
Reactivity indexes for different geometries of

palladium leads
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Santiago del Estero 2829 S3000AOM Santa Fe Argentina
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Abstract. Electronic transport through metallic break junctions or molecules is clearly
dependent not only on the electronic structure of the central nanodevice connecting the leads,
but also the shape and crystalline orientation of the contacts which can define the possible
conduction channels. In this work we examine different geometries of contacts of palladium
characterizing them through global and local reactivity indexes as electrophilicity, chemical
hardness and Fukui functions. In molecules, these indicators are essentially defined by the
energies of the frontier molecular orbitals and in solids they are related with the local and
partial density of states. We use for this purpose an ab-initio based code (FIREBALL), applied
to plane contacts with (001) fcc faces and also pyramidal tips grown following a (001) and (111)
packaging. The results allow us to have an insight about the chemical features of this type of
nanojunctions.

1. Introduction
Controllable metallic break junctions connected by molecules are good candidates to realize
electronic transport at the nanoscale. Many of this molecular junctions are made with molecules
with terminal functional groups as it is the case of thiols or amine [1; 2]. Conductance
measurements for these systems show an ample range of values for transport properties, and this
diversity of values is mainly attributed to different chemical arrangement between functional
groups and metallic leads. Besides, the fabrication method of break junctions not always
guarantees that the leads have the same crystalline structure [3]. Thus, it becomes interesting
to have tools which allow to give quick insights about the feasibility of different geometrical
configuration for leads to react chemically with radicals connecting them. In this work we
progress in this sense by calculating reactivity indexes as electrophilicity, chemical hardness and
softness and Fukui functions. From the chemical point of view, these indicators are essentially
defined by the energies of the frontier molecular orbitals but in solids they are related with
the local and partial density of states (DOS). We calculate DOS from an ab-initio based code
(FIREBALL) using Density Functional Theory. The selected systems are contacts of palladium
with different geometries. One of the attractive on this metal resides on it can be form nanowires
at the last stage of the breaking [4] with transport measurements presenting a peak at 0.5G0

(being G0 the quantum of conductance) whose interpretation is controversial. Some authors
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attributes this peak to a spontaneous polarized current [4; 5] and others to a effect of an hydrogen
atmosphere [6]. The results allow us to have an insight about the chemical features of this type
of nanojunctions.

2. Reactivity indexes
The density functional theory (DFT) is a description of many-body systems with the electronic
density ρ as a functional parameter. ρ is related with the number of electrons, N , by∫

ρ(r)dr = N and the value which minimizes the total energy depends on the external potential
v(r). Thus, the ground state energy of a system E can be expressed as a functional of N and v,
E[N, v] and then a differential change in the ground state energy is:

dE =
(

∂E

∂N

)

v

dN +
∫ [

δE

δv(r)

]

N

dv(r)dr = µdN +
∫

ρ(r)dv(r)dr, (1)

where it was defined the chemical potential as µ =
(

∂E
∂N

)
v
, and ρ(r) =

[
δE

δv(r)

]
N

in a first order

of perturbation [7]. From the chemical point of view, µ is identified as the negative of the
electronegativity and in solids, for 0 K, is the Fermi energy, Ef .

Equivalently, a differential change in the chemical potential is:

dµ =
(

∂µ
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)

ν

dN +
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δµ
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N

dv(r)dr = 2ηdN +
∫

f(r)dv(r)dr, (2)

where η and f are defined by
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1
2
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1
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[
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[
∂ρ(r)
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]

v

. (3)

η is the (chemical) hardness, which is basically a half of the difference between ionization
and affinity levels in atoms and molecules, and it is a half of the band gap in insulators and
semiconductors [8]. f(r) is the so-called Fukui function. This is a local indicator which account
for how much of the frontier orbitals are localized at r position. In this sense, Fukui function
measures the reactivity towards a radical reagent and it is normalized as

∫
f(r)dr = 1 [9].

With the chemical potential and the hardness we can define two more indexes which give us
information about as the system could react chemically with an adsorbate or molecule. These
are the softness S and the electrophilicity ω:

S =
1
2η

=
(

∂N

∂µ

)

v

, ω =
µ2

2η
. (4)

S and ω are global indexes and by using the Fukui function it is possible to define local
softness and electrophilicity as s(r) = f(r)S, and ω(r) = f(r)ω [7].

Finally, to complete the prescription of calculation we give the relationship between these
quantities and the microscopic electronic properties of the material forming the contacts. If
g(E, r) and g(E) are the local and total density of states respectively, it can be demonstrated
that for 0 K [7; 9]:

s(r) = g(r, Ef ), S = g(Ef ), f(r) =
g(r, Ef )
g(Ef )

. (5)
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3. Results and discussion
For the calculation of the DOS we use an ab-initio DFT-based code (FIREBALL)[10; 11]. We
use the Local Density Approximation for the exchance-correlation functional. The basis set is
composed by numerically generated pseudo-atomic fireball wavefunctions and the core effective
potentials were calculated following Ref. [12]. We have studied two pyramidal contacts grown
following (001) and (111) packaging and a plane contact with a (001) fcc crystalline surface.
Figure 1-3 show these geometries and the corresponding DOS. The energy scale was changed
so that the Fermi level is fixed to 0 eV and the insets show a detail of DOS around Ef . The
reactivity indexes are summarized in Tables 1-3.

In the (001) pyramidal contact, the atom with higher f function is the number 1, although
atom 2 has a value quite close to atom 1 [Table (1)]. Atoms 3 and 4 are practically equivalent
but they have lower f values. Thus, in this configuration it is expected that an adsorbate is
located either near the apex atom or in a bridge place between atoms 1 and 2.

Figure 1. Pyramidal lead grown following (001) packaging and LDOS for labelled atoms.

Table 1. Reactivity indexes for (001) pyramidal tip. η, ω and ω(r) are given in eV, S in eV−1,
s(r) in 1/eV/atom and f(r) is dimensionless.

Global indexes Local indexes
η S ω f(r) s(r) ω(r)

0.44 1.13 52.98 Atom 1 1.38 1.57 73.36
Atom 2 1.25 1.42 66.29
Atom 3 0.94 1.06 49.71
Atom 4 0.92 1.04 48.82

For the (111) tip the scenario changes a little from the (001) case. Here, we have again the
atom 1 as the more reactive while atoms 2 and 3 have almost the same low value for Fukui
function [Table (2)]. Atom 4 is the less favorable site for a bonding. Differences between atoms
3 and 4 can be understood from the fact that atom 3 form part of the edge of the pyramid and
then it has a different coordination compared with the atom 4, located at the face of the tip.

In the (001) surface all the atoms are symmetrically equivalent and then we have only one
set of local indexes whose values are clearly lower than contacts with pyramidal shape [Table
(3)]. In order to do a relative comparison among different geometries, the local electrophilicity
is the proper index to observe. This is because ω(r), in contrast with f , contains information
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Figure 2. Pyramidal lead grown following (111) packaging and LDOS for labelled atoms.

Table 2. Reactivity indexes for (111) pyramidal tip. Same conventions that in Table 1.

Global indexes Local indexes
η S ω f(r) s(r) ω(r)

0.26 1.96 103.77 Atom 1 1.53 3.00 159.23
Atom 2 0.98 1.92 101.66
Atom 3 0.96 1.89 100.06
Atom 4 0.84 1.64 86.98

Figure 3. (001) superficial plane and DOS for (001) surface and bulk.

Table 3. Reactivity indexes for (001) plane. Same conventions that in Table 1.

Global indexes Local indexes
η S ω f(r) s(r) ω(r)

0.27 1.82 114.69 Surface 1.03 1.87 117.73

not only about the spatial distribution of the frontier states but also about the relative energetic
ordering. Thus, Fukui functions are suitable to analyze reactivity in different places of a given
system, while local electrophilicity becomes a better tool to compare chemical activity of regions
of different systems. By comparing the maximal local electrophilicities for the three geometries
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we observe that the tendency to form chemical bond follow the ordering: (111) tip → (001) tip
→ (001) surface. On the other hand, for pyramidal contacts, it is predicted in both cases that
the apex atom is the more convenient site to realize the contact, although the edge region can
be an alternative site to do this. These result are in qualitatively agreement with previous ones
for H adsorption on a (111) Pd tip and Au nanowires [13; 14] and for dissociation of O2 and O3

molecules on Al pyramidal contacts oriented in the (111) direction [15]. Nevertheless, here we
have calculated indexes only for the contacts and then the results offer us a first order insight
about the chemical reactivity in molecular junctions composites. More conclusive statements
could be extracted if these indexes were calculated for each pair of molecule/lead combination.
Moreover, following the ideas of chemical reactivity, it should be necessary the definition of
(solid state) Fukui functions and local electrophilicity for electrophilic (acceptor) or nucleophilic
(donor) attacks. One way to progress in this direction are suggested in Ref. [16].

4. Conclusions
Starting from ab initio based DFT calculation, we have evaluated reactivity indexes for different
contacts of palladium. Local electrophilicity results indicate that (111) oriented tips are more
reactive than (001) ones and these, more than the (001) surface. Besides, from Fukui function
results, the preferred site for the chemical bonding is on the surroundings of an edge atom of
the pyramid, being the apex atom the most convenient place for bonding. The results are in
overall agreement with those obtained for similar atom/metal junctions.
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