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Abstract
The various applications using Distributed Ledger Technologies (DLT) or blockchains, have led to
the introduction of a new “marketplace” where multiple types of digital assets may be exchanged.
As each blockchain is designed to support specific types of assets and transactions, and no blockchain
will prevail, the need to perform interblockchain transactions is already pressing.

In this work we examine the fundamental problem of interoperable and interconnected blockchains.
In particular, we begin by introducing the Multi-Distributed Ledger Objects (MDLO), which is the
result of aggregating multiple Distributed Ledger Objects – DLO (a DLO is a formalization of the
blockchain) and that supports append and get operations of records (e.g., transactions) in them from
multiple clients concurrently. Next we define the AtomicAppends problem, which emerges when the
exchange of digital assets between multiple clients may involve appending records in more than one
DLO. Specifically, AtomicAppend requires that either all records will be appended on the involved
DLOs or none. We examine the solvability of this problem assuming rational and risk-averse clients
that may fail by crashing, and under different client utility and append models, timing models,
and client failure scenarios. We show that for some cases the existence of an intermediary is
necessary for the problem solution. We propose the implementation of such intermediary over a
specialized blockchain, we term Smart DLO (SDLO), and we show how this can be used to solve the
AtomicAppends problem even in an asynchronous, client competitive environment, where all the
clients may crash.
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1 Introduction

Blockchain systems, cryptocurrencies, and distributed ledger technology (DLT) in general,
are becoming very popular and are expected to have a high impact in multiple aspects of
our everyday life. In fact, there is a growing number of applications that use DLT to support
their operations [26]. However, there are many different blockchain systems, and new ones are
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5:2 Atomic Appends on Multiple Distributed Ledgers

proposed almost everyday. Hence, it is extremely unlikely that one single DLT or blockchain
system will prevail. This is forcing the DLT community to accept that it is inevitable to
come up with ways to make blockchains interconnect and interoperate.

The work in [7] proposed a formal definition of a reliable concurrent object, termed
Distributed Ledger Object (DLO), which tries to convey the essential elements of blockchains.
In particular, a DLO is a sequence of records, and has only two operations, append and get.
The append operation is used to attach a new record at the end of the sequence, while the
get operation returns the sequence.

In this work we initiate the study of systems formed by multiple DLOs that interact
among each other. To do so, we define a basic problem involving two DLOs, that we call the
Atomic Append problem. In this problem, two clients want to append new records in two
DLOs, so that either both records are appended or none. The clients are assumed to be
selfish, but rational and risk-averse [21], and may have different incentives for the different
outcomes. Additionally, we assume that they may fail by crashing, which makes solving the
problem more challenging. We observe that the problem cannot be solved in some system
models and propose algorithms that solve it in others.

1.1 Related Work
The Atomic Append problem we describe above is very related to the multi-party fair
exchange problem [8], in which several parties exchange commodities so that everyone gives
an item away and receives an item in return. The proposed solutions for this problem rely on
cryptographic techniques [17,19] and are not designed for distributed ledgers. In this paper,
as much as possible, we want to solve Atomic Appends on DLOs via their two operations
append and get, without having to rely on cryptography or smart contracts.

Among the first problems identified involving the interconnection of blockchains was
Atomic Cross-chain Swaps [13], which can also be seen as a version of the fair exchange
problem. In this case, two or more users want to exchange assets (usually cryptocurrency) in
multiple blockchains. This problem can be solved by using escrows, hashlocks and timelocks:
all assets are put in escrow until a value x with a special hash y = hash(x) is revealed or a
certain time has passed. Only one of the users knows x, but as soon as she reveals it to claim
her assets, everyone can use it to claim theirs. Observe that this solution assumes synchrony
in the system, in the sense that timelocks assume that the time to claim an asset is bounded
and known, and that timeouts can be used to detect crashes.

This technique was originally proposed in on-line fora for two users [1], and it has been
specified, validated, adapted, and used [20, 25]. For instance, the Interledger system [11]
will use a generalization of atomic swaps to transfer (and exchange) currency in a network
of blockchains and connectors, allowing any client of the system to interact with any other
client. The Lightning network [18, 22] also allows transfers between any two clients via a
network of micro-payment channels using a generalized atomic swap. Both Interledger and
Lighting route and create one-to-one transfer paths in their respective networks. Herlihy [13]
has formalized and generalized atomic cross-chain swaps beyond one-to-one paths, and shows
how multiple cross-chain swaps can be achieved if the transfers form a strongly connected
directed graph. Herlihy proves that the best strategy, in Game Theoretic sense, for the users
is to follow the proposed algorithm, and that someone that follows it will never end up worst
than at the start.

Unlike in most blockchain systems, in Hyperledger Fabric [5, 6] it is possible to have
transactions that span several blockchains (blockchains are called channels in Hyperledger
Fabric). This allows solving the atomic cross-chain swap problem using a third trusted
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channel or a mechanism similar to a two-phase commit [5]. Additionally, these solutions
do not require synchrony from the system. The ability of channels to access each other’s
state and interact is a very interesting feature of Hyperledger Fabric, very in line with the
techniques we assume from advanced distributed ledgers in this paper. Unfortunately, they
seem to be limited to the channels of a given Hyperledger Fabric deployment.

There are other blockchain systems under development that, like Hyperledger Fabric,
will allow interactions between the different chains, presumably with many more operations
than atomic swaps. Examples are Cosmos [2] or PolkaDot [4]. These systems will have their
own multi-chain technology, so only chains in a given deployment can initially interact, and
other blockchain will be connected via gateways. Another proposal for interconnection of
blockchains is Tradecoin [12], whose target is to interconnect all blockchains by means of
gateways, trying to reproduce the way Internet works. Since the gateways will be clients of
the blockchains, the functionality of the global interledger system will be limited by what
can be done from the edge of the blockchains (i.e., by the blockchains’ clients).

The practical need of blockchain systems to access the outside world to retrieve data (e.g.,
exchange rates, bank account balances) has been solved with the use of blockchain oracles.
These are relatively reliable sources of data that can be used inside a blockchain, typically
in a smart contract. The weakest aspect of blockchain oracles is trust, since the outcome
or actions of a smart contract will be as reliable as the data provided by the oracle. As of
now, it seems there is no good solution for this trust problem, and blokchains have to rely
on oracle services like Oraclize [3].

1.2 Contributions
As mentioned above, in this paper we extend the study of the distributed ledger reliable
concurrent object DLO started in [7] to systems formed of several such objects. Hence, the
first contribution is the definition of the Multiple DLO (MDLO) system, as the aggregation of
several DLOs (in similar way as a Distributed Shared Memory is the aggregation of multiple
registers [24]). The second contribution is the definition of a simple basic problem in MDLO
systems: the 2-AtomicAppends problem. In this problem, the objective is that two records
belonging to two different clients are appended to two different DLOs atomically. Hence,
either both records are appended or none is. Of course, this problem can be generalized
in a natural way to the k-Atomic Appends problem, involving k clients with k records and
up to k DLOs.

Another contribution, in our view, is the introduction of a crash-prone risk-averse rational
client model, which we believe is natural and practical, especially in the context of blockchains.
In this model, clients act selfishly trying to maximize their utility, but minimizing the risk
of reducing it. We consider that this behavior is not a failure, but the nature of the client,
and any algorithm proposed under this model (e.g., to solve the 2-AtomicAppends problem)
must guarantee that clients will follow it, because their utility will be maximized without
any risk. For a complete specification of the clients’ rationality their utility function has to
be provided. Two utility models are proposed. In the collaborative utility model, both clients
want the records to be appended over any other alternative. In the competitive utility model
a client still wants both records appended, but she prefers that only the other client appends.
This client model is complemented with the possibility that clients can fail by crashing.

We explore hence the solvability of 2-AtomicAppends in MDLO systems in which the
DLOs are reliable but may be asynchronous, and the clients are rational but may fail by
crashing. The first results we present consider a system model in which clients do not crash,
and show that Collaborative 2-AtomicAppends can be solved even under asynchrony, while
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5:4 Atomic Appends on Multiple Distributed Ledgers

Competitive 2-AtomicAppends cannot be solved. Then, we further study Collaborative
2-AtomicAppends if clients can crash. In the case that at most one of the two clients can
crash, we show that, if each client must append its own record (what we call no delegation),
Collaborative 2-AtomicAppends cannot be solved even under synchrony. This justifies
exploring the possibility of delegation: any client can append any record, if she knows it. We
show that in this case Collaborative 2-AtomicAppends can be solved, even if the system is
asynchronous (termination is only guaranteed under synchrony, though). However, delegation
is not enough if both clients can crash, even under synchrony. (See Table 2 for an overview.)

The negative results (for Competitive 2-AtomicAppends even without crash failures and
for Collaborative 2-AtomicAppends with up to 2 crashes) justifies exploring alternatives
to appending directly or delegating among clients. Hence, we propose the use of an entity,
external to the clients, that coordinates the appends of the two records. In fact, this entity is
a special DLO with some level of intelligence, which we hence call Smart DLO (SDLO). The
SDLO is by design a reliable entity to which clients can delegate (via appending in the SDLO)
the responsibility of appending their records to their respective DLOs when convenient. The
SDLO hence collects all the records from the clients and appends them. Since the SDLO is
reliable, all the appends will complete. If some record is missing, the SDLO issues no append,
to guarantee the properties of the 2-AtomicAppends problem. Thus, the SDLO can be used
to solve Competitive and Collaborative k-AtomicAppends even when all clients can crash.

We believe that SDLO opens the door to a new type of interconnection and interoperability
among DLOs and blockchains. While the use of oracles to access external information in
a smart contract (maybe from another blockchain) is widely known, we are not familiar
with blockchain systems in which one blochchain (i.e., possibly a smart contract) issues
transactions in another blockchain. We believe this is a concept worth to be explored further.

The rest of the paper is structured as follows. The next section describes the model used
and defines the AtomicAppends problem. Section 3 explores the 2-AtomicAppends problem
when clients cannot crash. Section 4 studies the 2-AtomicAppends problem when clients can
crash but SDLOs are not used. Section 5 introduces the SDLO and shows how it solves the
AtomicAppends problem. Finally, Section 6 presents conclusions and future work.

2 Problem Statements and Model of Computation

2.1 Objects and Histories
An object type T is defined over the domain of values that any object of type T may take,
and the operations that any object of type T supports. An object O of type T is a concurrent
object if it is a shared object accessed by multiple processes [23]. A history of operations on
an object O, denoted by HO , is the sequence of operations invoked on O. Each operation π
contains an invocation and a matching response event. Therefore, a history is a sequence of
invocation and response events, starting with an invocation. We say that an operation π
is complete in a history HO , if the history contains both the invocation and the matching
response events of π. History HO is complete if it only contains complete operations. History
HO is well-formed if no two invocation events that do not have a matching response event in
HO belong to the same process p. That is, each process p invokes one operation at a time.
An object history HO is sequential, if it contains a sequence of alternating invocation and
matching response events, starting with an invocation and ending with a response. We say
that an operation π1 happens before an operation π2 in a history HO , denoted by π1 → π2,
if the response event of π1 appears before the invocation event of π2 in HO .
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The Ledger Object (LO). A ledger L (as defined in [7]) is a concurrent object that stores
a totally ordered sequence L.S of records and supports two operations (available to any
process p): (i) L.getp(), and (ii) L.appendp(r). A record is a triple r = 〈τ, p, v〉, where p is
the identifier of the process that created record r, τ is a unique record identifier from a set
T , and v is the data of the record drawn from an alphabet Σ. We will use r.p to denote the
id of the process that created record r; similarly we define r.τ and r.v. A process p invokes
an L.getp() operation to obtain the sequence L.S of records stored in the ledger object L,
and p invokes an L.appendp(r) operation to extend L.S with a new record r. Initially, the
sequence L.S is empty.

I Definition 1 (Sequential Specification of a LO [7]). The sequential specification of a ledger
L over the sequential history HL is defined as follows. The value of the sequence L.S of the
ledger is initially the empty sequence. If at the invocation event of an operation π in HL the
value of the sequence in ledger L is L.S = V , then:
1. if π is an L.getp() operation, then the response event of π returns V , while the value of
L.S does not change, and

2. if π is an L.appendp(r) operation (and r /∈ V ), then at the response event of π the value
of the sequence in ledger L is L.S = V ‖r (where ‖ is the concatenation operator).

In this paper we assume that ledgers are idempotent, therefore a record r appears only
once in the ledger even when the same record r is appended to the ledger by multiple append
operations (and hence the r /∈ V in the definition above).

2.2 Distributed Ledger Objects (DLO) and Multiple DLOs (MDLO)
Distributed Ledger Objects (DLO). A Distributed Ledger Object (DLO) DL, is a concur-
rent LO that is implemented by (and possibly replicated among) a set S of (possibly distinct
and geographically dispersed) computing devices, we refer as servers. Like any LO, DL
supports the operations get() and append(). We refer to the processes that invoke the get()
and append() operations on DL as clients.

Each server s ∈ S may fail. Thus, the distribution and replication of DL offers availability
and survivability of the ledger in case a subset of servers fail. At the same time, the fact that
multiple clients invoke append() and get() requests to different servers, raises the challenge
of consistency: what is the latest value of the ledger when multiple clients access the ledger
concurrently? The work in [7] defined three consistency semantics to explain the behavior of
append() and get() operations when those are invoked concurrently by multiple clients on a
single DLO. In particular, they defined linearizable [14, 16], sequential [15], and eventual [9]
consistent DLOs. In this work we will focus on linerizable DLOs which according to [7] are
defined as follows:

I Definition 2 (Linearizable Distributed Ledger Object [7]). A distributed ledger DL is linear-
izable if, given any complete, well-formed history HDL, there exists a sequential permutation
σ of the operations in HDL such that:
1. σ follows the sequential specification of a ledger object (Definition 1), and
2. for every pair of operations π1, π2, if π1 → π2 in HDL, then π1 appears before π2 in σ.

Multiple DLOs (MDLO). A Multi-Distributed Ledger Object MDL, termed MDLO, con-
sists of a collection D of (heterogeneous) DLOs and supports the following operations: (i)
MDL.getp(DL), and (ii) MDL.appendp(DL, r). The get returns the sequence of records
DL.S, where DL ∈ D. Similarly, the append operation appends the record r to the end
of the sequence DL.S, where DL ∈ D. From the locality property of linearizability [14] it
follows that a MDLO is linearizable, if it is composed of linearizable DLOs. More formally:
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5:6 Atomic Appends on Multiple Distributed Ledgers

I Definition 3 (Linearizable Multi-Distributed Ledger Object). A multi-distributed ledger
MDL is linearizable if ∀DL ∈ D, DL is linearizable, where D is the set of DLOs MDL
contains.

For the rest of this paper, unless otherwise stated, we will focus on MDLOs consisting
of two DLOs. The same techniques can be generalized in MDLOs with more than two
DLOs. In particular, we consider the records of two clients, A and B, on two different
DLOs. For convenience we use DLOX to denote the DLO appended by records from X, for
X ∈ {A,B}. Similarly we denote as rX the record that X ∈ {A,B} wants to append on
DLOX . Furthermore, we view the DLOs and MDLOs as black boxes that reliably implement
the specified service, without going into further implementation details.

2.3 AtomicAppends: Problem Definition

Multi-DLOs allow clients to interact with different DLOs concurrently. This is safe when the
records involved in concurrent operations are independent. However, it may raise semantic
consistency issues when there exists inter-dependent records, e.g. a record rA must be
inserted in DLOA when a record rB is inserted in DLOB and vice versa. More formally, we
say that a record r depends on a record r′, if r may be appended on its intended DLO, say
DL, only if r′ is appended on a DLO, say DL′. Two records, r and r′, are mutually dependent,
if r depends on r′ and r′ depends on r. In this section we define a new problem, we term
AtomicAppends, that captures the properties we need to satisfy when multiple operations
attempt to append dependent records on different DLOs.

I Definition 4 (2-AtomicAppends). Consider two clients, A and B, with mutually dependent
records rA and rB. We say that records rA and rB are appended atomically on DLOA and
DLOB respectively, when:

Either both or none of the records are appended to their respective DLOs (safety)
If neither A nor B fail, then both records are appended eventually (liveness).

An algorithm solves the 2-AtomicAppends problem under a given system model, if it
guarantees the safety and liveness properties of Definition 4.

The k-AtomicAppends problem, for k ≥ 2, is a generalization of the 2-AtomicAppends
that can be defined in the natural way (k clients, with k records, to be appended to up to k
DLOs.) From this point onwards, we will focus on the 2-AtomicAppends problem, and when
clear from the context, we will refer to it simply as AtomicAppends.

2.4 Communication, Timing and Append Models

The previous subsections are independent of the communication medium, and the failure
and timing model. We now specify the communication and timing assumptions considered
in the remainder of the paper. We also consider different models on who can append a
specific record.

Communication model. We assume a message-passing system where messages are neither
lost nor corrupted in transit. This applies to both the communication among clients and
between clients and DLOs (i.e, the invocation and response messages of the operations).
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Timing models. We consider synchronous and asynchronous systems with respect to both
computation and communication. In the former, the evolution of the system is governed by a
global clock and a local computation, a message delivery or a DLO operation is guaranteed to
complete within a predefined time-frame. For simplicity, we set this time-frame to correspond
to one unit of time. In the latter, no timing assumptions are made beyond that they will
complete in a finite time.

Append models. We consider three different append models. In the first, and most
restrictive one, which we refer to as Client appends with no delegation, or NoDelegation for
short, the only way a client can append its record, is by issuing append operations directly
to the corresponding DLOs, i.e., no other entity, including the other client, can do so. The
second one, referred to as Client appends with delegation, or WithDelegation for short, is a
relaxation of the first model, in which one client can append the record of the other client (if
it knows it). Finally, in the third model, a record can be appended by an external (w.r.t.
the clients) entity, provided it knows the record.

2.5 Client Model and Utility-based Problem Definitions

2.5.1 Client Setting
We assume that clients are rational, i.e., they act selfishly, in a game-theoretic sense, in
order to increase their utility [21]. Furthermore, clients are risk-averse, i.e., when uncertain,
they prefer to lower the uncertainty, even if this might lower their potential utility [21]; we
consider a client to be uncertain when her actions may lead to multiple possible outcomes.
To this respect, a rational, risk-averse client runs its own utility-driven protocol that defines
its strategy towards a given protocol (game), in such a way that it would not decrease its
utility or increase its uncertainty.

Regarding failures, the only type of failure we consider in this work, is crash failure, in
which a client might cease operating without any a priori warning.

Under this client model, an algorithm A solves the AtomicAppends problem, if
it provides enough incentive to the clients to follow this algorithm (which guarantees the
safety and liveness properties of Definition 4, possibly in the presence of crashes), without
any client deviating from its utility-driven protocol. If no such algorithm can be designed,
then the AtomicAppends problem cannot be solved.

2.5.2 Utility Models
Looking at the definition of the AtomicAppends problem, one might wonder what is the
incentive of the clients to achieve this both-or-none principle on the appends. Let UX denote
the utility function (or incentive) for each client X. A selfish rational client X will try to
maximize her utility UX . Depending on the possible combinations of values the clients’ utility
functions can take, we can identify a number of different scenarios, we refer as utility models.
Let us now motivate and specify two such utility models.

Collaborative utility model. Consider two clients A and B that have agreed to acquire a
property (e.g., a piece of land) in common, and each has to provide half of the cost. If one
of them, say A, pays while B backs off from the deal, then A incurs in expenses while not
getting the property. On the other hand, B loses no money in this case, but her reputation
may suffer. If both of them back off, they do not have any cost, while if both proceed with
the payments then they get the property, which they prefer.
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5:8 Atomic Appends on Multiple Distributed Ledgers

Table 1 The utility of client X ∈ {A, B} in the two utility models considered.

Utility model Utility of client X

Collaborative UX(both append) > UX(none appends) >

UX(only X̄ appends) > UX(only X appends)

Competitive UX(only X̄ appends) > UX(both append) >

UX(none appends) > UX(only X appends)

If UX() denotes the utility of agent X ∈ {A,B}, then we have the following relations in
the scenario described:

UX(both agents pay) > UX(no agent pays) > UX(only agent X̄ pays)
> UX(only agent X pays).

In relation to the AtomicAppends problem, record rA contains the transaction by which
client A pays her share of the deal, and the append of rA in DLOA carries out this payment.
Similarly for client B. So, here we see that under the above utility model, both clients
have incentive for both appends to take place. Observe that this situation is similar to the
Coordinated Attack problem [10], in which two armies need to agree on attacking a common
enemy. If both attack, then they win; if only one of them attacks, then that army is destroyed,
while the other is disgraced; if none of them attack, then the status quo is preserved.

These utility examples fall in the general utility model depicted in the first row of Table 1,
which we call collaborative. We will be referring to the AtomicAppends problem under this
utility model as the Collaborative AtomicAppends problem.

Competitive utility model. We now consider a different utility model. Consider two clients
A and B that have agreed to exchange their goods. E.g, A gives his car to B, and B gives
a specific amount as payment to A. If one of them, say A, gives the car to B, but B does
not pay, then A loses the car while not getting any money. On the other hand, B gets
the car for free! If both of them back off from the deal, then they do not have any cost.
Both proceeding with the exchange is not necessarily their highest preference (unlike in the
previous collaborative model).

So, if UX() denotes the utility of agent X ∈ {A,B}, then we have the following relations
in the scenario described:

UX(only X̄ proceeds) > UX(both agents proceed) > UX(no agent proceeds)
> UX(only X proc.).

In relation to the AtomicAppends problem, record rA contains the transaction transferring
the deed of A’s car to B, and the append of rA in DLOA carries out this transfer. Similarly,
rB contains the transaction by which client B transfers a specific monetary amount to A
(pays for the car), and the append of rB in DLOB carries out this monetary transfer. Observe
that this scenario is similar to the Atomic Swaps problem [13].

These utility examples fall in the general utility model depicted in the second row of
Table 1, which we call competitive. We will be referring to the AtomicAppends problem
under this utility model as the Competitive AtomicAppends problem.

No matter of the utility, failure or timing model assumed, our objective is to provide
a solution to the AtomicAppends problem. Our investigation will focus on identifying the
modeling conditions under which this is possible or not, and what is the impact of the model
on the solvability of the problem.
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3 AtomicAppends in the Absence of Client Crashes

We begin our investigation in a setting with no client crashes, so to study the impact of the
utility model on the solvability of the problem.

It is not difficult to observe that in the absence of crash failures, even under asynchrony
and NoDelegation, there is a straightforward algorithmic solution to the Collaborative
AtomicAppends problem: the algorithm simply has client A (resp. client B) issuing operation
append(DLOA, rA) (resp. append(DLOB , rB)). Based on Table 1, the clients’ utilities are
maximized when both append their corresponding records. Since there are no failures and
the DLOs are reliable, these operation are guaranteed to complete, nullifying the clients’
uncertainty. Hence, the clients will follow the algorithm, without deviating from their
utility-driven protocol. This yields the following result:

I Theorem 5. Collaborative 2-AtomicAppends can be solved in the absence of failures, even
under asynchrony and NoDelegation.

However, this is not the case for the Competitive AtomicAppends problem. The problem
cannot be solved, even in the absence of failures, in synchrony, and WithDelegation:

I Theorem 6. Competitive 2-AtomicAppends cannot be solved in the absence of failures,
even in synchrony and WithDelegation.

Proof. Let us firstly show that client A will never send its record rA to the other client B.
The reason is that this would carry a large risk of B appending rA itself (and A is risk-averse).
Observe that, independently on whether B already appended rB or not, this would reduce
A’s utility (see Table 1). Then, we secondly claim that client A will not directly append
its own record rA either. The reason is that, again, independently on whether B already
appended rB or not, this would reduce A’s utility (see Table 1). Hence, client A will not
have its record rA appended to DLOA ever. However, this violates the liveness property of
Definition 4, since by assumption neither A nor B fail by crashing. J

Note that the above result does not contradict the known solutions for atomic swaps
(e.g., [13]), as the primitives used are stronger than the ones offered by DLO (e.g., some form
of validation is needed for hashlocks). As we show in Section 5, the problem can be solved in
the model we consider, if a reliable external entity is used between the clients and the MDLO.
In view of Theorems 5 and 6, in the next section we focus on the study of Collaborative
AtomicAppends in the presence of crash failures.

4 Crash-prone Collaborative AtomicAppends with Client Appends

In this section we focus on the Collaborative AtomicAppend problem assuming that at least
one client may crash, under the NoDelegation and WithDelegation client append models.
Observe from Table 1 that both clients have incentive to get both records appended, versus
the case of no record appended, with respect to utilities. However, as we will see, in some
cases, crashes introduce uncertainty that renders the problem unsolvable.

4.1 Client Appends with No Delegation
We prove that Collaborative AtomicAppends cannot be guaranteed by any algorithm A, even
in a synchronous system, when at least one client crashes and the clients cannot delegate the
append of their records.
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I Theorem 7. When at least one client crashes, Collaborative 2-AtomicAppends cannot be
solved in the NoDelegation append model, even in a synchronous system.

Proof. Consider an algorithm A that clients can execute without deviating from their utility-
driven protocol. Assume algorithm A solves the Collaborative 2-AtomicAppends problem in
the model described. Let E be an execution of algorithm A in which no client crashes. By
liveness, both clients A and B must issue append operations. Consider the first client, say A
without loss of generality, that issues the append operation. Let us assume that A issues
append(DLOA, rA) at time t. Hence, B issues append(DLOB , rB) at time no earlier than t,
and A cannot verify that the record rB is in the corresponding DLOB until time t′ > t.

Now consider execution E′ of algorithm A that is identical to E, up to time t. Now at time
t client B crashes, and hence it never issues append(DLOB , rB). Since A cannot differentiate
until time t this execution from E, it issues append(DLOA, rA) at time t, appending rA

to DLOA. Even if after time t, A detects the crash of client B, by the specification of
NoDelegation, it cannot append record rB in DLOB. This, together with the fact that B
has crashed, yields that record rB is never appended to DLOB , violating safety. Hence, we
reach a contradiction, and algorithm A does not solve the Collaborative 2-AtomicAppends
problem. J

4.2 Client Appends With Delegation
Let us now consider the more relaxed client append model of WithDelegation. It is not
difficult to see that in this model, the impossibility proof of Theorem 7 breaks. In fact, it
is easy to design an algorithm that solves the collaborative AtomicAppends problem in a
synchronous system, if at most one client crashes. In a nutshell, first both clients exchange
their records. When a client has both records, it appends them (one after the other) to the
corresponding DLO; otherwise it does not append any record. We refer to this algorithm as
Algorithm ADSync and its pseudocode is given as Code 1. We show:

I Theorem 8. In the WithDelegation append model, Algorithm ADSync solves the Collabor-
ative 2-AtomicAppends problem in a synchronous system, if at most one client crashes.

Proof. If no client crashes, then the proof of the claim is straightforward. Hence, let us
consider the case that one client crashes, say A. There are three cases:
(a) Client A crashes before sending its record. In this case, client B will not append any

record and the problem is solved (none case).
(b) Client A crashes after sending its record, but before it does any append. In this case

client B will receive A’s record and append both records (both case).
(c) Client A crashes after it performs one or two of the appends. Client B will perform

both appends, and since DLOs guarantee that a record is appended only once (they are
idempotent), the problem is solved (both case).

The above cases and Table 1 suggest that the clients have no risk in running Algorithm
ADSync with respect to their utility-driven protocol. Hence, the claim follows. J

We note that algorithm ADSync solves the problem also in the asynchronous setting,
without of course being able to implement the “else” statement (line 5), since in asynchrony,
a client cannot distinguish the case on whether the other client has crashed or its message is
taking too long to arrive. To this respect, we slightly modify the description of the algorithm
to better highlight the inability to detect crashes. We refer to this version of the algorithm
as ADAsync; its pseudocode is given as Code 2. We show:

I Theorem 9. In the WithDelegation append model, Algorithm ADAsync solves the Collab-
orative 2-AtomicAppends problem in an asynchronous system, if at most one client crashes.
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Algorithm 1 ADSync: AtomicAppends WithDelegation, Synchrony, at most one crash; code for
Client X ∈ {A, B}.

1: send rX to client X̄

2: If rX̄ is received from client X̄ then
3: append(DLOX , rX)
4: append(DLOX̄ , rX̄)
5: Else (client X̄ has crashed)
6: no append

Algorithm 2 ADAsync: AtomicAppends WithDelegation, Asynchrony, at most one crash; code
for Client X ∈ {A, B}.

1: send rX to client X̄

2: wait until rX̄ is received from client X̄

3: append(DLOX , rX)
4: append(DLOX̄ , rX̄)

Proof. As before, we will prove this by case analysis. If no client crashes, then the proof
follows easily, given the fact that a DLOs guarantees that a record is appended only once.
Hence, let us consider the case that one client crashes, say A. There are three cases:
(a) Client A crashes before sending its record. In this case, client B will not proceed to

append any record (none case). Observe that client B might not terminate, but the
problem (safety) is not violated.

(b) Client A crashes after sending its record, but before it does any append. In this case
client B will receive A’s record and append both records (both case).

(c) Client A crashes after it performs one or two of the appends (it means it has sent its
record to client B). Client B will perform both appends, and since DLOs guarantee that
a record is appended only once, the problem is solved (both case).

The above cases and Table 1 suggest that the clients have no risk in running Algorithm
ADAsync with respect to their utility-driven protocol. Hence, the claim follows. J

As already discussed in case (a) of the above proof, it is possible for the client that has
not crashed to wait forever, as it cannot distinguish the case when the message is taking
too long to arrive and the append operation is taking too long to complete, from the case
when the other client has crashed. Hence, algorithm ADAsync, under certain conditions, is
non-terminating1.

Furthermore, it is not difficult to see that if both clients fail, neither algorithm ADAsync

nor algorithm ADSync can solve the Collaborative AtomicAppends problem. For example,
in the proof of Theorem 8, in case (b), client B could crash right after appending its own
record (i.e., rB is appended, but rA is not). This violates safety. In fact, we now show that
if both clients can crash, the problem is not solvable, even under synchrony.

I Theorem 10. When both clients can crash, the Collaborative 2-AtomicAppends problem
cannot be solved WithDelegation, even in a synchronous system.

Proof. Consider an algorithm A that clients can execute without deviating from their utility-
driven protocol. Assume algorithm A solves the Collaborative 2-AtomicAppends problem in
the model described. Let E be an execution of algorithm A in which no client crashes. By

1 Hence, in practice this may force a client to use timeouts in order to avoid blocking forever.
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liveness, both records rA and rB must be eventually appended. Consider the first record
appended, say rA w.l.o.g., and the client that issued the append operation, say A w.l.o.g.. Let
us assume that A issues append(DLOA, rA) at time t. Hence, append(DLOB , rB) is issued
at time no earlier than t, and A cannot verify that the record rB is in the corresponding
DLOB until time t′ > t.

Now consider execution E′ of algorithm A that is identical to E, up to time t. Now at time
t client B crashes, and hence it never issues append(DLOB , rB). Since A cannot differentiate
until time t this execution from E, it issues append(DLOA, rA) at time t, appending rA to
DLOA. Then, at time t+1 (immediately after append(DLOA, rA) completes) A also crashes,
and hence never issues append(DLOB , rB). Since append(DLOB , rB) is never issued, record
rB is never appended to DLOB, violating safety. Hence, we reach a contradiction, and
algorithm A does not solve the Collaborative 2-AtomicAppends problem. J

5 Crash-prone AtomicAppends with SDLO

Theorems 6 and 10 suggest the need to use some external intermediary entity, in order
to solve Competitive AtomicAppends, even in the absence of crashes, and Collaborative
AtomicAppends, in the case both clients crash, respectively. This is the subject of this section.

5.1 Smart DLO (SDLO)
We enhance the MDLO with a special DLO, called Smart DLO (SDLO), which is used by
the clients to delegate the append of their records to the original MDLO. This SDLO is an
extension of a DLO that supports a special “atomic appends” record of the form [client id,
{list of involved clients in the atomic append}, record of client]. When two clients
wish to perform an atomic append involving their records and their corresponding DLOs,
then they both need to append such an atomic appends record in the SDLO; this is like
requesting the atomic append service from the SDLO. Once both records are appended in the
SDLO, then the SDLO appends each record to the corresponding DLO. A pseudocode of this
mechanism, together with the client requests, called algorithm ASDLO is given as Code 3.

Algorithm 3 ASDLO: SDLO mechanism and requests from client X ∈ {A, B}; SDLO code only
for atomic appends.

1: Client X:
2: append(SDLO, [X, {X, X̄}, rX ])
3: upon receipt AppendAck from SDLO return
4: SDLO:
5: Init: S ← ∅
6: function SDLO.append([X, {X, X̄}, rX ])
7: S ← S ‖ [X, {X, X̄}, rX ]
8: if [X̄, {X, X̄}, rX̄ ] ∈ S then
9: append(DLOX , rX)
10: append(DLOX̄ , rX̄)
11: return AppendAck

So essentially the SDLO.append function in Code 3 can be viewed as a smart contract
that “collects” the append requests involved in the AtomicAppends instance and ultimately
executes them, by performing individual appends to the corresponding DLOs. Observe that
the SDLO does not access the state of DLOA and DLOB , but it needs to be able to perform
append operations to both of them. In other words, delegation is passed to the SDLO. Also
observe that the SDLO returns ack to a client’s request, once their atomic appends request
is appended in the SDLO, and not when the actual atomic append takes place.
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5.2 Solving AtomicAppends with SDLO
It is not difficult to observe that algorithm ASDLO can solve the AtomicAppends problem in
both utility models, even in asynchrony, and even if both clients crash. Note that SDLO,
being a distributed ledger by itself, is reliable despite the fact that some servers implementing
it may fail (more below). We show:

I Theorem 11. Algorithm ASDLO solves both the Collaborative and Competitive 2-
AtomicAppends problems in an asynchronous setting, even if both clients may crash.

Proof. We consider three cases:
1. If no client crashes, then algorithm ASDLO trivially solves the problem: Both clients

invoke the atomic appends request to the SDLO, these operations complete, and the
SDLO eventually triggers the two corresponding appends of records rA and rB to DLOA

and DLOB , respectively (both case).
2. At most one client crashes, say client A. Here we have two cases:

a. Record [A, {A,B}, rA] is never appended to the SDLO. Since the SDLO will never
contain both matching records, it will never append any of the records rA and rB

(none case).
b. Record [A, {A,B}, rA] is appended to the SDLO. Since record [B, {A,B}, rB] will

eventually be appended by B in the SDLO, it will proceed with the corresponding
appends of records rA and rB (both case).

3. Both clients crash. If one of the two clients, say A, crashes before appending [A, {A,B}, rA]
to the SDLO, then none of the appends of records rA and rB will take place in the
corresponding DLOs (none case). However, if both clients crash after they have appended
the matching atomic appends records, then both records rA and rB will be appended by
the SDLO (both case).

Observe that the above hold for both utility models. In Competitive AtomicAppends, if a
client does not invoke its atomic append request to the SDLO, it knows that the SDLO will
not proceed to append the other client’s record. This leaves the clients with their second best
utility (see Table 1), and hence, both have incentive to invoke the atomic append requests to
the SDLO. The reliability of the SDLO nullifies the uncertainty of the clients, and hence
they will follow algorithm ASDLO. J

Observe that algorithm ASDLO can easily be extended to solve the k-AtomicAppend
problem, for any k ≥ 2, provided that the utility of all records being appended is higher than
none being appended for all clients: All clients submit their atomic append request to the
SDLO, and then the SDLO performs the corresponding appends. Hence:

I Corollary 12. Both the Collaborative and Competitive k-AtomicAppends problems can be
solved with the use of SDLO in the asynchronous setting, even if all k clients may crash.

I Remark. As we discussed in the case 2 of the proof of Theorem 11, if client A crashes
and record [A, {A,B}, rA] is never appended to the SDLO, none of the records rA and rB

will be appended. Now, observe that client B can proceed to perform other operations
once it has appended [B, {A,B}, rB] (despite the fact that rB has not been appended to
DLOB , as it is up to the SDLO to do so). Since clients do not need to wait forever for any
operation, algorithm ASDLO is terminating with respect to the clients. Moreover, the SDLO
also terminates the processing of all the operations, as long as the appends in other DLOs
terminate.
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Implementation issues. In the above mechanism and theorem, we treat the SDLO as one
entity. Since, however, the SDLO is a distributed ledger implemented by collaborating
servers, there are some low-level implementation details that need to be discussed. If we
assume that the servers implementing the SDLO are prone to only crash faults and that the
SDLO is implemented using an Atomic Broadcast service, as described in [7], then algorithm
ASDLO can be implemented as follows: Clients A and B submit the atomic append requests
to all servers implementing the SDLO. Once a server appends an atomic append request
record to its local copy of the ledger, it checks if the matching record is already in the ledger.
If this is the case, it issues the two corresponding append operations for records rA and
rB . If up to f servers may crash, then it suffices that f + 1 servers, in total, perform these
append operations. Given that each record is appended to a DLO at most once (the append
operations are idempotent; if a record is already appended, it will not be appended again), it
follows that both records are appended in the corresponding DLOs.

6 Conclusion

We have introduced the AtomicAppends problem, where given two (or more in general)
clients, each needs to append a record to a corresponding DLO, and do so atomically with
respect to each other: either both records are appended or none. We have considered crash-
prone, rational and risk-averse clients based on two different utility models, Collaborative
and Competitive, and studied the solvability of the problem under synchrony/asynchrony,
different client append models and failure scenarios. Table 2 gives an overview of our results
(for two clients): if the problem can be solved, then we list the algorithm we developed,
otherwise we use the symbol “8”.

Table 2 Overview of the results. ND stands for NoDelegation and WD for WithDelegation.

Synchrony Asynchrony
ND WD SDLO ND WD SDLO

no crashes simple simple
up to one

ADSync A(?)
DAsyncCollaborative

both
8

8
8

8

no crashes
up to oneCompetitive

both
8

ASDLO

8

ASDLO

(?) might not terminate

Our results demonstrate a clear separation on the solvability of the problem based on the
utility model assumed when appends are done directly by the clients. When appends are
done using a special type of a DLO, which we call Smart DLO (SDLO), then the problem is
solved in both utility models, even in asynchrony and even if both clients may crash.

Our investigation of AtomicAppends did not look into the semantics of the records being
appended. Consider, for example, the following scenario. Say that clients A and B initiate
an atomic append request with records rA and rB, respectively. While the atomic append
request is being processed, say by the SDLO, client B appends a record r′ directly to DLOB .
It could be the case that the content of record r′ is such, that it would affect record rB . For
example, say that the atomic append involves the exchange of a deed of a car with bitcoins;
record rA contains the transfer of the deed and rB the transfer of bitcoins. If r′ involves the
withdrawal of bitcoins from the wallet of client B, and this is appended first, then it could
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be the case that the wallet no longer contains sufficient bitcoins to carry out the atomic
appends request. Even if we enforce the clients to perform all appends – not only atomic
appends – through the SDLO (which practically speaking is not desirable), still we need to
validate records. Therefore, to tackle such cases, we will need to consider validated DLOs
(VDLOs) [7]. This is a challenging problem, especially in asynchronous settings.
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