
Executable First-Order Queries in the Logic of
Information Flows
Heba Aamer
Universiteit Hasselt, Belgium

Bart Bogaerts
Vrije Universiteit Brussel, Belgium

Dimitri Surinx
Universiteit Hasselt, Belgium

Eugenia Ternovska
Simon Fraser University, Canada

Jan Van den Bussche
Universiteit Hasselt, Belgium

Abstract
The logic of information flows (LIF) has recently been proposed as a general framework in the field
of knowledge representation. In this framework, tasks of a procedural nature can still be modeled in
a declarative, logic-based fashion. In this paper, we focus on the task of query processing under
limited access patterns, a well-studied problem in the database literature. We show that LIF is
well-suited for modeling this task. Toward this goal, we introduce a variant of LIF called “forward”
LIF, in a first-order setting. We define FLIFio, a syntactical fragment of forward LIF, and show
that it corresponds exactly to the “executable” fragment of first-order logic defined by Nash and
Ludäscher. The definition of FLIFio involves a classification of the free variables of an expression
into “input” and “output” variables. Our result hinges on inertia and determinacy laws for forward
LIF expressions, which are interesting in their own right. These laws are formulated in terms of the
input and output variables.

2012 ACM Subject Classification Information systems → Query languages; Computing methodolo-
gies → Knowledge representation and reasoning

Keywords and phrases Logic of Information Flows, Limited access pattern, Executable first-order
logic

Digital Object Identifier 10.4230/LIPIcs.ICDT.2020.4

Funding Jan Van den Bussche is partially supported by the National Natural Science Foundation of
China (61972455). This research was partially supported by FWO project G0D9616N and by the
Flanders AI Research Program.

Acknowledgements We thank the ICDT reviewers for pointing out the connection to related
work [10, 12].

1 Introduction

An information source is said to have a limited access pattern if it can only be accessed by
providing values for a specified subset of the attributes; the source will then respond with
tuples giving values for the remaining attributes. A typical example is a restricted telephone
directory D(name; tel) that will show the phone numbers for a given name, but not the other
way around.

© Heba Aamer, Bart Bogaerts, Dimitri Surinx, Eugenia Ternovska, and Jan Van den Bussche;
licensed under Creative Commons License CC-BY

23rd International Conference on Database Theory (ICDT 2020).
Editors: Carsten Lutz and Jean Christoph Jung; Article No. 4; pp. 4:1–4:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.ICDT.2020.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Executable FO and LIF

The querying of information sources with limited access patterns has been quite intensively
investigated. The research is motivated by diverse considerations, such as query processing
using indices, or information integration on the Web. We refer to the review given by
Benedikt et al. [5, Chapter 3.12]. We also cite the work by Calì and collaborators [7, 8, 9].

In this paper, we offer a fresh perspective on querying with limited access patterns, based
on the Logic of Information Flows (LIF). This framework has been recently introduced
in the field of knowledge representation [18, 19]. The general aim of LIF is to model how
information propagates in complex systems. LIF allows machine-independent characteriza-
tions of computation; in particular, it allows tasks of a procedural nature to be modeled in a
declarative fashion.

In the full setting, LIF is a rich family of logics with higher-order features. The present
paper is self-contained, however, and we will work in a lightweight, first-order fragment, which
we call forward LIF (FLIF). Specifically, we will define a well-behaved, syntactic fragment of
FLIF, called io-disjoint FLIF. Our main result then is to establish an equivalence between
io-disjoint FLIF and executable first-order logic (executable FO).

Executable FO [15] is a syntactic fragment of FO in which formulas can be evaluated over
information sources in such a way that the limited access patterns are respected. Furthermore,
the syntactical restrictions are not very severe and become looser the more free variables are
declared as input.

The standard way of formalizing query processing with limited access patterns is by a
form of relational algebra programs, called plans [5]. In such plans, database relations can
only be accessed by joining them on their input attributes with a relation that is either
given as input or has already been computed. Apart from that, plans can use the usual
relational algebra operations. Plans can be expressed by executable FO formulas. The strong
result [6] is known that every (boolean) FO formula with the semantic property of being
access-determined can be evaluated by a plan. We will not need this result further on, but it
provides a strong justification for working with executable FO formulas.

Our language, FLIF, provides a new, navigational perspective on query processing with
limited access patterns. In our approach, we formalize the database as a graph of variable
bindings. Directed edges are labeled with the names of source relations (we are simplifying a
bit here). A directed edge ν1

R−→ ν2 indicates that, if we access R with input values given by
ν1, then the output values in ν2 are a possible result. In a manner very similar to navigational
or XPath-like graph query languages [16, 14, 4, 11, 17, 3], FLIF expressions represent paths
in the graph.

The io-disjoint fragment of FLIF is defined in terms of input and output variables that
are inferred for expressions. We establish inertia and input-determinacy properties for FLIF
expressions which are instrumental in proving our equivalence between io-disjoint expressions
and executable FO, but are also interesting in their own right. Apart from the intuitive
navigational nature, another advantage of io-disjoint FLIF is that it is very obvious how
expressions in this language can be evaluated by plans. As we will show, the structure of the
evaluation plan closely follows the shape of the expression, and all joins can be taken to be
natural joins; no attribute renamings are needed.

This paper is further organized as follows. Section 2 recalls the basic setting of executable
FO on databases with limited access patterns. Section 3 introduces the language FLIF.
Section 4 gives translations between executable FO and io-disjoint FLIF, showing that the
evaluation problems for the two languages can be naturally reduced to each other. Section 5
discusses evaluation plans. We conclude in Section 6.

H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche 4:3

2 Executable FO

Relational database schemas are commonly formalized as finite relational vocabularies, i.e.,
finite collections of relation names, each name with an associated arity (a natural number).
To model limited access patterns, we additionally specify an input arity for each name. For
example, if R has arity five and input arity two, this means that we can only access R by
giving input values, say a1 and a2, for the first two arguments; R will then respond with all
tuples (x1, x2, x3, x4, x5) in R where x1 = a1 and x2 = a2.

Thus, formally, we define a database schema as a triple S = (Names, ar, iar), where
Names is a set of relation names; ar assigns a natural number ar(R) to each name R in
Names, called the arity of R; and iar similarly assigns an input arity to each R, such that
iar(R) ≤ ar(R).
I Remark 1. In the literature, a more general notion of schema is often used, allowing,
for each relation name, several possible sets of input arguments; each such set is called an
access method. In this paper, we stick to the simplest setting where there is only one access
method per relation, consisting of the first k arguments, where k is set by the input arity. All
subtleties and difficulties already show up in this setting. Nevertheless, our definitions and
results can be easily generalized to the setting with multiple access methods per relation. J

The notion of database instance remains the standard one. Formally, we fix a countably
infinite universe dom of atomic data elements, also called constants. Now an instance D of a
schema S assigns to each relation name R an ar(R)-ary relation D(R) on dom. We say that
D is finite if every relation D(R) is finite. The active domain of D, denoted by adom(D), is
the set of all constants appearing in the relations of D.

The syntax and semantics of first-order logic (FO, relational calculus) over S is well
known [2]. In formulas, we allow constants only in equalities of the form x = c, where x is a
variable and c is a constant. Also, in writing relation atoms, we find it clearer to separate
input arguments from output arguments by a semicolon. Thus, we write relation atoms in
the form R(x̄; ȳ), where x̄ and ȳ are tuples of variables such that the length of x̄ is iar(R)
and the length of ȳ is ar(R)− iar(R). The set of free variables of a formula ϕ is denoted by
FV(ϕ).

We use the “natural” semantics [2] and let variables in formulas range over the whole of
dom. Formally, a valuation on a set X of variables is a mapping ν : X → dom. Given an
instance D of S, an FO formula ϕ over S, and a valuation ν defined on FV(ϕ), the definition
of when ϕ is satisfied by D and ν, denoted by D, ν |= ϕ, is standard.

A well-known problem with the natural semantics for general FO formulas is that ϕ
may be satisfied by infinitely many valuations on FV(ϕ), even if D is finite. However, as
motivated in the Introduction, we will focus on executable formulas, formally defined in this
section. These formulas can safely be used under the natural semantics.

The notion of when a formula is executable is defined relative to a set of variables V,
which specifies the variables for which input values are already given. We first give a few
examples.

I Example 2.
Let ϕ be the formula R(x; y). As mentioned above, this notation makes clear that the
input arity of R is one. If we provide an input value for x, then the database will give
us all y such that R(x, y) holds. Indeed, ϕ will turn out to be {x}-executable. Giving
a value for the first argument of R is mandatory, so ϕ is neither ∅-executable nor {y}-
executable. However, it is certainly allowed to provide input values for both x and y; in

ICDT 2020

4:4 Executable FO and LIF

that case we are merely testing if R(x, y) holds for the given pair (x, y). Thus, ϕ is also
{x, y}-executable. In general, a V-executable formula will also be V ′-executable for any
V ′ ⊇ V.
Also the formula ∃y R(x; y) is {x}-executable. In contrast, the formula ∃xR(x; y) is not,
because even if a value for x is given as input, it will be ignored due to the existential
quantification. In fact, the latter formula is not V-executable for any V.
The formula R(x; y) ∧ S(y; z) is {x}-executable, intuitively because each y returned by
the formula R(x; y) can be fed into the formula S(y; z), which is {y}-executable in itself.
The formula R(x; y) ∨ S(x; z) is not {x}-executable, because any y returned by R(x; y)
would already satisfy the formula, leaving variable z unconstrained. This would lead to
an infinite number of satisfying valuations. The formula is neither {x, z}-executable; if
S(x, z) holds for the given values for x and z, then y is left unconstrained. Of course, the
formula is {x, y, z}-executable.
For a similar reason, ¬R(x; y) is only V-executable for V containing x and y. J

Formally, for any set of variables V, the V-executable formulas are defined as follows.
An equality x = y, for variables x and y, is V-executable if at least one of x and y belongs
to V.
An equality x = c, for a variable x and a constant c, is always V-executable.
A relation atom R(x̄; ȳ) is V-executable if X ⊆ V , where X is the set of variables from x̄.
A negation ¬ϕ is V-executable if ϕ is, and moreover FV(ϕ) ⊆ V.
A conjunction ϕ ∧ ψ is V-executable if ϕ is, and moreover ψ is V ∪ FV(ϕ)-executable.
A disjunction ϕ∨ψ is V-executable if both ϕ and ψ are, and moreover FV(ϕ)4FV(ψ) ⊆ V .
Here, 4 denotes symmetric difference.
An existential quantification ∃xϕ is V-executable if ϕ is V − {x}-executable.

Note that universal quantification is not part of the syntax of executable FO.

I Remark 3. The naturalness of the above definition may be attested by its reinvention in
the context of a different application, namely, inferring bounds on result sizes of FO queries.
Indeed, the notion of “controlled” formula that was introduced for this purpose, strikingly
conforms to that of executable formula [10]. In the setting of controlled formulas, the input
arity k of an n-ary relation R is interpreted as an integrity constraint. An instance D satisfies
the constraint if for each k-tuple ā of constants, the number of n − k-tuples b̄ such that
ā · b̄ ∈ D(R) stays below a fixed upper bound. J

Given an FO formula ϕ and a finite set of variables V such that ϕ is V-executable, we
describe the following task:

Problem: The evaluation problem Evalϕ,V(D, νin) for ϕ with input variables V.
Input: A database instance D and a valuation νin on V.
Output: The set of all valuations ν on V ∪ FV(ϕ) such that νin ⊆ ν and D, ν |= ϕ.

As mentioned in the Introduction, this problem is known to be solvable by a relational
algebra plan respecting the access patterns. In particular, if D is finite, the output is always
finite: each valuation ν in the output can be shown to take only values in adom(D)∪ νin(V).1

1 Actually, a stronger property can be shown: only values that are “accessible” from νin in D can be
taken [5], and if this accessible set is finite, the output of the evaluation problem is finite. This will also
follow immediately from our equivalence between executable FO and FLIFio.

H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche 4:5

3 Forward LIF, inputs, and outputs

In this section, we introduce the language FLIF.2 It will be notationally convenient here to
work under the following proviso:

I Proviso 4. When we write “valuation” without specifying on which variables it is defined,
we assume it is defined on all variables. (Formally, we assume a countably infinite universe
of variables.)

Importantly, we will define the semantics of an FLIF expression in such a way that it
depends only on the value of the valuations on the free variables of the expression. This
situation is comparable to the classical way in which the semantics of first-order logic is often
defined.

The central idea is to view a database as a graph. The nodes of the graph are all possible
valuations (hence the graph is infinite.) The edges in the graph are labeled with atomic
FLIF expressions. Over a schema S, there are five kinds of atomic expressions τ , given by
the following grammar:

τ ::= R(x̄; ȳ) | (x = y) | (x = c) | (x := y) | (x := c)

Here, R(x̄; ȳ) is a relation atom over S as in first-order logic, x and y are variables, and c is
a constant.

Given an instance D of S, and an atomic expression τ , we define the set of τ -labeled
edges in the graph representation of D as a set JτKD of ordered pairs of valuations, as follows.
1. JR(x̄; ȳ)KD is the set of all pairs (ν1, ν2) of valuations such that the concatenation

ν1(x̄) · ν2(ȳ) belongs to D(R), and ν1 and ν2 agree outside the variables in ȳ.
2. J(x := y)KD is the set of all pairs (ν1, ν2) of valuations such that ν2 = ν1[x := ν1(y)].

Thus, ν2(x) = ν1(y) and ν2 agrees with ν1 on all other variables.
3. Similarly, J(x := c)KD is the set of all pairs (ν1, ν2) of valuations such that ν2 = ν1[x := c].
4. J(x = y)KD is the set of all identical pairs (ν, ν) such that ν(x) = ν(y).
5. Likewise, J(x = c)KD is the set of all identical pairs (ν, ν) such that ν(x) = c.

The syntax of all FLIF expressions α is now given by the following grammar:

α ::= τ | α ; α | α ∪ α | α ∩ α | α− α

Here, τ ranges over atomic expressions as defined above. The semantics of ‘;’ is composition,
defined as follows:

Jα1 ; α2KD = {(ν1, ν3) | ∃ν2 : (ν1, ν2) ∈ Jα1KD and (ν2, ν3) ∈ Jα2KD}

The semantics of the set operations are standard union, intersection and set difference.
We see that FLIF expressions describe paths in the graph, in the form of source–target

pairs. Composition is used to navigate through the graph, and to conjoin paths. Paths can
be branched using union, merged using intersection, and excluded using set difference.
I Remark 5. The way the smantics of FLIF is defined is in line with first-order dynamic logic
or dynamic predicate logic (DPL) [13, 12]. DPL gives a dynamic interpretation to existential
quantification and interprets conjunction as composition. For example, the FLIF expression
R(x; y) ; S(y; z) would be expressed in DPL as ∃y R(x, y) ∧ ∃z S(y, z). On the other hand,
disjunction in DPL is always interpreted as a test. Because of this, FLIF expressions such as
R(x; y) ∪ S(u; v) seem inexpressible in DPL.

2 Pronounced as “eff-lif”.

ICDT 2020

4:6 Executable FO and LIF

I Example 6. Consider a simple Facebook abstraction with a single binary relation F of
input arity one. When given a person as input, F returns all their friends. We assume that
this relation is symmetric. Suppose, for an input person x (say, a famous person), we want to
find all people who are friends with at least two friends of x. Formally, we want to navigate
from a valuation ν1 giving a value for x, to all valuations ν2 giving values to variables y1, y2,
and z, such that

ν1(x) is friends with both ν2(y1) and ν2(y2);
ν2(y1) and ν2(y2) are both friends with ν2(z); and
ν2(y1) 6= ν2(y2).

This can be done by the expression α− (α ; (y1 = y2)), where α is the expression

(F (x; y1) ; F (y1; z)) ∩ (F (x; y2) ; F (y2; z)).

I Remark 7. In the above example, it would be more efficient to simply write α ; (y1 6= y2).
For simplicity, we have not added nonequality tests in FLIF as they are formally redundant
in the presence of set difference, but they can easily be added in practice. J

In every expression we can identify the input and the output variables. Intuitively, the
output variables are those that can change value along the execution path; the input variables
are those whose value at the beginning of the path is needed in order to know the possible
values for the output variables. These intuitions will be formalized below. We first give some
examples.

I Example 8.
In the expression α from Example 6, the only input variable is x, and the other variables
are output variables.
FLIF, in general, allows expressions where a variable is both input and output. For
example, assume dom contains the natural numbers and consider a binary relation Inc
of input arity one that holds pairs of natural numbers (n, n+ 1). Then it is reasonable to
use an expression Inc(x;x) to increment the value x. Formally, this expression defines
all pairs of valuations (ν1, ν2) such that ν2(x) = ν1(x) + 1 (and ν2 agrees with ν1 on all
other variables).
Consider the expression R(x; y1) ∩ S(x; y2). Then not only x, but also y1 and y2 are
input variables. Indeed, the expression R(x; y1) will pair an input valuation ν1 with an
output valuation ν2 that sets y1 such that R(ν1(x), ν2(y1)) holds, but ν2 will have the
same value as ν1 on any other variable. In particular, ν2(y2) = ν1(y2). The expression
S(x; y2) has a similar behavior, but with y1 and y2 interchanged. Thus, the intersection
expression checks two conditions on the input valuation; formally, it defines all identical
pairs (ν, ν) for which R(ν(x), ν(y1)) and S(ν(x), ν(y2)) hold. Since the expression only
tests conditions, it has no output variables.
On the other hand, for the expression R(x; y1)∪ S(x; y2), the output variables are y1 and
y2. Indeed, consider an input valuation ν1 with ν1(x) = a. The expression pairs ν1 either
with a valuation giving a new value for y1, or with a valuation giving a new value for
y2. However, y1 and y2 are also input variables (together with x). Indeed, when pairing
ν1 with a valuation ν2 that sets y2 to some b for which S(a, b) holds, we must know the
value of ν1(y1) so as to preserve it in ν2. A similar argument holds for y2. J

Table 1 now formally defines, for any expression α, the sets I(α) and O(α) of input and
output variables. We denote the union of I(α) and O(α) by FV(α). We refer to this set as
the free variables of α, but note that it actually equals the set of all variables occurring in
the expression.

H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche 4:7

Table 1 Input and output variables of FLIF expressions. In the case of R(x̄; ȳ), the set X is the
set of variables in x̄, and the set Y is the set of variables in ȳ. Recall that 4 is symmetric difference.

α I(α) O(α)

R(x̄; ȳ) X Y

(x = y) {x, y} ∅

(x := y) {y} {x}

(x = c) {x} ∅

(x := c) ∅ {x}

α1;α2 I(α1) ∪ (I(α2)−O(α1)) O(α1) ∪O(α2)

α1 ∪ α2 I(α1) ∪ I(α2) ∪ (O(α1)4O(α2)) O(α1) ∪O(α2)

α1 ∩ α2 I(α1) ∪ I(α2) ∪ (O(α1)4O(α2)) O(α1) ∩O(α2)

α1 − α2 I(α1) ∪ I(α2) ∪ (O(α1)4O(α2)) O(α1)

We next establish three propositions that show that our definition of inputs and outputs,
which is purely syntactic, reflects actual properties of the semantics. The first proposition
confirms an intuitive property and can be straightforwardly verified by induction.

I Proposition 9 (Law of inertia). If (ν1, ν2) ∈ JαKD then ν2 agrees with ν1 outside O(α).

The second proposition confirms, as announced earlier, that the semantics of expressions
depends only on the free variables; outside FV(α), the binary relation JαKD is cylindrical.
The proof for difference expressions is not immediate, and uses the law of inertia.

I Proposition 10 (Free variable property). Let (ν1, ν2) ∈ JαKD and let ν′1 and ν′2 be valuations
such that

ν′1 agrees with ν1 on FV(α), and
ν′2 agrees with ν2 on FV(α), and agrees with ν′1 outside FV(α).

Then also (ν′1, ν′2) ∈ JαKD.

The third proposition is the most important one, and is proven using the previous two. It
confirms that the values for the input variables determine the values for the output variables.

I Proposition 11 (Input determinacy). Let (ν1, ν2) ∈ JαKD and let ν′1 be a valuation that
agrees with ν1 on I(α). Then there exists a valuation ν′2 that agrees with ν2 on O(α), such
that (ν′1, ν′2) ∈ JαKD.

By the law of inertia, the valuation ν′2 given by the above proposition is unique.
We are now in a position to formulate the FLIF evaluation problem. Given an expression

α, we consider the following task:3

Problem: The evaluation problem Evalα(D, νin) for α.
Input: A database instance D and a valuation νin on I(α).
Output: The set {νout|FV(α) | ∃ν′in : νin ⊆ ν′in and (ν′in, νout) ∈ JαKD}.

3 For a valuation ν on a set of variables X (possibly all variables), and a subset Y of X, we use ν|Y to
denote the restriction of ν to X.

ICDT 2020

4:8 Executable FO and LIF

By inertia and input determinacy, the choice of ν′in in the definition of the output does not
matter. Moreover, if D is finite, the output is finite as well. As was the case for executable FO,
the above problem can be solved by a relational algebra plan respecting the access patterns.
Unfortunately, since the sets of input and output variables of general FLIF expressions need
not be disjoint, the plan is a bit intricate; we have to work with relations that have two
copies for every variable, to keep track of how assignments are paired up.

For this reason, in the next section, we introduce a well-behaved fragment called io-disjoint
FLIF. Plans for expressions in this fragment can be generated in a very transparent manner,
as is shown in Section 5.

4 Executable FO and io-disjoint FLIF

Consider an FLIF expression α for which the set O(α) is disjoint from I(α). Then any
pair (ν1, ν2) ∈ JαKD satisfies that ν1 and ν2 are equal on I(α). Put differently, every
νout ∈ Evalα(D, νin) is equal to νin on I(α); all that the evaluation does is expand the input
valuation with output values for the new output variables. This makes the evaluation process
for expressions α where I(β) ∩O(β) = ∅, for every subexpression β of α (including α itself),
very transparent. We call such expressions io-disjoint.

The following proposition makes it easier to check if an expression is io-disjoint:

I Proposition 12. The following alternative definition of io-disjointness is equivalent to the
definition given above:

An atomic expression R(x̄; ȳ) is io-disjoint if X ∩ Y = ∅, where X is the set of variables
in x̄, and Y is the set of variables in ȳ.
Atomic expressions of the form (x = y), (x = c), (x := y) or (x := c) are io-disjoint.
A composition α1 ; α2 is io-disjoint if α1 and α2 are, and moreover I(α1) ∩O(α2) = ∅.
A union α1 ∪ α2 is io-disjoint if α1 and α2 are, and moreover O(α1) = O(α2).
An intersection α1 ∩ α2 is io-disjoint if α1 and α2 are.
A difference α1 − α2 is io-disjoint if α1 and α2 are, and moreover O(α1) ⊆ O(α2).

The fragment of io-disjoint expressions is denoted by FLIFio. We are going to show
that FLIFio is expressive enough, in the sense that executable FO can be translated into
FLIFio. The converse translation is also possible, so, FLIFio exactly matches executable FO
in expressive power.

Recall the evaluation problem for executable FO, as defined at the end of Section 2, and
the evaluation problem for α, as defined at the end of the previous section. We can now
formulate the translation result from executable FO to FLIFio as follows.

I Theorem 13. Let ϕ be a V-executable formula over schema S. There exists an FLIFio

expression α over S with the following properties:
1. I(α) = V.
2. O(α) ⊇ FV(ϕ)− V.
3. For every D and νin, we have Evalϕ,V(D, νin) = πFV(ϕ)∪V(Evalα(D, νin)).
The length of α is polynomial in the length of ϕ and the cardinality of V.

The above projection operator π restricts each valuation in Evalα(D, νin) to FV(ϕ) ∪ V. It
is imposed because we allow O(α) to have auxiliary variables not in FV(ϕ).

I Example 14. Before giving the proof, we give a few examples.
Suppose ϕ is R(x; y) with input variable x. Then, as expected, α can be taken to be
R(x; y).

H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche 4:9

However, now consider T (x;x, y), again with input variable x. Intuitively, the formula
asks for outputs (u, y) where u equals x. Hence, a suitable io-disjoint translation is
T (x;u, y) ; (u = x).
If ϕ is R(x; y) ∧ S(y; z), still with input variable x, we can take R(x; y) ; S(y; z) for α.
The same expression also serves for the formula ∃y ϕ. However, if ϕ is ∃y R(x; y) with
V = {x, y}, we must use a fresh variable and use R(x;u) ; (y = y) for α. The test (y = y)
may seem spurious but is needed to ensure that I(α) = V.
Suppose ϕ is R(x;x) ∨ S(y;) with V = {x, y}. For this V, we translate R(x;x) to
R(x;u) ; (x = u) ; (y = y). Similarly, S(y;) is translated to S(y;) ; (x = x). Unfortunately
the union of these two expressions is not io-disjoint. We can formally solve this by
composing the second expression with a dummy assignment to u. So the final α can be
taken to be R(x;u) ; (x = u) ; (y = y) ∪ S(y;) ; (x = x) ; (u := 42). Since the output
valuations will be projected on {x, y}, the choice of the constant assigned to u is irrelevant.
A similar trick can be used for negation. For example, if ϕ is ¬R(x; y) with V = {x, y},
then α can be taken to be (u := 42) − R(x;u) ; (u = y) ; (u := 42).

Proof. We only describe the translation; its correctness, which hinges on the law of inertia
and input determinacy, also involves verifying that io-disjointness holds.

If ϕ is a relation atom R(x̄; ȳ), then α is R(x̄; z̄) ; ξ ; ξ′, where z̄ is obtained from ȳ

by replacing each variable from V by a fresh variable. The expression ξ consists of the
composition of all equalities (yi = zi) where yi is a variable from ȳ that is in V and zi is the
corresponding fresh variable. The expression ξ′ consists of the composition of all equalities
(u = u) with u a variable in V not mentioned in ϕ.

If ϕ is x = y, then α is
(x = y) ; ξ if x, y ∈ V
(x := y) ; ξ if x /∈ V
(y := x) ; ξ if y /∈ V,

where ξ is the composition of all equalities (u = u) with u a variable in V not mentioned
in ϕ.

If ϕ is x = c, then α is{
(x = c) ; ξ if x ∈ V
(x := c) ; ξ otherwise,

with ξ as in the previous case.
If ϕ is ϕ1∧ϕ2, then by induction we have an expression α1 for ϕ1 and V , and an expression

α2 for ϕ2 and V ∪ FV(ϕ1). Now α can be taken to be α1 ; α2.
If ϕ is ∃xϕ1, then without loss of generality we may assume that x /∈ V . By induction

we have an expression α1 for ϕ1 and V. This expression also works for ϕ.
If ϕ is ϕ1 ∨ ϕ2, then by induction we have an expression αi for ϕi and V, for i = 1, 2.

Fix an arbitrary constant c, and let ξ1 be the composition of all expressions (z := c) for
z ∈ O(α2)−O(α1); let ξ2 be defined symmetrically. Now α can be taken to be α1 ; ξ1∪α2 ; ξ2.

Finally, if ϕ is ¬ϕ1, then by induction we have an expression α1 for ϕ1 and V. Fix an
arbitrary constant c, and let ξ be the composition of all expressions (z := c) for z ∈ O(α1). (If
O(α1) is empty, we add an additional fresh variable.) Then α can be taken to be ξ − α1 ;ξ. J

We next turn to the converse translation. Here, a sharper equivalence is possible, since
executable FO has an explicit quantification operation which is lacking in FLIF.

ICDT 2020

4:10 Executable FO and LIF

Table 2 Translation showing how FLIFio embeds in executable FO. In the table, ϕi abbreviates
ϕαi for i = 1, 2.

α ϕα

R(x̄; ȳ) R(x̄; ȳ)

(x = y) x = y

(x := y) x = y

x = c x = c

x := c x = c

α1;α2 (∃x1 . . .∃xk ϕ1) ∧ ϕ2 where {x1, . . . , xk} = O(α1) ∩O(α2)

α1 ∪ α2 ϕ1 ∨ ϕ2

α1 ∩ α2 ϕ1 ∧ ϕ2

α1 − α2 ϕ1 ∧ ¬ϕ2

I Theorem 15. Let α be an FLIFio expression over schema S. There exists an I(α)-
executable FO formula ϕα over S, with FV(ϕα) = FV(α), such that for every D and νin, we
have Evalα(D, νin) = Evalϕα,I(α)(D, νin). The length of ϕα is linear in the length of α.

I Example 16. To illustrate the proof, consider the expression R(x; y, u) ;S(x; z, u). Proced-
urally, this expression first retrieves a (y, u)-binding from R for the given x. It proceeds to
retrieve a (z, u)-binding from S for the given x, effectively overwriting the previous binding
for u. Thus, a correct translation into executable FO is (∃uR(x; y, u)) ∧ S(x; z, u).

For another example, consider the assignment (x := y). This translates to x = y

considered as a {y}-executable formula. The equality test (x = y) also translates to x = y,
but considered as an {x, y}-executable formula.

Proof. Table 2 shows the translation, which is almost an isomorphic embedding, except for
the case of composition. The correctness of the translation for composition again hinges on
inertia and input determinacy. J

Notably, in the proof of Theorem 13, we do not need the intersection operation. Hence,
by translating FLIFio to executable FO and then back to FLIFio, we obtain that intersection
is redundant in FLIFio, in the following sense:

I Corollary 17. For every FLIFio expression α there exists a FLIFio expression α′ with the
following properties:
1. α′ does not use the intersection operation.
2. I(α′) = I(α).
3. O(α′) ⊇ O(α).
4. For every D and νin, we have Evalα(D, νin) = πFV(α)(Evalα′(D, νin)).

I Remark 18. One may wonder whether the above corollary directly follows from the
equivalence between α1∩α2 and α1− (α1−α2). While these two expressions are semantically
equivalent and have the same input variables, they do not have the same output variables, so
a simple inductive proof eliminating intersection while preserving the guarantees of the above
corollary does not work. Moreover, the corollary continues to hold for the positive fragment
of FLIFio (without the difference operation). Indeed, positive FLIFio can be translated into
executable FO without negation, which can then be translated into positive FLIFio without
intersection.

H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche 4:11

5 Relational algebra plans for io-disjoint FLIF

In this section we show how the evaluation problem for FLIFio expressions can be solved in
a very direct manner, using a translation into a particularly simple form of relational algebra
plans.

We generalize the evaluation problem so that it can take a set of valuations as input,
rather than just a single valuation. Formally, for an FLIFio expression α over database
schema S, an instance D of S, and a set N of valuations on I(α), we want to compute
Evalα(D,N) :=

⋃
{Evalα(D, νin) | νin ∈ N}.

Viewing variables as attributes, we can view a set of valuations on a finite set of variables
Z, like the set N above, as a relation with relation schema Z. Consequently, it is convenient
to use the named perspective of the relational algebra [2], where every expression has an
output relation schema (a finite set of attributes; variables in our case). We briefly review
the well-known operators of the relational algebra and their behavior on the relation schema
level:

Union and difference are allowed only on relations with the same relation schema.
Natural join (./) can be applied on two relations with relation schemas Z1 and Z2, and
produces a relation with relation schema Z1 ∪ Z2.
Projection (π) produces a relation with a relation schema that is a subset of the input
relation schema.
Selection (σ) does not change the schema.
Renaming will not be needed. Instead, however, to accommodate the assignment expres-
sions present in FLIF, we will need the generalized projection operator that adds a new
attribute with the same value as an existing attribute, or a constant. Let N be a relation
with relation schema Z, let y ∈ Z, and let x be a variable not in Z. Then

πZ,x:=y(N) = {ν[x := ν(y)] | ν ∈ N}
πZ,x:=c(N) = {ν[x := c] | ν ∈ N}

Plans are based on access methods, which have the following syntax and semantics. Let
R(x̄; ȳ) be an atomic FLIFio-expression. Let X be the set of variables in x̄ and let Y be
the set of variables in ȳ (in particular, X and Y are disjoint). Let N be a relation with a
relation schema Z that contains X but is disjoint from Y . Let D be a database instance. We
define the result of the access join of N with R(x̄; ȳ), evaluated on D, to be the following
relation with relation schema Z ∪ Y :

N
access
./ R(x̄; ȳ) := {ν valuation on Z ∪ Y | ν|Z ∈ N and ν(x̄) · ν(ȳ) ∈ D(R)}

This result relation can clearly be computed respecting the limited access pattern on R.
Indeed, we iterate through the valuations in N , feed their X-values to the source R, and
extend the valuations with the obtained Y -values.

Formally, over any database schema S and for any finite set of variables I, we define a
plan over S with input variables I as an expression that can be built up as follows:

The special relation name In, with relation schema I, is a plan.
If R(x̄; ȳ) is an atomic FLIFio expression over S, with sets of variables X and Y as above,
and E is a plan with output relation schema Z as above, then also E access

./ R(x̄; ȳ) is a
plan, with output relation schema Z ∪ Y .
Plans are closed under union, difference, natural join, and projection.

ICDT 2020

4:12 Executable FO and LIF

Given a database instance D, a set N of valuations on I, and a plan E with input
variables I, we can instantiate the relation name In by N and evaluate E on (D,N) in the
obvious manner. We denote the result by E(D,N).

We establish:
I Theorem 19. For every FLIFio expression α over database schema S there exists a plan
Eα over S with input variables I(α), such that Evalα(D,N) = Eα(D,N), for every instance
D of S and set N of valuations on I(α).
I Example 20.

A plan for R(x; y) ; S(y; z) is (In access
./ R(x; y)) access

./ S(y; z).
A plan for R(x1; y, u) ; S(x2, y; z, u) is

πx1,x2,y(In access
./ R(x1; y, u)) access

./ S(x2, y; z, u).

Recall the expression R(x; y1) ∩ S(x; y2) from Example 8, which has input variables
{x, y1, y2} and no output variables. A plan for this expression is

(πx,y2(In) access
./ R(x; y1)) ./ In ∩ (πx,y1(In) access

./ S(x; y2)) ./ In.

The joins with In ensure that the produced output values are equal to the given input
values.

Proof. To prove the theorem we need a stronger induction hypothesis, where we allow N to
have a larger relation schema Z ⊇ I(α), while still being disjoint with O(α). The claim then
is that

Eα(D,N) = {ν on Z ∪O(α) | ν|FV(α) ∈ Evalα(D, ν|I(α))}.

The base cases are clear. If α is R(x̄; ȳ), then Eα is In access
./ R(x̄; ȳ) for Eα. If α is (x = y),

then Eα is the selection σx=y(In). If α is (x := y), then Eα is the generalized projection
πy,x:=y(In).

In what follows we use the following notation. Let P and Q be plans. By Q(P) we mean
the plan obtained from Q by substituting P for In.

Suppose α is α1 ; α2. Plan Eα1 , obtained by induction, assumes an input relation schema
that contains I(α1) and is disjoint from O(α1). Since I(α) = I(α1) ∪ (I(α2) − O(α1)),
I(α1) ∩ O(α1) = ∅, and Z is disjoint from O(α) = O(α1) ∪ O(α2), we can apply Eα1 with
input relation schema Z. Let P1 be the plan πZ−O(α2)(Eα1). Then Eα is the plan Eα2(P1).
(One can again verify that this is a legal plan.)

Next, suppose α is α1 ∪ α2. Then I(α) = I(α1) ∪ I(α2), which is disjoint from O(α1) =
O(α2) (compare Proposition 12). Hence for Eα we can simply take the plan Eα1 ∪ Eα2 .

Next, suppose α is α1 ∩ α2. Note that I(α) = I(α1)∪ I(α2)∪ (O(α1)4O(α2)). Now Eα
is

Eα1(πI(α)−O(α1)(In)) ./ In ∩ Eα2(πI(α)−O(α2)(In)) ./ In.

Finally, suppose α is α1 − α2. Then Eα is

Eα1 − (Eα2(πI(α)−O(α2)(In)) ./ In.

In general, in the above translations, we follow the principle that the result of a subplan
Eαi must be joined with In whenever O(αi) may intersect with I(α). J

I Remark 21. When we extend plans with assignment statements such that common expres-
sions can be given a name [5], the translation given in the above proof leads to a plan Eα of
size linear of the length of α. Each time we do a substitution of a subexpression for In in
the proof, we first assign a name to the subexpression and only substitute the name.

H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche 4:13

6 Conclusion

Nash and Ludäscher [15] deserve credit for having come up with executable FO as a
beautiful declarative query language that strikes a perfect balance between first-order logic
expressiveness and the limitations imposed by the access patterns on the information sources.
On the other hand, relational algebra plans are more operational and rather low-level. We
think of FLIF as an intermediate language between the two levels. FLIF is still declarative,
as it is still a logic, be it an algebraic one. On the other hand FLIF is also operational,
in view of its dynamic semantics akin to dynamic logics [13] and navigational graph query
languages. For us, the main novelty of FLIF lies in the mechanism of input and output
variables, and the law of inertia.

The book by Benedikt et al. [5] stands as an authoritative reference on the topic of
querying under limited access patterns. Remarkably, Benedikt et al. do not follow Nash and
Ludäscher’s proposal, but use their own, quite different notion of executable first-order query.
This notion involves a two-step process where, first, an executable UCQ (union of conjunctive
queries) retrieves a set of tuples from the sources, which is then filtered by a first-order
condition that is “executable for membership”. The filter condition must be expressed in a
range-restricted version of first-order logic. In a result similar to our Theorem 19, Benedikt
et al. then proceed to show [5, Theorem 3.4] that their executable FO queries are equivalent
in expressive power to plans. We feel that our work makes a contribution, enabled by the
LIF perspective, by providing a more declarative formalism, a simpler format of plans, and
more streamlined translations between the languages.

On the other hand we should stress that the main strength of the work by Benedikt
et al. lies elsewhere, namely, in matching semantic properties to syntactic restrictions, for
a variety of settings and languages. In this respect, we recall the result [5, Theorem 3.9]
already mentioned in the Introduction, to the effect that every “access-determined” boolean
first-order query has a plan. This result, proven using model-theoretic interpolation, assumes
access-determinacy over unrestricted structures (not necessarily finite). It is open whether a
similar result holds in restriction to finite structures.

Our three results (Theorems 13, 15 and 19) exploit the good properties enjoyed by
io-disjointness of FLIF expressions. However, as far as expressive power is concerned, io-
disjointness may not be a real restriction. Indeed, we conjecture that that every FLIF
expression is equivalent, modulo variable renaming, to a FLIFio expression that can use more
variables.

Another topic for further research concerns our definition of inputs and outputs of FLIF
expressions (Table 1). While guaranteeing the properties of inertia and input determinacy,
this definition cannot be complete in this respect, as said properties are undecidable. Yet, the
definition may be “locally” optimal in some sense analogous to an optimality result obtained
for the notion of controlled formula [10, Proposition 4.3].

Finally, it would be interesting to look more closely into the practical aspects of the plans
generated for FLIFio expressions. We have shown that these plans have linear size, do not
need renaming, and the only joins are natural joins. Does this lead to more efficiency or
better optimizability?

In closing, we note that querying under limited access patterns has applicability beyond
traditional data or information sources. For instance in the context of distributed data,
when performing tasks involving the composition of external services, functions, or modules,
limited access patterns are a way for service providers to protect parts of their data, while
still allowing their services to be integrated seamlessly in other applications. Limited access
patterns also have applications in active databases, where we like to think of FLIF as an
analogue of Active XML [1] for the relational data model.

ICDT 2020

4:14 Executable FO and LIF

References
1 S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML project: an overview. The VLDB

Journal, 17(5):1019–1040, 2008.
2 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
3 R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč. Foundations of modern

query languages for graph databases. ACM Computing Surveys, 50(5):68:1–68:40, 2017.
4 R. Angles, P. Barceló, and G. Rios. A practical query language for graph DBs. In L. Bravo

and M. Lenzerini, editors, Proceedings 7th Alberto Mendelzon International Workshop on
Foundations of Data Management, volume 1087 of CEUR Workshop Proceedings, 2013.

5 M. Benedikt, J. Leblay, B. ten Cate, and E. Tsamoura. Generating Plans from Proofs: The
Interpolation-based Approach to Query Reformulation. Morgan & Claypool, 2016.

6 M. Benedikt, B. ten Cate, and E. Tsamoura. Generating plans from proofs, 2016.
7 A. Calì, D. Calvanese, and D. Martinenghi. Dynamic query optimization under access

limitations and dependencies. Journal of Universal Computer Science, 15(1):33–62, 2009.
8 A. Calì, D. Martinenghi, I. Razon, and M. Ugarte. Querying the deep web: Back to the

foundations. In J.L. Reutter and D. Srivastava, editors, Proceedings 11th Alberto Mendelzon
International Workshop on Foundations of Data Management, volume 1912 of CEUR Workshop
Proceedings, 2017.

9 A. Calì and M. Ugarte. On the complexity of query answering under access limitations: A
computational formalism. In D. Olteanu and B. Poblete, editors, Proceedings 12th Alberto
Mendelzon International Workshop on Foundations of Data Management, volume 2100 of
CEUR Workshop Proceedings, 2018.

10 W. Fan, F. Geerts, and L. Libkin. On scale independence for querying big data. In Proceedings
33th ACM Symposium on Principles of Database Systems, pages 51–62, 2014.

11 G.H.L. Fletcher, M. Gyssens, D. Leinders, D. Surinx, J. Van den Bussche, D. Van Gucht,
S. Vansummeren, and Y. Wu. Relative expressive power of navigational querying on graphs.
Information Sciences, 298:390–406, 2015.

12 J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philosophy, 14:39–100,
1991.

13 D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
14 L. Libkin, W. Martens, and D. Vrgoč. Quering graph databases with XPath. In Proceedings

16th International Conference on Database Theory. ACM, 2013.
15 A. Nash and B. Ludäscher. Processing first-order queries under limited access patterns. In

Proceedings 23th ACM Symposium on Principles of Database Systems, pages 307–318, 2004.
16 J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for RDF. Journal

of Web Semantics, 8(4):255–270, 2010.
17 D. Surinx, G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht,

S. Vansummeren, and Y. Wu. Relative expressive power of navigational querying on graphs
using transitive closure. Logic Journal of the IGPL, 23(5):759–788, 2015.

18 E. Ternovska. Recent progress on the algebra of modular systems. In J.L. Reutter and
D. Srivastava, editors, Proceedings 11th Alberto Mendelzon International Workshop on Found-
ations of Data Management, volume 1912 of CEUR Workshop Proceedings, 2017.

19 E. Ternovska. An algebra of modular systems: static and dynamic perspectives. In A. Herzig
and A. Popescu, editors, Frontiers of Combining Systems: Proceedings 12th FroCos, volume
11715 of Lecture Notes in Artificial Intelligence, pages 94–111. Springer, 2019.

	Introduction
	Executable FO
	Forward LIF, inputs, and outputs
	Executable FO and io-disjoint FLIF
	Relational algebra plans for io-disjoint FLIF
	Conclusion

