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ABSTRACT

We present results of speech rhythm analysis for automatic speaker identification. We expand previous experiments
using similar methods for language identification. Features describing the rhythmic properties of salient changes in
signal components are extracted and used in an speaker identification task to determine to which extent they are
descriptive of speaker variability. We also test the performance of state-of-the-art but simple-to-extract frame-based
features. The paper focus is the evaluation on one corpus (swiss german, TEVOID) using support vector machines.
Results suggest that the general spectral features can provide very good performance on this dataset, whereas the
rhythm features are not as successful in the task, indicating either the lack of suitability for this task or the dataset
specificity.

1 Introduction

The efficient description of speech rhythm is a challeng-
ing task which has been solved with limited success
so far. The reason for this is the difficulty to define,
measure and quantize what exactly constitutes speech
rhythm. However, many studies up to now have shown
that the rhythmic characteristics or even the general
temporal evolution of speech, together with other fac-
tors, play an important role in the perception of lan-
guage, especially for tasks such as speaker identifica-
tion (SID) and language identification (LID), or even
speech intelligibility [1, 2, 3, 4, 5, 6]. Therefore, fur-
ther research on the subject could serve determining the
important constituent elements of speech rhythm which
contribute to language and speaker variability; and the
creation of better features for speech processing.

Concerning speech rhythm feature extraction, the most
influential studies have been performed in linguistics
and phonetics. The basic assumption of those ap-
proaches is that rhythm-related speech phenomena
take place on the level of the duration of intervals,
phonemes, syllables, words and phrases. Therefore,
metrics such as ∆C, %V , nPVI and VarcoC [7, 1, 2, 8,
3] have been developed to capture the variability in the
duration of syllables or consonant-vowel cluster inter-
vals. However, recent observations [9, 10, 11] also criti-
cize that those metrics are not necessarily characteristic
of (solely) language variability. One novel approach
for speech rhythm description are the attempts to de-
scribe speech rhythm related periodicities inherent in
the signal. Such approaches for rhythm-based LID have
been introduced based on automatic segmentation and
feature extraction [12, 13, 14, 15, 16], low-frequency
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periodicity analysis [17, 18, 6] and lately with meth-
ods borrowed from the field of Music Information Re-
trieval (MIR), e.g. with the beat histogram [19]. When
looking specifically at the task of speaker ID, such
approaches have been applied only to a lesser extent.
However, recent studies [4, 20, 17] on speaker idiosyn-
cratic speech rhythm features point toward the need
to experiment with novel rhythm description methods.
Standard SID approaches using machine learning meth-
ods with the help of basic features [21] and i-vectors
[22, 23, 24, 25, 26] have provided good performance re-
sults in speaker recognition. Especially the i-vector ap-
proach in combination with Deep Learning has shown
very high performance [27, 28, 29, 30]. These methods,
however, are computationally complex and expensive
and require a large amount of data for the building of
the Universal Background Model (UBM), as well as
for the training of the Deep Neural Nets (DNNs). Fur-
thermore, it is largely unclear which features function
well and why, as well as how they relate to specific
qualities of speech (e.g. rhythm), with rhythm related
features almost totally absent. Finally, the methods
are applied to datasets which are not widely accessible
since they are very expensive to obtain or only available
in a challenge context (e.g. the NIST datasets), making
the reproducibility of results difficult.

In this paper, we have therefore applied a novel method
to extract speech rhythm related features for SID using
the data of the swiss language TEVOID corpus [17] in
order to determine if the proposed rhythmic features
can be as successful for SID as they have been for
LID [19]. Those features were selected, since speech
rhythm metrics have been shown to provide interesting
results for speaker identification. It is therefore inter-
esting to evaluate our approach to rhythm features on
the same dataset in order to check for consistencies or
differences and draw conclusions about the features.
At the same time we will test standard features in audio
content analysis [31] as well as from speech process-
ing - Shifted Delta Cepstral Coefficients (SDCs) and
Mel Frequency Cepstral Coefficients (MFCCs) - as a
baseline. We chose this dataset since it was accessible
and it has been analyzed using the speech rhythm met-
rics [17], to which we wanted to compare our approach.

The paper is structured as follows: The feature ex-
traction method is shortly described. The steps of the
experimental setup feature evaluation for the TEVOID
corpus are presented and discussed. Finally, conclu-
sions and perspectives for further research are given.

2 Methods

2.1 Feature Extraction

For the extraction of rhythmic features for the SID task,
we utilize the method proposed in [19], where five
different novelty functions, i.e. temporal trajectories of
different signal properties or their derivatives [32], are
calculated and used as the basis for the creation of beat
histograms, similar to the periodicity representations
in [33, 34, 35]. We extract five such novelty functions:

• Spectral Flux (SF), following strong changes in
(wideband) spectral properties.

• Spectral Flatness (SFL), indicating whether the
signal is strongly tonal or noisy.

• Spectral Centroid (SCD), giving information
about the spectral center of weight.

• RMS Amplitude (RMS), the standard ampli-
tude/level information of the signal.

• Fundamental Frequency (F0), following the
basic F0 information in the speech signal (ex-
tracted using the harmonic product sum method,
see [31]).

The interested reader can refer to [31] for more informa-
tion on the mathematical definition and the properties
of those audio features. A beat histogram from the tem-
poral trajectories of those features (in a given texture
frame, i.e., a smaller window of the whole audio file) is
extracted by computing the scaled autocorrelation func-
tion for frequencies from 0.5 to 10 Hz. From the beat
histograms, the following statistical and other features
(subfeatures) are extracted in turn (95 in total, resulting
from 5 novelty functions and 19 subfeatures):

• Distribution statistics: Mean (ME), Standard
Deviation (SD), Mean of the Derivative (MD),
Standard Deviation of the Derivative (SDD),
Skewness (SK), Kurtosis (KU), Entropy (EN),
Beat Histogram Centroid (CD) and High Fre-
quency Content (HFC).

• Peak related: Strength and Position of the First
and Second Strongest Peak (P1, A1, P2, A2), Ra-
tio (RA) of the Strength of the first Peak (A1)
to that of the Second one (A2), Peak Centroid
(P3), Sum (SU) and Sum of Beat Histogram Power
(SP).
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Almost the same parameterization as in [19] was used
here; all files were resampled to 22050 Hz, and a win-
dow of 512 samples with an overlap of 75% was ap-
plied. A texture window of 4 seconds with a 50%
overlap was used for creating several beat histograms,
which were then averaged across the whole audio file.
Other values for those parameters were considered,
but those provided the best results. Apart from the
rhythmic features, spectral ones were extracted by cal-
culating the feature value over analysis frames of a
Short-Time-Fourier-Transform (STFT) with the same
parameterization as above for the whole audio file. We
included the following 34 features (for more informa-
tion, see [31]):

• Spectral Shape and Change: Spectral Flux (SF),
Spectral Centroid (SCD), SDCs derived from the
MFCCs (1−13, resulting in 13 SDCs in the 7−
1− 1− 1 setting, see [36] for more details), the
MFCCs themselves, Spectral Flatness (SFL) and
Spectral Spread (SSP).

• Tonal: Spectral Tonal Power Ratio (STPR) and
Zero Crossing Rate (ZCR).

• Envelope: Root Mean Square Amplitude (RMS)
and Envelope Max (EMX).

2.2 Classification

In order to perform supervised classification we have
used the Support Vector Machines (SVM) [37] algo-
rithm in a MATLAB implementation with a Radial
Basis Function (RBF) kernel for a multi-class setting.
The hyperparameters for the RBF kernel (C, γ) were
determined through a grid search procedure. For all ex-
periments, a 10-fold cross-validation took place. This
means that the dataset was randomly separated in 10
equally large subsets (folds), out of which 9 were used
for training and 1 for testing (validation). This pro-
cedure was repeated 10 times (corresponding to the
number of the folds) and the average accuracy over all
trials was computed. This represents a common way
to perform machine learning experiments (e.g. in the
MIR community) and assures that no skewed results
are produced because of a single random advantageous
or disadvantageous partitioning of the dataset. When
the dataset is small, this could lead to problems with
insufficient training material, which is why we chose

a partitioning with relatively many folds (10). Z-score
standardization was conducted prior to classification,
separately for the training and test set. The accuracy,
as the number of correct classifications for one class,
to the number of overall classifications, was used to
evaluate classification performance. We are primarily
interested in this measure, as we are performing a 1-
vs-1 multiclass supervised classification setting - that
is, for each speaker pair, classifications are performed
(in each fold), as we wish to know how well the al-
gorithm can distinguish one speaker in comparison to
another, and not to all others together (as in a 1-vs-all
setting), since we can then interpret misclassifications
in an easier way. The final result is calculated by sum-
ming the individual results for each class. This way
we can also detect effects misclassified classes, which
would point at speakers having similar properties (as
measured through our features) or some speakers hav-
ing not enough variance to stand out in comparison to
any other class.

2.3 Datasets

For the speaker ID task, the TEVOID corpus was
used [17]. It contains sixteen spontaneous utterances
from sixteen male and female (50% for each cate-
gory) Swiss German speakers (i.e. 256 utterances in
total) transcribed and read by all speakers, resulting
in 4096 sentences. The audio signal quality is high,
and the corpus has already been analyzed [17] using
many established speech rhythm metrics (%V , ∆V (ln),
∆C(ln), ∆Peak(ln)) and was found to contain consid-
erable between-speaker variability, even when strong
within-speaker variability was introduced. In this sense,
it is expected that the speakers could be identified from
a supervised learning algorithm successfully. It must
be mentioned, however, that the database is relatively
small, which could make the generation of reliable re-
sults difficult. Furthermore, the fact that the dataset
deals with only variety of the german language (swiss
german) could lead to results of the SID experiment
might be specific for this language.

3 Results

Using the rhythm feature set (see the confusion matrix,
Fig. 1), it was observed that all speakers are identified
with an accuracy above chance level (Accuracy > Prior
= 6.25%) while speakers S4, S7, S8, S10, S12 and
S16 are identified with relatively low accuracy, below
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20%. On the other side, two out of sixteen speakers
are identified with relatively high absolute accuracy
(S2 with 53.9% and S3 with 54.7%), three others with
moderately good accuracy (S1, 36.3%, S9, 30.9% and
S14, 31.6%) and for the rest of the speakers an accu-
racy of 20 to 30% is achieved. The average accuracy
is 26.95%, which is more than four times greater than
chance classification accuracy, but still in absolute val-
ues not entirely satisfactory. Using the spectral feature
set (Fig. 2), the results where unambiguous: the overall
performance was 87.6%, without much variation be-
tween speakers (around 10%). Speakers S3, S6, S10,
S14, S15 are identified with an accuracy above 90%.
This points towards the fact that simple, spectral fea-
tures capture very speaker-specific characteristics such
as voice timbre or F0. This confirms findings from
other SID studies [22, 21, 23]. When combining both
feature sets (Fig. 3), an 82.3% average accuracy is
reached, which does not show much variation between
speakers. This shows two interesting effects: First, ac-
curacy actually decreases when using spectral features
together with the rhythm related ones, hinting towards
the fact that when using all the features with the same
SVM classifier, the determination of a good class sep-
aration becomes more difficult. A similar effect was
observed when using the linear SVM and the kNN clas-
sifiers, however with lower accuracy. Secondly, the
variation pattern follows that of the spectral features,
showing that they dominate in the task.

4 Discussion

The results presented in the previous section give a
mixed picture. Using the rhythm features, it can be
seen that the overall performance (as measured by accu-
racy) on the TEVOID corpus is relatively low (26.95%).
This points towards the fact that the features do not nec-
essarily capture speech rhythm in the same way as the
rhythm metrics do, since when using the latter, it could
be shown that between-speaker rhythmic variability in
this corpus is robust and even with respect to certain
kinds of within-speaker variability [17, 38]. However,
the fact that recognition stays well above the prior in
most cases is encouraging with respect to the features
capturing some speaker related rhythmic variability.
The spectral features have achieved a very high overall
performance (87.6%) showing that SID with good re-
sults is possible even with the use of an uncomplicated,
fast feature extraction scheme, opting for their use in
future experiments and applications.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Predicted Speaker

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

T
ru

e
 S

p
e

a
k
e

r

Fig. 1: Confusion Matrix for the TEVOID corpus,
rhythm features (16 speakers).
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Fig. 2: Confusion Matrix for the TEVOID corpus, spec-
tral features (16 speakers).
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Fig. 3: Confusion Matrix for the TEVOID corpus, com-
bined features (16 speakers).
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The reasons for the unsatisfactory performance of the
rhythm features might lie in the specific variety of swiss
german in the corpus, which might be a special, dif-
ficult case to analyze in terms of rhythmic variability.
Also interesting is the fact that specific users (two in
particular) are identified with relatively high accuracy.
This is a hint towards the assumption that our rhythm
features capture very specific rhythmic patterns of cer-
tain individuals, which might have to do with the spe-
cific dialect of german, rate of speech or elicitation
method (as the rhythm features did not perform well on
spontaneous speech for LID either, see [19]) although
those parameters have to be investigated further. A
listening probe into the speaker characteristics of the
best and worst cases did not reveal any rhythm-specific
reasons for them performing better or worse, other
than the fact that speakers S2 and S3 speak relatively
slowly and somewhat more clearly. In this context,
the investigation of perceptual similarities in speech
rhythm between speakers through a listening experi-
ment could also be helpful. To summarize, the fact that
the results are significantly above the chance shows
that rhythm features can indeed be helpful for SID but
need to be further refined for use in such tasks. Pos-
sible problems could include the temporal resolution
of the rhythm features (which could be adjusted to,
e.g., fit the speaker rate) or the elicitation method. All
of the above imply that SID (in contrast to LID) is
much better served by just using spectral features, as
they apparently capture a great part of speaker speci-
ficity. This might be a result of different speakers of
the same language having very different voice timbre
characteristics, which are readily captured through fea-
tures such as the MFCCs, the SDCs and similar ones.
In general, the high performance of the spectral fea-
tures is similar to results shown elsewhere (e.g., the
studies that use i-vector methods derived from MFCCs
and SDCs [22, 23, 24, 25, 26, 27, 28, 29, 30]), which
achieve error rates of 5% or lower on various datasets,
ranking just a bit higher than our spectral features, but
with a much more effortful analysis. On the other
hand, speaker specific rhythm characteristics might
either be absent (in general or for the dataset and lan-
guage used here), very confounded with other sources
of rhythm variability (such as elicitation method, emo-
tional speech) or might just not be captured through our
rhythm extraction method. Since using those rhythm
features has shown good classification results both in
MIR tasks [33, 35, 39, 40]) and in LID [19], we surmise
that they are not as suitable for SID.

5 Summary

The analysis presented reveals tendencies concerning
the application of multiple novelty beat histogram-
based rhythm descriptors for SID. It has been shown
that at least on one dataset of swiss german, the rhyth-
mic features are not very helpful to achieve high ac-
curacy in SID, although it has been shown that other
rhythm metrics can capture the idiosyncrasy present in
the corpus [20, 17, 41]. The reasons for that are not
clear yet, but possible candidates are the specificity of
the corpus language, the size of the dataset or that the
features do not capture speech rhythm characteristics
in a way that is speaker-specific. The latter might well
be the case, as we were able to show in a previous
study [19] that the same features are indeed descriptive
of speech rhythm when it comes to the task of LID.

Another clue pointing to this direction is that the fea-
tures achieved good accuracy for a few speakers, show-
ing that they could partly capture characteristics of
specific speakers, but not in every case. However, fur-
ther tests with other datasets are necessary to confirm
this tendency. From a theoretical perspective they are
nevertheless very useful, as they give clues to the im-
portance of speech rhythm for the corresponding task.
The simple spectral features have shown very high per-
formance with a low computational cost and should
therefore be further applied.

Future work will include the following tasks: The use
of larger datasets as the GLOBALPHONE [42] in order
to be able to draw conclusions across languages and
to test for rhythmic variability both between speakers
and between languages at the same time. Further fea-
ture analysis is also scheduled, so as to investigate if
the tendencies observed in the present study are robust
across datasets and other settings (speaker, elicitation
methods), as well as further investigating which aspect
of the speech data (language, dataset size, feature pa-
rameterization etc) is the most important in generating
better results. Specifically with respect to the speech
tempo, an automatic tempo extraction scheme simi-
lar to the one used here, such as the tempogram [43],
will be used in combination with manually obtained
ground truth data in order to investigate the validity
of the automatic tempo extraction procedure. Finally,
further rhythm feature extraction algorithms, e.g. the
modulation scale spectrum [44] or similarity detection
schemes [45] will be adapted so as to be used for speech
rhythm description.
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[26] Matějka, P., Glembek, O., Castaldo, F., Alam,
M. J., Plchot, O., Kenny, P., Burget, L., and
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