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 Abstract  

Fibronectin (Fn) enhances human sperm capacitation via the cAMP/PKA pathway, and the 
endocannabinoid system participates in this process. Moreover, Fn has been linked to 
endocannabinoid system components in different cellular models, even though no 
evidence of such interactions in human sperm is available. Normal semen samples were 
evaluated over a four-year period. Our findings suggest that (i) the capacitating effects of 
Fn were reversed by pre-incubating the sperm with a cannabinoid receptor 1 (CB1) or 
transient receptor potential cation channel subfamily V member 1 (TRPV1) antagonist 
(P<0.001 and P<0.05, respectively); (ii) cooperation between CB1 and TRPV1 may exist 
(P<0.01); (iii) the activity of specific fatty acid amide hydroxylase (FAAH) decreased 
after 1 min (P<0.01) and increased after 60 min (P<0.01) of capacitation in the presence 
of Fn; (iv) the effects of Fn on FAAH activity were prevented by pre-incubating 
spermatozoa with a PKA inhibitor (P<0.01); (v) Fn modulated both the cAMP 
concentration and PKA activity (P<0.05) during early capacitation; and (vi) FAAH was a 
PKA substrate modulated by phosphorylation. These findings indicate that Fn stimulates 
human sperm capacitation via the cAMP/PKA pathway through modulation of the 
endocannabinoid system. Understanding the functional competence of human 
spermatozoa is essential for facilitating clinical advances in infertility treatment and for 
developing novel contraceptive strategies. 

Graphical Abstract 

 

The present study had demonstrated for the first time that Fibronectin interacts with members 
of the endocannabinoid system in human spermatozoa. In addition, we provide evidence that 
this interaction affects sperm capacitation and is mediated by the cAMP/PKA pathway. 
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Capacitation. 

Introduction 

Capacitation comprises a series of biochemical and physiological changes that are essential to 

acquire fertilization capacity in mammalian spermatozoa (Chang, 1984; Yanagimachi, 1994). 

These changes include early, rapid events, such as the activation of cAMP-dependent pathways, 

intracellular pH augmentation, plasma membrane hyperpolarization (Darszon, Guerrero, Galindo, 

Nishigaki, & Wood, 2008), increases in intracellular Ca2+ levels and changes in intracellular ion 

concentrations (Salicioni et al., 2007), and late, slow events, such as cholesterol loss from the 

plasma membrane and increases in protein tyrosine phosphorylation (Signorelli, Diaz, & Morales, 

2012; Visconti, 2009). Capacitation also induces functional changes in movement patterns 

(hyperactivation) (Yanagimachi, 1994) and ultimately confers the ability to perform the 

acrosomal reaction (AR) following stimulation by a physiological agonist (Hirohashi & 

Yanagimachi, 2018; Salicioni et al., 2007).  

Capacitation takes place in the oviduct, a functional sperm reservoir that serves as an 

environment enabling maintenance and competence for successful oocyte fertilization. It has been 

suggested that some components of the oviductal fluid and molecules secreted by the oviductal 

and cumulus oophorus cells are involved in modulating sperm function and facilitating the 

acquisition of fertilization capacity (Quintero et al., 2005). One of these molecules is fibronectin 

(Fn), a glycoprotein composed of two similar 250-kDa subunits, that is present in follicular and 

oviductal fluid and the oviductal epithelium (Honda et al., 2004; Hung, Tsuiki, & Yemini, 1989; 

Osycka-Salut et al., 2017; Tsuiki, Preyer, & Hung, 1988). Fn binds via its RGD (Arg-Gly-Asp) 

domain to the cell surface through an interaction with integrins; specifically, Fn binds to integrin 
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 α5β1, which is present in human sperm (Fusi et al., 1996; Glander & Schaller, 1993). The binding 

of integrins to their ligands activates different signalling transduction pathways, leading to 

increased levels of intracellular Ca2+ or stimulation of kinase cascades such as cAMP/PKA, 

IP3/PKC and Src, which are involved in the regulation of sperm function (Diaz, Kong, & 

Morales, 2007; Lim et al., 2008; Suh & Han, 2013), particularly capacitation (Buffone, 

Wertheimer, Visconti, & Krapf, 2014; Lefievre, Jha, de Lamirande, Visconti, & Gagnon, 2002; 

Signorelli et al., 2012). These signal transduction pathways are also modulated by other 

molecules, such as N-arachidonoyl ethanolamide (anandamide, AEA) (Demuth and Molleman, 

2006; Francavilla et al., 2009; Maccarrone et al., 2005; Osycka-Salut et al., 2012), which is also 

present in reproductive fluids (El-Talatini, Taylor, & Konje, 2009; Schuel, Burkman, Lippes, 

Crickard, Forester, et al., 2002).  

AEA is an endogenous lipid agonist of the cannabinoid receptors CB1 and CB2 (Munro, Thomas, 

& Abu-Shaar, 1993) and vanilloid receptor type 1 (TRPV1) (Ross, 2003). Recently, a novel set of 

receptors that bind to AEA, GPR55 (putative CB3) (Gasperi, Dainese, Oddi, Sabatucci, & 

Maccarrone, 2013) and the peroxisome proliferator-activated receptors (PPARs) (Pistis & Melis, 

2010) has been described. AEA is an endocannabinoid released primarily by depolarizing agents 

from membrane phospholipids into the interstitial space, where it performs autocrine or paracrine 

functions before being internalized and rapidly degraded by fatty acid amide hydrolase (FAAH), 

a membrane enzyme (Cravatt et al., 1996). AEA and its receptors and metabolic machinery 

constitute the endocannabinoid system (Maccarrone et al., 2015), which has been previously 

shown in human sperm (Francavilla et al., 2009). 

Endocannabinoids have been postulated as reproductive biomarkers, that is, molecules with 

predictive significance to the reproductive potential of male and female gametes (Rapino, 
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 Battista, Bari, & Maccarrone, 2014). Variations in the concentrations of different 

endocannabinoids, especially AEA, result in local changes in the female and male reproductive 

tracts, which in turn regulate various physiological processes, including oocyte and sperm 

maturation. Additionally, numerous reports have linked the endocannabinoid system to important 

reproductive processes, including sperm capacitation in different species (Catanzaro et al., 2011; 

Francavilla et al., 2009; Maccarrone et al., 2005; Osycka-Salut et al., 2012). Recent studies 

showed that nanomolar AEA concentrations induce sperm release from the oviductal epithelium 

and promote bull spermatozoa capacitation (Osycka-Salut et al., 2012). Alternatively, interactions 

between the endocannabinoid system and Fn have been reported. Jeske, Patwardhan, Henry, and 

Milam (2009) described that Fn modulates TRPV1 receptor translocation to the plasma 

membrane, inducing increased expression and phosphorylation at tyrosine residues in TRPV1 and 

in sensory neurons of the trigeminal ganglia. Moreover, Waldeck-Weiermair et al. (2008) 

demonstrated in endothelial cells that AEA receptors (CB1 and GPR55) interact with the 

transmembrane portion of integrin α1β3, triggering different cellular responses depending on the 

integrin cluster formed. Notably, no data in the literature have confirmed this interaction in 

human spermatozoa. 

We have previously demonstrated that Fn induces human sperm capacitation via the cAMP/PKA 

pathway. Specifically, we observed that Fn enhanced capacitation by regulating cAMP levels, 

PKA enzymatic activity and tyrosine phosphorylation (Martinez-Leon et al., 2015). However, it is 

unclear how Fn exerts these effects in human sperm. Given that both Fn and AEA have been 

linked to sperm capacitation and that Fn has been reported to interact with the endocannabinoid 

system in other cell types, this work aimed to elucidate the possible association between Fn and 

the endocannabinoid system in the regulation of human sperm capacitation. For this purpose, we 

evaluated whether 1) CB1, CB2 and TRPV1 receptor activation are involved in Fn-mediated 
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 human sperm capacitation, 2) endocannabinoid receptor cooperation plays a role in human sperm 

capacitation, 3) Fn regulates FAAH activity during capacitation, and 4) Fn modulates the 

endocannabinoid system via the cAMP/PKA pathway during capacitation. 

Materials and methods  

Semen collection and analysis 

The Ethics Committee on Scientific Research at the University of Antofagasta approved the 

research presented in this manuscript. The institutional review board approved the use of all 

semen samples provided by human donors aged 17-30 yr. All donors signed a consent form 

agreeing to the use of their sperm cells for research purposes. Freshly ejaculated sperm were 

obtained from healthy volunteers by masturbation after 2-3 days of sexual abstinence. The semen 

samples were subsequently allowed to liquefy in a slide warmer for 30-60 min at 37 °C. The 

same person processed all semen samples using the same equipment. Analyses of semen volume, 

pH, sperm concentrations and sperm motility and viability were performed as described 

previously (Martinez-Leon et al., 2015). The mean values for semen parameters are summarized 

in Supplementary Table S1. Ejaculate volumes were measured using graduated pipettes, and pH 

values were measured using pH paper. Sperm concentrations were assessed using a 

haemocytometer after appropriate dilutions. Progressive motility (PR), non-progressive motility 

(NP), immotility (IM) and total motility (PR+NP) were measured at 37 °C. Viability of 

spermatozoa was evaluated via eosin–nigrosin staining. All semen samples were normal 

according to the World Health Organization criteria (WHO, 2010). 
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 Media cultures 

Oviductal culture was performed using M199 medium supplemented with 50 µg/ml gentamicin, 1 

µg/ml fungizone and 10 % foetal calf serum (FCS) (v/v) (Gibco, Invitrogen), and oviductal 

incubation and development of monolayer cultures were performed using FCS (Gualtieri & 

Talevi, 2000). Sperm handling and co-culture experiments were performed in modified Tyrode’s 

medium without (non-capacitating medium, NCM) or with 2.6 % BSA (A7030) and 25 mM 

HCO3
- (reconstituted capacitating medium, RCM) (Sigma Chemical Co., St. Louis, MO, USA), as 

we described previously (Signorelli, Diaz, Fara, Baron, & Morales, 2013). Neither sperm viability 

nor sperm motility was affected by the absence of HCO3
- and BSA.  

Sperm suspension preparation and in vitro sperm capacitation 

Motile sperm were separated using a double-Percoll gradient (40/80 %) (Sigma Chemical Co., St. 

Louis, MO, USA), as described previously (Morales & Cross, 1989). Briefly, semen aliquots 

were layered on the upper layer of a Percoll gradient and centrifuged for 20 min at 300 g. The 

pellet was subsequently resuspended in 10 ml of NCM and centrifuged at 300 g for 10 min. 

Finally, the sperm cells were resuspended in the appropriate medium at the necessary 

concentration. Approximately 5 × 106 cells/ml were incubated in RCM or NCM in the presence 

or absence of 100 µg/ml Fn (Millipore Corporation, Bedford, MA, USA) for different times at 37 

°C in air supplemented with 5 % CO2. The sperm were pre-incubated in the presence of the 

antagonists for 15 min at 37 ºC and 5 % CO2. 

Chlortetracycline (CTC) assay 

Sperm capacitation status was assessed by CTC assays, as described previously (Kong, Diaz, & 

Morales, 2009). A CTC solution containing 750 mM CTC in a buffer of 130 mM NaCl, 5 mM 
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 cysteine and 20 mM Tris-HCl, pH 7.8 (Sigma Chemical Co., St. Louis, MO, USA), was prepared 

the day of its use and was wrapped in foil at 4 ºC until use. Then, 10 µl of CTC stock solution 

was rapidly added to a 10-µl aliquot of capacitated sperm suspension and treated with 10 mg/ml 

Hoechst 33258 for 30 sec, followed by fixation in 2 % glutaraldehyde in 1 M Tris buffer, pH 7.8, 

for 30 sec. Twenty microliters of this suspension was subsequently placed on a slide and allowed 

to dry; then, a drop of DABCO (Sigma Chemical Co., St. Louis, MO, USA) mounting medium 

was carefully mixed with the suspension to retard fluorescence fading. A coverslip was placed on 

top of the slide. Cell viability was assessed using Hoechst 33258 (Sigma Chemical Co., St. Louis, 

MO, USA). In each sample, 200 live cells were assessed for CTC staining patterns, and the 

proportion of dead cells was very low in all cases (0-5 %). The following three primary CTC 

fluorescence patterns were identified: the F pattern, which was characterized by uniform 

fluorescence over the entire head and was characteristic of non-capacitated, acrosome-intact cells; 

the B pattern, which was characterized by a fluorescence-free band in the post-acrosomal region 

and was characteristic of capacitated, acrosome-intact cells; and the AR pattern, which was 

characterized by dull or absent sperm head fluorescence and was characteristic of capacitated, 

acrosome-reacted cells (Lee et al., 1987). 

Preparation of sperm extracts and immunoprecipitation for FAAH 

Magnetic beads (Dynabeads®, Life technologies, Carlsbad, CA, USA) bound to recombinant G 

protein were used to immunoprecipitate FAAH. Sixty to eighty million sperm per millilitre, 

obtained using different experimental protocols, were lysed in radioimmunoprecipitation assay 

(RIPA) lysis buffer containing 150 mM NaCl, 50 mM Tris, 1 % sodium dodecyl sulfate (SDS), 2 

mM Na3VO4, 50 mM NaF, 2 mM EDTA, 1 % sodium desoxycholate, 1 % NP-40, 1 mM PMSF, 

10 mg/ml leupeptin, 10 mg/ml bestatin A, and 10 mg/ml aprotinin, pH 7.4 (Sigma Chemical Co., 
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 St. Louis, MO, USA). The sperm suspension was then sonicated (Virsonic, Gardiner, NY) with 

six 20-sec. 60-W bursts in 400 µl of RIPA buffer (containing approximately 200 µg of protein), 

followed by centrifugation for 5 min at 14000 g to remove nuclear and flagellar material. Then, 

the beads were incubated with anti-FAAH 27-Y antibodies (2 mg) (Santa Cruz, CA, USA) on an 

orbital shaker for 10 min at room temperature. The resulting bead-antibody complexes were 

incubated with the protein extract on an orbital shaker overnight at 4 °C. The supernatant and the 

immune complex were saved separately. Both were separated electrophoretically by SDS-PAGE. 

Afterwards, the samples were treated according to the Western blot protocol described below 

using a primary antibody recognizing phospho-Ser/Thr PKA substrate (pPKAs, 1:1000) (Cell 

Signaling Technology, Danvers, MA).  

SDS-PAGE and Western blotting 

For SDS-PAGE, aliquots of immunoprecipitates containing 20 µg of protein were boiled for 5 

min in sample buffer (500 mM Tris-HCl, 10 % SDS, 30 % glycerol, 1 M DTT and 0.01 % 

bromophenol blue, pH 6.8) and then immediately placed on ice. The samples were subsequently 

resolved by 10 % SDS-PAGE (10 % acrylamide/bisacrylamide for the resolving gel and 5 % 

acrylamide/bisacrylamide for the stacking gel) in a Mini Protein Cell. After running, the gel was 

equilibrated in transfer buffer for 15 min, and the proteins were electrotransferred to a 

polyvinylidene difluoride (PVDF) membrane (Millipore Corporation, Bedford, MA, USA) at 25 

V for 30 min using a mini trans-blot cell (Bio-Rad Laboratories Inc., Hercules, CA, USA). The 

success of protein transfer was observed by Ponceau red staining (Sigma Chemical Co., St. Louis, 

MO, USA). The membranes were blocked for 60 min with 5 % non-fat dry milk and 5 % BSA in 

phosphate buffered saline (PBS)-Tween 20 (0.1 %, v/v), washed and probed with a mouse 

antibody against pPKAs. Then, the membranes were washed and incubated with an HRP-



 

 

This article is protected by copyright. All rights reserved. 

A
cc

ep
te

d 
A

rt
ic

le
 conjugated secondary antibody (Chemicon, Temecula, CA, USA), enabling trouble-free detection 

of immunoblotted target protein bands, without interference from denatured IgG. This procedure 

facilitates the detection of co-immunoprecipitated target protein bands without masking by IgG 

heavy (50 kDa) and light chain (25 kDa) (Abcam, ab13166, Cambridge, United Kingdom). An 

electrochemiluminescence (ECL) kit was used to detect the HRP-labelled proteins according to 

the manufacturer’s instructions (Millipore Corporation, Bedford, MA, USA). Pre-stained protein 

standards with molecular masses ranging from approximately 10-250 kDa were used (Bio-Rad 

Laboratories Inc., Hercules, CA, USA). The immunoblots were recorded as digital images (In-

Vivo F Pro, Bruker, Billerica, MA, USA).  

PVDF membrane stripping 

Blots probed for pPKAs were stripped and reprobed with an antibody against FAAH (1:200) to 

confirm equal protein loading. For this procedure, approximately 30 ml of stripping buffer, 

consisting of 2 % (w/v) SDS, 100 mM 2-mercaptoethanol, and 62.5 mM Tris, pH 6.7, was added 

to the membrane and placed under constant shaking for 1 h at 60 °C. The membrane was then 

washed 3 times for 10 min each in Tris-buffered saline (TBS), blocked with 5 % non-fat dry milk 

in PBS-Tween 20 (0.1 %, v/v), and probed with the abovementioned primary antibody. 

Bovine oviductal cell cultures 

Bovine oviductal cell cultures were prepared as described previously (Gervasi et al., 2009; 

Martinez-Leon et al., 2015). Bovine oviducts were collected at the time of slaughter, transported 

at 4 °C, cleaned of surrounding tissues and washed twice in sterile PBS at 4 °C. Then, they were 

cut, flushed with sterile PBS and squeezed with tweezers. Monolayers of bovine oviduct 

epithelial cells (BOECs) were recovered from different animals, selected on the basis of ciliary 
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 beating, and pooled together. The BOECs were then washed by centrifugation at 1500 g for 5 min 

and incubated in M199 medium at 39 °C in a 5 % CO2 atmosphere. Incubations were performed 

in six-well tissue culture dishes with 12-mm round cover slips on the bottom of each well. After 

48 h, the BOECs were washed by centrifugation (1500 g for 5 min) and reseeded in tissue culture 

dishes. The M199 medium was changed every 48 h. The oviductal monolayers from the same 

pool of animals were washed twice in NCM after reaching confluence and were incubated in 

NCM for 60 min until aliquots of motile sperm were added.  

Release experiment and bound sperm quantification 

A release experiment was used as a method to evaluate sperm capacitation and was performed as 

described previously (Gervasi et al., 2009; Martinez-Leon et al., 2015). In addition, heterologous 

human sperm-BOEC co-cultures were prepared as described by Ellington, Broemeling, et al. 

(1999), Ellington, Evenson, et al. (1999), Ellington et al. (1998).  

Motile sperm selected in NCM were incubated with Hoechst 33342 (1 µg/ml) for 2 min (Sigma 

Chemical Co., St. Louis, MO, USA). Then, the sperm cells were washed with NCM and 

centrifuged at 300 g for 5 min. Afterwards, 14 × 106 sperm cells/ml were incubated with BOECs 

at 37 °C with 5 % CO2 for 2.5 h, the amount of time determined to be necessary for sperm 

binding. The medium was then removed, and the cultures were washed 3 times with NCM to 

remove unattached sperm. Subsequently, the co-cultures were incubated for different times under 

different treatments. After co-culture, the oviductal monolayers with attached sperm were fixed in 

glutaraldehyde (2.5 % v/v) for 60 min at room temperature, washed, and mounted on glass slides. 

The numbers of bound sperm were determined by analysing 20 fields per 0.11-mm2 cover slip by 

fluorescence microscopy (400x) (Nikon E200, Japan). The results were expressed as the number 

of sperm bound to BOECs. 
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 Total cAMP concentration  

The total cAMP concentration was determined by enzyme-linked immunosorbent assay (ELISA) 

using the Arbor Assay Cyclic AMP Direct EIA Kit (Ann Arbor, Michigan, United States) 

according to the manufacturer's instructions. Briefly, 30 x 106 cells/ml were incubated for 

different periods of time. Afterwards, the sperm were lysed in the presence of 25 mg/ml IBMX (a 

phosphodiesterase inhibitor) to conduct the protocol as indicated by the commercial kit. 

Specific enzymatic activity of PKA 

The enzymatic activity of PKA was assessed by ELISA using the Arbor Assay Protein Kinase A 

Activity Non-Radioactive Assay Kit according to the manufacturer's instructions. Aliquots of 20 

× 106 spermatozoa/ml obtained using different experimental protocols were lysed to conduct the 

protocol as indicated by the manufacturer of the ELISA kit to assess PKA enzymatic activity. 

Specific activity of FAAH  

Spermatozoa were resuspended in AEA buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.6) and 

sonicated for 2 min. The homogenate was stored at 4 °C. Protein concentrations were determined 

using the Bradford method, and 30 μg of protein was used for each protein assay (approximately 

10 × 106 sperm). The homogenate was incubated in AEA buffer supplemented with FAAH buffer 

(500 mM Tris-HCl, pH 8.5), 10-2 M tritiated AEA solution (H3-AEA) (Perkin Elmer, Waltham, 

Massachusetts, USA) and cold 10-2 M AEA solution at 37 °C for 30 min. Chloroform-methanol 

(1:1) extraction was performed after incubation, and both enzymatic reaction products, H3-AEA 

and H3-arachidonic acid (H3-AA), were identified. The solvent was evaporated under a hood. H3-

AA separation was performed via thin-layer chromatography (TLC Sílica gel 60, Merck, 

Darmstad, Germany), and AA was used as a standard (Perkin Elmer, Waltham, Massachusetts, 
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 USA). Band locations were identified after chromatography by incubating the plate with solid 

iodine. The plate was then cut at the heights of selected bands, and radioactivity was measured in 

a liquid scintillation counter (Tricarb 2800TR, Perkin Elmer, MA, USA). 

Statistical analyses  

Data were analysed using one-way analysis of variance and Tukey’s multiple comparison test for 

unequal replicates using GraphPad software (6.0e, GraphPad Software, Inc., La Jolla, CA, USA). 

A difference between groups of P≤0.05 was considered significant. All data are presented as the 

mean±SEM. 

Results 

Fn and Met-AEA stimulate human sperm capacitation but do not have a synergistic effect  

To determine whether there was a link between Fn and the AEA signalling pathway during 

human sperm capacitation, spermatozoa were incubated in presence of Fn and/or Met-AEA (non-

hydrolysable analogue of AEA), and capacitation status was evaluated using the CTC assay. CTC 

analysis is useful for evaluating intracellular calcium mobilization and for correlating calcium 

mobilization with the capacitation status of human spermatozoa (DasGupta, Mills, & Fraser, 

1993). 

We have previously described (Martinez-Leon et al., 2015) that Fn stimulates human sperm capacitation by 

using six different approaches (CTC, heterologous co-culture of human sperm-bovine oviductal epithelial 

cells (sperm-BOEC), measurement of cyclic AMP levels (cAMP), PKA activity, tyrosine protein 

phosphorylation (p-Tyr) and AR induction by progesterone). At this time, CTC results perfectly correlate 

with the results of p-Tyr and all other assays performed. Thus, we decided to evaluate capacitation through 

the CTC assay by measuring the percentage of spermatozoa with the B pattern. Here, we observed that 
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 when sperm were incubated in the presence of Met.AEA (RCM+Met-AEA), there was a rapid increase 

in the percentage of sperm with the B pattern relative to spermatozoa incubated with Fn (RCM+Fn). The 

increase after 1 min of incubation (8-10 %) with respect to RCM remained constant throughout 

the incubation period (60, 180 and 300 min). After 1080 min of incubation, there were no 

significant differences with respect to RCM (Fig. 1). When the cells were incubated in the 

presence of both molecules (RCM+Fn+Met-AEA), the effect was similar to that observed upon 

incubation with Fn or Met-AEA independently (Fig. 1). These results indicate that Fn and AEA 

stimulate human sperm capacitation. However, when we incubated sperm in the presence of both 

molecules, a synergistic effect was not observed, suggesting that Fn and Met-AEA act through 

the same signalling pathway. 

Considering that Fn not only induces sperm capacitation but also can induce AR (Diaz et al., 

2007) and that the most significant changes were observed at the beginning of the capacitation 

process (Martinez-Leon et al., 2015), we conducted all other experiments after 1 and 60 min of 

capacitation. As previously described, Fn and AEA do not induce AR at the selected times 

(Martinez-Leon et al., 2015; Rossato, Popa, Ferigo, Clari, & Foresta, 2005). 

Fn stimulates human sperm capacitation through the CB1 and TRPV1 receptors 

As Fn and AEA stimulate human sperm capacitation, we wanted to evaluate the impact of 

selective antagonists of CB1, CB2 and TRPV1 on Fn-mediated stimulation during sperm 

capacitation. Human spermatozoa were pre-incubated with the following endocannabinoid 

receptor antagonists: AM251 (for CB1), SR144528 (for CB2) and capsazepine (CZP) (for 

TRPV1) (Tocris Bioscience, MO, USA). Sperm were incubated in NCM or RCM with or without 

Fn for 1 and 60 min. The results indicated that the effect of Fn during capacitation was 

completely reversed in sperm pre-incubated with the TRPV1 antagonist (Fig. 2A) or the CB1 
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 antagonist (Fig. 2B), but not the CB2 antagonist (Fig. 2C), at both time points (1 and 60 min). 

These results suggest that Fn induces human sperm capacitation through the endocannabinoid 

system, specifically by activating the CB1 and TRPV1 receptors.  

Capacitated sperm are released from oviductal epithelial cells (Lefebvre & Suarez, 1996; Osycka-

Salut et al., 2012). To confirm that Fn induces sperm capacitation via the CB1 and TRPV1 

receptors, we prepared heterologous BOEC and human sperm cell co-cultures, as described in the 

Materials and Methods section, and evaluated the participation of the CB1, CB2 and TRPV1 

receptors in the release of spermatozoa from the oviductal epithelium (Fig. 3).  

The results indicated that the effect of Fn on sperm release from BOECs was completely reversed 

when sperm were pre-incubated with a TRPV1 antagonist (Fig. 3A) or a CB1 antagonist (Fig. 

3B), but not a CB2 antagonist (Fig. 3C), at both time points (1 and 60 min).  

Taken together, these results indicate that Fn induces sperm release from BOECs through CB1 

and TRPV1 receptor activation, supporting the CTC assay results.  

CB1 and TRPV1 receptors cooperate during human sperm capacitation.  

Our results suggest that Fn induces human sperm capacitation via the endocannabinoid system, 

and this effect is mediated through the CB1 and TRPV1 receptors. When we incubated sperm 

with corresponding antagonists, complete reversion of the effects of Fn was observed, although 

we could not determine whether one receptor or both receptors might be active during sperm 

capacitation. Therefore, we elected to evaluate possible modulation between these two receptors 

during sperm capacitation. 
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 For this purpose, different experimental approaches were designed: a) we pre-incubated sperm 

with 0.1 µM CZP (selective TRPV1 antagonist) followed by 10 nM arachidonyl-2-

chloroethylamide (ACEA, selective CB1 agonist), and b) we pre-incubated sperm with 0.1 µM 

AM251 (selective CB1 antagonist) followed by 0.1 µM capsaicin (CPS, selective TRPV1 

agonist). The percentage of cells exhibiting the B pattern of capacitation was evaluated through 

the CTC assay. 

The results presented in Fig. 4A indicate that incubating spermatozoa with CPS increased the 

percentage of sperm exhibiting the B pattern, similar to incubation with Fn. However, pre-

incubating sperm with the CB1 antagonist (RCM+CPS+AM251) blocked the stimulatory effect 

induced by the TRPV1 agonist (RCM+CPS) at 1 and 60 min. 

Similarly, incubating spermatozoa with ACEA increased the percentage of sperm exhibiting the 

B pattern, as observed with Fn. However, the TRPV1 antagonist (RCM+ACEA+CPZ) blocked 

the stimulatory effect induced by the CB1 agonist (RCM+ACEA; Fig. 4B) at both time points (1 

and 60 min). 

These results suggest that simultaneous activation of the CB1 and TRPV1 receptors may be 

necessary for Fn-induced human sperm capacitation. 

Fn modulates FAAH activity during human sperm capacitation through the cAMP/PKA 

pathway  

FAAH is the enzyme that degrades AEA and plays a fundamental role in regulating the 

endocannabinoid system by controlling intracellular AEA levels. Thus, we evaluated the effects 

of Fn on the specific activity of FAAH during capacitation (Fig. 5A). 
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 The specific activity of FAAH decreased by 60 % in sperm incubated in RCM relative to sperm 

incubated in NCM at both incubation time points. When Fn was added to sperm incubated in 

RCM, FAAH enzymatic activity decreased significantly at 1 min (by approximately 50 %) 

relative to RCM alone. However, after 60 min of capacitation, a significant increase in FAAH 

enzymatic activity (by approximately 200 %) was observed relative to incubation in RCM alone.  

This result indicates that Fn decreases FAAH activity after 1 min of incubation, suggesting that 

sperm AEA levels have increased; however, Fn increases FAAH activity after 60 min of 

incubation, suggesting that sperm AEA levels have decreased. 

We previously demonstrated that Fn modulates cAMP levels and PKA activity during human 

sperm capacitation (Martinez-Leon et al., 2015). Here, we determined the effects of capacitation 

on cAMP levels and PKA activity during the early events of sperm capacitation. Fn induced rapid 

increases in cAMP levels (Fig. 5B) and PKA activity (Fig. 5C) after 1 min of capacitation, 

whereas it significantly decreased cAMP levels (Fig. 5B) and PKA activity (Fig. 5C) after 60 min 

of capacitation. Notably, the modulatory effects of Fn on PKA activity correlated with its effects 

on cAMP levels. As our results suggested that Fn modulates cAMP levels as well as PKA and 

FAAH activities, we evaluated whether Fn modulated FAAH enzymatic activity through the 

cAMP/PKA system. We pre-incubated spermatozoa with the specific PKA inhibitor H89 (10 µM) 

or KT5720 (50 nM) for 30 min and assessed FAAH activity. Fig. 5A shows that both PKA 

inhibitors completely reversed the effect of Fn on FAAH enzymatic activity, resulting in FAAH 

activity levels similar to those in NCM. This effect was observed at both incubation time points. 

We performed FAAH immunoprecipitation and then immunoblotting with an antibody that 

recognizes PKA substrates to confirm whether the cAMP/PKA pathway modulates FAAH 

enzymatic activity. We observed that FAAH is a PKA substrate, but its phosphorylation was 
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 nearly undetectable after 1 and 60 min of incubation of sperm in NCM in the presence or absence 

of Fn (Fig. 5D). In contrast, spermatozoa incubated in RCM showed an increase in the 

phosphorylation level after 1 and 60 min relative to spermatozoa incubated in NCM. This 

suggests that when the FAAH enzyme is phosphorylated, its activity decreases (see Fig. 5A). 

However, FAAH phosphorylation was significantly increased in sperm incubated in RCM in the 

presence of Fn at 1 min relative to sperm incubated with RCM alone. This observation is 

consistent with the observed changes in FAAH activity (see Fig. 5A). In spermatozoa incubated 

for 60 min in the presence of Fn, a slight decrease in the amount of FAAH phosphorylation was 

observed relative to spermatozoa incubated in RCM alone (Fig. 5D), and this result was also 

consistent with the observed changes in FAAH enzymatic activity (see Fig. 5A). 

Discussion 

We demonstrated previously that Fn enhances human sperm capacitation (Martinez-Leon et al., 

2015), but the mechanisms underlying the involvement of Fn in human sperm capacitation were 

unclear. The present study has demonstrated for the first time that Fn interacts with members of 

the endocannabinoid system in human spermatozoa. In addition, we provide evidence that this 

interaction affects sperm capacitation and is mediated by the cAMP/PKA pathway. 

Previously, an interaction between the endocannabinoid system and Fn was described in both 

endothelial cells (Waldeck-Weiermair et al., 2008) and the central nervous system (Jeske et al., 

2009). In addition, it was observed that Fn and AEA are capable of inducing sperm capacitation 

independently (Gervasi et al., 2016; Martinez-Leon et al., 2015). Given this background, we first 

tested whether there was a summative or synergistic effect between both molecules. CTC assays 

demonstrated that Met-AEA (a non-hydrolysable AEA analogue) induces capacitation, as does 

Fn. However, no synergistic effects were observed when spermatozoa were incubated with Fn 
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 and Met-AEA (Fig. 1), suggesting that Fn and Met-AEA mediate capacitation through the same 

signalling pathway or through a crosstalk signalling mechanism. Given the results obtained, we 

evaluated whether Fn-induced sperm capacitation is mediated by the endocannabinoid system. 

We first assessed whether Fn-induced sperm capacitation is mediated by the AEA receptors using 

CTC assays and heterologous co-culture experiments. According to the results obtained using 

both approaches, Fn-induced sperm capacitation was mediated by the CB1 and TRPV1 receptors 

but not by the CB2 receptor. As observed in our study, Gervasi et al. (2016) described that pre-

incubating bovine sperm with a selective CB1 or TRPV1 antagonist completely inhibited AEA 

release from BOECs (sperm-BOEC co-cultures), indicating that the CB1 and TRPV1 receptors 

participate in AEA-induced bovine sperm capacitation. A recent study described that AEA at 

nanomolar concentrations decreased the number of spermatozoa bound to oviduct explants and 

that the suppressive effect of AEA on sperm-oviduct binding was inhibited by a CB1 receptor 

antagonist in water buffalo (Kumar et al., 2017). However, it has been reported that the CB2 

receptor does not participate in this process, which is consistent with our findings (Gervasi et al., 

2011). Moreover, previous studies have demonstrated that the CB1 and TRPV1 receptors, but not 

the CB2 receptor, are involved in the regulation of sperm capacitation in different species 

(Amoako et al., 2013; Aquila et al., 2010; Francavilla et al., 2009). Agirregoitia et al. (2010) 

suggested that CB2 may regulate human sperm motility; however, this finding has not been 

confirmed by other studies.  

Although it was observed that the CB1 and TRPV1 receptors mediate the effects of Fn on 

capacitation, we noted that antagonizing either of them completely inhibited the effects of Fn on 

capacitation (Fig. 2 and 3). This finding led us to question why antagonizing one receptor results 

in complete rather than partial inhibition of Fn-mediated capacitation and whether this inhibitory 

profile involves regulatory crosstalk between the two receptors, as described in previous 
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 investigations utilizing other cell models. For example, Ahluwalia, Rang, and Nagy (2002) 

observed a high degree of co-localization of CB1 with TRPV1, and Ross (2003) and Hermann et 

al. (2003) reported that TRPV1 receptor activation in central nervous system cells depends on 

CB1 activation and that these two receptors have similar activation pathways. In particular, the 

latter group observed that CB1 agonist pretreatment significantly enhanced the effects of 

capsaicin at various Ca2+ concentrations in HEK-293 cells overexpressing both the CB1 and 

TRPV1 receptors but not in cells overexpressing only the TRPV1 receptor. This effect was 

blocked by a CB1 receptor antagonist and by inhibitors of PI3K and PLC. Additionally, this 

group observed that CB1 activity is tonically inhibited and that TRPV1 receptor activation is 

heavily regulated by PIP2 at the membrane (Chuang et al., 2001). Given the background 

described above and our results, we decided to evaluate the possible modulation between TRPV1 

and CB1 during Fn-induced capacitation. As shown in Fig. 4, the results suggest a cooperative 

effect between CB1 and TRPV1. Consistent with our results, Gervasi et al. (2016) suggested that 

CB1 activation is coupled to TRPV1 and that the mechanisms underlying the activities of CB1 

and TRPV1 are dependent on PLC activation during AEA-induced bovine sperm release from the 

oviductal reservoir. PLC is known to hydrolyse PIP2, and PLC activity has been linked to sperm 

capacitation (Breitbart, 2002). Thus, it is interesting that CB1 receptor activity is coupled to the 

enzymatic activation of PLC (Ho, Uezono, Takada, Takase, & Izumi, 1999), similar to integrin 

activation. Regarding this finding, Tvorogov, Wang, Zent, and Carpenter (2005) observed that 

PLC-γ1 co-immunoprecipitated with Src following Fn-induced integrin activation in fibroblasts. 

Based on this evidence, we believe that CB1/TRPV1 cooperation may be facilitated by Src 

pathway activation. Additionally, AEA binds to TRPV1 at an intracellular site and to CB1 at an 

extracellular site, suggesting sequential TRPV1/CB1 receptor activation may occur in human 

spermatozoa. Further studies are required to corroborate this hypothesis. Note that we are the first 
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 to show that this cooperative effect exists in human sperm. More functional studies, including 

electrophysiological recordings, are necessary to reveal the physiological role of TRPV1 in 

spermatozoa and its link to the endocannabinoid system.  

We previously demonstrated that Fn-mediated effects are specific and triggered by Fn-integrin 

α5β1 binding (Martinez-Leon et al., 2015). In this study, the results suggest that the CB1 and 

TRPV1 receptors were indirectly activated through Fn-integrin α5β1 binding during sperm 

capacitation. At present, it is uncertain when Fn modulates the endocannabinoid system to 

activate these receptors. Previous studies have reported that AEA at nanomolar concentrations 

stimulates bovine sperm capacitation (Gervasi et al., 2011; Osycka-Salut et al., 2012) through 

CB1 and TRPV1 activation and that different AEA concentrations trigger different signalling 

pathways and induce distinct effects, including sperm capacitation, in the female and male 

reproductive systems (Agirregoitia et al., 2010; Amoako et al., 2013; Bovolin et al., 2014; Schuel, 

Burkman, Lippes, Crickard, Mahony, et al., 2002). Therefore, the FAAH enzyme is relevant due 

to its essential role in regulating AEA levels (Cascio & Marini, 2015; Francavilla et al., 2009; 

Howlett et al., 2011; Maccarrone, 2009; Rapino et al., 2014). FAAH activity decreased 

significantly in capacitated spermatozoa relative to non-capacitated spermatozoa, indicating that 

capacitation itself regulates endocannabinoid system function. Catanzaro et al. (2011) and 

Gervasi et al. (2011) observed similar results in mouse and bovine models, respectively. 

Data analysis also demonstrated that Fn differentially influences FAAH enzymatic activity (Fig. 

5A). Specifically, Fn decreases FAAH activity during early capacitation, leading to increases in 

AEA levels and CB1 and TRPV1 receptor activation, simultaneously increasing the number of 

capacitated sperm (Fig. 1, 2 and 3). However, Fn increases FAAH activity after 60 min of 
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 capacitation, leading to decreased AEA levels. This result is very interesting, as maintenance of 

AEA levels is essential for successful fertilization, as described above. 

After observing that Fn induces changes in FAAH activity, we next examined how this 

modulation is produced. Studies utilizing other cellular models have demonstrated that FAAH 

activity is regulated by PKA-dependent pathways (Grimaldi, Rossi, Catanzaro, & Maccarrone, 

2009; Maccarrone, 2009), and our results indicate that Fn modulates cAMP levels and PKA 

activity during capacitation. Thus, we sought to establish whether Fn modulates FAAH enzymatic 

activity during capacitation by the cAMP/PKA pathway. It must be noted that the cAMP/PKA 

pathway plays an essential role in capacitation and is not exclusively activated by Fn signalling. 

Unsurprisingly, our results indicate that FAAH activity was partially—but not completely—

restored by specific PKA inhibition (Fig. 5A). We observed that Fn induces an increase in cAMP 

levels after 1 min of incubation coincident with a rapid increase in PKA activity and a decrease in 

FAAH activity. However, after 60 min, Fn decreases cAMP levels coincident with a decrease in 

PKA activity and an increase in FAAH activity. Rossi et al. (2007) observed similar results, 

determining that FSH activates numerous transcription factors and accessory proteins by 

phosphorylation and increases FAAH expression and activity through the cAMP/PKA pathway in 

Sertoli cells. Multiple studies have shown that sperm capacitation is a HCO3
-- and Ca2+-dependent 

process (Gadella & Harrison, 2000; Garbers, Tubb, & Hyne, 1982; Signorelli et al., 2012; 

Visconti et al., 1995). As described previously (Diaz et al., 2007), Fn regulates intracellular Ca2+ 

levels, which could explain why this glycoprotein modulates cAMP levels. The presence of 

HCO3
- and an increase in intracellular Ca2+ lead to the activation of soluble adenylate cyclase 

(SACY) as reported previously (Garbers et al., 1982; Shi & Roldan, 1995; Visconti, 2009). 

Notably, additional studies are needed to investigate the exact mechanisms by which Fn is able to 

modulate cAMP levels. 
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 We performed FAAH immunoprecipitation to evaluate the degree of FAAH phosphorylation by 

immunoblotting using an antibody that recognizes PKA protein substrates. Our data completely 

matched the above results, showing changes in the amount of FAAH phosphorylation. Similar 

results have been described by Grimaldi et al. (2009), who reported that in Sertoli cells, binding 

of FSH to its receptor induces PKA activation, which in turn modulates FAAH activity through 

the phosphorylation of accessory proteins. In conclusion, these results indicate that Fn modulates 

FAAH activity through the cAMP/PKA pathway. In this work, we showed for the first time that 

FAAH activity is regulated by PKA phosphorylation during sperm capacitation. We also 

performed bioinformatics analysis using three different types of prediction software to determine 

whether FAAH contains PKA phosphorylation sites. We identified six possible PKA 

phosphorylation sites at serine residues using Kinasephos 2.0 software (Wong et al., 2007); 

nineteen possible PKA phosphorylation sites at serine residues and six phosphorylation sites at 

threonine residues using NetPhos 2.0 software (Blom, Gammeltoft, & Brunak, 1999); and five 

possible PKA phosphorylation sites at serine residues and two sites at threonine residues using 

PhosphoSVM software (Dou, Yao, & Zhang, 2014) (Fig. S1). This bioinformatics approach 

helped us understand and verify that FAAH activity is regulated by the cAMP/PKA pathway. 

Considering the background and the findings presented herein, we propose that capacitation is 

regulated by Fn-integrin α5β1 binding and endocannabinoid system modulation (Fig. 6). 

Spermatozoa contact Fn by its receptor, the α5β1 integrin, which is present on their cell surfaces, 

while passing through the uterine tubes, triggering cAMP upregulation, PKA activation, FAAH 

phosphorylation and AEA upregulation. AEA activates the CB1 and TRPV1 receptors, promoting 

capacitation in human sperm. Fn subsequently decreases cAMP levels, triggering an increase in 

FAAH activity and a corresponding decrease in AEA levels, ensuring the proper control of sperm 

capacitation. Notably, control of AEA levels is extremely important because the cellular effects 
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 of AEA depend on its concentration. In the case of sperm, AEA at nanomolar concentrations 

induces capacitation, whereas AEA at micromolar concentrations inhibits capacitation (Amoako 

et al., 2013; Aquila et al., 2010; Gervasi et al., 2016; Maccarrone et al., 2015). 

In conclusion, in the present study, we provide evidence that the effect induced by Fn during 

human sperm capacitation is mediated by the endocannabinoid system through the cAMP/PKA 

pathway. These findings contribute to a greater understanding of the molecular mechanisms 

underlying physiological human sperm capacitation. 
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 Figures 

Figure 1. Effects of Fn and Met-AEA on the B pattern of human sperm during 

capacitation. Human sperm were incubated in RCM in the presence (solid line/black circles) or 

absence of Fn (dotted line/dark grey triangles) or in the presence (dotted line/dark grey square) 

or absence of Met-AEA and both molecules (solid line/black diamond) for different periods of 

time (1, 60, 180, 300 and 1080 min). The capacitation state was evaluated using the CTC assay, 

as described in the Materials and Methods section. The results were obtained from twelve 

different donors and are expressed as the mean±SEM of the percentage of cells exhibiting the B 

pattern. ***P≤0.001 RCM+Fn vs RCM; ***P≤0.001 RCM+Met-AEA vs RCM; ***P≤0.001 

RCM+Fn+Met-AEA vs RCM (ANOVA, Tukey’s multiple comparison test). 
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 Figure 2. Fn modulates human sperm capacitation through the CB1 and TRPV1 

receptors. Human sperm were pre-incubated in the presence or absence of the following 

specific endocannabinoid receptor antagonists: (A) 0.1 nM CZP (TRPV1 antagonist), (B) 0.1 

µM AM251 (CB1 antagonist) or (C) 0.1 nM SR144528 (CB2 antagonist) in NCM or RCM with 

or without 100 µg/ml Fn, incubated for 1 min or 60 min. Capacitation status was evaluated by 

the CTC assay, as described in the Materials and Methods. The results were obtained from nine 

different donors and are expressed as the mean±SEM of the percentage of cells exhibiting the B 

pattern. a≠b≠c P<0.001 (ANOVA, Tukey’s multiple comparison test). 

 



 

 

This article is protected by copyright. All rights reserved. 

A
cc

ep
te

d 
A

rt
ic

le
 Figure 3. Participation of CB1 and TRPV1 in Fn-induced human sperm release from 

BOEC monolayers. A BOEC monolayer and 12 × 106 sperm/ml were co-cultured in NCM or 

RCM with or without 100 µg/ml Fn for 2.5 h. Human sperm were pre-incubated in the presence 

or absence of the following specific endocannabinoid receptor antagonists: (A) 0.1 nM CZP 

(TRPV1 antagonist), (B) 0.1 µM AM251 (CB1 antagonist) and (C) 0.1 nM SR144528 (CB2 

antagonist), incubated for 1 min or 60 min. The bars represent the number of spermatozoa that 

remained attached to the BOEC monolayers, and the results are expressed as the mean±SEM of 

six independent experiments. a≠b≠c P<0.05 (ANOVA, Tukey’s multiple comparison test). 
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 Figure 4. The CB1 and TRPV1 receptors interact during Fn-induced human sperm 

capacitation. (A) Human spermatozoa were pre-incubated in the presence of 0.1 µM AM251 

(CB1 antagonist) in NCM and then incubated in the presence of 1 mM CPS (TRPV1 agonist) in 

RCM with or without 100 µg/ml Fn. (B) Human sperm were pre-incubated in the presence of 

0.1 nM CZP (TRPV1 antagonist) in NCM and then incubated in the presence of 10 mM ACEA 

(CB1 agonist) in RCM with or without 100 µg/ml Fn. Human spermatozoa incubated in NCM 

with or without 100 µg/ml Fn were used as controls. In the CTC assay, the B pattern was 

identified at 1 and 60 min. The bars indicate the percentages of sperm exhibiting the B pattern 

in four independent experiments. Data are expressed as the mean±SEM. a≠b≠c P<0.01 

(ANOVA, Tukey’s multiple comparison test). 
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 Figure 5. FAAH activity is regulated by the cAMP/PKA pathway during human 

sperm capacitation induced by Fn. (A) Human sperm were incubated in NCM, NCM+100 

µg/ml Fn, RCM or RCM+100 µg/ml Fn. Simultaneously, sperm were pre-incubated in RCM 

with 10 µM H89 or 50 nM KT5720 in the presence of 100 µg/ml Fn. Thirty micrograms of 

protein per assay were used to determine FAAH enzymatic activity at 1 and 60 min. The bars 

represent enzymatic activity levels as determined by enzymatic ratio conversion. The results 

were obtained from nine independent experiments and are expressed as the mean±SEM. a≠b≠c 

P<0.01 (ANOVA, Tukey’s multiple comparison test). (B) Human sperm were incubated in 

NCM, RCM or RCM+100 µg/ml Fn for 1 and 60 min. The bars represent the total cAMP 

concentrations measured using a commercial ELISA kit, as detailed in the Supplemental 

Materials and Methods section. The results were obtained from eight different donors and are 

expressed as the mean±SEM. *P<0.05; ***P<0.001 (ANOVA, Tukey’s multiple comparison 

test). (C) Sperm were incubated in NCM (black grey circles) or RCM (black triangles) in the 

presence (dotted line) or absence of 100 µg/ml Fn (solid line) for 1 and 60 min. PKA activity 

was measured in sperm extracts, as indicated in the Supplemental Materials and Methods 

section. The results were obtained from five different donors and are expressed as the 

mean±SEM. *P<0.05 RCM+Fn vs RCM; ***P<0.001 RCM+Fn vs RCM (ANOVA, Tukey’s 

multiple comparison test). (D) Aliquots of 200 µg of protein obtained from spermatozoa 

incubated in NCM or RCM with or without 100 µg/ml Fn were used for immunoprecipitation 

(IPP) for FAAH using magnetic beads (Dynabeads®) bound to recombinant protein G, after 

which SDS-PAGE was performed. The proteins were subsequently transferred to a PVDF 

membrane, which was probed with an anti-pPKAs antibody and then incubated with a 

biotinylated secondary antibody (anti-IgG). Finally, a streptavidin-peroxidase conjugate was 

added. The membrane was developed using an ECL reagent. As a loading control for IPP, 

immunoblotting using an anti-FAAH antibody under the same conditions as those described 

above was performed. Representative images of four independent experiments are shown. 
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 Figure 6. Model of the participation of Fn in endocannabinoid system modulation 

during human sperm capacitation. A) At 1 min, Fn-α5β1 binding occurs and cAMP levels are 

increased, leading to PKA activation. PKA subsequently phosphorylates FAAH, thereby 

decreasing its activity and inducing a corresponding increase in AEA concentrations. AEA then 

activates the TRPV1 and CB1 receptors, promoting capacitation. B) At 60 min, Fn-α5β1 binding 

reduces cAMP levels, which leads to decreased PKA activity. Subsequently, enzymatic activity 

of FAAH is increased, and AEA concentrations are decreased, preserving the AEA levels 

necessary for maintenance of capacitation. 
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