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Secreted phospholipases (sPLA2s) in plants are a growing group of enzymes
that catalyze the hydrolysis of sn-2 glycerophospholipids to lysophospholipids and
free fatty acids. Until today, around only 20 sPLA2s were reported from plants.
This review discusses the newly acquired information on plant sPLA2s including
molecular, biochemical, catalytic, and functional aspects. The comparative analysis also
includes phylogenetic, evolutionary, and tridimensional structure. The observations with
emphasis in Glycine max sPLA2 are compared with the available data reported for all
plants sPLA2s and with those described for animals (mainly from pancreatic juice and
venoms sources).

Keywords: secretory phospholipase A2, interfacial catalysis, auxin, Glycine max, phospholipase–membrane
interaction

INTRODUCTION

For more than a century experiments were performed with sPLA2s enzymes, being used as lipid
model enzymology and as paradigms for the formalism of interfacial catalysis (Dennis et al., 2011).
The phospholipase A2 (PLA2, EC 3.1.1.4) superfamily is a broad and growing group of enzymes
that stereo specifically catalyzes the cleavage at the sn-2 acyl ester bond from diacyl-phospholipid
liberating lysophospholipid and free fatty acid. In plants, secreted PLA2 (sPLA2) represents one
type of phospholipase A2 whose lipid products mediate a variety of cellular processes, including
growth, development, defense, and stress responses (Stahl et al., 1998, 1999; Kim et al., 1999; Lee
et al., 2003; Ryu, 2004; Mansfeld, 2009; Chen et al., 2011). Although numerous sPLA2 genes have
been identified in plants, little is known about these enzymes in opposition to their insect, animal or
human counterparts (Burke and Dennis, 2009). sPLA2 is best known from mammals where several
sPLA2s have been identified in the last 25 years (Murakami et al., 2011). Moreover, many sPLA2s
were found in sources as venoms from snakes, scorpions, bee, etc.; from microorganisms as bacteria
and yeasts, as components of pancreatic juices, where it occurs abundantly and has a digestive role;
arthritic synovial fluid; and in many different mammalian tissues (Valentin et al., 1999; Schaloske
and Dennis, 2006; Burke and Dennis, 2009; Murakami et al., 2010, 2011). Additionally, for the first
time, we have recently described the interfacial properties of purified recombinant sPLA2s from
Streptomyces violaceoruber (Yunes Quartino et al., 2015) and from Glycine max (Mariani et al.,
2012, 2015b), i.e., the optimal surface lipid packing conditions (interfacial quality) in which a sPLA2
can hydrolyze phospholipid in an organized membrane. This point, no less important for interfacial
enzymes, was also addressed comparatively in the present review.

Glycine max (Soybean), in addition to being one of the most widely used oil crop grain in the
world, possesses valuable contributions to health due to its high nutritional level. Lipids, proteins
and other valuable bioactive components such as: phospholipids (known as lecithin), hormones,
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and antioxidants are present in soybean (Messina, 1999; Choi
and Rhee, 2006). The industrial use of sPLA2s from animal
pancreas extracts and microbes, especially in food production,
has a long tradition (Guo et al., 2005; De Maria et al., 2007).
One of the targets in the future may be the utilization of sPLA2
from plants for enzymatic processing to stereospecifically obtain
lysoderivatives. This alternative has been recently recognized to
satisfy food regulation requirements such as Kosher and Halal
(Havinga, 2010). However, no sPLA2s from plants have now been
yet available for industrial application (Mansfeld, 2009).

Secreted PLA2s are low MW calcium dependent enzymes (12–
18 kDa) (Schaloske and Dennis, 2006). From a perusal revision of
sequence data, almost all sPLA2s from plants and animals contain
a signal sequence. So, in the general secretion way after removal of
the N-terminal signal peptide in the endoplasmic reticulum (ER),
they are secreted into the extracellular space in a either mature or
pre-protein form (Fujikawa et al., 2005; Lee et al., 2005; Mansfeld
et al., 2006). Although sPLA2s are recognized to be secreted
proteins, a few of them were reported to act intracellularly prior
or during secretion (Mounier et al., 2004; Shridas and Webb,
2014). Until now, the pre-protein form would be exclusive for
animals (see Table 1).

Important common features shared for all sPLA2s are the
presence of: (i) one HIS residue at the catalytic domain for
nucleophilic attack at the sn-2 acyl ester bond of the glycerol
backbone, (ii) requisite of calcium for full activity (µM-
mM), and (iii) exceptionally heat-stable enzymes. sPLA2s also
contain a domain, named PA2c, with the highly conserved
Ca2+ binding loop (YGKYCGxxxxGC) and the active site motif
(DACCxxHDxC), where the HIS/ASP pair was found to be
highly well conserved in both animal and plants sPLA2s. At

TABLE 1 | General characteristics presented by calcium dependent sPLA2s from
animals to plants.

Properties/
characteristics

Animals Plants

Intracellular second
messenger

PL→ arachidonic
acid→
prostaglandins and
leukotrienes

PL→ linoleic acid
→ jasmonic acid

Main metabolic
pathway

Eicosanoid
pathway

Octadecanoid
pathway

Secreted as
zymogen

Some NR

Catalytic triad ASP/HIS/ASP ASP/HIS/X
(X = ASN or SER or
HIS)

MW (kDa) 12–18 ∼14

Cysteines
Disulphide bridges

8–14
4–7

12
6

Calcium
requirementa

mMb µM-mM

PL, phospholipid; NR, no reported. aMinimum of required Ca2+ concentration for
full activity. bRegarding to the general mM requirement for reported sPLA2 from
animal source, it has been described one exception for a sPLA2 isolated from
venom of the marine snail Conus magus (McIntosh et al., 1995). This exception
for sPLA2 was also remarked by Six and Dennis (2000).

least, two characteristics are of great interest in the structure
of all sPLA2s: the catalytic site and the interfacial recognition
surface (IRS). All sPLA2s have the same architecture (about
55% of identity) at the catalytic site level (HIS-ASP) (Lee et al.,
2005) but differ in the amino acid residues that conform the IRS
region (Berg et al., 2001) sharing only 15% of identity in the
amino acid sequence.

In the presence of reducing compounds such as
β-mercaptoethanol or dithiothreitol (DTT) the activity is
affected or abolished by disrupting the protein structure
(reduction of disulfide bridges) (Stahl et al., 1998). They also
show high resistance to organic solvents, acidic conditions
and high temperatures (they are even more resistant in the
presence of Ca2+). A common procedure to confirm the
catalytic mechanism is by checking if the activity is chemically
canceled by the alkylation of HIS localized in the catalytic triad
HIS/ASP/X (where X may be either HIS, SER, or ASP) induced
by p-bromophenacylbromide (BPB) (Minchiotti et al., 2008).
A resume of the general characteristics comparing animals from
plants sPLA2 is shown in Table 1.

Fatty acids produced by the hydrolysis carried out by sPLA2s,
such as oleic (1:18) or arachidonic (4:20) acid, are sources of
energy reserve. Furthermore, arachidonic acid can function as
intracellular second messenger or as precursor of eicosanoids
inflammation mediators, if is the extracellular product of the
reaction catalyzed by secreted phospholipase as occurs for human
synovial fluid (Baynes and Marek, 2004). The other product of
the action of sPLA2, the lysophospholipid is important in cell
signaling and remodeling or membrane perturbations (Khan
et al., 1995). In contrast, in plants the jasmonic acid and its
related compounds are important hormones involved in plant
defense reaction against microbial pathogens, herbivores and
UV light damaging as well as senescence mechano-transduction
(Schaller, 2001).

In the past years, significant advances have been made toward
understanding the role of these enzymes in normal cellular
and tissue homeostasis or function particularly in mammals
(Rhee and Bae, 1997; Assmann and Shimazaki, 1999; Williams,
1999; Liscovitch et al., 2000; Murakami et al., 2015) but, the
more recent data reported for plant sPLA2s are rather scarce.
Therefore, this review focuses on recently acquired information
on all sPLA2 from plants reported until now with emphasis in
GmsPLA2s identified in G. max (soybean), comparing them with
the more relevant published data for several sPLA2s obtained
from different sources. A comparative description with respect
to the sequence characterization, biochemical, molecular, and
functional aspects of sPLA2s enzymes was done.

SECRETORY PHOSPHOLIPASES A2 IN
PLANTS

In comparison with the animal sPLA2, the knowledge generated
for sPLA2 from plants is still limited, even though when
recombinant enzymes from plants have been recently expressed
in Escherichia coli and yeast and characterized. Some studies
about enzyme activities have been reported in more or less

Frontiers in Plant Science | www.frontiersin.org 2 July 2019 | Volume 10 | Article 861

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00861 July 9, 2019 Time: 17:27 # 3

Mariani and Fidelio sPLA2 in Plants

TABLE 2 | sPLA2s from plants, accession numbers, N-terminus characteristics and purification/recombinant process applied.

Source Name Purification N-terminala Accession number Group XI References

A. thaliana AtsPLA2-α cDNA Recombinant At2g06925 B Mansfeld and
Ulbrich-Hofmann, 2007

AtsPLA2-β cDNA Mature At2g19690 A Lee et al., 2003

(arabidopsis) AtsPLA2-γ cDNA Mature At4g29460 A Bahn et al., 2003

AtsPLA2-δ cDNA NR At4g29470 A Bahn et al., 2003; Ryu
et al., 2005

R. communis RcsPLA2α cDNA Recombinant XM002523613 Bb Bayon et al., 2015

(castor bean) RcsPLA2β cDNA Recombinant XM002514118 Bb Bayon et al., 2015

C. sinensis CssPLA2α cDNA Recombinant GU075396 Bb Liao and Burns, 2010

(orange) CssPLA2β cDNA Recombinant GU075398 Ab Liao and Burns, 2010

D. caryophillus (carnation) DcsPLA2 cDNA NR AF064732 B Kim et al., 1999

U. glabrac (elm) UgsPLA2 Seeds Purified NR NR Stahl et al., 1998

G. max GmsPLA2-XIA-I cDNA Mature BT092274 A Mariani et al., 2012

(soybean) GmsPLA2-XIA-II NR NR BT094641 A Mariani et al., 2012

GmsPLA2-XIB-I NR NR BT095220 B Mariani et al., 2012

GmsPLA2-XIB-II cDNA Mature BT091171 B Mariani et al., 2015b

GmsPLA2-XIB-III NR NR BT099163 B Mariani et al., 2012

L. usitatissimum LusPLA2-I cDNA Fusion Protein KU361324 B Gupta and Dash, 2017;
Gupta et al., 2017

(flax) LusPLA2-II cDNA Fusion Protein KU361325 A Gupta and Dash, 2017;
Gupta et al., 2017

P. somniferum (opium) PssPLA2 cDNA Recombinant KU900749 B Jablonicka et al., 2016

O. sativa OssPLA2-I Seeds PPfE AJ238116 A Lee et al., 2005

(rice) OssPLA2-II cDNA Mature AJ238117 B Stahl et al., 1999; Guy
et al., 2009

OssPLA2-III NR NR AAK50122 B Lee et al., 2005

N. tabacum Nt1PLA2 cDNA Recombinant AB190177 A Fujikawa et al., 2011

(tobacco) Nt2PLA2 Extract PPfE AB190178 B

L. esculentum (tomato) LesPLA2 NR NR AI487873 B Lee et al., 2005;
Verlotta et al., 2013

T. durum TdsPLA2 I cDNA/LE PPfE JX021445 A Verlotta et al., 2013

(durum wheat) TdsPLA2 II cDNA/LE PPfE JX021446 B Verlotta et al., 2013

TdsPLA2 III cDNA Recombinant (6× His-TdsPLA2 III) JX021447 B Verlotta et al., 2013;
Verlotta and Trono,
2014

TdsPLA2 IV cDNA/LE PPfE JX021448 B Verlotta et al., 2013

Z. mays (maize) ZmsPLA2
d NR NR EU968759 B Mariani et al., 2012

aMature, without extra amino acids at the N-terminus after heterologous expression. PPfE, when the enzyme was Partially Purified from Extracted from a plant organ
(partial purification, less than 90% purity). LE, leaves extract. Recombinant is indicated when, according to the reported data, it is not known if the expression assayed is
in mature form or contain any tags in the final purified recombinant form (no clearly indicated in the original paper). bClassified in this review from proper alignment of the
reported sequences. NR, not reported. cFor sPLA2 from Ulmus glabra (elm) it was assigned as UgsPLA2 since in the original describing paper (Stahl et al., 1998) was
named as sPLA2 without initial letters of identification. dNamed as ZmsPLA2 in this review.

crude preparations (Moreau and Morgan, 1988; Mukherjee, 1990;
Minchiotti et al., 2008; Murakami et al., 2011).

The first sPLA2 purified to homogeneity, sequenced and
characterized from plants, was the sPLA2 from elm seed
endosperm (Ulmus glabra) in 1998 (Stahl et al., 1998). Later
in 1999, two cDNAs encoding sPLA2 (sPLA2-I and-II) were
isolated from shoots of rice (Oryza sativa) and characterized
(Stahl et al., 1999). cDNAs full sequences coding for putative
sPLA2s were obtained from flowers of carnation (Dianthus
caryophyllus) (Kim et al., 1999). These later clones from carnation
and rice have not been further characterized to demonstrate
that they encode functional enzymes. With progress in genome
sequencing projects, more sPLA2s have been identified: in

tomato (Lee et al., 2005) and outbreaks of castor bean (Ricinus
communis) (Domingues et al., 2007). Four isoforms of sPLA2
from Arabidopsis thaliana have been also isolated, called
AtsPLA2-α, -β, -γ, and -δ (Bahn et al., 2003; Lee et al., 2003, 2005;
Mansfeld and Ulbrich-Hofmann, 2007; Seo et al., 2008), which
have been expressed (Ryu et al., 2005; Mansfeld and Ulbrich-
Hofmann, 2007) two isoforms have been studied in tobacco
(Nicotiana tabacum) (Dhondt et al., 2000; Fujikawa et al., 2005,
2011) and orange (Citrus sinensis) (Liao and Burns, 2010). Three
cDNA from durum wheat (Triticum durum) were isolated and
two of them studied in detail (Verlotta et al., 2013; Verlotta and
Trono, 2014). A novel sPLA2 from opium (Papaver somniferum)
was purified and characterized (Jablonicka et al., 2016) and two
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sPLA2 from flax (Linum usitatissimum) were studied in detail
(Gupta and Dash, 2017; Gupta et al., 2017). Moreover, one gene
was reported for tomato (Lycopersicon esculentum) (Lee et al.,
2005) and one gene for maize (Zea mays) found in UniProt
and mentioned in (Mariani et al., 2012). From our laboratory,
five G. max phospholipases A2 were reported (Mariani et al.,
2012), and two of them (GmsPLA2-XIA-I and -XIB-II) were
cloned, expressed in E. coli, further purified from inclusion bodies
and the activity was evaluated using organized lipid systems
such as mixed micelles and monomolecular films as substrates
(Mariani et al., 2015b).

Table 2 summaries the different enzymes found in plants,
their origin and source, GenBank accession numbers and the
subgroup at which they belong to within the XI group of the
PLA2 superfamily.

RECOMBINANT vs. NATIVE sPLA2s
PROTEINS: ROLE OF THE INTACT
N-TERMINAL PRESERVATION

Usually the N-terminus region of sPLA2 has an alpha helix
domain which forms one wall of the channel through which
the hydrophobic substrate entries as reported for groups I and
II sPLA2s enzymes (according to Dennis, 1973b). Thus, in the
case of pancreatic enzyme (group I), when the zymogen is
converted into the active form by removing a short portion of
the N-terminus, the remaining N-terminal helix is now able to
be involved in the binding interfacial membrane (Scott et al.,
1990). This would be affected by the extension of seven amino
acids at the N-terminus in the zymogen (pro-enzyme) preventing
the binding to lipid interfaces. Crystallographic evidence suggests
that the zymogen has a more flexible N-terminus compared to the
mature protein (van Deenen, 1971).

The effect of an extra amino acid on the N-terminus
of pancreatic sPLA2 can be critical, for example, if it is
of hydrophobic nature (van Scharrenburg et al., 1984).
This was observed in the pioneering work of deHaas
group, showing that the extension of an amino acid
(doubling of the terminal ALA of the mature form) caused
a decrease in enzyme catalysis to phosphatidylcholine (PC)
short chain substrate presented as micelles or when the
substrate was arranged as a lipid monolayer (Slotboom
et al., 1977). Furthermore, in the case of porcine pancreatic
enzyme, an absolute free amino terminal is required
(Dijkstra et al., 1984).

In a recent work with a sPLA2 from group II of Crotalus
atrox venom, the importance of a native N-terminus was also
evident. By using chemically modified enzyme the authors
concluded that N-terminal region plays a mechanistic role in
catalysis and acts as a surface-active component of the complex
interfacial catalytic site (Randolph and Heinrikson, 1982). This
structural requirement is also found in other sPLA2 expressed
in bacteria, such as human sPLA2 from synovial fluid (Marki
and Hanulak, 1993). It was observed that, when expressing a
sPLA2 in E. coli, the initial MET is not removed from the
protein that had an ASN at position 1 in the sequence. This

is because the bacterial aminopeptidase does not catalyze the
removal of the initial MET if it is followed by ASN. The lipolytic
activity of this protein was very low relative compared with
the expressed correct N-terminus mature form (Othman et al.,
1996). Similarly, another study reported that the protein with
an extra MET at its N-terminus had the same pH optimum
and prefered substrate compared to the one with native end
(without MET), but the activity was drastically reduced (Marki
and Hanulak, 1993). Bacterial aminopeptidases remove initial
MET efficiently when the amino acid in position 2 of the
mature sequence is little and without charge (such as ALA,
GLY, SER), but fail when the residue is voluminous and
charged as ASN (Hirel et al., 1989). Othman et al. (1996)
have substituted the ASN by ALA to express the recombinant
protein thus allowing the removal of the initial MET by
the bacteria and avoiding a subsequent step of chemical or
enzymatic cleavage.

A similar observation was made in sPLA2 mutants from
Taiwan cobra (Anderson and Dufton, 1997). The addition of
a MET at the N-terminus generates structural distortions, and
it was postulated that affects the active site through hydrogen
bonds network. Moreover, an extra MET decreases the activity
with respect to the enzymes with native end (Chiou et al., 2008).
Some reports suggest that the N-terminal helix of groups I and
II sPLA2s acts as a regulatory domain that mediate the interfacial
activation (Qin et al., 2005).

The correct design of the heterologous expression of the
cloned enzyme is crucial because the recombinant protein
must be generated with the correct native N-terminus, without
any additional amino acid extension, since any modification
or extension of the N-terminus in sPLA2 can severely
alter the catalytic properties (van Scharrenburg et al., 1984;
Othman et al., 1996). This is also valid for any additional
N-terminal tag (such as HIS-Tag, frequently used in molecular
biology protocols to express recombinant proteins). Both
facts make the recombinant protein act as a zymogen
like pre-protein.

In this sense, the sPLA2s obtained from G. max were
expressed without N-terminal extension (Mariani et al., 2012,
2015b) by using the pHUE vector system that utilizes the
ubiquitin fusion technique (Catanzariti et al., 2004), which allows
easy purification and high yield of recombinant proteins (see
Figure 1). The E. coli pHUE vector permits the expression
of a particular protein as HIS-tagged ubiquitin fusion. Then,
the HIS-tag-ubiquitin-sPLA2 fusion is further processed by
the deubiquitylating enzyme used to cleave off the fusion
to obtain the protein of interest free of any N-terminal
extension (Figure 1).

In the particular case of the mature protein GmsPLA2-
XIB-II, the LEU amino acid at the N-terminus was mutated
to an ALA, to optimize the chance of obtaining the correct
refolding as previously recommended (Kohler et al., 2006).
In AtsPLA2-α, it was shown that an uncleaved signal peptide
of the pre-processed forms produced a significant suppression
of activity compared with the corresponding mature protein
form (Ryu et al., 2005). Moreover, other sPLA2s from plants
were expressed without the signal peptide (Mansfeld et al., 2006;
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FIGURE 1 | Schematic representation of the system applied for GmsPLA2s
expression and purification. Triangles indicate the position where is the
polyHIS-tag motif and the position where the deubiquitylating enzyme cut in
order to release the protein with its native N-terminus without any extension.

Guy et al., 2009). In animals, a correct and functional sPLA2
from Bothrops diporus was produced without any extra extension
at the N-terminus (Yunes Quartino et al., 2012). Using the
ubiquitin/deubiquitinase system, in the latter case, it was
clearly shown that the recombinant protein had the same
interfacial catalytic profile when compared to the native one
(Yunes Quartino et al., 2015).

As sPLA2 activity is very sensitive to N-terminus
modifications, in Table 2 we include all sPLA2s from plants
known until today and the process originally reported
to obtain the final protein (either proteins purified from
plant extracts, in a mature recombinant form or with an
additional tag). It should be noted that not all reported
information disclosed the sequence of phospholipase A2 either
cloned or purified.

However, similar to its counterpart in animals, sPLA2s
from plants have N-terminal signal peptides that were
predicted to direct protein secretion into the extracellular
or intracellular space (Bahn et al., 2003; Lee et al., 2003).
It is noteworthy that some sPLA2s from plants have the
sequences KTEL, KFEL, and KLEL at the C-terminal
which are similar to the endoplasmic reticulum retention
sequences KDEL and HDEL reported for animals
(Matsushima et al., 2003). Even when this putative KxEL
endoplasmic reticulum (ER) retention sequence (Pagny
et al., 2000; Seo et al., 2008) is present in some plant
sPLA2, the biochemical significance is still unknown (see
Supplementary Figure S1).

TABLE 3 | Sequence characteristics of the GmsPLA2sa.

Name Full-length
cDNA (nt)

Open
reading
frame

(ORF) (nt)

Residues of
native

protein with
signal

peptide

Residues of
mature
protein

GmsPLA2-XIA-I 789 417 138 114

GmsPLA2-XIA-II 875 417 138 115

GmsPLA2-XIB-I 826 474 157 128

GmsPLA2-XIB-II 762 471 156 128

GmsPLA2-XIB-III 821 477 158 128

a In Supplementary Figure S5 it is shown the complete sequence with the
N-terminal region with the signal peptide and the putative theoretical site of
cleavage for all sPLA2 reported for plants. Signal peptides for each sequence
was determined by using the signalP 3.0 server (http://www.cbs.dtu.dk/services/
SignalP-3.0/).

FIGURE 2 | Schematic representation of the GmsPLA2 gene.

GmsPLA2s GENE FAMILY,
CLASSIFICATION, AND DOMAIN
STRUCTURE

In G. max, five sPLA2s isoforms were identified (Mariani
et al., 2012), named as GmsPLA2-XIA-I, GmsPLA2-XIA-II,
GmsPLA2-XIB-I, GmsPLA2-XB-II, and GmsPLA2-XIB-
III. Detailed information about the genes and proteins
are shown in Table 3. As indicated above, the extension
of the N-terminus of the mature protein is crucial for
the activity, we show in Supplementary Figure S5 all the
sequences of the sPLA2s of known plants with their signal
sequence and their point of theoretical cut using the programs
available online.

Moreover, the genes encoding for GmsPLA2-XIA-
I and GmsPLA2-XIB-I are located in chromosome I,
GmsPLA2-XIA-II y GmsPLA2-XIB-II are positioned in
chromosome 7 and the gene of GmsPLA2-XIB-III is
located in chromosome 8. Whereas GmsPLA2-XIB-I,
GmsPLA2-XIB-II, and GmsPLA2-XIB-III possess three
introns and four exons, the genes of GmsPLA2-XIA-I
and GmsPLA2-XIA-II have two introns and three exons,
respectively (see Supplementary Material in Mariani et al.,
2012). These facts are indicative that during the course
of evolution events of divergence and duplication might
have occurred as it was suggested previously for AtsPLA2s
(Lee et al., 2005).

All sPLA2s sequences found in plants hold a PA2c (SMART
accession number SM000851) domain that contains the highly
conserved Ca2+-binding loop (YGKYCGxxxxGC) (see Figure 2).
The active site motif (DACCxxHDxC) that holds the highly
conserved HIS/ASP pair (Laigle et al., 1973) corresponds to
position 49/50 for GmsPLA2-XIA-I, 47/48 for GmsPLA2-XIA-
II and 62/63 for GmsPLA2-XIBs whereas for AtsPLA2α and
AtsPLA2γ, it corresponds to the position 62/63 and 7/48,
respectively (Mansfeld et al., 2006).

However, there is a dissimilarity that remains unclear in the
HIS/ASP of the catalytic dyad in sPLA2s from plants compared
with those found in animals (Mansfeld et al., 2006). It was
proposed that water molecules assist in the Ca2+ coordination

1http://smart.embl-heidelberg.de/
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FIGURE 3 | Sequence alignment of the sPLA2s reported from plants: analysis of the deduced amino acid sequences. The alignment was performed by using the
Clustal X v2.1 program (http://www.clustal.org) and edited with jalview program. The triangles denote the amino acid residues involved in binding Ca2+ and stars
denote amino acid residues putatively involved in catalysis. In yellow, CYS residues are marked. For abbreviation code of plants sPLA2 see Table 2. Two animals
sPLA2 are included at the bottom of the figure for comparison: NnsPLA2 from Naja naja (cobra) venom and PpsPLA2 from pig pancreatic juice (Sus scrofa). The
accession numbers of sPLA2 indicated in this figure are provided as Supplementary Appendix S1.

at the HIS48-ASP49 active site in bovine pancreatic bpsPLA2
(Bahnson, 2005), the roles of ASP99 in this sPLA2 (Kumar
et al., 1994), and ASP64 in bee venom sPLA2 (West et al.,
2013) were also claimed to take part in the hydroxyl-imidazole-
carboxylate motif (Annand et al., 1996). However, for sPLA2
plant enzymes this important catalytic residue is replaced by
an HIS or an ASN residue in enzymes from group XIA and
by a SER or an ASN in those enzymes belonging to group
XIB (Mansfeld et al., 2006) as shown in the alignment in
Figure 3. Mansfeld et al. (2006) demonstrated that SER, ASN,
or HIS in plant sPLA2s may fulfill the catalytic role assigned
to ASP in animal’s sPLA2s (Mansfeld et al., 2006). Sequence
alignment also reveals that, contrary to OssPLA2 isoforms, the
ASP residue of the highly conserved HIS/ASP catalytic dyad
of the animal counterpart is replaced by an HIS residue in
the durum wheat TdsPLA2 isoform I, and by an ASN residue
in all of the others durum wheat sPLA2 isoforms (Verlotta
et al., 2013), see Figure 3 for more details of others sPLA2
from plants. Even though the comparison showed low homology
among them within the overall amino acid sequences, both the
catalytic site and the Ca2+ binding loop are highly conserved
(Figure 3). Other relevant conserved residues within the Ca2+

binding loop are the two TYR and two GLY residues which
are involved in the hydrogen bonding network reported for
both animal and plant sPLA2s (Lee et al., 2005). A more
perusal view of this domain offers additional information. The
more conserved domain YGKYCG seems not to be exclusive, a
change in the second TYR residue was observed for TdsPLA2-I

changing to YGKFCG. Also, the following hydrophobic domain
mainly formed by the LL pair may be VL, IL, IM, VS, IG,
or VG (see Figure 3). However, the putative role of these
differences on calcium affinity or phospholipase activity was not
elucidate yet.

The mature proteins of both groups XIA and XIB contain 12
CYS residues (Figure 3) known to form six structural disulfide
bonds that also are present in the same position as other known
sPLA2s from plants (Mansfeld et al., 2006). CYS residues are
essential for secreted sPLA2s and it has been shown to play a
relevant role in the structural stability in mature sPLA2s (Six and
Dennis, 2000; Mariani et al., 2015b).

The HIS residue (at position 49 in GmsPLA2-XIA-I, 47 in
GmsPLA2-XIA-II and at 62 inGmsPLA2-XIB-II, -II, and -III) was
suggested to play a crucial role in the nucleophilic attack at the sn-
2 bond in the glycerol backbone of phospholipids for all sPLA2s
(Six and Dennis, 2000; Berg et al., 2001; Burke and Dennis, 2009).

All plants sPLA2s are low MW enzymes (12–18 kDa)
with the exception of CssPLA2β from Citrus that has an
unexpected high MW (Table 4). The theoretical isoelectric
points (pI) for each sPLA2 are shown also in Table 4.
As it can be observed, four of the putative GmsPLA2s are
rather acidic or neutral (GmsPLA2-XIA-I, GmsPLA2-XIB-I, -
II, and -III) as reported for sPLA2s isolated from Bothrops
diporus venom (de Haas et al., 1968; Daniele et al., 1997).
Acidic sPLA2s were also reported for some enzymes found
in the Crotalinae subfamily (dos Santos et al., 2011) and
those found in rice (isoforms I and III) (Lee et al., 2005).
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TABLE 4 | Molecular weight, isoelectric point, and specific activity of different sPLA2s from plants.

Origin Name Mature protein MW
(kDa)

pI Reported activity
(µmol min−1 mg−1

protein) and
substrate

References

A. thaliana AtsPLA2-α 14.2 7.7 16.7 (DOPC) Lee et al., 2005; Mansfeld and
Ulbrich-Hofmann, 2007

AtsPLA2-β 16.3 8.2 0.53 (PC) Lee et al., 2003, 2005

(arabidopsis) AtsPLA2-γ 17.5 8.3 NR Bahn et al., 2003; Lee et al.,
2005

AtsPLA2-δ 18.0 7.7 NR Lee et al., 2005

D. caryophillus (carnation) DcsPLA2 12.4 6.9 NR Lee et al., 2005

R. communis (castor bean) RcsPLA2α 14 6.3a 52.3 pmol min−1 mg−1

([14C]18:1-PC)
Bayon et al., 2015

C. sinensis (orange) CssPLA2α 17.1 6.9a 0.013d arachidonoyl
Thio-PC

Domingues et al., 2007; Liao
and Burns, 2010

CssPLA2β 31.6 8.1a 0.013d arachidonoyl
Thio-PC

Liao and Burns, 2010

U. glabra (elm) UgsPLA2 13.9 NR 90 (PCPC) Stahl et al., 1998; Lee et al.,
2005

G. max GmsPLA2-XIA-I 12.3 6.9 0.44 (DLPC) Mariani et al., 2012, 2015b

(soybean) GmsPLA2-XIA-II 12.6 7.4 NR Mariani et al., 2012, 2015b

GmsPLA2-XIB-I 13.9 5.7 NR Mariani et al., 2012, 2015b

GmsPLA2-XIB-II 13.9 5.7 0.25 (DLPC) Mariani et al., 2012, 2015b

GmsPLA2-XIB-III 14 6.8 NR Mariani et al., 2012, 2015b

L. usitatissimum LusPLA2-I 17.9 6.7 ∼2 (PCLIN) Gupta and Dash, 2017

(flax) LusPLA2-II 15.7 8.8 ∼2.7 (PCLIN) Gupta and Dash, 2017

P. somniferum (opium) PssPLA2 14 6.9 ∼7 (DOPC) Jablonicka et al., 2016

O. sativa (rice) OssPLA2-Ib 12.9 7.9 145 (sn1-palmitoyl-sn2-
[14C]caproyl-PC)

Stahl et al., 1999; Lee et al.,
2005

OssPLA2-IIb 13.8 5.5 145 (sn1-palmitoyl-sn2-
[14C]caproyl-PC)

Stahl et al., 1999; Lee et al.,
2005; Guy et al., 2009

OssPLA2-III 13.5 4.8 NR Lee et al., 2005

N. tabacum Nt1PLA2 17.0 8.57 1.2 (POPC) Fujikawa et al., 2005

(tobacco) Nt2PLA2 12.7 6.8a NR Lee et al., 2005

L. esculentum (tomato) LesPLA2 13.9 6.9 NR Lee et al., 2005

T. durum TdsPLA2s-I ∼14c 1.55d (PCLIN) Verlotta et al., 2013

(durum wheat) TdsPLA2s-II ∼15.7c 1.55d (PCLIN) Verlotta et al., 2013

TdsPLA2s-III ∼13.9 4.5a 3.2 (PCLIN) Verlotta and Trono, 2014

TdsPLA2s-IV ∼17c 1.55d (PCLIN) Verlotta et al., 2013

Z. mays (maize) ZmsPLA2 14.3a 5.43a NR This review

a Indicates the pI or MW calculated by using the on line interface https://web.expasy.org/compute_pi/. bThe mixed enzyme activity was determined from an 8-day-old
rice shoots extract (Stahl et al., 1999). cCorresponds to full length sequence (Verlotta et al., 2013). dThe enzyme activity of all isoforms (per gram of dry extract) was
determined from a direct orange (Liao and Burns, 2010) and wheat (Verlotta et al., 2013) extract. NR, not reported.

On the other hand, the expected pI of GmsPLA2-XIA-II is
slightly alkaline similar to those of all the sPLA2s found
in Arabidopsis (Lee et al., 2005) and Papaver somniferum
(Jablonicka et al., 2016); whereas other sPLA2s have a pI
almost neutral as those found for carnation and tomato
(Lee et al., 2005).

The functional role of the diverse pIs found in different sPLA2s
has not clearly been elucidated yet.

Another relevant domain information is that the
enzymes from the different subgroups differ in the third

Ca2+ coordinating amino acid, being a GLY residue in
subgroup XIA or LEU residue in subgroup XIB (see
Figure 3). The ASP located upstream in the sequence
of the common HIS/ASP catalytic dyad found in animal
sPLA2s does not correlate in the counterpart found
in plants. Instead of this additional ASP residue, the
plant enzymes that belong to group XIA contain an
HIS residue, and the enzymes belonging to group XIB
contain either a SER or an ASP residue (Mansfeld
et al., 2006). The functional role of these differences
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FIGURE 4 | Phylogenetic tree of the deduced amino acid sequences of all reported plant sPLA2s. The program used to perform the sequence alignment was Clustal
X (version 2.0) and to produce phylogenetic analysis the phylogenetic tree generation methods from the ClustalW2 package was used (on line tool
http://www.ebi.ac.uk/Tools/phylogeny/clustalw2_phylogeny/). To draw the tree we used the Figtree v.1.4.4 program (http://tree.bio.ed.ac.uk/software/figtree/). The
accession numbers of sPLA2 indicated in this figure are provided as Supplementary Appendix S1.

with regard to the catalytic properties has not been
completely elucidated yet.

GmsPLA2s CLASSIFICATION IN THE
sPLA2 SUPERFAMILY

Secretory phospholipases in plants superfamily is composed
of multiple members represented by multiple isoforms
distinguishable by their structural, catalytic and physiological
characteristics. sPLA2 are within the most populated group of
PLA2 in nature which in turn is classified into 15 subgroups
(Six and Dennis, 2000). In this context, the plant sPLA2s were
classified into a separate group (group XI) (Meneghetti and
Maggio, 2013), which, in turn, could be subdivided into two
categories named XIA and XIB because of differences in MW
and deviating sequences in the N- and C-terminal regions of the
mature enzyme (Six and Dennis, 2000).

Figure 4 shows the phylogenetic classification into the two
subgroups of all the sPLA2s from plants known until now. This
way, GmsPLA2-XIA-I and -II are taking part of group XIA,
which includes AtsPLA2-γ, AtsPLA2-β, AtsPLA2-δ, O. sativa
isoform I, N. tabacum isoform I, T. durum isoform I, C. sinensis
isoform β, and L. usitatissimum isoform II. Whereas two of

the enzymes of G. max correspond to the subgroup XIA,
three are grouped in the subgroup XIB (Mariani et al., 2012)
named as GmsPLA2-XIB-I, -II, and -III together with AtsPLA2-α,
O. sativa-II, -III, and -IV, D. caryophillus, N. tabacum isoform
II, Z. maize, R. communis isoform α, P. somniferum, T. durum-
II, -III, and -IV, L. esculentum, C. sinensis isoform α, and
L. usitatissimum isoform I.

The data show a close evolutionary relationship among
all sPLA2s from plants (see Figure 4). The highest level of
similarity in amino acid sequences was observed between
GmsPLA2-XIA-I and GmsPLA2-XIA-II, being of 95.5%,
whereas between GmsPLA2-XIB-I and GmsPLA2-XIB-II
the level of similarity is of 94.5% (Mariani et al., 2012) (see
Supplementary Figure S2). Moreover, between LesPLA2
and NtsPLA2-II the level of similarity is of 90.4% and
between TdsPLA2-I and OssPLA2-I, GmsPLA2-II and
GmsPLA2-III, PsPLA2 and RcsPLA2-α and AtsPLA2-δ and
AtsPLA2-γ the levels of similarity are of 89.9, 87.3, 83.7, and
82.7%, respectively.

TRIDIMENSIONAL STRUCTURE

Although the sPLA2 sequences from different sources differ
significantly, the tridimensional structures have many features
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in common. There are more than 40 sPLA2s entries in the
Protein Data Bank (PDB2) from all sources. Native and complex
structures of sPLA2s simulated with mimic substrate have helped
to identify the catalytically important residues involved in the
active site (Pan et al., 2002).

The tridimensional structure of many sPLA2s, such as porcine
pancreas or bee venom (Dijkstra et al., 1984; Scott et al.,
1990), has been elucidated by X-ray crystallography which
revealed a common, rigid and highly conserved region with a
similar tridimensional architecture compared with those from
plants. The active site is not directly accessible to the aqueous
phase and is within a rather local hydrophobic environment
denoted as “i-face” that allows the interaction with the substrate
in its monomeric form (Dijkstra et al., 1981). The putative
residues involved in the “i-face” of some sPLA2 from plants are
shown in Table 5.

One of the first sPLA2 “i-face” identified was for the secreted
pig pancreatic enzyme (Bai et al., 2008). In GmsPLA2-XIA-I the
residues found in the putative “i-face” are VAL18, GLY19, VAL28,
HIS49, HIS64, LEU101, ALA102, ILE103, LEU104, LEU105, and
LEU108. Table 5 shows the putative amino acids proposed to be
in contact with the membrane for different sPLA2s enzymes.

The binding of sPLA2 to the membrane is energetically
favorable (Table 6) and, keeping in mind that most of the
residues situated in the i-face are hydrophobic, the overall domain
constitutes a hydrophobic environment that surrounds the active
catalytic site. Hydrophobic side chains of the residues forming the
“i-face” would be able to partition to the hydrophobic core, which
allows the anchoring of the enzyme to the membrane, excluding
water molecules in the region surrounding the active site and the
diffusion of the substrate to the pocket of the active site to be
hydrolyzed. The general molecular conformation proposed for
plants sPLA2 is in agreement with the general vision proposed
for secreted phospholipases of animal source (Scott et al., 1990).

Physically, the soluble sPLA2 protein must penetrate the
phospholipid interface to exert its action. Therefore, the
successful binding surface is located where the substrate is a
prerequisite in the catalytic cycle, and this property can determine

2https://www.rcsb.org/

TABLE 5 | Reported and proposed amino acid residues involved in the “i-face” of
several sPLA2.

sPLA2 name Proposed amino acids in the i-face References

PpsPLA2 (Group IB) L2, W3, R6, L19, M20, L31, and Y69 Kuipers et al.,
1991

BpsPLA2 L2, W3, F5, I9, F22, L31,63−65, and Y69 Yu et al., 1999b

GmsPLA2-XIA-I V18, G19, V28, H49, H64, L101, A102,
I103, L104, L105, and L108

Mariani et al.,
2012

GmsPLA2-XIB-II F25, S27, L31, V112, A116, L119, V123,
L124, and P127

Obtained by
using the on-line
platform OPM
(Lomize et al.,
2012)

OssPLA2-II A29, P30, V65, Y72, and L41 Guy et al., 2009

Pp, P. pancreas; Bp, B. pancreas; Gm, G. max; Os, O. sativa.

some specific characteristics of the enzyme activity. However,
there are a limited number of charged residues in the flat
topography of the “i-face” (see Table 5) that could modulate
further interaction with the interface of the substrate in a way
which has not been fully elucidated yet (Jain and Berg, 2006).

It is important to note that even when the energetic to
membrane binding is favorable according to the available on-line
calculation program (Lomize et al., 2012) used for some sPLA2s,
the residues involved in the “i-face” differ for the same enzyme if
a different approach is used instead (compare Tables 5, 6).

To date, only few structures corresponding to sPLA2s from
plants were reported in the PDB or in the Protein Model Database
(PMDB3) and correspond to O. sativa (rice) isoform II (PBD
2WG7), which belongs to the group XIB, and its tertiary structure
was recently determined by X-ray crystallography to 2.0 Å
resolution (Guy et al., 2009). Moreover, homology modeling and
molecular dynamics were used to elucidate the structure of sPLA2
isoform α from Arabidopsis (Mansfeld et al., 2006) but its PDB is
not available. The predicted models of LusPLA2s proteins were
elucidated and submitted to PMDB identified as PM0080416
(LusPLA2-I) and PM0080415 (LusPLA2-II) (Gupta and Dash,
2017). The structure of GmsPLA2-XIA-I was modeled by using
homology modeling and molecular dynamics (Mariani et al.,
2012) and also GmsPLA2-XIB-II by using a similar methodology
(see Figure 5, modeled structures in PDB format were not
uploaded in the PDB). The data corresponding to Pig pancreatic
(Sus scrofa), Naja naja (Indian cobra), Naja sagittifera (Andaman
cobra venom) are also indicated in Table 6 for comparison
in order to include sPLA2 able to hydrolyze aggregate lipids
structured in a high packing organization, as it occurs with sPLA2
from cobra venom, or only at low packing as it certainly happens
with sPLA2 from pig pancreas (see below and Table 10).

The structure of rice sPLA2 shows that the half N-terminal
chain contains mainly structured loops, including the conserved
calcium binding loop domain together with two short anti-
parallel β-strands. The half C-terminal is folded into three anti-
parallel α-helix, in which two of them are highly conserved
among others sPLA2s, containing the crucial catalytic HIS
residue and the calcium binding/coordinating ASP residues (Guy
et al., 2009). This overall general folded conformation seems
to be shared by almost all known sPLA2 from plants. The
complete putative mature structure of GmsPLA2-XIA-I protein
was reported using homology modeling and molecular dynamics
simulations (Mariani et al., 2012). The most mobile regions are
the N- and C-terminal, followed by the loops in residues 74–85,
53–62, 34–37 that connect, respectively, the last two helices, the
first with the second helix, and the last beta-sheet with the first
helix (see Figure 5). As other sPLA2s in the family, the dominant
secondary structure is the α-helix, with only a small portion of
beta sheet with abundant regions containing turns and bends.
The observations indicate that the terminal helix is rather a
dynamic region and has three principal conformations: one fully
helical, other with the last seven residues in coil, and the third
one with a kink plus coil (Mariani et al., 2012). As noted before,
this behavior can be attributed to a low number of hydrophobic

3http://srv00.recas.ba.infn.it/PMDB/main.php
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TABLE 6 | Orientation of different sPLA2s at the membrane interface.

Protein Depth/hydrophobic thickness 1Gtransfer (kcal/mol) Tilt angle Embedded residues

GmsPLA2-XIB-IIa 2.8 ± 0.9 Å −10.4 71 ± 4◦ F25, S27, L31, V112, A116, L119, V123, L124, and P127

GmsPLA2-XIA-Ib 1.0 ± 2.8 Å −1.0 69 ± 20◦ P114

OssPLA2-IIc 4.1 ± 0.5 Å −10.6 71 ± 2◦ G3, L6, A25, L28, Y30, G31, I116, R120, and D121

LusPLA2 Id 4.1 ± 0.6 Å −7.1 86 ± 3◦ F27, A29, V30, P32, and L33

LusPLA2 IId 1.9 ± 1.2 Å −5.5 86 ± 26◦ F24 and L102

Naja sagittiferae NssPLA2 1.6 ± 0.4 Å −4.3 85 ± 2◦ D20 and K65

Naja najaf NssPLA2 3.6 ± 0.3 Å −6.7 86 ± 2◦ Y3, W19, W61, and F64

Pig pancreaticg PpsPLA2 2.4 ± 2.5 Å −1.9 32 ± 16◦ L64

aStructure were modeled in a similar way than that described for GmsPLA2-XIA-I in Mariani et al. (2012), the PMDB accession number is PM0082160. bStructure
modeled in Mariani et al. (2012), the PMDB accession number is PM0082161. cObtained from PBD 2WG7. dPMDB identified as PM0080416 (LusPLA2-I) and PM0080415
(LusPLA2-II). eCrystal structure of Naja sagittifera was reported in Jabeen et al. (2005). PDB 1MH8. fNaja naja NnsPLA2. PDB 1A3D. gPig pancreatic PpsPLA2. PDB 1PIR.

FIGURE 5 | Putative mature structure of GmsPLA2-XIA-I. (A) Proposed
structure from homology modeling of GmsPLA2-XIA-I (Mariani et al., 2012).
Yellow: beta sheet strand; magenta: alpha-helix; blue: C-terminal; cyan: turns;
white: coils. (B,C) Molecular simulation of the interaction between
GmsPLA2-XIB-II with the membrane interface, simulated with the OPM
(Orientation of Proteins in Membrane) database online service
(opm.phar.umich.edu/; see Lomize et al., 2012). In panel (B) blue: interfacial
membrane; white: protein. (C) Light purple represents the interfacial
membrane; the sticks denote the protein amino acids with the H/D dyad
highlighted in yellow.

contacts of this region, a high aqueous exposed area and the
presence of a highly flexible GLY98 residue (Mariani et al., 2012).

The active site of the sPLA2 protein contains a crucial calcium
ion cofactor commonly present in other plant sPLA2s (Mansfeld
et al., 2006; Guy et al., 2009) that is important in the catalytic
mechanism and is a requisite for full enzyme activity. The HIS-
ASP pair constitutes the active center and the calcium binding
loop (see Figure 3) is essential for the proper function of the
enzyme (Scott et al., 1990). All sPLA2s catalyze the hydrolysis
through the same mechanism: an abstraction of a proton from
a water molecule followed by a nucleophilic attack on the sn-
2 bond position of the diacylglycerophospholipids (Jorgensen
et al., 1983; Berg et al., 2001). NMR structural studies of porcine
pancreas sPLA2 show that the N-terminus is flexible with no
defined structure in solution, unlike what it was evidenced
by crystallography. It was hypothesized that this flexibility in
solution would be related to the near null activity against

monomeric substrate form [more unstructured unbound state
(van den Berg et al., 1995)].

ENZYMATIC PROPERTIES OF PLANTS
sPLA2s

Optimum Conditions for Plants sPLA2s
Catalysis
The sPLA2s from N. tabacum and elm have optimum pH in the
range of 8–10 and 8–9, respectively (Stahl et al., 1999; Fujikawa
et al., 2005). In Arabidopsis the optimum pH ranges for the
activities are pH 6–11, 6–7, 7–9, and 8–9 for AtsPLA2-α, -β, -
γ, and -δ, respectively (Lee et al., 2005). Nevertheless, a similar
situation was found for almost all the sPLA2s found in plants
or animals. The pH optimum was at around 7 for GmsPLA2-
XIA-I and -XIB-II (see Table 7), when using mixed micelles of
DLPC:Triton X-100 as substrate in presence of calcium 10 mM.
The optimum pH for pancreatic sPLA2 was reported to be 8
(de Haas et al., 1968; Fujikawa et al., 2005) similar to that reported
for bee venom (Daniele et al., 1997). For human non-pancreatic
PLA2 optimum pH is in between 8 and 10 (Kramer et al.,
1989). However, it should be mentioned that different substrates
(including different aggregation presentation of substrate) have
been used to determine optimum pH for the different sPLA2s
reported in the literature.

Only few sPLA2s were investigated about the optimum
temperature and stability. GmsPLA2s-XIA-I and -XIB-II
demonstrate to be very stable when increasing the temperature
(Mariani et al., 2015b) as previously determined by using an
sPLA2 homogenate (Minchiotti et al., 2008). This proves that
these enzymes are highly resistant to temperature denaturation
due in part to the disulfide bridges that are postulated to be
involved in the stability of sPLA2s (Berg et al., 2009; Murakami
et al., 2010). Table 7 shows the optimal temperature reported for
several sPLAs from plants.

The optimum calcium concentrations for activity of
GmsPLA2-XIA-I and -XIB-II are in the micromolar range
using DLPC:Triton X-100 mixed micelles as substrates (Table 7).
This micromolar calcium requirement is rather unusual for
sPLA2s enzymes that mostly possess millimolar requirement
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TABLE 7 | Optimum requirements deduced for catalytic activity of the different sPLA2s found in plants.

Source Name pH Calcium requirement∗ T (◦C) References

A. thaliana AtsPLA2-α 6–11 mM 30–40 Lee et al., 2005; Mansfeld
et al., 2006; Mansfeld and
Ulbrich-Hofmann, 2007

AtsPLA2-β 6–7 >0.5 mM 30 Lee et al., 2003, 2005

(arabidopsis) AtsPLA2-γ 7–9 >0.5 mM 30 Bahn et al., 2003; Lee et al.,
2005

AtsPLA2-δ 8–9 >0.5 mM NR Lee et al., 2005

R. communis (castor bean) RcsPLA2α 8 10 mM 30 Bayon et al., 2015

C. sinensis CssPLA2α 7.4 10 mM 25 Liao and Burns, 2010

(orange) CssPLA2β 7.4 10 mM NR Liao and Burns, 2010

D. caryophillus (carnation) DcsPLA2 NR NR NR –

U. glabra (elm) ElmsPLA2 8–9 10–15 mM 30 Stahl et al., 1998

G. max (soybean) GmsPLA2-XIA-I 6–7 >1 mM 40–60 Mariani et al., 2015b

GmsPLA2-XIA-II NR NR NR –

GmsPLA2-XIB-I NR NR NR –

GmsPLA2-XIB-II 6–7 >1 mM 40–60 Mariani et al., 2015b

GmsPLA2-XIB-III NR NR NR –

L. usitatissimum (flax) LusPLA2-I 9 1 mM NR Gupta and Dash, 2017

LusPLA2-II 9 1 mM NR Gupta and Dash, 2017

P. somniferum (opium) PsPLA2 7 NR 37 Jablonicka et al., 2016

O. sativa (rice) OssPLA2-I 8 10 mM 30 Stahl et al., 1999; Guy et al.,
2009

OssPLA2-II 8 10 mM 30 Stahl et al., 1999; Guy et al.,
2009

OssPLA2-III NR NR NR –

N. tabacum (tobacco) Nt1sPLA2 8–10 <1 mM 37 Fujikawa et al., 2005, 2011

Nt2sPLA2 – – – NR

L. esculentum (tomato) LesPLA2 NR NR NR NR

T. durum TdsPLA2-I 9 >2 mM 25 Verlotta et al., 2013

(durum wheat) TdsPLA2-II 9 >2 mM 25 Verlotta et al., 2013

TdsPLA2-III 9 1 mM 25 Verlotta et al., 2013; Verlotta
and Trono, 2014

TdsPLA2-IV 9 >2 mM 25 Verlotta et al., 2013

Z. mays (maize) ZmsPLA2 – – – NR

∗For Arabidopsis sPLA2s-β, -γ , and -δ, a µM requirement was reported without specifying the precise concentration. NR, not reported.

(Six and Dennis, 2000). Moreover, the same behavior was
observed for the activities of AtsPLA2-β, -γ, and -δ (Lee et al.,
2005). It is important to remark that none of these secreted
enzymes (either from animals or plants) exhibit activity in
absence of calcium. Particularly, for AtsPLA2-α the activity
augmented as the calcium concentration increased up to 10 mM
and for elm sPLA2 the range of calcium concentration for optimal
activity was around 10–15 mM CaCl2 (Stahl et al., 1998; Lee
et al., 2005; Mansfeld and Ulbrich-Hofmann, 2007). However,
to achieve 50% of maximal enzyme activity a concentration
of 0.5 mM CaCl2 was sufficient, at least, for these two latter
enzymes. The maximal activity for sPLA2 from N. tabacum was
detected above 1 mM CaCl2. This behavior is similar to that
observed for the most animal sPLA2s, which require millimolar
concentrations of Ca2+ and have no activity in the absence of this
cation (Six and Dennis, 2000; Fujikawa et al., 2005). Even when
it is evident the molecular differences among the enzymes in the

sPLA2 family, the absolute requirement of Ca2+ for hydrolysis is
indicative that all of them share a common mechanism for lipid
hydrolysis. For durum wheat sPLA2 the activity continuously
increased as Ca2+ concentration increased with a plateau close
to 2–4 mM CaCl2, even though a 300 µM CaCl2 was sufficient
to reach 50% of the maximal activity (Verlotta et al., 2013)
(see Table 7).

The differences in the activity reported from many authors for
plant sPLA2s is not easy to compare in absolute terms. Usually the
reported activity values are informed as specific activities (µmol
of hydrolyzed lipid.min−1.mg of protein−1) and this quantity
may be affected by many factors. Among the main factors that
can affect the sPLA2 activity can be mentioned (i) inherent
deficiencies in the folding of recombinant enzymes, (ii) additional
tags at the N-terminus, and (iii) the lack of standardization
of substrate offered to the enzyme (lipid monolayers, micelles,
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SUVs, presence of detergents mixed with the lipid substrate,
etc.). However, taking into account these precautions the activity
of the reported enzymes could be compared although different
substrates and systems were used in the assays (see Table 4).

Conformational Stability of sPLA2s
It is known that CYS residues are essential for the structural
stability of sPLA2 and it has been shown to play an important
role in the structural stability of the mature enzyme (Six and
Dennis, 2000; Welker et al., 2011). In animals, sPLA2s contain
between 10 and 16 CYS that have the potential to form 5–8
intramolecular disulfide bridges (Schaloske and Dennis, 2006).
In contrast, all sPLA2s reported from plants have 12 CYS that
can form 6 disulfide bridges (see Table 1). It is known that some
sPLA2 from animals (especially type I and II), are rather stable
upon heating compared with cytoplasmic cPLA2 (Mazereeuw-
Hautier et al., 2000). Resistance to heating for sPLA2 from plants
was reported for some enzymes indicating a similar behavior
to that observed for animal sPLA2. The structural stability for
durum wheat sPLA2 was demonstrated by the resistance to high
temperatures (87% of the activity was retained after treatment of
the crude leaf extract at 100◦C for 15 min), see (Verlotta et al.,
2013). Recombinant AtsPLA2α and AtsPLA2β retained 80–95%
of their activities following 5 min treatment in boiling water (Lee
et al., 2005), and a similar result was obtained for sPLA2 purified
from elm seeds (Stahl et al., 1998). Moreover, for GmsPLA2-XIA-
I and GmsPLA2-XIB-II preserved the activity after heating 5 min
at 80◦C (Mariani et al., 2015b).

The main reason for the scarceness of information on
recombinant plant sPLA2s may be attributed to the low
expression yields obtained with the different protocols currently
used and the strong propensity of the recombinant enzymes
to aggregate (Mansfeld et al., 2006). The generally lower yields
of the purified enzymes from inclusion bodies might be an
indication for a higher fraction of misfolded and/or aggregated
protein after the renaturation process. This may be the reason
of different Vmax or specific activity values obtained when
studying kinetic parameters in sPLA2 recombinant enzymes from
plants (see Table 9).

In bee venom sPLA2 (BvsPLA2), it was reported that the
formation of disulfide bonds is not essential for correct re-
folding of the protein and an active enzyme form can be
reobtained even from the completely denatured and reduced
state (Welker et al., 2011). It is known that, in contrast
to the seven disulfide bonds present in porcine pancreas
enzyme (PpsPLA2), all five disulfide bonds of BvsPLA2 are
essential for conformational stability and contribute to the
activity (Welker et al., 2011). In the case of bacterial
sPLA2 from Streptomyces violaceoruber, it possesses only
two disulfide bridges (Sugiyama et al., 2002) which were
sufficient to be active comparable to animal or plant sPLA2s
(Yunes Quartino et al., 2015).

In sPLA2 from A. thaliana, the removal of disulfide bonds
increased the proteolytic susceptibility of the native proteins
whereas the stability decreased (Mansfeld et al., 2014). Regarding
GmsPLA2s, it was demonstrated that the calcium ion also
contributes to keep the protein folded in its native structure.

This effect was observed by two independent assays using
dynamic simulations and intrinsic fluorescence experiments
(Mariani et al., 2012, 2015b).

The comparison of the data obtained on bovine pancreatic
sPLA2, bee venom sPLA2, and porcine pancreatic sPLA2 with
those obtained on sPLA2s from plants suggests that conserved
disulfide bonds in those homologous proteins are important to
keep the conformational architecture and stability. However, with
the recompiled information, it is almost clear that not all the
disulfide bridges are needed for the protein to be active, but are
necessary for a protein correct folding.

INTERFACIAL CATALYSIS ACTIVATION

Phospholipids are constituents of biological membranes, so a very
important prerequisite step to perform the lipolytic action of
sPLA2 is the interaction with the amphipathic nature of these
interfaces; and in turn, determine the catalytic properties of
the organized substrate (Jain and Berg, 2006). The interfacial
binding step is crucial for enzymatic action of sPLA2, and it is
mediated by a region of the protein often referred to as i-face
(see above), also reported as IRS, the interfacial recognition site
(Tatulian, 2001). The i-face or IRS is not a proper “site” or a
flat face, it is rather a 3D domain with the confluence of several
residues that crowns and precedes the catalytic site, giving an
adequate environment for the catalysis, and also help keeping
the enzyme attached to the membrane where the hydrolytic
reaction takes place. The proper intimate contact of the i-face
of sPLA2s with the interface is essential to provide the substrate
access to the active site. Interfacial activation is a concept that
means an adequate contact between the catalytic active site and
the i-face modulating the catalytic activity (Scott et al., 1990;
Tatulian et al., 2005; Jain and Berg, 2006; Winget et al., 2006).
The binding and kinetic characteristics of interfacial catalysis
by sPLA2 depend upon the organization and dynamics of the
interface. The overall rate of catalytic turnover is not only
determined by the kinetics at the interface, but also by the
binding/desorption equilibrium kinetics of the enzyme with the
interface (Ramirez and Jain, 1991). Hence, the hydrolysis of the
organized substrate can occur in two extreme distinct modes: (i)
in the scooting mode of catalysis, that requires that the enzyme
remains bound at the interface between several catalytic turnover
cycles and, (ii) in the pure hopping mode, where the binding
and the desorption of the bound enzyme occur during each
catalytic turnover cycle leading to a jumping mechanism (Jain
et al., 2009) (see Supplementary Figure S4 for more details and
a schematic description of both mechanism of lipids hydrolysis
induced by sPLA2).

A few mode of interfacial catalysis for sPLA2s has been
reported. Moreover, in plants, we were the only in studying
the catalytic mode till today. The enzyme studied in order to
determine the mode of catalysis was the sPLA2 from G. max
(GmsPLA2-XIA-I) (Mariani et al., 2015b). Whereas pancreatic
sPLA2 presents a scooting mode of catalysis when using anionic
lipids (Berg et al., 1991), it presents a hopping mode of
catalysis if the specific experimental conditions are changed to
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zwitterionic lipids (Scott et al., 1994). In our hands, GmsPLA2-
XIA-I acts in the hopping mode against zwitterionic lipids
(Mariani et al., 2015b).

Hydrolysis Using Micelles as Substrate
Membrane Model System
There have been some reports in the literature regarding
sPLA2 activity against different substrates and in different
conditions. For some sPLA2, it has been demonstrated that
the hydrolysis rate is sensitive to the surface charge density
of the lipid aggregates (Volwerk et al., 1986). Several kinetics
studies on pancreatic as well as snake venoms and plants
phospholipases have been reported in which lipid phase
transition, lipid membrane curvature, and composition may
modulate the lipolysis (Wilschut et al., 1978; Bell and Biltonen,
1989; Bell et al., 1996; Leidy et al., 2004). However, it
should not be forgotten, that sPLA2 has optimum of lipid
packing for hydrolysis, i.e., that some enzymes have the
ability to hydrolyze lipid in a low packing organization
(low lateral pressure in lipid monolayers more compatible
with micelles) but others also have optimum condition of
hydrolysis at high lateral pressure in monolayers compatible with
liposomes or biological membranes (Ramirez and Jain, 1991;
Yunes Quartino et al., 2015).

Usually, short-chain zwitterionic phospholipids have been
employed as substrates in single component systems (de Haas
et al., 1971; Wells, 1972) or, for the case of long-chain
phospholipids, they were mixed with neutral detergents (Dennis,
1973b; Yu et al., 1999a; Mansfeld and Ulbrich-Hofmann, 2007).
Moreover, the activity is generally increased when the lipid
substrate forms mixed micelles in presence of detergents (Dennis,
1973a; Dennis et al., 1981). The effect of enzyme immobilization
on the sPLA2 kinetics was also reported (Madoery et al., 1999).
Description and kinetics properties of sPLA2 from plants have
been more frequent in their recombinant counterpart after
appropriate expression, purification, and folding protocols (Bahn
et al., 2003; Ryu et al., 2003; Fujikawa et al., 2005; Mansfeld
and Ulbrich-Hofmann, 2007; Mariani et al., 2012) compared
with their equivalent found in animals sPLA2s. The reason of
this is due to the relative high amounts of the latter proteins
found in their respective natural sources (venoms and pancreatic
juice) and, therefore it allows an efficient purification of the
mature forms of sPLA2. However, few studies using purified plant
enzymes were reported from elm seeds (Stahl et al., 1998) and of
G. max (Minchiotti et al., 2008).

Mammalian and plant enzymes differed in head group
specificity. While some mammalian sPLA2s show high activity on
anionic phospholipids (Ghomashchi et al., 1991; Bezzine et al.,
2002), sPLA2s from plants preferred zwitterionic phospholipids
(Mansfeld and Ulbrich-Hofmann, 2007; Mansfeld, 2009; Mariani
et al., 2015b). In Table 8 we summarize the substrate lipid
preference (head group or acyl chain) differences observed in
some sPLA2s from plants reported in the literature (see also
Table 9 additional kinetic data).

Table 9 shows the Km and Vmax values determined and
reported for sPLA2s from different sources. As shown, we can

infer that the values of Vmax could be sensitive to both the lipid
substrate used in the assays and the interfacial quality of the
surface in which the substrate is inserted.

Phospholipid Hydrolysis Using Langmuir
Monolayers as Membrane Model System
The influence of substrate lipid packing on sPLA2s activities was
studied for numerous authors using Langmuir-lipid monolayers
performed at different surface pressures using almost exclusively
sPLA2 from animal sources (Yunes Quartino et al., 2015).
Moreover, to study the catalytic activity at the air-water interface
the lipid monolayer technique in the “zero order” regime
was used since the surface pressure is kept constant during
the reaction (Panaiotov and Verger, 2000; Yunes Quartino
et al., 2012) (see Supplementary Figure S3 for a schematic
representation of this experimental system).

The optimum surface pressure of these enzymes to hydrolyze
the lipids of the membranes differed with the origin of the sPLA2
(Ramirez and Jain, 1991; Mariani et al., 2015b; Yunes Quartino
et al., 2015). GmsPLA2s were the first sPLA2s from plants to be
studied with respect to their interfacial characteristics. Table 10
shows the optimum pressure determined for different sPLA2s.
The optimum for plants GmsPLA2s seems to fall intermediate
in between the values of “pancreatic like” enzymes that have
high activity against micelles structured lipids rather bilayers
(lipolytic ratio lower than 0.1) compared with toxic venom
sPLA2s (lipolytic ratio higher than 1) that can hydrolyze intact
cell membranes such as erythrocytes (Demel et al., 1975). Then,
it may be concluded that sPLA2s from plants would have a more
ubiquitous functionality, since they can be active in vitro against a
rather wide range of curvature radio of structured lipid substrates
(less sensitivity to the supramolecular organization).

Auxin Effect Over sPLA2 Activity
Studies of plant sPLA2s demonstrated that auxins play important
roles in signal transduction regulating cellular processes and
probably they are implicated in phospholipid signaling (Wang,
2001; Ryu et al., 2005; Scherer et al., 2010). At the cellular
level, auxins control cell division, growth, extension, and
differentiation (Davies, 1995). At the whole plant level,
auxins play an essential role in processes such as apical
dominance, lateral/adventitious root formation, tropisms, fruit
set and development, vascular differentiation, and embryogenesis
(Friml, 2003). A rapid increase in sPLA2 activity was first
verified by treating isolated microsomes and cell cultures
with auxins (Scherer and Andre, 1989; Scherer, 1990; Andre
and Scherer, 1991; Scherer, 1992; Scherer and Andre, 1993;
Scherer, 1996) and microsomes isolated from hypocotyls
segments (Blanchet et al., 2008b). However, as the molecular
mechanism of the putative effect of auxins over sPLA2s is
unknown we have investigated whether these phytohormone
have any direct effect over the enzyme by using simple
in vitro assays.

Secretory phospholipases, like other lipolytic enzymes, are
interfacial active proteins, since they access from water to
the interface of the insoluble organized substrate to carry
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TABLE 8 | Substrate preference of different sPLA2s from plants.

Origin Name sn-specificity Fatty acid preference Head group selectivity References

A. thaliana (arabidopsis) AtsPLA2-α AtsPLA2-β sn-2 sn-2 Linoleic Palmitic>linoleic PC>PE (baja)>PG>PI PE (low) Lee et al., 2005; Mansfeld and
Ulbrich-Hofmann, 2007;
Lee et al., 2005

AtsPLA2-γ sn-2 Linoleic>palmitic-oleic PE (high) Bahn et al., 2003; Lee et al.,
2005

AtsPLA2-δ sn-2 Palmitic-oleic>linoleic PE (high) Bahn et al., 2003; Lee et al.,
2005

D. caryophillus (carnation) DcsPLA2 NR NR NR NR

R. communis (castor bean) RcsPLA2α sn-2 Palmitic>ricinoleic PC Bayon et al., 2015

C. sinensis (orange) CssPLA2α Deducted sn-2 NR NR Liao and Burns, 2010

CssPLA2β Deducted sn-2 NR NR

U. glabra (elm) UgsPLA2 sn-2 Oleic (C8–C12) NR Stahl et al., 1998; Lee et al.,
2005

G. max GmsPLA2-XIA-I sn-2 Lauroil PC Mariani et al., 2015b

(soybean) GmsPLA2-XIA-II Deducted sn-2 NR NR Mariani et al., 2015b

GmsPLA2-XIB-I Deducted sn-2 NR NR Mariani et al., 2015b

GmsPLA2-XIB-II sn-2 Lauroil PC Mariani et al., 2015b

GmsPLA2-XIB-III Deducted sn-2 NR NR Mariani et al., 2015b

L. usitatissimum LusPLA2-I Deducted sn-2 NR NR Gupta and Dash, 2017

(flax) LusPLA2-II Deducted sn-2 NR NR Gupta and Dash, 2017

P. somniferum (opium) PssPLA2 sn-2 Linolenic PC>PE Jablonicka et al., 2016

O. sativa (rice) OssPLA2-I sn-2 NR PC Stahl et al., 1999;

OssPLA2-II sn-2 NR PC Lee et al., 2005

N. tabacum Nt1sPLA2 sn-1/sn-2 NR PC Fujikawa et al., 2011

(tobacco) Nt2sPLA2 sn-2 NR PC Fujikawa et al., 2011

L. esculentum (tomato) LesPLA2 sn-2 NR PC Narvaez-Vasquez et al., 1999

T. durum TdsPLA2-I sn-2 Non-specified PC Verlotta et al., 2013

TdsPLA2-II sn-2 Non-specified PC

(durum wheat) TdsPLA2-III sn-2 Palmitic PC Verlotta and Trono, 2014

TdsPLA2-IV sn-2 Non-specified PC Verlotta et al., 2013

NR, not reported.
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TABLE 9 | Kinetic parameters for some reported plant sPLA2.

Origin Km (mM) Vmax (µmol.min−1 mg−1) Lipid substrate used References

GmsPLA2-XIA-I 0.23 10.2 DLPC Mariani et al., 2015b

17.9 13.9 DLPG Mariani et al., 2015b

GmsPLA2-XIB-II 0.07 19.7 DLPC Mariani et al., 2015b

1.1 6.7 DLPG Mariani et al., 2015b

AtsPLA2-α 5.7 29.8 DOPC Mansfeld and Ulbrich-Hofmann, 2007

TdsPLA2 0.43 1.43 U.g−1a PC Verlotta et al., 2013

Reported for animal sPLA2s 0.18–3.2 NR DOPC Mansfeld and Ulbrich-Hofmann, 2007

PpsPLA2
b 3.7 2 diC8-PC Kuipers et al., 1991

Km is expressed as specific activity. Vmax is expressed as µmol.min−1.mg−1. aExpressed in Units per gram of dry leaves extract. bPig pancreatic sPLA2.

TABLE 10 | Parameters determined for different sPLA2s using monomolecular films of DLPC.

Phospholipase A2 origin Optimum surface pressure Substrate Lipolytic ratio LR(20/10) References

GmsPLA2-XIA-I 13 DLPC 0.45 This review

GmsPLA2-XIB-II 16 DLPC 0.25 This review

B. diporus sPLA2-I 11 DLPC ∼0 Yunes Quartino et al., 2015

B. diporus sPLA2-II 12 DLPC ∼0 Yunes Quartino et al., 2015

M. fulvius-12 9–10 DLPC 0.07 Fernandez et al., 2017

Pig pancreas PpsPLA2 9 DLPC 0.08 Yunes Quartino et al., 2015

Bee venom BvsPLA2 18 DLPC 1.1 Yunes Quartino et al., 2015

B. diporus BdsPLA2-III 20 DLPC 1.3 Yunes Quartino et al., 2015

B. asper BssPLA2-III 18 DLPC 1.3 Yunes Quartino et al., 2015

N. naja NnsPLA2 17 DLPC 1.5 Yunes Quartino et al., 2015

N. m. mossambica NmsPLA2 18 DLPC 1.6 Yunes Quartino et al., 2015

M. fulvius-17 19–20 DLPC 1.7 Fernandez et al., 2017

out the lipid hydrolysis. For this reason, the activity of
the enzyme is directly modulated at the interface by the
supramolecular organization of the substrate summarized in
the concept of “interfacial quality” [e.g., the physical state of
the lipids, proper lateral packing, modulation by non-substrate
lipids, “membrane lateral defects,” among others (Verger et al.,
1978; Daniele et al., 1996; Jain and Berg, 2006; Blanchet
et al., 2008a; Campagnoli et al., 2008; Fico et al., 2008;
De Tullio et al., 2013)].

The stimulation effect of auxins over recombinant sPLA2s
from G. max is rather an interfacial effect. Despite porcine
pancreas sPLA2 presents low identity with the known reported
sPLA2s from plant sources, shows a significant similarity in
the active site and calcium binding loop regions (Mansfeld and
Ulbrich-Hofmann, 2007), making it an acceptable model for
comparison. Using mixed micelles was determined that the effect
of auxins on sPLA2 stimulation depends on the concentration
of the phytohormones employed with an optimal effect around
100 µM [the maximum perturbing effect (Mariani et al., 2015a)].
The hypotheses states that a direct action over sPLA2 enzyme
molecule or a synergic effect on the micelle surface doing more
favorable the interface for lipolysis occurs. Both phytohormones
IAA (indole 3-acetic acid) and IPA (indole 3-propionic acid) were
active toward both type of sPLA2, either coming from plant or
pancreatic sPLA2, suggesting that there is not a direct specific
enzyme-phytohormone interaction involved. So, the effect of
auxins can be attributable to changes in the interfacial quality

of the organized substrate rather than a direct effect over the
enzyme (Mariani et al., 2015a). The molecular details by which
the particular mixed interfaces formed by auxins/phospholipids
may modulate the sPLA2 activity, regardless of the enzyme
origin, remain to be elucidated. However, to ascertain the
interfacial hypothesis of auxins over the action of sPLA2 we
further analyzed the surface properties of two auxins: IAA and
IPA, i.e., the capability of these phytohormones to partition
into lipid interfaces (Mariani et al., 2015a). Both IAA and IPA
did not show any affinity toward lipid-clean interfaces (self-
adsorption to water surface) but, very importantly, both auxins
showed the ability to penetrate lipid interfaces forming stable
and insoluble monolayers with phospholipids. This capability
to form mixed lipid-auxin interfaces allowed the activation of
two recombinants GmsPLA2s and pancreatic sPLA2 (Mariani
et al., 2015a). The interfacial activation exerted by auxins was,
regardless of sPLA2 source, supporting the theory that at the
action is at lipid-auxin interface and not a direct effect over the
enzyme (Mariani et al., 2015a).

POTENTIAL INDUSTRIAL APPLICATION
AND PERSPECTIVES

The application of biotechnology, particularly enzymes in
industrial processes, is continuously growing due to its minimal
environmental impact, since they produce non-toxic waste
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substances and consume little energy (Warner, 2005). Natural
and modified phospholipids have been extensively used in
food industry, cosmetics, pharmaceuticals and agriculture
(Guo et al., 2005). Therefore, in the production of these
“modified phospholipids,” secreted phospholipases obtained
mostly from microorganisms or mammals have been used
by the industry either for refined oils, dairy products,
baked goods and other health food industries (De Maria
et al., 2007; Wang et al., 2012). As sPLA2 enzyme catalyze
the stereospecific hydrolysis at the chiral carbon (sn-2) of
glycerophospholipids converting them to lysoderivatives, the
enzymatic bioconversion is the only selective pathway for
obtaining sn-2-lysophospholipids. Lysophospholipids have
a greater bioemulsifiers capability and have been applied in
food and pharmaceutical industries (Stafford and Dennis,
1988). In this regard, most sPLA2s used are from animal
pancreas (porcine or bovine) or venoms (bee, snake) since
they are enzymes easily isolated in large quantities relatively
to the low cost and they are commercially available (de Haas
et al., 1968; De Maria et al., 2007). However, products of
animal source, are rejected by many customers for religious
reasons or risk of viral or prion contamination. Moreover,
the use of enzymes from animal sources in processes
for obtaining food additives may be incompatible with
certain international regulations, which is not accepted in
certain fields of application, since they do not meet the
requirements of current international food standards. This is
the reason why the industrial production of vegetable sPLA2s
may become desirable. Nevertheless microbial sPLA2s are
being accepted, sPLA2s from plant would be an advantage
because its putative natural specificity (Lee et al., 2005;
Mansfeld, 2009).

In the last decade, research has focused on the study
of the still little known vegetable sPLA2s (Wang, 2001).
Important advances have taken place in the identification,
classification, biochemical characterization and functional
analysis of plant sPLAs. Recent progress in understanding
the biochemical and functional properties of plant sPLAs
paves the way for approval of them for commercial use
and various applications. Several sPLA2s have shown great
potential as a target in the field of plant biotechnology,
and molecular and catalytic diversity of plant sPLA2s
shows that the phospholipases are of increasing value for
biotechnology applications.

The possibility of using plant phospholipases in food
processing would be an advantage, from the point of view
of food regulations. Considering the large production of
soybean in the world, it is of great interest to study the
properties of its lipolytic enzymes in terms from of both
agronomic and biotechnology point of views (Rönner, 2003;
Hermida, 2005). Moreover, it should be noted that in the
purification process of soybean oil, a byproduct named
“gum” is a material enriched in phospholipids (about 65%
of dry weight), which is usually used in animal’s food
production or, after drying, it is sold as soybean lecithin.
The hydrolytic products obtained by the action of sPLA2
over soybean lecithin, the lysophospholipids (lysoderivatives),

are widely used as emulsifiers (Henderson et al., 1995;
Dashiell, 2001).

Recently, sPLA2s were tested as catalysts for the
synthesis of phospholipids with defined fatty acids by
transesterification of lysophospholipids (Mansfeld, 2009).
Furthermore, plant sPLA2s showed to be distinctive from
animals due to differences in substrate selectivity regarding
the polar head and the acyl chains of glycerophospholipids
(Lee et al., 2005). The potential properties of plant
sPLAs would open new horizons to the engineering
of biocatalysts.

The plant sPLA2s is expected to have advantages over
from animals regarding the performance or the incorporation
of polyunsaturated fatty acids such as linoleic acid in egg
PC for food production. Therefore, the processes for the
production of phospholipids with fatty acids are not common
and special performance requirements are desirable. Often, small
differences in primary or 3D structure result in differences in
the catalytic properties, which can be of great importance in
biocatalytic applications. However, despite their enormous
potential, plant enzymes have not been yet considered
for industrial application. This could be attributed to the
limited availability of these enzymes, recently discovered
and characterized. Besides, these enzymes are much less
abundant in the natural environment and no plant enzymes are
available commercially.

Over 100 years, experiments with members of the sPLA2
superfamily have been carried out and kinetic and structural
characterization established sPLA2 as an important model of
interfacial enzymology. The future of this promising enzymes
seems to be very exciting, leading to find out specific inhibitors
of them, and further elucidating plants sPLA2’s roles in cellular
processes, along with potential uses in the industry.
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