
A Dichotomy for Homomorphism-Closed Queries
on Probabilistic Graphs
Antoine Amarilli
LTCI, Télécom Paris, Institut Polytechnique de Paris, France

İsmail İlkan Ceylan
University of Oxford, United Kingdom

Abstract
We study the problem of probabilistic query evaluation (PQE) over probabilistic graphs, namely,
tuple-independent probabilistic databases (TIDs) on signatures of arity two. Our focus is the class of
queries that is closed under homomorphisms, or equivalently, the infinite unions of conjunctive queries,
denoted UCQ∞. Our main result states that all unbounded queries in UCQ∞ are #P-hard for PQE.
As bounded queries in UCQ∞ are already classified by the dichotomy of Dalvi and Suciu [17], our
results and theirs imply a complete dichotomy on PQE for UCQ∞ queries over probabilistic graphs.
This dichotomy covers in particular all fragments in UCQ∞ such as negation-free (disjunctive)
Datalog, regular path queries, and a large class of ontology-mediated queries on arity-two signatures.
Our result is shown by reducing from counting the valuations of positive partitioned 2-DNF formulae
(#PP2DNF) for some queries, or from the source-to-target reliability problem in an undirected graph
(#U-ST-CON) for other queries, depending on properties of minimal models.

2012 ACM Subject Classification Theory of computation → Database query processing and opti-
mization (theory)

Keywords and phrases Tuple-independent database, #P-hardness, recursive queries, homomorphism-
closed queries

Digital Object Identifier 10.4230/LIPIcs.ICDT.2020.5

Related Version A full version of the paper containing all missing proofs is available at [3], https:
//arxiv.org/abs/1910.02048.

Funding This work was supported by the UK EPSRC grant EP/R013667/1.

1 Introduction

The management of uncertain and probabilistic data is an important problem in many
applications, e.g., automated knowledge base construction [19, 25, 28], data integration
from diverse sources, predictive and stochastic modeling, applications based on (error-prone)
sensor readings, etc. To represent probabilistic data, the most basic model is that of tuple-
independent probabilistic databases (TIDs) [33]. In TIDs, every fact of the database is
viewed as an independent random variable, and is either kept or discarded according to some
probability. Hence, a TID induces a probability distribution over all possible worlds, that is,
all possible subsets of the database. The central inference task for TIDs is then probabilistic
query evaluation (PQE): Given a query Q, compute the probability of Q relative to a TID I,
i.e., the total probability of the possible worlds where Q is satisfied.

Dalvi and Suciu [17] obtained a dichotomy for PQE on unions of conjunctive queries
(UCQs), measured in data complexity, i.e., as a function of the input TID and with the query
being fixed. They have shown that PQE can be solved in polynomial time for some UCQs
(called safe), and that it is #P-hard for all other UCQs (called unsafe). Their result was the
foundation of many other studies of the complexity of PQE [2, 14, 21, 27, 29, 30, 32].

© Antoine Amarilli and İsmail İlkan Ceylan;
licensed under Creative Commons License CC-BY

23rd International Conference on Database Theory (ICDT 2020).
Editors: Carsten Lutz and Jean Christoph Jung; Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-7977-4441
https://orcid.org/0000-0003-4118-4689
https://doi.org/10.4230/LIPIcs.ICDT.2020.5
https://arxiv.org/abs/1910.02048
https://arxiv.org/abs/1910.02048
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

Despite this extensive research on TIDs, there is little known about PQE for monotone
query languages beyond UCQs. In particular, only few results are known for languages
featuring recursion, which is an essential ingredient in many applications: it is unknown if
PQE admits a dichotomy for Datalog, or for ontology-mediated queries [13].

In this work, we focus on a large class of queries beyond first-order: we study the queries
that are closed under homomorphisms. We denote the class of such queries by UCQ∞ as
they are equivalent to infinite unions of conjunctive queries. We distinguish between bounded
UCQ∞ queries, which are logically equivalent to a UCQ, and unbounded UCQ∞ queries,
which cannot be expressed as a UCQ. Notably, UCQ∞ captures (negation-free) disjunctive
Datalog, regular path queries (RPQs) and a large class of ontology-mediated queries.

We study the framework of probabilistic graphs, i.e., probabilistic databases where all
relations have arity two. Arity-two relations are the formalism used in description logics, and
in works on knowledge graphs and information extraction such as NELL [28], Yago [25], and
Google’s Knowledge Vault [19]. In these contexts, we wish to evaluate unbounded queries
on the data, e.g., RPQs or other UCQ∞ queries, while taking into account its uncertainty.
Therefore, we study the complexity of query evaluation on probabilistic graphs, and ask if
PQE for the class UCQ∞ admits a data complexity dichotomy in this case.

The main result of this paper is to show that PQE is #P-hard for any unbounded UCQ∞
query over probabilistic graphs. Our result thus implies a dichotomy on PQE for UCQ∞ over
such graphs: as bounded UCQ∞ queries are equivalent to UCQs, they are already classified by
Dalvi and Suciu, and we show that all other UCQ∞ queries are unsafe, i.e., the PQE problem
is #P-hard for them. Of course, it is not surprising that some unbounded queries in UCQ∞
are unsafe for similar reasons as unsafe UCQs, but the challenge is to show hardness for
every unbounded UCQ∞ query. We conjecture that the same result holds also on arbitrary
arity signatures, but we leave this question open, as we explain in the Conclusion.

The proof has two main parts: First, we study UCQ∞ queries with a model featuring a
so-called non-iterable edge. For all such queries, we reduce from the problem of counting the
valuations of positive partitioned 2-DNF formulae (#PP2DNF). Second, for other unbounded
queries in UCQ∞, we reduce from the source-to-target reliability problem in an undirected
graph (#U-ST-CON): this second step is harder and relies on a study of minimal models.

Related work. Research on probabilistic databases is a well-established field; see e.g. [33].
The first dichotomy for queries on such databases was shown by Dalvi and Suciu [16]: a
self-join-free conjunctive query is safe if it is hierarchical, and #P-hard otherwise. They
then extended this result to a dichotomy on all UCQs [17]. Beyond UCQs, partial dichotomy
results are known for some queries with negation [21], with disequality (6=) joins in the
queries [29], or with inequality (<) joins [30]. Some results are known for extended models,
e.g., the dichotomy of Dalvi and Suciu has been lifted from TIDs to open-world probabilistic
databases [14]. However, we are not aware of dichotomies in the probabilistic database
literature that apply to Boolean queries beyond first-order logic, or to queries with fixpoints.

Query evaluation on probabilistic graphs has also been studied in the context of ontology-
mediated queries (OMQs) [27, 9, 10]. An OMQ is a composite query that typically consists of
a UCQ and an ontology, i.e., a logical theory on an arity-two signature. The only classification
result on PQE for OMQs beyond FO-rewritable languages is given for the description logic
ELI [27]. This result applies to a class of queries that go beyond first-order logic. Our work
generalizes this result (Theorem 6 of [27]) by showing hardness for any unbounded UCQ∞,
not just the ones expressible as OMQs based on ELI. Part of our techniques (Section 4) are

A. Amarilli and İ. İ. Ceylan 5:3

related to theirs, but the bulk of our proof (Sections 5 and 6) uses new techniques, the need
for which had in fact been overlooked1 in [26, 27]. Our proof thus completes the proof of
Theorem 6 in [27], and generalizes it to all unbounded UCQ∞.

Paper structure. We introduce preliminaries in Section 2, and formally state our result
in Section 3. We prove the result in the rest of the paper. We first deal in Section 4 with
the case of queries having a model with a non-iterable edge (reducing from #PP2DNF),
then argue in Section 5 that unbounded queries must have a model with a minimal tight
edge, before explaining in Section 6 how to use this (when the edge is iterable) to reduce
from #U-ST-CON. We then conclude in Section 7. Detailed proofs can be found in the full
version [3].

2 Preliminaries

Vocabulary. We consider a relational signature σ which is a set of predicates. In this work,
the signature is required to be arity-two, i.e., consist only of predicates of arity two. Our
results can easily be extended to signatures with relations having predicates of arity one and
two (see the full version [3]), as is more common in some contexts such as description logics.

A σ-fact is an expression of the form F = R(a, b) where R is a predicate and a, b are
constants. By a slight abuse of terminology, we call F a unary fact if a = b, and a non-unary
fact otherwise. A σ-atom is defined in the same way with variables instead of constants. For
brevity, we will often talk about a fact or an atom when σ is clear from context. We also
speak of R-facts or R-atoms to specifically refer to facts or atoms that use the predicate R.

It will be convenient to write σ↔ the arity-two signature consisting of the relations of σ
and of the relations R− for R ∈ σ, with a semantics that we define below.

Database instances. A database instance over σ, or a σ-instance, is a set of facts over σ.
All instances considered in this paper are finite. The domain of a fact F , denoted dom(F),
is the set of constants that appear in F , and the domain of an instance I, denoted dom(I),
is the set of constants that appear in I, i.e., the union of the domains of its facts.

Every σ-instance I can be seen as a σ↔-instance consisting of all the σ-facts in I, and
all the facts R−(b, a) for each fact R(a, b) of I. Thus, whenever we consider a σ-instance I,
choose some a ∈ dom(I), and say, e.g., that we consider all σ↔-facts of the form F = R(a, b)
in I, we mean all unary facts S(a, a) with some S ∈ σ, all facts S(a, b) of I with some S ∈ σ
and b ∈ dom(I), and also all facts S−(a, b) of I for some S ∈ σ and b ∈ dom(I), that is,
facts of the form S(b, a). If we say that, for one such fact F0 = R(a, b0), we create the fact
R(a′, b0) for some a′ ∈ dom(I), it means that we create S(a′, b0) if F0 = S(a, b0) with S ∈ σ,
and S(b0, a′) if F0 = S−(a, b0) with S ∈ σ.

The Gaifman graph of an instance I is the undirected graph having dom(I) as vertex
set, and having an edge {u, v} between any two u 6= v in dom(I) that co-occur in some
fact of I. An instance is connected if its Gaifman graph is connected. We then call {u, v}
an (undirected) edge of I, and the facts that realize the undirected edge e are the σ-facts
of I whose domain is a subset of {u, v}. Note that a fact of the form R(u, u) realizes all

1 Specifically, we identified a gap in the proofs of Theorem 6 of [27] and Theorem 5.31 of [26] concerning
a subtle issue of “back-and-forth” matches. We have communicated this with the authors of [26, 27],
which they kindly confirmed. The problem is related to the use of inverse roles of ELI, so we believe
that it does not occur for the description logic EL.

ICDT 2020

5:4 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

edges involving u. Slightly abusing notation, we say that an ordered pair e = (u, v) is a
(directed) edge of I if {u, v} is an edge of the Gaifman graph. We then talk about the facts
that realize the directed edge e as the σ↔-facts of I defined as follows: all unary σ-facts of
the form R(u, u) and R(v, v), all σ-facts S(u, v) of I with S ∈ σ, and one fact S−(u, v) for
every σ-fact S(v, u) of I with S ∈ σ. Note that the facts that realize the directed edge (v, u)
would correspond to the same σ-facts of I, but they are not the same σ↔ facts: specifically,
each relation S ∈ σ has been exchanged with its reverse relation S− in non-unary facts.

In the course of our proofs, we will often modify instances in a specific way, which we call
copying an edge. Let I be an instance, let (u, v) be a directed edge of I, and let u′, v′ be any
elements of I. If we say that we copy the edge e on (u′, v′), it means that we modify I to add
a copy of each fact realizing the edge e, but using u′ and v′ instead of u and v. Specifically,
we create S(u′, v′) for all σ-facts of the form S(u, v) in I, we create S(v′, u′) for all σ-facts of
the form S(v, u) in I, and we create S(u′, u′) and S(v′, v′) for all σ-facts respectively of the
form S(u, u) and S(v, v) in I. Of course, if some of these facts already exist, they are not
created again. Note that (u′, v′) is an edge of I after this process.

An instance I is a subinstance of another instance I ′ if I ⊆ I ′, and I is a proper subinstance
of I ′ if I ⊂ I ′. Given a set S ⊆ dom(I) of domain elements, the subinstance of I induced
by S is the instance formed of all the facts F ∈ I such that dom(F) ⊆ S.

A homomorphism from an instance I to an instance I ′ is a function h from dom(I)
to dom(I ′) such that, for every fact R(a, b) of I, the fact R(h(a), h(b)) is a fact of I ′. In
particular, whenever I ⊆ I ′ then I has a homomorphism to I ′. An isomorphism is a bijective
homomorphism whose inverse is also a homomorphism.

Query languages. Throughout this work, we focus on Boolean queries. A (Boolean) query
over a signature σ is a function from σ-instances to Booleans. An instance I satisfies a
query Q (or Q holds on I, or I is a model of Q), written I |= Q, if Q returns true when
applied to I; otherwise, I violates Q. We say that two queries Q1 and Q2 are equivalent if
for any instance I, we have I |= Q1 iff I |= Q2. In this work, we study the class UCQ∞ of
queries that are closed under homomorphisms (also called homomorphism-closed), i.e., if I
satisfies the query and I has a homomorphism to I ′ then I ′ also satisfies the query. Note
that queries closed under homomorphisms are in particular monotone, i.e., if I satisfies the
query and I ⊆ I ′, then I ′ also satisfies the query.

One well-known subclass of UCQ∞ is bounded UCQ∞: every bounded query in UCQ∞ is
logically equivalent to a union of conjunctive query (UCQ), without negation or inequalities.
Recall that a conjunctive query (CQ) is an existentially quantified conjunctions of atoms,
and a UCQ is a disjunction of CQs. For brevity, we omit existential quantification when
writing UCQs, and abbreviate conjunction with a comma. The other UCQ∞ queries are
called unbounded, and they can be seen as an infinite disjunction of CQs, with each disjunct
corresponding to a model of the query.

A natural language captured by UCQ∞ is Datalog, again without negation or inequalities.
A Datalog program defines a signature of intensional predicates, including a 0-ary predicate
Goal(), and consists of a set of rules which explain how intensional facts can be derived from
other intensional facts and from facts of the instance (called extensional). The interpretation
of the intensional predicates is defined by taking the (unique) least fixpoint of applying the
rules, and the query holds iff the Goal() predicate can be derived. For formal definitions
of this semantics, see, e.g., [1]. As Datalog queries are homomorphism-closed, we can see
each Datalog program as a UCQ∞, with the disjuncts intuitively corresponding to derivation
trees for the program. However, note that there are homomorphism-closed queries that are
not expressible in Datalog [18].

A. Amarilli and İ. İ. Ceylan 5:5

Ontology-mediated queries or OMQs [8] are another subclass of UCQ∞. An OMQ is a pair
(Q, T), where Q is a UCQ, and T is an ontology. A database instance I satisfies an OMQ
(Q, T) if the instance I and the logical theory T entail the query Q in the standard sense –
see, e.g., [8], for details. There are ontological languages for OMQs based on description
logics [5] and on existential rules [11, 12]. Many such OMQs can be equivalently expressed
as a query in Datalog or in disjunctive Datalog on an arity-two signature [8, 20, 23], thus
falling in the class UCQ∞. In particular, this is the case of any OMQ involving negation-free
ALCHI (Theorem 6 of [8]), and of fragments of ALCHI, e.g., ELHI, and ELI as in [27].

Probabilistic query evaluation. We study the problem of probabilistic query evaluation
over tuple-independent probabilistic databases. A tuple-independent probabilistic database
(TID) over a signature σ is a pair I = (I, π) of a σ-instance I, and of a function π that maps
every fact F to a probability π(F), given as a rational number in [0, 1]. Formally, a TID
I = (I, π) defines the following probability distribution over all possible worlds I ′ ⊆ I:

π(I ′) :=
(∏
F∈I′

π(F)
)
×

 ∏
F∈I′\I

(1− π(F))

 .

Then, given a TID I = (I, π), the probability of a query Q relative to I, denoted PI(Q), is
given by the sum of the probabilities of the possible worlds that satisfy the query:

PI(Q) :=
∑

I′⊆I,I′|=Q

π(I ′).

The probabilistic query evaluation problem (PQE) for a query Q, written PQE(Q), is then
the task of computing PI(Q) given a TID I as input.

Complexity background. FP is the class of functions f : {0, 1}∗ 7→ {0, 1}∗ computable by
a polynomial-time deterministic Turing machine. The class #P, introduced by Valiant [34],
contains the computation problems that can be expressed as the number of accepting
paths of a nondeterministic polynomial-time Turing machine. Equivalently, a function
f : {0, 1}∗ 7→ N is in #P if there exists a polynomial p : N 7→ N and a polynomial-time
deterministic Turing machine M such that for every x ∈ {0, 1}∗, it holds that f(x) = |{y ∈
{0, 1}p(|x|) | M answers 1 on the input (x, y) }|.

For a query Q, we study the data complexity of PQE(Q), which is measured as a function
of the input instance I, i.e., the signature and Q are fixed. For a large class of queries, in
particular for any UCQ Q, the problem PQE(Q) is in the complexity class FP#P : we can
use a nondeterministic Turing machine to guess a possible world according to the probability
distribution of the TID (i.e., each possible world is obtained in a number of runs proportional
to its probability), and then check in polynomial time data complexity if Q holds, with
polynomial-time postprocessing to renormalize the number of runs to a probability. Our goal
in this work is to show that the problem is also #P-hard.

To show #P-hardness, we use polynomial-time Turing reductions [15]. A function f is
#P-complete under polynomial time Turing reductions if it is in #P and every g ∈ #P is
in FPf . Polynomial-time Turing reductions are the most common reductions for the class
#P and they are the reductions used to show #P-hardness in the dichotomy of Dalvi and
Suciu [17], so we use them throughout this work.

ICDT 2020

5:6 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

Problems. We will show hardness by reducing from two well-known #P-hard problems.
For some queries, we reduce from #PP2DNF [31], which is a standard tool to show hardness
of unsafe UCQs. The original problem uses Boolean formulas; here, we give an equivalent
rephrasing in terms of bipartite graphs.

I Definition 2.1. Given a bipartite graph H = (A,B,C) with edges C ⊆ A×B, a possible
world of H is a pair ω = (A′, B′) with A′ ⊆ A and B′ ⊆ B. We call the possible world good
if it is not an independent set, i.e., if one vertex of A′ and one vertex of B′ are adjacent
in C; and call it bad otherwise. The positive partitioned 2DNF problem (#PP2DNF) is the
following: Given a bipartite graph, compute how many of its possible worlds are good.

It will be technically convenient to assume that H is connected. This is clearly without loss
of generality, as otherwise the number of good possible worlds is simply obtained as the
product of the number of good possible worlds of each connected component of H.

For other queries, we reduce from the undirected st-connectivity problem (#U-ST-CON) [31]:

I Definition 2.2. The source-to-target undirected reachability problem (#U-ST-CON) asks
the following: Given an undirected graph G with two distinguished vertices s and t, where
each graph edge has probability 0.5, determine the probability of obtaining a good possible
world, i.e., a subgraph ω of G where there is a path from s to t.

3 Result Statement

The goal of this paper is to extend the dichotomy of Dalvi and Suciu [17] on PQE for UCQs.
Their result states:

I Theorem 3.1 ([17]). Let Q be a UCQ. Then, PQE(Q) is either in FP or it is #P-hard.

We call a UCQ safe if PQE(Q) is in FP, and unsafe otherwise. This dichotomy characterizes
the complexity of PQE for UCQs, but does not apply to other homomorphism-closed queries
beyond UCQs. Our contribution, when restricting to the arity-two setting, is to generalize
this dichotomy to UCQ∞, i.e., to any query closed under homomorphisms. Specifically, we
show that all such queries are intractable unless they are equivalent to a safe UCQ.

I Theorem 3.2. Let Q be a UCQ∞ on an arity-two signature. Then, either Q is equivalent
to a safe UCQ and PQE(Q) is in FP, or it is not and PQE(Q) is #P-hard.

Our result relies on the dichotomy of Dalvi and Suciu for UCQ∞ queries that are equivalent
to UCQs. The key point is then to show intractability for unbounded UCQ∞ queries. Hence,
our technical contribution is to show:

I Theorem 3.3. Let Q be an unbounded UCQ∞ query on an arity-two signature. Then
PQE(Q) is #P-hard.

Examples of unbounded UCQ∞ queries include many Datalog queries, e.g., the following
program with one monadic intensional predicate U on extensional signature R,S, T :

R(x, y)→ U(x) U(x), S(x, y)→ U(y) U(x), T (x, y)→ Goal()

Thus, our result implies that the PQE problem is #P-hard for all Datalog queries that are
not equivalent to a UCQ, which is the case unless the Datalog program is nonrecursive or
recursion is bounded [24]. Unbounded UCQ∞ queries also include many regular path queries,
such as RS∗T which is equivalent to the Datalog program above.

A. Amarilli and İ. İ. Ceylan 5:7

Effectiveness and uniformity. We do not study if our dichotomy result in Theorem 3.2 is
effective, i.e., given a query, the problem of determining whether it is safe or unsafe. The
dichotomy of Theorem 3.1 on UCQs is effective via the algorithm of [17]: this algorithm
has a super-exponential bound (in the query), with the precise complexity being open. Our
dichotomy concerns the very general query language UCQ∞, and its effectiveness depends
on how the input is represented, which we can fix by restricting to a syntactically defined
fragment. If we restrict to Datalog queries, it is not clear whether our dichotomy is effective,
because it is generally undecidable whether an input Datalog program is bounded [22] – but
this, on its own, does not imply undecidability for our dichotomy. However, our dichotomy
is effective for more restricted query languages for which boundedness is decidable, e.g.,
monadic Datalog or its generalization GN-Datalog [7], or C2RPQs [6].

For unsafe queries, we also do not study the complexity of reduction as a function of the
query, or whether this problem is even decidable. All that matters is that, once the query is
fixed, some reduction procedure exists, which can be performed in polynomial time in the
input instance. Such uniformity problems seem unavoidable, given that our language UCQ∞
is very general and includes some queries for which non-probabilistic evaluation is not even
decidable, e.g., “there is a path from R to T whose length is the index of a Turing machine
that halts”. We leave for future work the study of the query complexity of our reduction
when restricting to better-behaved query languages such as Datalog or RPQs.

Proof outline. Theorem 3.3 is proven in the rest of the paper. There are two cases,
depending on the query. We study the first case in Section 4, which covers queries for which
we can find a model with a so-called non-iterable edge. Intuitively, this is a model where we can
make the query false by replacing the edge by a back-and-forth path of some length between
two neighboring facts that it connects. For such queries, we can show hardness by a reduction
from #PP2DNF, essentially like the hardness proof for the query Q0 : R(w, x), S(x, y), T (y, z)
which is the arity-two variant of the unsafe query of [16, Theorem 5.1]. This hardness proof
covers some bounded queries (including Q0) and some unbounded ones.

In Section 5, we present a new ingredient, to be used in the second case, i.e., when there
is no model with a non-iterable edge. We show that any unbounded query must always have
a model with a tight edge, i.e., an edge where we can make the query false by replacing it by
two copies that disconnect its endpoints. What is more, we can find a model with a tight
edge which is minimal in some sense, which we call a minimal tight pattern.

In Section 6, we use minimal tight patterns for the second case, covering unbounded
queries that have a minimal tight pattern whose edge is iterable. This applies for all queries
to which Section 4 did not apply (and also for some queries to which it did). Here, we reduce
from the #U-ST-CON problem, intuitively using the iterable edge for a kind of reachability
test, and using the minimality and tightness of the pattern to show the soundness and
completeness of the reduction.

4 Hardness with Non-Iterable Edges

In this section, we present the hardness proof for the first case where we can find a model of
the query with a non-iterable edge. This notion will be defined relative to an incident pair of
a non-leaf edge:

I Definition 4.1. Let I be an instance. We say that an element u ∈ dom(I) of I is a leaf if
it occurs in only one undirected edge. We say that an edge (directed or undirected) is a leaf
edge if one of its elements (possibly both) is a leaf; otherwise, it is a non-leaf edge.

ICDT 2020

5:8 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

l

l1

u v

r

r1 l

l1

u=u1

u2

u3

v1

v2

v=v3

r

r1

e

el (with Fl)
el without Fl

er (with Fr)
er without Fr

other incident edges

Figure 1 Example of iteration from an instance Ie,Π (left) to I3
e,Π (middle). We write Π = (Fl, Fr)

and call el and er the edges of Fl and Fr. Each line represents an edge, realized in general by multiple
σ↔-facts. A key is given at the right.

Let I be an instance and let e = (u, v) be a non-leaf edge of I. A σ↔-fact of I is left-
incident to e if it is of the form Rl(l, u) with l /∈ {u, v}. It is right-incident to e if it is of the
form Rr(v, r) with r /∈ {u, v}. An incident pair of e is a pair of σ↔-facts Π = (Fl, Fr), where
Fl is left-incident to e and Fr is right-incident to e. We write Ie,Π to denote an instance I
with a non-leaf edge e and an incident pair Π of e in I.

Note that an incident pair chooses two incident facts (not edges): this is intuitively because
in the PQE problem, we will give probabilities to single facts and not edges. It is clear that
every non-leaf edge e must have an incident pair, as we can pick Fl and Fr from the edges
incident to u and v which are not e. Moreover, we must have Fl 6= Fr, and neither Fl nor Fr
can be unary facts. However, as the relations Rl and Rr are σ↔-relations, we may have
Rl = Rr or Rl = R−r , and the elements l and r may be equal if the edge (u, v) is part of a
triangle with some edges {u,w} and {v, w}.

Let us illustrate the notion of incident pair on an example.

I Example 4.2. Given an instance I = R(a, b), T (b, b), S(c, b), R(d, c), the edge (b, c) is
non-leaf and the only possible incident pair for it is (R(a, b), R−(c, d)).

We can now define the iteration process on an instance Ie,Π, which intuitively replaces
the edge e by a path of copies of e, keeping the facts of Π at the beginning and end of the
path, and copying all other incident facts:

I Definition 4.3. Let Ie,Π be an instance where e = (u, v), Π = (Fl, Fr), Fl = Rl(l, u),
Fr = Rr(v, r), and let n ≥ 1. The result of performing the n-th iteration of e in I relative to Π,
denoted Ine,Π, is a σ-instance with domain dom(Ine,Π) := dom(I)∪{u2, . . . , un}∪{v1, . . . , vn−1},
where the new elements are fresh, and where we use u1 to refer to u and vn to refer to v for
convenience. The facts of Ine,Π are defined by applying the following steps:

Copy non-incident facts: Initialize Ine,Π as the induced subinstance of I on dom(I)\{u, v}.
Copy incident facts Fl and Fr: Add Fl and Fr to Ine,Π, using u1 and vn, respectively.
Copy other left-incident facts: For each σ↔-fact F ′l = R′l(l′, u) of I that is left-incident
to e (i.e., l′ /∈ {u, v}) and where F ′l 6= Fl, add to Ine,Π the fact R′l(l′, ui) for each 1 ≤ i ≤ n.
Copy other right-incident facts: For each σ↔-fact F ′r = R′r(v, r′) of I that is right-incident
to e (i.e., r′ /∈ {u, v}) and where F ′r 6= Fr, add to Ine,Π the fact R′r(vi, r′) for each 1 ≤ i ≤ n.
Create copies of e: Copy the edge e (in the sense defined in the Preliminaries) on the
following pairs: (ui, vi) for 1 ≤ i ≤ n, and (ui+1, vi) for 1 ≤ i ≤ n− 1.

The iteration process is represented in Figure 1. Note that, for n = 1, we obtain exactly
the original instance. Intuitively, we replace e by a path going back-and-forth between copies
of u and v (and traversing e alternatively in one direction and another). The intermediate

A. Amarilli and İ. İ. Ceylan 5:9

vertices have the same incident facts as the original endpoints except that we have not copied
the left-incident fact and the right-incident fact of the incident pair.

We first notice that larger iterates have homomorphisms back to smaller iterates:

I Observation 4.4. For any instance I, for any non-leaf edge e of I, for any incident pair Π
for e, and for any 1 ≤ i ≤ j, it holds that Ije,Π has a homomorphism to Iie,Π.

Proof. Simply merge ui, . . . , uj , and merge vi, . . . , vj . J

Hence, choosing an instance I that satisfies Q, a non-leaf edge e of I, and an incident
pair Π, there are two possible regimes. Either all iterations Ine,Π satisfy Q, or there is some
iteration In0

e,Π with n0 > 1 that violates Q (and, by Observation 4.4, all subsequent iterations
also do). We call e iterable relative to Π in the first case, and non-iterable in the second case.

I Definition 4.5. A non-leaf edge e of a model I of a query Q is iterable relative to an
incident pair Π if Ine,Π satisfies Q for each n ≥ 1; otherwise, it is non-iterable.

The goal of this section is to show that if a query Q has a model with a non-leaf edge
which is not iterable, then PQE(Q) is intractable:

I Theorem 4.6. For every UCQ∞ Q, if Q has a model I with a non-leaf edge e that is
non-iterable relative to some incident pair, then PQE(Q) is #P-hard.

Note that this result applies to arbitrary homomorphism-closed queries, whether they are
bounded or not. Recall for instance the unsafe CQ Q0 : R(w, x), S(x, y), T (y, z). Then, the
model R(a, b), S(b, c), T (c, d) has an edge (b, c) which is non-leaf and non-iterable: indeed its
iteration with n = 2 relative to the only possible incident pair yields R(a, b), S(b, c′), S(b′, c′),
S(b′, c), T (c, d) which does not satisfy the query. Thus, Theorem 4.6 also shows that
PQE is #P-hard for this query. Of course, Theorem 4.6 is too coarse to show #P-
hardness for all unsafe UCQs; for instance, it does not cover Q′0 : R(x, x), S(x, y), T (y, y), or
Q1 : (R(w, x), S(x, y)) ∨ (S(x, y), T (y, z)). Theorem 4.6 will nevertheless be sufficient for our
purpose of showing hardness for all unbounded queries, as we will do in the next sections.

Hence, in the rest of this section, we prove Theorem 4.6. Let Ie,Π be the instance
with the non-iterable edge, and let us take the smallest n0 > 1 such that In0

e,Π violates the
query. The idea is to use Ie,Π and n0 to show hardness of PQE by reducing from #PP2DNF
(Definition 2.1). Thus, let us explain how we can use Ie,Π to code a bipartite graph H in
polynomial time into a TID I. The definition of this coding does not depend on the query Q,
but we will use the properties of Ie,Π and n0 to argue that it defines a reduction between
#PP2DNF and PQE, i.e., there is a correspondence between the possible worlds of H and
the possible worlds of I, such that good possible worlds of H are mapped to possible worlds
of I which satisfy Q. Let us first define the coding:

I Definition 4.7. Let Ie,Π be an instance where e = (u, v), Π = (Fl, Fr), Fl = Rl(l, u),
Fr = Rr(v, r), and let n ≥ 1. Let H = (A,B,C) be a connected bipartite graph. The coding
of H relative to Ie,Π and n is a TID I = (J, π) with domain dom(J) := (dom(I)\{u, v})∪{ua |
a ∈ A} ∪ {vb | b ∈ B} ∪ {uc,2, . . . , uc,n | c ∈ C} ∪ {vc,1, . . . , vc,n−1 | c ∈ C}, where the new
elements are fresh. The facts of J and the probability mapping π are defined as follows:

Copy non-incident facts: Initialize J as the induced subinstance of I on dom(I) \ {u, v}.
Copy incident facts Fl and Fr: Add to J the σ↔-fact Rl(l, ua) for each a ∈ A, and add
to J the σ↔-fact Rr(vb, r) for each b ∈ B.
Copy other left-incident facts: For each σ↔-fact F ′l = R′l(l′, u) of I that is left-incident
to e (i.e., l′ /∈ {u, v}) and where F ′l 6= Fl, add to J the facts R′l(l′, ua) for each a ∈ A,
and add to J the facts R′l(l′, uc,j) for each 2 ≤ j ≤ n and c ∈ C.

ICDT 2020

5:10 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

a

b

c

α

β

γ

(a) A bipartite graph H.

l

l1
u v

r1

r

r2

(b) An instance Ie,Π.

l

l1

u

u2

v1

v

r1

r

r2

(c) The instance I2
e,Π.

l

l1

ua
uaα,1

ub
ubα,1

ubβ,1

uc
ucα,1

ucβ,1

ucγ,1

vaα,1

vbα,1

vcα,1

vα

vbβ,1

vcβ,1

vβ

vcγ,1

vγ

r1

r

r2

(d) Coding of the bipartite graph H relative to I2
e,Π. Bold elements

correspond to vertices of H.

e

el (with Fl)
el without Fl

er (with Fr)
er without Fr

other incident edges

Figure 2 Example of the coding of a bipartite graph H shown in Figure 2a. We encode H relative
to an instance Ie,Π (Figure 2b), with a non-leaf edge e and an incident pair Π. The result I2

e,Π of
iterating e in I with n = 2 (Definition 4.3) is shown in Figure 2c. The coding of H relative to Ie,Π
and n = 2 (Definition 4.7) is shown in Figure 2d, with the probabilistic facts being the copies of Fl

and Fr in the edges in solid blue and black. A key explains the colors (bottom right).

Copy other right-incident facts: For each σ↔-fact F ′r = R′r(v, r′) of I that is right-incident
to e (i.e., r′ /∈ {u, v}) and where F ′r 6= Fr, add to J the facts R′r(vb, r′) for each b ∈ B
and add to J the facts R′r(vc,j , r′) for each 1 ≤ j ≤ n− 1 and c ∈ C.
Create copies of e: For each c ∈ C with c = (a, b), copy e on the following pairs: (uc,i, vc,i)
for 1 ≤ i ≤ n, and (uc,i+1, vc,i) for 1 ≤ i ≤ n− 1, where we use uc,1 to refer to ua and
vc,n to refer to vb.

Finally, we define the function π such that it maps all the facts created in the step “Copy
incident facts Fl and Fr” to 0.5, and all other facts to 1.

Observe how this definition relates to the definition of iteration (Definition 4.3): we
intuitively code each edge of the bipartite graph as a copy of the path of copies of e in
the definition of the n-th iteration of (u, v). Note also that there are exactly |A| + |B|
uncertain facts, by construction. It is clear that, for any choice of Ie,Π and n, this coding is
in polynomial time in H. The result of the coding is illustrated in Figure 2.

We now define the bijection φ, mapping each possible world ω of the connected bipartite
graph H to a possible world of the TID I. For each vertex a ∈ A, we keep the copy of Fr
incident to ua in φ(ω) if a is kept in ω, and we do not keep it otherwise; we do the same for vb,
and Fl. It is obvious that this correspondence is bijective, and that all possible worlds have
the same probability, namely, 0.5|A|+|B|. Furthermore, we can use φ to define a reduction,
thanks to the following property:

A. Amarilli and İ. İ. Ceylan 5:11

A B
a

b

c

α

β

γ

(a) A possible world ω ofH from Figure 2a,
containing all circled nodes.

A B A B
a α b

c

α

β

γ

(b) The way H is considered in the completeness proof
of Proposition 4.8.

l

l1

ua
uaα,1

ub
ubα,1

ubβ,1

uc
ucα,1

ucβ,1

ucγ,1

vaα,1

vbα,1

vcα,1

vα

vbβ,1

vcβ,1

vβ

vcγ,1

vγ

r1

r

r2

(c) The possible world φ(ω) of the coding (Figure 2d) for ω. The
edges (l, ub), (l, uc), and (vα, r) are changed to dashed lines, as they
correspond to vertices of H that are not kept in ω.

e

el (with Fl)
el without Fl

er (with Fr)
er without Fr

other incident edges

Figure 3 Example for the completeness direction of the proof of Proposition 4.8. Figure 3a shows
a bad possible world ω of the bipartite graph. The corresponding possible world of the coding of
Figure 2d (using the instance I2

e,Π of Figure 2b) is given in Figure 3c. In the proof, we explore H
as depicted in Figure 3b to argue that Figure 3c has a homomorphism to I5

e,Π. A key explains the
colors (bottom right).

I Proposition 4.8. Let the TID I = (J, π) be the coding of a connected bipartite graph
H = (A,B,C) relative to an instance Ie,Π and to n ≥ 1 as described in Definition 4.7, and
let φ be the bijective function defined above from the possible worlds of H to those of I. Then:

1. For any good possible world ω of H, φ(ω) has a homomorphism from Ine,Π.

2. For any bad possible world ω of H, φ(ω) has a homomorphism to I3n−1
e,Π .

Proof sketch. The first direction is because φ(ω) then contains a subinstance isomorphic
to Ine,Π: keep the facts of the path corresponding to any edge witnessing that ω is good.

The harder part is the second direction as illustrated in Figure 3: when ω is bad, we
can show how to “fold back” φ(ω), going from the copies of Fl to the copies of Fr, into the
iterate I3n−1

e,Π . This uses the fact that ω is bad, so the copies of Fl and Fr must be sufficiently
far from one another. J

Proposition 4.8 allows us to conclude the proof of Theorem 4.6. Indeed, we can take Ie,Π
which satisfies Q, and choose the smallest n0 > 1 such that In0

e,Π violates Q. Hence, In0−1
e,Π

satisfies Q, but I3(n0−1)−1
e,Π does not. Then, by Proposition 4.8, good possible worlds of H

give a possible world of I that satisfies Q, and bad possible worlds of H give a possible world
of I that does not satisfy Q. This argument concludes the proof of Theorem 4.6.

ICDT 2020

5:12 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

5 Finding a Minimal Tight Pattern

In the previous section, we have shown hardness for queries (bounded or unbounded) that
have a model with a non-iterable edge; leaving the case of unbounded queries open, for which,
in all models, all non-leaf edges can be iterated. We first note that such queries indeed exist:

I Example 5.1. Consider the following Datalog program:

R(x, y)→ A(y), A(x), S(x, y)→ B(y), B(x), S(y, x)→ A(y), T (x, y), B(x)→ Goal().

This program is unbounded, as it tests if the instance contains a path of the form R(a, a1),
S(a1, a2), S−(a2, a3), . . . , S(a2n+1, a2n+2), T (a2n+2, b). However, it has no model with a non-
iterable edge: in every model, the query is satisfied by a path of the form above, and we
cannot break such a path by iterating an edge (i.e., this yields a longer path of the same
form).

If we tried to reduce from #PP2DNF for this query as in the previous section, then the
reduction would fail because the edge is iterable: in possible worlds of the bipartite graph,
where we have not retained two adjacent vertices, we would still have matches of the query
in the corresponding possible world of the probabilistic instance, where we go from a chosen
vertex to another by going back-and-forth on the copies of e that code the edges of the
bipartite graph. These are the “back-and-forth matches” which were missed in [26, 27].

In light of this, we handle the case of such queries in the next two sections. In this section,
we prove a general result for unbounded queries (independent from the previous section): all
unbounded queries must have a model with a tight edge, which is additionally minimal in
some sense. Tight edges and iterable edges will then be used in Section 6 to show hardness
for unbounded queries which are not covered by the previous section.

Let us start by defining this notion of tight edge, via a rewriting operation on instances
called a dissociation.

I Definition 5.2. The dissociation of a non-leaf edge e = (u, v) in I is the instance I ′ where:
dom(I ′) = dom(I) ∪ {u′, v′} where u′ and v′ are fresh.
I ′ is I where we create a copy of the edge e on (u, v′) and on (u′, v), and then remove all
non-unary facts that realize e in I ′.

Dissociation is illustrated in the following example (see also Figure 4).

I Example 5.3. Consider the instance I = {R(a, b), S(b, a), T (b, a), R(a, c), S(c, b), S(d, b),
U(a, a), U(b, b)}. The edge (a, b) is non-leaf, as witnessed by the edges {a, c} and {b, c}. The
result of the dissociation is I ′ = {R(a, b′), S(b′, a), T (b′, a), R(a′, b), S(b, a′), T (b, a′), R(a, c),
S(c, b), S(d, b), U(a, a), U(a′, a′), U(b, b), U(b′, b′)}.

We then call an edge tight in a model of Q if dissociating it makes Q false.

I Definition 5.4. Let Q be a query and I be a model of Q. An edge e of I is tight if it is
non-leaf, and the result of the dissociation of e in I does not satisfy Q. A tight pattern for
the query Q is a pair (I, e) of a model I of Q and of an edge e of I that is tight.

Intuitively, a tight pattern is a model of a query containing at least three edges
{u, a}, {a, b}, {b, v} (possibly u = v) such that performing a dissociation makes the query
false. For instance, for the unsafe CQ Q0 : R(w, x), S(x, y), T (y, z) from [16], a tight pattern
would be R(a, b), S(b, c), T (c, d) with the edge (b, c). Again, not all unsafe CQs have a tight
pattern, e.g., Q′0 and Q1 from Section 4 do not.

For our purposes, we will not only need tight patterns, but minimal tight patterns:

A. Amarilli and İ. İ. Ceylan 5:13

l1

l2

u v

r2

r1 l1

l2

u

u′

v

v′ r1

r2

Figure 4 An instance (left) with a non-leaf edge (u, v), and the result (right) of dissociating
(u, v).

I Definition 5.5. Given an instance I with a non-leaf edge e = (a, b), the weight of e is
the number of facts that realize e in I (including unary facts). The side weight of e is the
number of σ↔-facts in I that are left-incident to e, plus the number of σ↔-facts in I that
are right-incident to e. Given a query Q, we say that a tight pattern (I, e) is minimal if:

Q has no tight pattern (I ′, e′) where the weight of e′ is strictly less than that of e; and
Q has no tight pattern (I ′, e′) where the weight of e′ is equal to that of e and the side
weight of e′ is strictly less than that of e.

We can now state the main result of this section:

I Theorem 5.6. Every unbounded query Q has a minimal tight pattern.

The idea of how to find tight patterns is as follows. We first note that the only instances
without non-leaf edges are intuitively disjoint unions of star-shaped subinstances. Now, if
a query is unbounded, then its validity cannot be determined simply by looking at such
subinstances (unlike Q′0 or Q1 above), so there must be a model of the query with an edge
that we cannot dissociate without breaking the query, i.e., a tight pattern. Once we know
that there is a tight pattern, then it is simple to argue that we can find a model with a tight
edge that is minimal in the sense that we require.

To formalize this intuition, let us first note that any iterative dissociation process, i.e.,
any process of iteratively applying dissociation to a given instance, will necessarily terminate.
More precisely, an iterative dissociation process is a sequence of instances starting at an
instance I and where each instance is defined from the previous one by performing the
dissociation of some non-leaf edge. We say that the process terminates if it reaches an
instance, where there is no edge left to dissociate, i.e., all edges are leaf edges.

I Observation 5.7. For any instance I, the iterative dissociation process will terminate in
n steps, where n is the number of non-leaf edges in I.

Proof sketch. Each dissociation decreases the number of non-leaf edges by 1. J

Let us now consider instances with no non-leaf edges. They are intuitively disjoint
unions of star-shaped subinstances, and in particular they homomorphically map to some
constant-sized subset of their facts, as will be crucial when studying our unbounded query.

I Proposition 5.8. For every signature σ, there exists a bound kσ > 0, ensuring the following:
For every instance I on σ having no non-leaf edge, there exists an instance I ′ ⊆ I such that
I has a homomorphism to I ′ and such that we have |I ′| < kσ.

Proof sketch. Connected instances where we cannot perform a dissociation can have at most
one non-leaf element, with all edges using this element and a leaf. Now, each edge can be
described by the set of facts that realize it, for which there are finitely many possibilities
(exponentially many in the signature size). We can thus show the result by collapsing together
edges having the same set of facts.

ICDT 2020

5:14 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

Disconnected instances where we cannot perform a dissociation are unions of the connected
instances of the form above, so the number of possibilities up to homomorphic equivalence is
finite (exponential in the number of possible connected instances). We can then conclude by
collapsing together connected components that are isomorphic. J

We can now prove Theorem 5.6 by appealing to the unboundedness of the query. To do
this, we will rephrase unboundedness in terms of minimal models:

I Definition 5.9. A minimal model of a query Q is an instance I that satisfies Q and such
that every proper subinstance of I violates Q.

We can rephrase the unboundedness of a UCQ∞ Q in terms of minimal models: Q is
unbounded iff it has infinitely many minimal models. Indeed, if a query Q has finitely many
minimal models, then it is clearly equivalent to the UCQ formed from these minimal models,
because it is closed under homomorphisms. Conversely, if Q is equivalent to a UCQ, then it
has finitely many minimal models which are obtained as homomorphic images of the UCQ
disjuncts. Thus, we can clearly rephrase unboundedness as follows:

I Observation 5.10. A UCQ∞ query Q is unbounded iff it has a minimal model I with > k

facts for any k ∈ N.

We can now show Theorem 5.6. We first show how to find a tight pattern, which is not
necessarily minimal. To do this, take a sufficiently large minimal model I0 of the query
by Observation 5.10, and perform an iterative dissociation process, while it is possible to
dissociate edges without breaking the query. By Observation 5.7, this process eventually
terminates. If the result In of the process has a non-leaf edge which we did not dissociate,
then dissociating this edge breaks the query, so it is tight and we are done. Otherwise, we
reach a contradiction: as there are only leaf edges in In, Proposition 5.8 implies that In
has a homomorphism to a constant-sized subset I ′n, which also satisfies Q. Now, I ′n has
a homomorphism back into In (as a subset), then into I0 (by undoing the dissociations).
This identifies a constant-sized subset of I0 that satisfies the query, which contradicts the
definition of I0 as a large minimal model.

Having found a tight pattern, we find a minimal tight pattern simply by minimizing first
on the weight, then on the side weight, which concludes the proof of Theorem 5.6.

6 Hardness with Tight Iterable Edges

In this section, we conclude the proof of Theorem 3.3 by showing that a minimal tight pattern
can be used to show hardness when it is iterable. Formally:

I Theorem 6.1. For every query Q, if we have a minimal tight pattern (I, e) where the
edge e is iterable, then PQE(Q) is #P-hard.

This covers all the queries to which Section 4 did not apply, and concludes the proof of
Theorem 3.3:

Proof of Theorem 3.3. Let Q be an unbounded UCQ∞. If we have a model of Q with a
non-iterable edge, then we conclude by Theorem 4.6 that PQE(Q) is #P-hard. Otherwise,
by Theorem 5.6, we have a minimal tight pattern, and its edge is then iterable (otherwise
the first case would have applied), so that we can apply Theorem 6.1. J

A. Amarilli and İ. İ. Ceylan 5:15

I

l

l1

u v

r

r1

I ′

l

l1

u

u′

v

v′

r

r1

e (with Fm)
e without Fm
el (with Fl)
el without Fl
er (with Fr)
er without Fr
other incident edges

Figure 5 Example of fine dissociation from an instance I (left) to I ′ (middle) for a choice of e,
of Π = (Fl, Fr), and of Fm. We call el and er the edges of Fl and Fr. A key is given at the right.

Thus, it only remains to show Theorem 6.1. The idea is to use the iterable edge e of the min-
imal tight pattern (I, e) for some incident pair Π to reduce from the undirected st-connectivity
problem #U-ST-CON (Definition 2.2). Given an input st-graph G for #U-ST-CON, we will
code it as a TID I built using Ie,Π, with one probabilistic fact per edge of G. To show a
reduction, we will argue that good possible worlds of G correspond to possible worlds J ′
of I containing some iterate of the instance Ine,Π (with n being the length of the path), and
J ′ then satisfies Q because e is iterable. Conversely, we will argue that bad possible worlds
of G correspond to possible worlds J ′ of I that have a homomorphism to a so-called fine
dissociation of e in I, and we will argue that this violates Q query thanks to our choice
of (I, e) as a minimal tight pattern. Let us first define this notion of fine dissociation:

I Definition 6.2. Let I be an instance, let e = (u, v) be a non-leaf edge in I, let Fl = Rl(l, u)
and Fr = Rr(v, r) be an incident pair of e in I, and let Fm be a non-unary fact realizing the
edge e. The result of performing the fine dissociation of e in I relative to Fl, Fr and Fm is
an instance I ′ on the domain dom(I ′) = dom(I) ∪ {u′, v′}, where the new elements are fresh.
It is obtained by applying the following steps:

Copy non-incident facts: Initialize I ′ as the induced subinstance of I on dom(I) \ {u, v}.
Copy incident facts Fl and Fr: Add the facts Fl and Fr to I ′.
Copy other left-incident facts: For every σ↔-fact F ′l = R′l(l′, u) of I that is left-incident
to e (i.e., l′ /∈ {u, v}) and where F ′l 6= Fl, add to I ′ the fact R′l(l′, u′).
Copy other right-incident facts: For every σ↔-fact F ′r = R′r(v, r′) of I that is right-incident
to e (i.e., r′ /∈ {u, v}) and where F ′r 6= Fr, add to I ′ the fact R′r(v′, r′).
Create the copies of e: Copy e on the pairs (u, v′) and (u′, v) of I ′, and copy e except
the fact Fm on the pairs (u, v) and (u′, v′) of I ′.

The result of a fine dissociation is illustrated in Figure 5. If the only non-unary fact
realizing the edge e in I is Fm, then (u, v) and (u′, v′) are not edges in the result of the fine
dissociation; otherwise, they are edges but with a smaller weight than e. Observe that fine
dissociation is related both to dissociation (Section 5) and to iteration (Section 4). We will
study later when fine dissociation can make the query false.

We can now start the proof of Theorem 6.1 by describing the coding, which depends on
our choice of Ie,Π and of a fact Fm, but does not depend on the query Q. Given an input
st-graph, i.e., an undirected graph G with source s and target t, we construct a TID I whose
possible worlds will have a bijection to those of G.

I Definition 6.3. Let Ie,Π be an instance where e = (u, v), Π = (Fl, Fr), Fl = Rl(l, u),
Fr = Rr(v, r) and let Fm be a non-unary fact of I realizing e. Let G = (W,C, s, t) be an
undirected graph with source and target. The coding of G relative to Ie,Π and Fm is a TID
I = (J, π) with domain dom(J) := dom(I) ∪ {uc | c ∈ C} ∪ {vw | w ∈ W \ {t}}, where the
new elements are fresh, and where we use vt to refer to v for convenience. The facts of J
and the probability mapping π are defined as follows:

ICDT 2020

5:16 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

Copy non-incident facts: Initialize J as the induced subinstance of I on dom(I) \ {u, v}.
Copy incident facts Fl and Fr: Add the facts Fl and Fr to J .
Copy other left-incident facts: For every σ↔-fact F ′l = R′l(l′, u) of I that is left-incident
to e (i.e., l′ /∈ {u, v}) and where F ′l 6= Fl, add to J the facts R′l(l′, uc) for each edge c ∈ C.
Copy other right-incident facts: For every σ↔-fact F ′r = R′r(v, r′) of I that is right-
incident to e (i.e., r′ /∈ {u, v}) and where F ′r 6= Fr, add to J the facts R′r(vw, r′) for each
w ∈W .
Create copies of e: Copy e on the pair (u, vs) of J , and for each edge c = {a, b} in C,
copy e on the pairs (uc, va) and (uc, vb) of J .

Finally, we define the function π as follows. For each edge c of C, π maps the copy of the
fact Fm in the edge (uc, vw) to 0.5, for an arbitrary choice of w ∈ c. All other facts are
mapped to 1 by π.

The coding is exemplified in Figure 6. It is important to note that the edges are coded
by paths of length 2. This choice is critical, because the source graph to the reduction is
undirected, but the facts on edges are directed; so, intuitively, we symmetrize by having two
copies of the edge in opposite directions in order to traverse them in both ways. The choice
on how to orient the edges (i.e., the choice of w ∈ c when defining π) has no impact in how
the edges can be traversed when their probabilistic fact is present, but it has an impact when
the probabilistic fact is missing. Indeed, this is the reason why fine dissociation includes two
copies of e with one missing fact.

It is easy to see that the given coding is in polynomial time in the input G for every
choice of Ie,Π and Fm. Let us now define the bijection φ, mapping each possible world ω of G
to a possible world of the TID I as follows. For each edge c ∈ C, we keep the probabilistic
fact incident to uc in the instance φ(ω) if c is kept in the possible world ω, and we do not
keep it, otherwise. It is obvious that this correspondence is bijective and that all possible
worlds have the same probability 0.5|C|. We can now explain why φ defines a reduction:

I Proposition 6.4. Let the TID I = (J, π) be the coding of an undirected st-graph G relative
to an instance Ie,Π and to Fm as described in Definition 6.3. Let φ be the bijective function
defined above from the possible worlds of G to those of I. Then:
1. For any good possible world ω of G with a witnessing simple s, t-path traversing n edges,

φ(ω) has a homomorphism from In+1
e,Π .

2. For any bad possible world ω of G, φ(ω) has a homomorphism to the result of finely
dissociating e in I relative to Π and Fm.

Proof sketch. For the forward direction, we find In+1
e,Π as a subinstance of φ(ω) by following

the image in J of the witnessing path in ω.
The backward direction is again more challenging. We consider a cut in ω between s

and t. Then, any two vertices on different sides of the cut can only be connected by two
successive copies of e with one of them missing the fact Fm (it can be the first or second
copy depending on the orientation choice). We then construct the homomorphism to the
fine dissociation (Figure 5) by mapping the vertex u to u, mapping vertices on the s-side
of the cut (including vs) to v′, mapping the edges between these vertices back-and-forth to
(v′u) and (u, v′), mapping all vertices on the t-side (including vt = v) to v, mapping edges
between them back-and-forth to (v, u′) and (u′, v), and mapping the edges across the cut to
either (v′, u′) and (u′, v) or to (v′, u) and (u, v), depending on the orientation choice. J

Proposition 6.4 leads us to a proof of Theorem 6.1: good possible worlds of G give a
possible world of I that satisfies Q thanks to the iterability of e, and bad possible worlds
of G give a possible world of I having a homomorphism to the fine dissociation. The only

A. Amarilli and İ. İ. Ceylan 5:17

s

a

b

c d

t

e1

e2

e3

e4

e5

e9

e6

e8
e7

(a) An st-graph G.

l

l1

u v

r1

r

(b) An instance Ie,Π.

l

l1

u

ue1

ue2

ue3

ue4

ue5

ue6

ue7

ue8

ue9

vs

va

vb

vc

vd

vt

r1

r

(c) Coding of the graph G relative to Ie,Π and
some Fm.

l

l1

u

ue1

ue4

ue8

vs

va

vc

vt

r1

r

(d) The image of an s-t path in the coding.

Figure 6 Example of the coding on an st-graph G shown in Figure 6a. We encode G relative to
an instance Ie,Π (Figure 6b) and to some choice of a non-unary fact Fm realizing e. The coding of G
relative to Ie,Π and Fm is shown in Figure 6c, with the probabilistic facts being exactly one copy
of Fm for one of every pair of purple edges adjacent to an element in {ue1 , . . . , ue9 }. Each st-path
in G gives rise to a subinstance in the coding: consider for instance the st-path which is via the
edges e1, e4, e8. The corresponding subinstance in the coding for this path is shown in Figure 6d,
which is an iterate of the form In+1

e,Π , where n is the number of edges on the path, and hence n = 3,
in this case.

missing piece is to argue that the fine dissociation does not satisfy the query. We can do this
using the minimality and tightness of the pattern:

I Lemma 6.5. Let Q be a query, let (I, e) be a minimal tight pattern for Q, let Π be an
arbitrary incident pair of e in I, and let Fm be an arbitrary non-unary fact realizing e in I.
Then, the result of the fine dissociation of e in I relative to Π and Fm does not satisfy Q.

Proof sketch. We assume that the fine dissociation I1 satisfies Q, and show a contradiction
by rewriting it in several steps. The process of the proof is illustrated as Figure 8. We first
dissociate the copies of e in I1 with Fm missing: as their weight is strictly less than e, the
minimality of e ensures that they are not tight, so the result I2 still satisfies Q. We then
homomorphically fold the dissociated edges into the copies of e, and obtain I3, which still
satisfies Q: it is like I1 but without the copies of e with Fm missing. Now, the copies of e
in I3 have a smaller side weight than in I1, so the minimality of e ensures that they are
not tight. We can dissociate them again, yielding I4, which still satisfies Q. We can now
homomorphically fold the dissociated edges and obtain I5, which still satisfies Q, and is
homomorphic to the dissociation of e in I1. As e was tight, I5 should not satisfy the query,
so we have reached a contradiction. J

This concludes the proof of Theorem 6.1, and thus of our main theorem (Theorem 3.3).

ICDT 2020

5:18 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

s

a

b

c d

t

e1

e2

e3

e4

e5

e9

e6

e8
e7

(a) A possible world ω of G with no s, t-path
(dashed edges are the ones that are not kept):
the vertices are colored in red or green depend-
ing on their side of the cut.

l

l1

u

ue1

ue2

ue3

ue4

ue5

ue6

ue7

ue8

ue9

vs

va

vb

vc

vd

vt

r1

r

(b) Possible world of the coding in Figure 6c for the
possible world of G at the left. Copies of e are dashed when
they are missing the fact Fm. Vertices uei corresponding
to edges across the cut are in bold.

Figure 7 Illustration of a possible world (Figure 7a) of the graph G from Figure 6a, and the
corresponding possible world (Figure 7b) of the coding (Figure 6c). The homomorphism of Figure 7b
to the fine dissociation is given by the vertex colors: the red u-vertices are mapped to u, the red
v-vertices are mapped to v′, the green u-vertices are mapped to u′, and the green v-vertices are
mapped to v. The vertex colors are determined by the cut (Figure 7a) except for the bold vertices
where it depends on the orientation choice.

I1
l

l1

u

u′

v

v′

r

r1
I2

l

l1

u1

u′1

v1

v′1
u2

u′2 v2

v′2

r

r1

I3
l

l1

u1

u′1

v1

v′1

r

r1
I4

l

l1

u1

u′1

v1

v′1
u5

u′5 v5

v′5

r

r1

I5l

l1

u1 v1

u′5

v′5

r

r1

Figure 8 Illustration of the proof of Lemma 6.5, with I1 being the fine dissociation I ′ of Figure 5,
and I5 being isomorphic to the dissociation on Figure 4.

A. Amarilli and İ. İ. Ceylan 5:19

7 Conclusion

We have shown that PQE is #P-hard for any unbounded UCQ∞ on an arity-two signature,
and hence proved a dichotomy on PQE for all UCQ∞ queries: either they are unbounded and
PQE is #P-hard, or they are bounded and the dichotomy by Dalvi and Suciu applies. Our
result captures many query languages; in particular disjunctive Datalog over binary signatures,
regular path queries, and all ontology-mediated queries closed under homomorphisms.

There are three natural directions to extend our result. First, we could study queries
that are not homomorphism-closed, e.g., with disequalities or negation. We believe that this
would require different techniques as the problem is still open for UCQs (beyond the results
of [21]). Second, we could lift the arity restriction and work on signatures of arbitrary arity:
we conjecture that PQE is still #P-hard for any unbounded UCQ∞ in that case. Much
of our proof techniques may adapt, but we do not know how to extend the definitions of
dissociation, fine dissociation, and iteration. In particular, dissociation on a fact is difficult
to adapt because incident facts on arbitrary arity signatures may intersect in complicated
ways. For this reason, we leave the extension to arbitrary-arity signatures to future work.
Third, a natural question for future work is whether our hardness result on unbounded
homomorphism-closed queries also applies to the (unweighted) model counting problem, where
all facts of the TID must have probability 0.5: the hardness of this problem has only been
shown on the class of self-join free CQs [4].

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases. Addison-Wesley,

1995.
2 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable lineages on treelike instances:

Limits and extensions. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (PODS-16), pages 355–370. ACM, 2016.

3 Antoine Amarilli and İsmail İlkan Ceylan. A dichotomy for homomorphism-closed queries on
probabilistic graphs, 2020. Full version with proofs: https://arxiv.org/abs/1910.02048.

4 Antoine Amarilli and Benny Kimelfeld. Model counting for conjunctive queries without
self-joins. CoRR, abs/1908.07093, 2019.

5 Franz Baader, Diego Calvanese, Deborah L McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic handbook. Cambridge University Press, 2007.

6 Pablo Barceló, Diego Figueira, and Miguel Romero. Boundedness of conjunctive regular path
queries, 2019. URL: https://hal.archives-ouvertes.fr/hal-02056388/.

7 Michael Benedikt, Balder Ten Cate, Thomas Colcombet, and Michael Vanden Boom. The
complexity of boundedness for guarded logics. In 2015 30th Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 293–304. IEEE, 2015.

8 Meghyn Bienvenu, Balder Ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: A study through disjunctive Datalog, CSP, and MMSNP. ACM Transactions on
Database Systems (TODS), 39(4):33:1–33:44, 2014.

9 Stefan Borgwardt, İsmail İlkan Ceylan, and Thomas Lukasiewicz. Ontology-mediated queries
for probabilistic databases. In Proceedings of the 31th AAAI Conference on Artificial Intelli-
gence (AAAI-17), pages 1063–1069. AAAI Press, 2017.

10 Stefan Borgwardt, İsmail İlkan Ceylan, and Thomas Lukasiewicz. Ontology-mediated query
answering over log-linear probabilistic data. In Proceedings of the 33rd National Conference
on Artificial Intelligence (AAAI-19). AAAI Press, 2019.

11 Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. JAIR, 48:115–174, 2013.

12 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general Datalog-based framework
for tractable query answering over ontologies. J. Web Sem., 14:57–83, 2012.

ICDT 2020

http://webdam.inria.fr/Alice/pdfs/all.pdf
https://arxiv.org/abs/1604.02761
https://arxiv.org/abs/1604.02761
https://arxiv.org/abs/1910.02048
https://arxiv.org/abs/1910.02048
https://arxiv.org/abs/1910.02048
https://arxiv.org/abs/1908.07093
https://arxiv.org/abs/1908.07093
https://www.researchgate.net/publication/230745455_The_Description_Logic_Handbook_Theory_Implementation_and_Applications
https://hal.archives-ouvertes.fr/hal-02056388/
https://web.comlab.ox.ac.uk/people/michael.vandenboom/papers/LICS15-gnfpb-long.pdf
https://web.comlab.ox.ac.uk/people/michael.vandenboom/papers/LICS15-gnfpb-long.pdf
https://arxiv.org/abs/1301.6479
https://arxiv.org/abs/1301.6479
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14365/13881
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14365/13881
https://lat.inf.tu-dresden.de/research/papers/2019/BoCL-AAAI19.pdf
https://lat.inf.tu-dresden.de/research/papers/2019/BoCL-AAAI19.pdf
https://www.jair.org/index.php/jair/article/view/10837
https://www.jair.org/index.php/jair/article/view/10837
https://www.cs.ox.ac.uk/files/3608/rr1021.pdf
https://www.cs.ox.ac.uk/files/3608/rr1021.pdf

5:20 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

13 İsmail İlkan Ceylan. Query answering in probabilistic data and knowledge bases. Doctoral
thesis, TU Dresden, 2017.

14 İsmail İlkan Ceylan, Adnan Darwiche, and Guy Van den Broeck. Open-world probabilistic
databases. In Proceedings of the 15th International Conference on Principles of Knowledge
Representation and Reasoning (KR-16), pages 339–348. AAAI Press, 2016.

15 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing (STOC-71), pages 151–158. ACM, 1971.

16 Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. The VLDB
Journal, 16(4):523–544, 2007.

17 Nilesh Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of conjunctive
queries. J. ACM, 59(6), 2012.

18 Anuj Dawar and Stephan Kreutzer. On Datalog vs. LFP. In International Colloquium on
Automata, Languages, and Programming, pages 160–171. Springer, 2008.

19 Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas
Strohmann, Shaohua Sun, and Wei Zhang. Knowledge Vault: A Web-scale approach to
probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 601–610. ACM, 2014.

20 Thomas Eiter, Magdalena Ortiz, Mantas Šimkus, Trung-Kien Tran, and Guohui Xiao. Query
rewriting for Horn-SHIQ plus rules. In AAAI, 2012.

21 Robert Fink and Dan Olteanu. Dichotomies for queries with negation in probabilistic databases.
ACM Transactions on Database Systems (TODS), 41(1):4:1–4:47, 2016.

22 Haim Gaifman, Harry Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. Undecidable optimization
problems for database logic programs. J. ACM, 40(3):683–713, July 1993.

23 Georg Gottlob and Thomas Schwentick. Rewriting ontological queries into small nonrecursive
Datalog programs. In KR, 2012.

24 Gerd G Hillebrand, Paris C Kanellakis, Harry G Mairson, and Moshe Y Vardi. Undecidable
boundedness problems for Datalog programs. The Journal of Logic Programming, 25(2):163–
190, 1995.

25 Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO2: A
spatially and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence,
194:28–61, 2013.

26 Jean Christoph Jung. Reasoning in many dimensions: uncertainty and products of modal
logics. PhD thesis, University of Bremen, 2014.

27 Jean Christoph Jung and Carsten Lutz. Ontology-based access to probabilistic data with
OWL QL. In Proceedings of the 11th International Conference on The Semantic Web - Volume
Part I, pages 182–197. Springer-Verlag, 2012.

28 T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi,
M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole,
E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. Never-ending learning. In Proceedings of the 29th
AAAI Conference on Artificial Intelligence (AAAI-15), pages 2302–2310, 2015.

29 Dan Olteanu and Jiewen Huang. Using OBDDs for efficient query evaluation on probabilistic
databases. In Proceedings of the 2nd International Conference on Scalable Uncertainty
Management (SUM-08), volume 5291 of LNCS, pages 326–340, 2008.

30 Dan Olteanu and Jiewen Huang. Secondary-storage confidence computation for conjunctive
queries with inequalities. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, pages 389–402. ACM, 2009.

31 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM Journal on Computing, 12(4), 1983 .

32 Christopher Ré and Dan Suciu. The trichotomy of HAVING queries on a probabilistic database.
The VLDB Journal, 18(5):1091–1116, 2009.

33 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic databases,
volume 3. Morgan-Claypool, 2011.

34 Leslie Gabriel Valiant. The complexity of computing the permanent. TCS, 8(2):189–201, 1979.

https://lat.inf.tu-dresden.de/research/theses/2017/Ceylan-Diss-2017.pdf
https://www.aaai.org/ocs/index.php/KR/KR16/paper/download/12908/12490
https://www.aaai.org/ocs/index.php/KR/KR16/paper/download/12908/12490
https://www.cs.toronto.edu/~sacook/homepage/1971.pdf
https://homes.cs.washington.edu/~suciu/vldbj-probdb.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://ora.ox.ac.uk/objects/uuid:73527af8-31b9-4108-a07d-058967ba97e4/download_file?safe_filename=08-icalp.pdf&file_format=application%2Fpdf&type_of_work=Conference+item
https://www.cs.ubc.ca/~murphyk/Papers/kv-kdd14.pdf
https://www.cs.ubc.ca/~murphyk/Papers/kv-kdd14.pdf
https://pdfs.semanticscholar.org/9716/6f9b284d8e7da46bd6cd43b43a7af14b773c.pdf
https://pdfs.semanticscholar.org/9716/6f9b284d8e7da46bd6cd43b43a7af14b773c.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
http://ceur-ws.org/Vol-745/paper_21.pdf
http://ceur-ws.org/Vol-745/paper_21.pdf
https://www.sciencedirect.com/science/article/pii/074310669500051K
https://www.sciencedirect.com/science/article/pii/074310669500051K
https://www.sciencedirect.com/science/article/pii/S0004370212000719
https://www.sciencedirect.com/science/article/pii/S0004370212000719
http://www.informatik.uni-bremen.de/~jeanjung/pub/phdjung.pdf
http://www.informatik.uni-bremen.de/~jeanjung/pub/phdjung.pdf
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10049/9557
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
https://www.cs.stanford.edu/people/chrismre/papers/journal_having_queries.pdf
https://www.sciencedirect.com/science/article/pii/0304397579900446

	Introduction
	Preliminaries
	Result Statement
	Hardness with Non-Iterable Edges
	Finding a Minimal Tight Pattern
	Hardness with Tight Iterable Edges
	Conclusion

