enhanced. The layers are not equidistant: vary in shape and
size. Because of the finite size of the system the formation
of irregular layers does not average out and results in a non-
vanishing value of Λ. However, in the thermodynamic limit
the effect vanishes. Therefore, the transition from D∥ > D⊥
to D∥ < D⊥ appears in our model system slightly before the
NSmA phase transition in comparison with experiments where
this transition occurs right after the NSmA phase transition.57

Before closing the present section on equilibrium
properties, we finally consider elastic properties of our model
liquid crystal. To that end, we follow earlier work by Allen
and Frenkel58,59 and Allen et al.60 and introduce the Fourier
transform of the alignment tensor

Q (k) =


dr Q (r) exp (ik · r) , (4.9)

where Eq. (4.1) has also been used. Let e1, e2, and e3 be
the axes of a coordinate system in which Q is diagonal
and n0 = (0,0,1)T. For a given wave vector k = (k1,0, k3), we
introduce

E13 (k1, k3) ≡ 9
4

S2V kBT

|Q13|2
k1,k3→0
= K1k2

1 + K3k2
3, (4.10a)

E23 (k1, k3) ≡ 9
4

S2V kBT

|Q23|2
k1,k3→0
= K2k2

1 + K3k2
3, (4.10b)

where Qαβ (α, β = 1,2,3) are components of Q and K1, K2,
and K3 are the Frank elastic constants. The above expressions
are valid if the deviation of the director fieldn fromn0 occurs
on a length scale that is large compared to the correlation
length so that we are focusing on the limit of small wave
numbers k1, k2, and k3. We refer the reader interested in a
derivation of expressions presented in Eqs. (4.10a) and (4.10b)
to the Appendix.

Plots in Figure 6 reveal the anticipated linear variation
of E13 and E23 with k2

1 and k2
3 in the limit of sufficiently

small wave numbers. However, as T is lowered towards
the NSmA phase transition the simulation data exhibit a
substantial scatter. This is because fluctuations of the Fourier
components Qαβ become exceedingly small at lower T .

From the slopes of the curves plotted in Figure 6 we
obtain the Frank elastic constants K1, K2, and K3. The plots in
Figure 7 reveal that the so-called one-constant approximation
K1 = K2 = K3 frequently employed in theoretical studies
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FIG. 6. Plots of (a) E13(k1), (b) E23(k1), and (c) E13(k3) as functions of the
wavenumbers k2

1 or k2
3 and for temperatures T = 0.86 (red square), T = 0.84

(blue circle), T = 0.82 (black triangle), and T = 0.80 (downward magenta
triangle), all of which are above the NSmA phase transition. Lines represent
linear fits to the discrete simulation data.

of liquid-crystalline materials16 is approximately valid for
sufficiently high temperatures T & 0.82. Below this threshold
and for decreasing T , all three elastic constants are different
and hence the one-constant approximation is no longer
satisfied. In particular, K2 and K3 presumably diverge right at
the NSmA phase transition whereas K1 seems to remain finite
all the way down to that transition. This is in good qualitative
agreement with the experimental data of Madhusudana and
Pratibha for the liquid crystal 8CB.61

Moreover, the temperature dependence of the twist and
bend elastic constants follows an exponential law, i.e., K2,K3 ∝
(T − TNSmA)−ν which was predicted by de Gennes62 theoret-
ically and confirmed in three independent experiments.63–65

The exponent ν describing the critical behavior of the elastic
constants is 0.50 in the framework of a mean field approach
and 0.66 for experimental systems. Fitting the power law
to our data [see Figure 7(b)], we obtain ν = 0.55 which is
between the mean field model and an experimental system.
The anomaly of K2 and K3 in the nematic phase is rationalized
by the formation of cybotactic clusters. Cybotactic clusters
reported by de Vries66 are smectic droplets which arise in
the vicinity of the NSmA phase transition due to fluctuations

FIG. 7. (a) Plots of the Frank elastic constants K1 (red square), K2 (blue
circle), and K3 (black triangle) as functions of temperature T . Lines are fits
to guide the eye. (b) Same as in (a) but here blue solid line and black solid
line are fits of K (T )= a(T −TNSmA)ν to the twist and bend elastic constants,
respectively (see text).

in local density.62 The qualitative dependence of the Frank
elastic constants on T as well as their critical behavior lends
additional credibility to our model system. At this point it is
noteworthy that the rotational viscosity, defined as the ratio of
viscous torque and the resulting angular velocity, diverges in
the vicinity of the NSmA phase transition as well (not shown
here).67,68

B. Nonequilibrium steady states of a smectic A phase

Among the quantities that we wish to investigate by
means of NEMD simulations is the velocity field generated at
steady state by the external body force Fe. Using essentially
macroscopic arguments de Gennes and Prost16 argue that in
the direction of flow (i.e., in the x-direction for our setup)

ρFe

η
= κ2vx (z) − v ′′x (z) , (4.11)

where each prime denotes a derivation with respect to the z
coordinate, η is a measure of viscosity (in fact, as stated by
de Gennes and Prost, it is “a certain average of the Leslie
coefficients”16), and κ is the inverse thickness of a boundary
layer near the substrates in which the flow of the liquid crystal
is dominated by friction. In essence, Eq. (4.11) is a statement
about force balance in a steady-state nonequilibrium situation.

It should also be noted that the left hand side of Eq. (4.11)
holds only if one assumes the phase under flow to be a
homogeneous continuum.69 Whereas, strictly speaking, this is
not exactly valid at the molecular level, we tacitly ignore the
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inhomogeneity of the smectic phase on account of the macro-
scopic character of the differential equation given in Eq. (4.11).

This equation can be easily solved by standard techniques
and the general solution can be cast as vx = ρFe/ηκ

2 + C1eκz

+ C2e−κz, where C1 and C2 are two constants of integration.
Using the boundary condition vz (sz/2) = vz (−sz/2) = 0, it
turns out that only the sum C1 + C2 = C matters in this problem
where

C = − ρFe

ηκ2

1
cosh (κsz/2) (4.12)

and hence

vx (z) = ρFe

ηκ2


1 − cosh (κz)

cosh (κsz/2)


(4.13)

solves the present boundary value problem.
Clearly, in this description of the velocity profile, κ

introduces a characteristic length scale. If, on the one hand, κ
is of a typical molecular magnitude, Eq. (4.13) describes
plug flow. That plug flow is possible in a steady-state
nonequilibrium situation and arises in various ordered liquid-
crystalline mesophases has been noted by Helfrich a long
time ago.19 He bases his analysis on essentially macroscopic
arguments as we do here, too.

If, on the other hand, the friction dominated boundary
layer becomes macroscopic in size (i.e., for κ → 0), the term
in brackets in Eq. (4.13) can be recast as

1
cosh (κsz/2) [cosh(κsz/2) − cosh (κz)]

=
1

cosh(κsz/2)

1 +

1
2!

κ2s2
z

4
− 1 − 1

2!
κ2z2 + O(κ4)



≃ κ2

2 cosh(κsz/2)
(

s2
z

4
− z2

)
. (4.14)

Inserting this last expression into Eq. (4.13) we obtain

vx (z) = ρFe

2η cosh(κsz/2)
(

s2
z

4
− z2

)
κ→0≃ ρFe

2η

(
s2

z

4
− z2

)
(4.15)

which is the characteristic parabola describing the velocity
profile in Poiseuille flow. This expression has been derived
earlier by Todd et al. under different but comparable
assumptions.69–71 Clearly, vx is largest at the midpoint between
the substrates (z = 0) and vanishes directly at them (z = ±sz/2)
as it must. It is also a simple matter to verify that the far right
side of Eq. (4.15) can be obtained directly from Eq. (4.11) by
neglecting the term proportional to κ2.

However, as we shall see shortly, the velocity profile
obtained here is not exactly characteristic of Poiseuille flow.
This is because the assumption of a diverging boundary-layer
thickness (i.e., κ → 0) is only a rather rough approximation
here. Therefore, the more detailed analysis of the velocity
profiles below will always be based upon Eq. (4.13) rather
than Eq. (4.15). However, we notice in passing that in the
work of Stieger et al.,72 where a nematic rather than a smectic
phase is considered, the far right hand side of Eq. (4.15) is
valid and provides an excellent description of the velocity
profile.

To demonstrate that the above macroscopic treatment can
be applied at the microscopic level as well, we present in

FIG. 8. Plots of the velocity component vx as a function of position z
between the solid substrates. Flow is initiated parallel toex; (a) smectic layers
perpendicular to the direction of flow, (red circle) NEMD results, (red solid
line) fit with Eq. (4.13), (red dashed line), fit with Eq. (4.15); (b) as (a), but
for smectic layers oriented in the direction of flow where the blue squares
represent the NEMD data and the full line is a fit of Eq. (4.13) to these data.
Insets are cartoons illustrating the orientation of smectic layers with respect
to the direction of flow and the solid walls (grey shaded rectangular areas).
Data are obtained for Fe= 0.05.

Figure 8 plots of vx versus z. In all plots the flow direction
is parallel to ex. As indicated by the cartoons in Figures 8(a)
and 8(b), the mesogens are anchored at the substrates in
a direction orthogonal and parallel to the flow direction,
respectively. Irrespective of n0 (i.e., the normal to the smectic
layers, see also below), mesogens in these layers are always
aligned with the plane of the solid substrates. Hence, the
normal to the smectic A layers points in a direction orthogonal
to the applied flow [see Figure 8(a)] or parallel with it as well
[see Figure 8(b)].

Because of this orientation of the smectic layers, one
observes Poiseuille-like flow under the conditions illustrated
in Figure 8(a). Indeed, the parabolic profile predicted by
Eq. (4.15) is obtained in the NEMD simulations except for
the immediate vicinity of the solid substrates where the fit of
Eq. (4.15) is not entirely capable of describing the NEMD data.
Nonetheless, the overall quality of the fit is still surprisingly
good indeed.

If instead one uses Eq. (4.13), plots in Figure 8(a) reveal
that this equation describes the NEMD data almost perfectly
across the entire space between the solid substrates. This is
also true for data shown in Figure 8(b) where the different
orientation of the smectic layers gives rise to plug instead of
Poiseuille-like flow. The characteristic feature of plug flow,
namely vx ≃ const, holds quite well for a large part of the LC
around its midsection.

However, the thickness of the boundary layer κ−1 diverges
by no means but remains even smaller than sz which puts an
upper limit to κ−1. This is illustrated by the fact that the fit of
Eq. (4.13) to the NEMD data yields κ−1 ≃ 5.56 in the case of
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data shown in Figure 8(a); κ−1 ≃ 2.44 is obtained from the fit
in Figure 8(b).

Hence, the thickness of the boundary layer remains on
a molecular scale and, therefore, the far right hand side of
Eq. (4.15) constitutes a rather rough approximation to the
NEMD generated velocity profiles. In other words, the flow
observed in the case in which the plane of the smectic layers
is orthogonal to the direction of flow is only Poiseuille-
like. Nonetheless, it seems worthwhile emphasizing that a
macroscopic picture of the flow underlying Eq. (4.11) provides
an excellent description under the conditions of the present
study despite our otherwise molecular approach.

We note in passing that if the mesogens are anchored
homeotropically such that the smectic layers form in the x–y
plane and are stacked along the z-axis, the system cannot
reach a steady nonequilibrium state if flow is initiated in the
x- (or y-) direction. This is because mesogens in neighboring
layers do not experience any frictional forces acting between
them. In fact, the plot in Figure 1 illustrates this quite nicely
because the equipotential surface is purely repulsive for end-
end configurations of a mesogenic pair. Consequently, entire
smectic layers flow more or less independently past each other
as individual entities such that vx changes discontinuously
from one layer to the next. The velocity profile rises towards
the midpoint of the liquid crystal. This is because as one
moves away from a solid substrate, mesogens also experience
less friction from that substrate.

We are, however, in a position to extract more detailed
information from flow profiles such as the ones plotted in
Figures 8(a) and 8(b). We begin this analysis by presenting in
Figure 9 plots of the viscosity η as a function of the Péclet
number15

℘ =
szvx

D
, (4.16)

where

vx =
1
sz

sz/2
−sz/2

dz vx (z) (4.17)

FIG. 9. Plots of the viscosity η as a function of the Péclet number ℘;
(red square) Poiseuille flow [cf., Figure 8(a)]; (blue circle) plug flow [cf.,
Figure 8(b)].

is the mean velocity of the flow and D ≡ 1
2 (D∥ + D⊥). Because

of its definition in Eq. (4.16), the Péclet number expresses the
relative contribution of advective to diffusive motion of the
mesogens. Regardless of whether one considers Poiseuille-like
or plug flow, η increases monotonically with ℘. As one can see
from Figure 9, η for a Poiseuille-like flow situation exceeds
that under plug-flow conditions.

Generally speaking, an increase in viscosity reflects an
increase in friction in the system. That this is lower in plug
flow is reflected by plots in Figure 8(b) which indicate that a
relatively large portion of the smectic phase is moving more
or less at the same velocity. Intuitively, one then expects
friction experienced by mesogens located in this region to be
lower than in Poiseuille-like flow where vx varies all across
the smectic phase as revealed by Figure 8(a). Hence, plots in
Figure 9 are consistent with data presented in both parts of
Figure 8.

The difference in viscosity can be ascribed to changes in
the structure of the liquid crystal under flow conditions. This
can be rationalized through plots of the nematic and smectic
order parameters S and Λ in both parts of Figure 10. One
can see that in a Poiseuille-like flow both order parameters
appear to be independent of ℘ over the entire range considered
[see Figure 10(a)] whereas in plug flow [see Figure 10(b)],
S declines steadily until at ℘ = 1550 it reaches only about
60% of its value in Poiseuille-like flow. At the same time,
Λ remains constant and is independent of the specific flow
conditions as a comparison of plots in Figures 10(a) and 10(b)
clearly indicates.

The decline of S, which is a globally defined quantity,
implies that the director field n is perturbed locally. We
compute n by solving an eigenvalue equation similar to
Eq. (4.4) where, however, QV is replaced by its local

FIG. 10. Plots of the nematic and smectic order parameters S (red square)
and Λ (blue circle) as functions of the Péclet number ℘; (a) Poiseuille-like
and (b) plug flow.
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FIG. 11. Maps of the director field
n(r) represented by short dashes in the
x–z plane and for different strengths of
the external body force Fe. Gray bars
at the top and bottom of each frame
represent the solid substrates and the
arrows indicate the direction of flow;
(a) ℘= 127 (Fe= 0.01), (b) ℘= 514
(Fe= 0.03), (c) ℘= 1086 (Fe= 0.05)
[cf., Figure 10(b)], (d) “snapshot” of a
configuration from a NEMD simulation
(Fe= 0.05). In part (d) mesogens are
colored in blue if they are aligned with
the direction of the flow. Thick orange
lines mark the position of three bent
smectic layers. In all parts of the figure
gx has been used in Eq. (2.8) [see also
Eq. (2.9)]. The attached color bar gives
the local value of the Frank free energy
density fd/K1 (see text).

counterpart Q from Eq. (4.1). We present plots of n in
Figures 11(a)–11(c).

In principle, three geometrically distinct deformations
of n would be possible in an LC composed of uniaxial
mesogens, namely splay, twist, and bend. Associated with
each one of these is a contribution to the Frank elastic free
energy with the respective coupling constants K1, K2, and
K3. Because of our results already presented in Figure 7, we
see that upon approaching the NSmA phase transition K2 and
K3 increase (and may even diverge61) whereas K1 remains
smallest (and finite). Thus, for the LC to optimize its elastic
free energy, it seems best to avoid twist and bend deformations
altogether.16,73

Assuming now splay to be the only “surviving”
deformation of n and starting from equidistant smectic layers
in the LC at rest, immediately leads one to conclude that this
equidistance will be preserved in a nonequilibrium steady-
state situation. This is indeed the case as Figure 11(d) and the
plot ofΛ in Figure 10(b) reveal. Moreover, the plot also shows
that the periodic sequence of planar smectic layers in an LC
at rest is transformed into concave planes with respect to the
direction of flow in nonequilibrium steady-state situations,
where the curvature of each plane is the same at the same x
and increases with ℘.

Because of this curved structure of smectic layers under
flow, we realize that around the midsection of the LC centered
on z = 0 mesogens may still align with the direction of
flow which coincides with the direction of wall anchoring.
Hence, for mesogens located in a small volume centered on

z = 0, cos α ≡ u (ω) ·ez = 0 (α = π
2 ) on average. Likewise,

α = π
2 for mesogens in the immediate vicinity of the walls

on account of anchoring [see Eqs. (2.8) and (2.9)]. Starting
now at z = 0 and moving along the positive z-axis, the curved
structure of the smectic layers requires the deflection angle
α to decrease from its initial value of π

2 and then to increase
again as the upper wall is approached where α = π

2 is once
again attained. The same is expected as one approaches the
lower wall starting at the system’s midpoint z = 0 only that in
this case α increases at first.

From these considerations, it becomes apparent that
under flow one anticipates two parallel bands to exist along
the flow direction in which the director field is deformed
the way just described. This is indeed the case as plots in
Figures 11(a)–11(c) clearly show.

To quantify the deformation of n, we introduce the
elastic Frank free-energy density associated with only splay
deformations of n via

fd (r)
K1
=

1
2
[∇ ·n (r)]2. (4.18)

We note in passing that in general an additional term would
arise in Eq. (4.18) affiliated with the spacing between smectic
layers. However, if this distance is constant, as we have
assumed from the outset, this additional contribution to
the elastic free energy vanishes and can therefore safely
be ignored in Eq. (4.18).73 Plots in Figures 11(a)–11(c)
show that as the flow is cranked up (i.e., with increasing
℘) the elastic Frank free-energy density associated with
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FIG. 12. Dependence of the deflection angle α (see text) on the shear rate, γ̇
(see text, cf., plots in Figure 11); (red square) ℘= 514, (blue circle) ℘= 1086.
Inset is an enhancement for small shear rates.

the deformation bands of n increases which implies a
stronger deformation of n as the strength of the flow
increases.

From a slightly different perspective, one can also relate
the variation of the deflection angle α to the shear rate γ̇
≡ ∂vx/∂z. As one can see from Figure 12, at sufficiently
large |γ̇ |, α → π

2 . These shear rates are obtained in regions
sufficiently close to the walls where the competition between
anchoring-induced alignment of the mesogens and the flow-
induced distortion of n is largest. With decreasing |γ̇ |,
the deflection angle decreases (increases) until a minimum
(maximum) is reached. These extrema occur near the
middle of the distortion bands visible in particular in
Figures 11(b) and 11(c). A further decrease of |γ̇ | then
causes α to quickly approach π

2 corresponding to a perfect
flow alignment of the mesogens at the midsection of the
LC where, consequently, γ̇ vanishes. Notice also that the
variation of α with γ̇ in the small shear-rate regime is more
pronounced at higher Péclet numbers. This is consistent
with the plots in Figures 11(b) and 11(c) which show
that the distortion of the director field is stronger the
larger ℘ is.

The apparent insensitivity of Λ to the flow illustrated
in Figure 10(b) can now be understood from the plots in
Figure 11. Notice that the local director field is unaffected by
the flow around the midsection of the liquid crystal. Moreover,
it is symmetric with respect to this midsection such that its
bending in the upper part is compensated by that in its lower
part. As a consequence,n0 stays fixed regardless of the strength
of the flow. In addition, the periodicity of the local density
is preserved everywhere. Both features, a fixed n0 and the
preserved periodicity of the smectic layers, cause Λ to remain
unaltered as ℘ increases.

Nonetheless, all three plots in Figure 11 clearly show
that a lot of nematic order is still preserved locally which
is the reason why S in Figure 10(b) remains relatively large
even at ℘ = 1550. Moreover, it is worth pointing out that the
local nematic order parameter remains homogeneous for all
the cases considered in Figure 11 (and is consequently not
shown).

V. DISCUSSION AND CONCLUSIONS

In this work we present extensive equilibrium and
nonequilibrium computer simulations of a simple model
liquid crystal that allows for the formation of nematic as
well as smectic A phases. In this model, mesogens have an
aspect ratio exceeding that of a previously considered model
version.36 Even though this aspect ratio is still much smaller
than for mesogens in the more widely used Gay-Berne model,
it turns out that the elongated shape of the mesogens is
a necessary prerequisite for the formation of a smectic A
phase. Under thermodynamic conditions chosen in this work
we observe a stable nematic phase over a temperature range
0.87 . T . 0.78; above and below this range isotropic and
smectic A phases are stable, respectively.

By computing mean square displacements in directions
parallel and perpendicular to the mesogens’ long axes,
we investigate the dynamics of our model liquid crystal
at thermodynamic equilibrium. In the limit of sufficiently
long times the mesogens exhibit ordinary diffusive behavior.
However, an intermediate time scale exists where self-
diffusion in the direction normal to the plane of the smectic
layers is subdiffusive. This is a reflection of the one-
dimensional crystal-like structure of a smectic A phase. Once
a mesogen reaches the boundary of its original layer, diffusion
is hindered on account of the presence of the next layer. It
then takes a while until mesogens located in that next layer
make room such that a new mesogen can enter that layer.
Eventually, at sufficiently long times this will happen because
of the two-dimensional fluidic structure of each smectic layer.

As one might have anticipated from the above
observations, self-diffusion is anisotropic in the nematic and
smectic A phases. This anisotropy is manifested through the
relation between D∥ and D⊥. In the nematic phase D∥ > D⊥,
whereas D∥ < D⊥ in the smectic phase. Similar behavior is
found in real systems using NMR diffusometry.57

A feature of our model that might seem to indicate that it is
suitable for describing cyanobiphenyl-based liquid crystalline
materials is indicated by its elastic behavior. We compute the
elastic constants for splay, twist, and bend deformations of the
director field at thermodynamic equilibrium from fluctuations
in the Fourier components of the local alignment tensor.

Even though these data exhibit a substantial amount of
scatter (especially at low wave numbers) as one approaches
the NSmA phase transition by lowering the temperature, they
still permit to extract the elastic constants reliably. If the latter
are plotted as functions of T in the nematic phase, we observe
that the elastic constant for splay deformations of the director
field apparently remains finite all the way to the NSmA phase
transition; the other two elastic constants seem to diverge
instead, given our numerical resolution. This behavior has
also been seen experimentally for octylcyanobiphenyl.61

The simulations of static and dynamic properties of our
model at thermodynamic equilibrium are complemented by
nonequilibrium steady-state simulations. Here the smectic
A phase is particularly interesting on account of its one-
dimensional solidlike character. The broken symmetry in the
direction normal to the plane of the smectic layers permits one
to initiate flow either parallel with the plane of the smectic
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layers or perpendicular to this plane. In the former case one
observes a Poiseuille-like velocity profile whereas in the latter
situation plug flow is observed.

By using macroscopic arguments borrowed from de
Gennes and Prost’s book,16 we see that for a smectic A
phase there are small but significant deviations from perfect
Poiseuille flow very much akin to the case where the liquid
crystal is in its nematic phase.72 If flow is initiated in a
direction perpendicular to the plane of the smectic layers, a
large portion of the mesogens travel at the same speed which
is a characteristic of plug flow. This was shown many years
ago—again from a macroscopic perspective—by Helfrich19

who pointed out the possibility of plug flow in cholesteric and
smectic liquid crystals.

Comparing Poiseuille-like flow with plug flow, it turns
out that the viscosity is lower in the latter case. We believe
that this is because in the portion of the liquid crystal in which
mesogens are travelling at the same speed, they experience
less friction from neighboring portions of the fluid compared
with Poiseuille-like flow where no such portion of the liquid
crystal exists.

Last but not least, a somewhat surprising observation
concerns the structure of the liquid crystal in plug flow.
Over the range of Péclet numbers accommodated in this
work, the layer structure characteristic of a smectic A
phase at thermodynamic equilibrium is preserved overall
but bent locally. In fact, the smectic layers form a periodic
sequence of concave surfaces with respect to the direction of
flow.
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APPENDIX: ELASTIC CONSTANTS

For the convenience of the reader we derive the
expressions in Eqs. (4.10a) and (4.10b) which have been used
to measure the director’s fluctuations in order to determine
Frank elastic constants. Therefore we follow Oswald and
Pieranski74 and cast the Frank free energy according to

Fel =
1
2


V

drK1[∇ ·n(r)]2 + K2[n(r) · ∇ ×n(r)]2

+K3[n(r) × ∇ ×n(r)]2, (A1)

where the terms on the right-hand side represent contributions
of splay, twist, and bend deformations, respectively.
Perturbations of the global director, which is considered to
be n0 = (0,0,1)T, occur perpendicular to it. Hence, the local
director may be cast as

n(r) = n0 + δn, (A2)

where δn = (δn1, δn2,0)T is a perturbation. For the sake
of convenience we focus on the splay deformation of the
free energy. Because n0 is pointing in the z-direction we
may rewrite the splay contribution to the frank free energy
according to

Fsplay =
1
2

K1


V

dr
�
∂1n1(r) + ∂2n2(r)�2, (A3)

where ∂αnβ ≡ ∂nβ/∂α and α, β = 1, 2, 3. The Fourier
transform (indicated by the tilde) of the components of the
local director n(r) is given by

nα(k) =


dr nα(r) exp(−ik · r), (A4)

where k is the wave vector. Consequently, the inverse
transformation is obtained via

nα(r) = 1
(2π)3


dknα(k) exp(ik · r) (A5)

which we substitute in Eq. (A3) and obtain

Fsplay =
1

2(2π)6 K1


dr dk dk′

�
−n1(k)k1n1(k′)k ′1

+ 2n1(k)k1n2(k′)k2 −n2(k)k2n2(k′)k ′2
�

× exp
�
i(k + k′) · r�. (A6)

This expression for Fsplay can be easily simplified by the
application of the well known relations

dr exp
�
i(k + k′) · r� = (2π)3δ(k + k′), (A7)

where δ is the Dirac δ distribution and
dk′ f (k′)δ(k + k′) = f (−k) (A8)

such that

Fsplay =
1

2(2π)3 K1


dk

�
n1(k)n1(−k)k2

1

+ 2n1(k)k1n2(k)k2 +n2(k)n2(−k)k2
2

�
. (A9)

Furthermore, using nα (−k) = n∗α (k) and nα (k)n∗α (k)
= |nα(k)|2 (the asterisk denotes the complex conjugate), and
replacing the integral by a sum over the wave vectors, we cast
the final result as

Fsplay =
1

2V
K1


k

�|n1(k)|k1 + |n2(k)|k2
�
. (A10)

In the same manner we obtain

Ftwist =
1

2V
K2


k

�|n1(k)|k2 − |n2(k)|k1
�

(A11)

and

Fbend =
1

2V
K3


k

�|n1(k)|2 − |n2(k)|2�k3 (A12)

for the free energy of the twist and bend deformations,
respectively. We define a coordinate system 1, 2, 3, where
the global director is pointing in the z-direction and the wave
vector is chosen to be in the 1-3 plane, such that k = (k1,0, k3)T.
Furthermore, we take the unit vector e1 to be parallel to the
plane spanned by k andn0 ande2 perpendicular to it. Thus, the
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wave vector k = k1e1 + k3n0 is used to rewrite and summarize
Eqs. (A10)–(A12) to obtain

Fel =
1

2V


k

2
α=1

|nα(k)|2(K3k2
3 + Kαk2

1). (A13)

It is helpful to remember thatnα(k) is the Fourier transform of
the components of n(r) which describes local fluctuations of
the director field. The fluctuations of the director field occur
due to molecular rotation. Because all three rotational degrees
of freedom are decoupled, we use the equipartition theorem
to separate the director field fluctuations according to

|n1(k)|2 = V kBT
K3k2

3 + K1k2
1

, (A14)

|n2(k)|2 = V kBT
K3k2

3 + K2k2
1

(A15)

by analogy with Allen and Frenkel58,59 who used the tensorial
version for their derivation. In order to rewrite the expressions
presented in Eqs. (A14) and (A15) as their tensorial analogs,
we use the macroscopic version of the alignment tensor [see
Eq. (4.1)]

Qαβ =
1
2

S(nαnβ − δαβ) (A16)

and remember that n(r) = (δn1, δn2,1)T [see Eq. (A2)].
Substituting n(r) in Eq. (A16) results in Q13(r) = 3

2 Sδn1 and
Q23(r) = 3

2 Sδn2, where the computation of δn1 and δn2 is
performed in Fourier space via Eqs. (A14) and (A15). Using
this proportionality one immediately can rewrite Eqs. (A14)
and (A15) in Eqs. (4.10a) and (4.10b), respectively.
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