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Using a recent alternative form of the Kolmogorov-Monin exact relation for fully developed hy-

drodynamics (HD) turbulence, the incompressible energy cascade rate ε is computed. Under this

current theoretical framework, for three-dimensional (3D) freely decaying homogeneous turbulence,

the statistical properties of the fluid velocity (u), vorticity (ω = ∇×u) and Lamb vector (L = ω×u)

are numerically studied. For different spatial resolutions, the numerical results show that ε can be

obtained directly as the simple products of two-point increments of u and L, without the assump-

tion of isotropy. Finally, the results for the largest spatial resolutions show a clear agreement with

the cascade rates computed from the classical 4/3 law for isotropic homogeneous HD turbulence.

I. INTRODUCTION

Turbulence is a non-linear phenomenon om-

nipresent in nature. However, due to extremely com-

plex nature, its full understanding remains far to be

completed. For fully developed turbulence, the fluid

flow contains fluctuations populating a wide range of

space- and time-scales. In the so-called inertial range,

sufficiently decoupled from the injection/forcing large-

scales and the dissipation small-scales, the kinetic en-

ergy (or other inviscid invariants of the flow) takes

part in a cascade process across the different scales.

This process is characterized by a scale independent

cascade rate, i.e. ε, which represents the universality

of turbulence.

In the theory of statistically homogeneous turbu-

lence [1], there are only a few number of exact results.

For three-dimensional (3D), homogeneous, isotropic

and incompressible HD turbulence, in the limit of in-

finitely large kinetic Reynolds number, one of the most

important exact results is the so-called 4/5 law. This

type of exact laws are crucial for obtaining an accurate

and quantitative estimate of the energy dissipation

rate ε, and hence, of the heating rate by the process

of the turbulent cascade. In its anisotropic general-

ization, the so-called Kolmogorov-Monin relation, can
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be cast as [2],

− 2ε = ∇` ·
〈
|δu|2δu

〉
, (1)

where δu ≡ u(x + `) − u(x) is the velocity incre-

ment, x is a reference point and ` is the separation

vector. It is worth mentioning that Eq. (1) expresses

the energy cascade rate ε purely in terms of the two-

point third-order structure functions [see, e.g. 1–4].

In practice, also, one has to integrate the above equa-

tion in order to calculate ε from numerical or obser-

vational data. When isotropy is assumed, the inte-

grated form of Eq. (1) predicts a linear scaling be-

tween the third-order velocity structure function and

the seperation length scale ` [see reference therein,

5]. As a consequence, this scaling law, and in general

all scaling laws, put strong boundaries to the theories

of turbulence. Similar analytical relations have also

been derived using different models of incompressible

(and compressible) plasma turbulence, with and with-

out the assumption of isotropy [5–11]. However, for

an anisotropic or compressible flow, the computation

of ε becomes much more difficult because of the ab-

sence of spherical symmetry [see, 12] or the presence

of source/sink terms in the exact law [10, 13–17].

Recently, inspired by the Lamb formulation [18], a

number of non-conventional exact laws have been de-

rived for fully developed turbulence [19]. Using two-

point statistics, Banerjee and Galtier [19] have found

that the energy cascade rate can be expressed sim-

ply in terms of second-order mixed structure func-

tions. In particular, in this simpler algebraic form
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the authors have found that the Lamb vector, i.e.

L ≡ ω × u, plays a key role in the HD turbulent

process. Moreover, unlike Eq. (1), the alternative ex-

act relation gives directly ε without going through an

integration. Hence, the current form is equally valid

for a turbulent flow with and without the assumption

of isotropy. The main objective of the present paper

is to calculate ε using the recently derived alternative

exact law for incompressible HD turbulence. For our

study, we use numerical data obtained from 3D direct

numerical simulations (DNSs) with spatial resolution

ranging from 1283 to 15363 grid points. In the course

of this study, we also investigate the statistical be-

havior of the velocity, vorticity and the Lamb vector

fluctuations.

The paper is organized as follows: in Sec. II A we de-

scribe the equations and the code used in the present

work; in Sec. II B and II C we present the classical and

alternative exact laws for fully developed HD turbu-

lence. In particular, we present a brief analysis of the

exact law, with a particular emphasis on the struc-

ture of each term involves in the nonlinear cascade

of energy; in Sec. III we present our main numerical

results; and, finally, in Sec. IV we discuss the main

findings and their implications.

II. THEORY AND NUMERICAL

SIMULATIONS

A. Navier-Stokes Equation & Code

We solve numerically the equations for an incom-

pressible fluid with constant mass density and without

external forcing. Then, the Navier-Stokes equation

reads,

∂u

∂t
= −(u ·∇)u−∇p+ ν∇2u, (2)

with the constrain ∇ · u = 0, p is the scalar pres-

sure (normalize to the constant unity density) and ν

is the kinematic viscosity. In the present paper, our

numerical results steam from the analysis of a series of

DNSs of Eq. (2) using a parallel pseudo-spectral code

in a three-dimensional box of size 2π with periodic

boundary conditions, from N = 128 up to N = 1536

linear grid points. The equations are evolved in time

using a second order Runge-Kutta method, and the

code uses the 2/3-rule for dealiasing [20–22]. As a

result, the maximum wave number for each simula-

tion is kmax = N/3, where N is the number of lin-

ear grid points. We can define the viscous dissipation

wave number as kη = (〈ω2〉/ν2)1/4, and as a conse-

quence the Kolmogorov scale is equal to η = 2π/kη.

It is worth mentioning that all simulations presented

are well resolved, i.e. the dissipation wave number

kη is smaller than the maximum wave number kmax

at times where the statistical computations have been

done.

The initial state in our simulations consists of

isotropic velocity field fluctuations with random

phases, such that the total helicity is zero, and the

kinetic energy initially is equal to 1/2 and localized

at the largest scales of the system (only wavenumber

k = 2 is initially excited). There is no external forcing

and our statistical analysis is made at a time when the

mean dissipation rate reaches its maximum (around 5

turnover times). We also can define the Taylor and

integral scale as,

λ = 2π

( ∫
E(k)dk∫
E(k)k2dk

)1/2

, (3)

L = 2π

∫
E(k)k−1dk∫
E(k)dk

, (4)

where E(k) is the kinetic energy spectrum. From

the definitions (3) and (4), we can compute the cor-

responding Reynolds number RL = U0L/ν and the

Taylor-based Reynolds number Rλ = U0λ/ν (here,

U0 = 〈u2〉1/2 is the rms velocity). Table I summarized

these values for all Runs used in the present paper.

B. Classical exact law

As we discussed in the Introduction, following the

original works of Kolmogorov and Monin and Yaglom

derivations [2, 4] for homogeneous and isotropic HD

turbulence, assuming statistical stationarity and a fi-

nite energy cascade rate as ν goes to zero, we can

compute the energy cascade rate as a function of the

third-order velocity structure functions as,

− 4

3
ε` =

〈
|δu|2δu`

〉
= 〈F`〉, (5)

where u` is the projection of the velocity field on the

increment direction `. Eq. (5) is the so-called four-

third law, which can be also derived from Eq. (1) as-

suming isotropic turbulence. Usually, the mean flux
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Run N ν λ L 〈u2〉1/2 〈ω2〉1/2 Rλ RL kmax/kν

I 128 3.0× 103 0.99 2.49 0.78 5.31 258 646 1.02

II 256 1.5× 103 0.83 2.38 0.76 7.99 419 1205 1.17

III 512 7.5× 104 0.42 1.74 0.77 12.45 435 1789 1.32

IV 1024 3.0× 104 0.27 1.60 0.79 19.28 725 4212 1.34

V 1536 1.5× 104 0.15 1.50 0.81 34.60 870 8736 1.03

TABLE I. Parameters used in Runs I to V: N is the linear grid points; ν is the kinematic viscosity; λ and L are the

Taylor and integral scale, respectively; 〈u2〉1/2 and 〈ω2〉1/2 are the rms velocity and rms vorticity, respectively; Rλ and

RL are the Reynolds numbers based in the Taylor and integral scale, respectively and kmax/kν is the maximum to the

dissipation wavenumber ratio.

(a) Velocity modulus (b) Vorticity modulus (c) Lamb vector modulus

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 100 101 102 100 101 102

FIG. 1. Snapshot (512×512) of the velocity (a), vorticity (b) and Lamb vector (c) modulus for Run V on linear and

logarithm scale, respectively.

term 〈F`〉 ≡ 〈|δu|2δu`〉 along ` is identified as the flux

of kinetic energy through scales. It is worth mention-

ing that in the new alternative derivation to compute

the energy cascade rate from Banerjee and Galtier [19]

(see Sec. II C), there is no projection along the incre-

ment direction ` and the expression only depends in

the two-point mixed structure functions. In particu-

lar, this would be essential when there is a privileged

direction in the system, as in magnetohydrodynamics

(MHD) with a magnetic guide field [see, e.g. 23–28] or

in rotating HD turbulence [see, e.g. 29–32].

C. Alternative exact law

Following Banerjee and Galtier [19], here we give

an schematic description of the derivation of the al-

ternative exact relation for fully developed homoge-

neous and incompressible turbulence. The alternative

Navier-Stokes Eq. (2) can be cast as,

∂u

∂t
= (u× ω)−∇pT + ν∇2u, (6)

where the non-linear term have been written as (mi-

nus) the Lamb vector and as a part of the total pres-

sure pT ≡ p + u2/2. The symmetric two-point corre-

lators for the total energy can be defined as,

RE = R′E ≡
1

2
〈u · u′〉, (7)

where the prime implies variable at x′ = x + ` point.

Using Eq. (6), the dynamical evolution equation for

the energy correlator is,

∂t(RE +R′E) = −〈u′ ·L〉 − 〈u ·L′〉+D + F , (8)

where we have used the constraint ∇ · u = 0, the re-

lations L ·u = 0 = L′ ·u′ and D,F represent the cor-

relation terms related to the dissipation and forcing,

respectively. Then, assuming the usual assumptions

for fully developed turbulence (where an asymptotic

stationary state is expected to be reached) [5, 13, 19],

we can derive an exact law valid in the inertial range.

In particular, assuming an infinite kinetic Reynolds

number with a statistical balance between forcing and

dissipation terms and a finite energy cascade rate as
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FIG. 2. For Run IV: PDFs of the velocity (a), vorticity (b) and Lamb vector (c) components.

we go to the zero viscosity limit, D ∼ 0, F ∼ 2ε and

Eq. (8) can be cast as,

− 2ε = −〈u′ ·L〉 − 〈u ·L′〉. (9)

Finally, using statistical homogeneity, we obtain after

few steps of simple Algebra, the alternative formula-

tion of the exact law is,

2ε = −〈δL · δu〉 = 〈δ(u× ω) · δu〉 , (10)

where δu ≡ u(x + `) − u(x) is the usual increment.

Eq. (10) gives a divergence free exact relation for ho-

mogeneous incompressible turbulence valid in the in-

ertial range, i.e. far away from the forcing and dis-

sipative scales. Unlike the Eq. (1), this new expres-

sion does not involve a third-order structure function

but second-order mixed structure functions. Besides,

there is no global divergence in the alternative formu-

lation. Therefore, the estimation of the energy cas-

cade rate can be obtained directly from the measure-

ment of the scalar product of the Lamb vector incre-

ments with the velocity increments.

Equation (10) can be cast as,

2ε = εx + εy + εz, (11)

where we have identified three specific contributions

as,

εx ≡ −〈δLxδux〉 = 〈δ(uyωz − uzωy)δux〉 , (12)

εy ≡ −〈δLyδuy〉 = 〈δ(uzωx − uxωz)δuy〉 , (13)

εz ≡ −〈δLzδuz〉 = 〈δ(uxωy − uyωx)δuz〉 . (14)

In homogeneous and isotropic turbulence, we expect

that each of these contributions be statistically the

−3 −2 −1 0 1 2 3
10−6

10−5

10−4

10−3

10−2

(a)

ℓ = η

ℓ = 5η

ℓ = 10η

ℓ = 20η

−20 −10 0 10 20
10−4

10−3

10−2

(b)

ℓ = η

ℓ = 5η

ℓ = 10η

ℓ = 20η

FIG. 3. For Run IV, PDFs of the transverse velocity (a)

and Lamb (b) increments with ` = η, ` = 5η, ` = 10η and

` = 20η, where η is the Kolmogorov dissipation scale.
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FIG. 4. Energy spectra for all Runs in Table I as a function

of wavenumber k.
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FIG. 5. For Run IV: mean structure function 〈F`〉 (black-

solid) and structure functions F` along different increment

directions ` (gray-dot) using Eq. (5). Inset plot: energy

cascade rate along different directions (gray-dot) and mean

cascade rate (black-solid).

same.

III. RESULTS

A. Statistical dynamics of the velocity, vorticity

and Lamb vector

The Lamb vector is known to be of great impor-

tance for fluid dynamics. In particular, it is essen-

tial for the nonlinear dynamics of turbulence [33, 34]

since the nonlinear term in the Navier-Stokes equation

(2) can be written as a function of the Lamb vector

cross product the velocity vector plus a gradient term.

Then, in order to study the turbulent regime, we dis-

cuss the statistics properties of the velocity, vorticity

and Lamb vectors.

Fig. 1 shows three snapshot of the velocity (a), vor-

ticity (b) and Lamb vector (b) modulus for Run V at

the time when the dissipation reaches its maximum

value. In the three panels, the large-scale structures

are a signature of the initial condition (see Sec. II A),

while the small-scale structures are produced by the

nonlinear dynamics and the direct cascade of energy.

As we expect, since the Lamb vector is the cross prod-

uct between the velocity and vorticity fields, it shows

a chaotic, multi-scale and intermittent behaviour (in

which strong gradients are highly localized).

Several statistical features associated with isotropic

and homogeneous turbulence can be observed from

our numerical results. Fig. 2 shows the probability

distribution functions (PDFs) for the velocity (a), vor-

ticity (b) and Lamb vector (c) components, for Run

IV. While each velocity field component shows a clear

Gaussian distribution with an approximate zero mean

value, the vorticity and Lamb vector components show

a more exponential or peak distribution. The Lamb

vector statistical behaviour is a direct consequence of

the vorticity field dynamics in homogeneous turbu-

lence [34]. In particular, a more direct approach to

characterize a turbulent flow, is to compare the PDFs

of velocity increments at different two-point distances

`. Then, we can defined the parallel and perpendicular

velocity increment as,

δu‖ = ` · [u(x + `)− u(x)], (15)

δu⊥ = `× [u(x + `)− u(x)]. (16)

Fig. 3 shows the PDFs for u⊥ = |u⊥| (a) and L⊥ =

|L⊥| (b) increments for different separation distances
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`. For large separation distances, for the δu⊥ we ob-

serve distributions close to the Gaussian distribution

with decaying tails (i.e., presence of strong gradients).

On the other hand, as we expect for a turbulent and

intermittent fluid, Fig. 3 (a) shows the development

of exponential and stretched exponential tails as the

increment separation distance ` decreases. It is worth

mentioning that this behaviour is not observed in the

perpendicular Lamb vector increments. In particular,

we observe exponential or peak distributions for all

scale separations.

Fig. 4 shows the kinetic energy spectra compen-

sated by (a) k5/3 and (b) k4/3 as a function of the

wavenumber k, for all Runs in Table I. Typically, in

incompressible HD turbulence, an inertial range cor-

responds to Kolmogorov-like k−5/3 scaling. However,

our numerical results show a scaling close to k−4/3

instead. This behaviour has already been reported

in Mininni et al. [35], where a difference of 1/3 was

found in the scaling of kinetic energy spectrum. This

departure is most likely due to the bottle-neck effect

[see, e.g. 35, 36]. Nevertheless, the bottle-neck effect

was found to be prominent mostly for 3D simulations

with grid points below 10243. In our present study,

the -4/3 slope is still present in 15363 grid points. It

is worth noting that previous studies also reported

a departure of the spectral index by 0.1 due to in-

termittency effects [37]. In a more general sense, we

interpreted our numerical results as a combined effect

of bottle-neck and intermittency. A detailed discus-

sion on this subject is, however, is beyond the scope

of the present work where the velocity power spectra

are drawn only to get a prior idea of the inertial zone

in k-space (∼ 8× 100 − 6× 101 for Run V).

B. Computation of velocity and mixed structure

functions

For the computation of velocity and mixed struc-

ture functions in multiple directions (and thus to ob-

tain statistical convergence by averaging over all these

directions), we use the angle-averaged technique pre-

sented in Taylor et al. [38]. This technique avoids

the need to use 3D interpolations to compute the cor-

relation functions in directions for which the evalu-

ation points do not lie on grid points. This signifi-

cantly reduces the computational cost of any geomet-

rical decomposition of the flow [39]. In particular, we

have used a decomposition based in the SO(3) rota-

tion group for isotropic turbulence [see, 16, 40].

The procedure used to compute each term in the ex-

act law given in Eq. (10) (or Eq. (5)) over several direc-

tions can be summarized as follows: in the isotropic

SO(3) decomposition, the mixed structure functions

are computed along different directions generated by

the vectors (all in units of grid points in the simulation

box) (1,0,0), (1,1,0), (1,1,1), (2,1,0), (2,1,1), (2,2,1),

(3,1,0), (3,1,1) and those generated by taking all the

index and sign permutations of the three spatial coor-

dinates (and removing any vector that is a positive or

negative multiple of any other vector in the set) [see,

38, 41]. This procedure generates 73 unique direc-

tions. In this manner, the SO(3) decomposition gives

the mixed structure functions as a function of 73 ra-

dial directions covering the sphere [38]. The average

over all these directions results in the isotropic mixed

structure functions which depend solely on `.

As an example, Fig. 5 shows the third-order struc-

ture function F` = |δu|2δu‖ for the 73 different direc-

tions in gray-dot line (for Run IV). Overplot is the

average structure function 〈F`〉 in black-solid line. In-

set plot is the energy cascade rate ε,

ε = −3

4

〈|δu|2δu‖〉
`

. (17)

i On the other hand, from the alternative exact law

(10), ε is simply the average second-order mixed corre-

lation function between the velocity and Lamb vectors

divided by 2. It is worth mentioning that the compu-

tation of ε using in situ measurements and Eq. (10)

(i.e., the computation of the vorticity field) can be

achieved using multispacecraft techniques, as the cur-

lometer technique [e.g., see, 42]. In general, this tech-

nique requires simultaneous measurements from four

spacecrafts to be able to compute gradients. In partic-

ular, this technique have been used to compute electric

currents and vorticity fields with in situ observation

from Cluster and the most recent NASA Magneto-

spheric Multiscale (MMS) mission. In the next Sec.

III C, we use the technique describe above to compute

the energy cascade rates for all Runs in Table I ac-

cording to the alternative (10) and the classical (5)

exact laws.
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FIG. 6. Energy cascade rates using Eq. (10) (left panel) and using Eq. (5) (right panel) as a function of `, for all Runs.

C. Energy cascade rates

Fig. 6 shows the energy cascade rates as a func-

tion of the two-point distance for each run in Table I

using the alternative and the well-known Kolmogorov-

Monin form. In the left panel we plot εAl. using the

alternative exact law (10) (black-solid) and its com-

ponents (12) (red-dot) (13) (green-dashed) and (14)

(blue-dot-dashed) and in the right panel we plot the

energy cascade rate εCl. using Eq. (5). In vertical

black-dashed line is the Taylor scale. The integral

scale for each Run is larger than 1.25, i.e. the upper

x-axis limit. Each plot in Fig. 6 have been normalized

to their corresponding energy dissipation rate ν〈ω2〉
(see Table I). Finally, for each Run, we report the

mean ratio r = εCl./εAl., where the average has been

computed along each inertial range.

When we increase the spatial resolution we obtain

a flatter region where the total energy cascade rate is

constant thereby corresponding to the inertial range.

In particular, for the largest spatial resolutions, i.e.

N = 1024 and N = 1536, the inertial range obtained

from the classical exact law is quite similar to the one

obtained from the alternative exact law (r = 0.97 in

both cases). Moreover, in contrast to Eq. (1) where

we had to project the local divergence operator in the

direction of `, using Eq. (10), εAl. was obtained di-

rectly from the measurements of the scalar product

of the Lamb vector increments with the velocity field

increments. This is clearly an improvement with re-

spect to the old formulation of the exact relations [43]

and, in addition, it would be very efficient to compute

energy cascade rates in turbulent systems where there
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is a privileged direction (e.g., turbulence with rotation

or with a background magnetic field).

IV. DISCUSSION AND CONCLUSIONS

To the best of our knowledge, this is the first time

that the alternative exact law Eq. (10) is numerically

validated. Using a SO(3) isotropic decomposition, we

have computed the energy cascade rate and we have

investigated the statistical properties of the velocity,

vorticity and Lamb vector for freely decaying homo-

geneous turbulence. For different spatial resolutions,

our numerical results show that the energy cascade

rate can be obtained directly from the measurements

of the scalar product of the Lamb vector increments

δL with the velocity field increments δu. This indeed

provides an advantage over the tradition Kolmogorov-

Monin differential form which need to be integrated

to compute ε.

We have studied several features associated with

isotropic and homogeneous turbulence. In particular,

the PDFs for the velocity components show a clear

Gaussian distribution with a zero mean value whereas

both the vorticity and the Lamb vector components

show exponential or peak distribution. Moreover, the

PDFs for the velocity increments for large separa-

tion distances show distributions close to Gaussian,

while we observe the development of exponential and

stretched exponential tails as the increment distance

` decreases, a direct consequence of the presence of

intermittency in the fluid.

For the largest spatial resolutions, we observe sim-

ilar inertial ranges obtained from the classical exact

law or the new alternative exact law. As we discussed

before, this is a clear advantage of the alternative ex-

act law since to be able to use Eq. (5) is mandatory

to project the local divergence operator into the in-

crement direction `, while the energy cascade rate

obtained from Eq. (10) is obtained simply from the

measurements of the scalar product of the Lamb vec-

tor increments with the velocity field increments.

Finally, as we increase the spatial resolution, we ob-

serve that the three correlation function components

in Eq. (10), i.e. εx/2, εy/2 and εz/2, converge to

one-third of the total energy cascade rate ε in the in-

ertial range. These results are a direct consequence of

the isotropy in the system. As we reach the dissipa-

tion or the injection scales for each Run, the different

contributions εx, εy and εz separate from each other.

It is worth mentioning that in presence of anisotropy

(strong magnetic field or a rotation axis) some ideal

invariants of the system could be transferred to both

large (the so-called inverse cascade) and small scales.

In the case of rotating and/or stratified flows [44, 45],

this new alternative methodology could be useful in

the research of geophysical turbulent flows. An in-

teresting question would be, how the three energy

cascade components εx, εy and εz behave in a non-

isotropic medium? In part, this question will be ad-

dressed elsewhere in which we include a strong mag-

netic guide field into the system.
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