
Information Distance Revisited
Bruno Bauwens
National Research University Higher School of Economics, Moscow, Russia
https://www.hse.ru/en/org/persons/160550073
brbauwens@gmail.com

Abstract
We consider the notion of information distance between two objects x and y introduced by Bennett,
Gács, Li, Vitanyi, and Zurek [2] as the minimal length of a program that computes x from y

as well as computing y from x, and study different versions of this notion. In the above paper,
it was shown that the prefix version of information distance equals max(K(x|y), K(y |x)) up to
additive logarithmic terms. It was claimed by Mahmud [13] that this equality holds up to additive
O(1)-precision. We show that this claim is false, but does hold if the distance is at least logarithmic.
This implies that the original definition provides a metric on strings that are at superlogarithmically
separated.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Kolmogorov complexity, algorithmic information distance

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.46

Related Version https://arxiv.org/abs/1807.11087

Acknowledgements This work was initiated by Alexander (Sasha) Shen, who informed me about the
error in [13] during a discussion of the paper [15]. Afterwards I explained the proof of Theorem 13
to Sasha. He simplified it, and he wrote all of the current manuscript and the proof of Theorem 13,
which is available in the ArXiv version of this paper [1]. Later, I added Theorem 14. Only this
proof is written by me, and is also available on ArXiv [1]. After this was added, Sasha decided
that his contribution was no longer proportional, and decided he did no longer want to remain an
author. I am especially grateful for his generous permission to publish this nicely written document,
with minor modifications suggested by reviewers. I thank the reviewers for these suggestions. All
errors in this document are solely my responsability. I thank Mikhail Andreev for the proof of
Proposition 7 and many useful discussions. Finally, I thank Artem Grachev and the participants of
the Kolmogorov seminar in Moscow state university for useful discussions.

1 Introduction

Informally speaking, Kolmogorov complexity measures the amount of information in an
object (say, a bit string) in bits. The complexity C(x) of x is defined as the minimal bit
length of a program that generates x. This definition depends on the programming language
used, but one can fix an optimal language that makes the complexity function minimal
up to an O(1) additive term. In a similar way one can define the conditional Kolmogorov
complexity C(x|y) of a string x given some other string y as a condition. Namely, we consider
the minimal length of a program that transforms y to x. Informally speaking, C(x|y) is the
amount of information in x that is missing in y, the number of bits that we should give in
addition to y if we want to specify x.

The notion of information distance was introduced in [2] as “the length of a shortest
binary program that computes x from y as well as computing y from x.” It is clear that such
a program cannot be shorter than C(x|y) or C(y |x) since it performs both tasks; on the
other hand, it cannot be much longer than the sum of these two quantities (we can combine
the programs that map x to y and vice versa with a small overhead needed to separate the

© Bruno Bauwens;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 46; pp. 46:1–46:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-6138-0591
https://www.hse.ru/en/org/persons/160550073
mailto:brbauwens@gmail.com
https://doi.org/10.4230/LIPIcs.STACS.2020.46
https://arxiv.org/abs/1807.11087
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Information Distance Revisited

two parts and to distinguish x from y). As the authors of [2] note, “being shortest, such
a program should take advantage of any redundancy between the information required to
go from x to y and the information required to go from y to x”, and the natural question
arises: to what extent is this possible? The main result of [2] gives the strongest upper
bound possible and says that the information distance equals max(C(x|y),C(y |x)) with
logarithmic precision. In many applications, this characterization turned out to be useful,
see [11, Section 8.4]. In fact, in [2] the prefix version of complexity, denoted by K(x|y),
and the corresponding definition of information distance were used; see, e.g. [14] for the
detailed explanation of different complexity definitions. The difference between prefix and
plain versions is logarithmic in the complexity, so it does not matter whether we use plain
or prefix versions if we are interested in results with logarithmic precision. However, the
prefix version of the above characterization has an advantage: after adding a large enough
constant, this distance satisfies the triangle inequality. The plain variant does not have
this property, and this follows from Proposition 7 below. However, several inequalities that
are true with logarithmic precision for plain complexity, become true with O(1)-precision if
prefix complexity is used. So one could hope that a stronger result with O(1)-precision holds
for prefix complexity. If this is true, then also the original definition satisfies the triangle
inequality (after a constant increase). In [2, Section VII], this was conjectured to be false,
and in [13] it was claimed to be true; in [12] a similar claim is made with reference to [2].1
Unfortunately, the proof in [13] contains an error, and we show that the result is not valid
for prefix complexity with O(1)-precision. On the other hand, it is easy to see that the
original argument from [2] can be adapted for plain complexity to obtain the result with
O(1)-precision, as noted in [15].

In this paper we try to clarify the situation and discuss the possible definitions of
information distance in plain and prefix versions, and their subtle points (one of these
subtle points was the source of the error in [13]). We also discuss some related notions. In
Section 2 we consider the easier case of plain complexity; then in Section 3 we discuss the
different definitions of prefix complexity (with prefix-free and prefix-stable machines, as well
as definitions using the a priori probability) and in Section 4 we discuss their counterparts
for the information distance. In Section 5 we use the game approach to show that indeed the
relation between information distance (in the prefix version) and conditional prefix complexity
is not valid with O(1)-precision, contrary to what is said in [13]. Finally, we show that if the
information distance is at least logarithmic, then equality holds.

2 Plain complexity and information distance

Let us recall the definition of plain conditional Kolmogorov complexity. Let U(p, x) be a
computable partial function of two string arguments; its values are also binary strings. We
may think of U as an interpreter of some programming language. The first argument p is
considered as a program and the second argument is an input for this program. Then we
define the complexity function

CU (y |x) = min{|p| : U(p, x) = y};

1 The authors of [12] define (section 2.2) the function E(x, y) as the prefix-free non-bipartite version of
the information distance (see the discussion below in section 4.1) and then write: “the following theorem
proved in [4] was a surprise: Theorem 1. E(x, y) = max{C(x|y), C(y |x)}”. They do not mention that
in the paper they cited as [4] (it is [2] in our list) there is a logarithmic error term; in fact, they do not
mention any error terms (though in other statements the constant term is written explicitly). Probably
this is a typo, since more general Theorem 2 in [12] does contain a logarithmic error term.

B. Bauwens 46:3

here |p| stands for the length of a binary string p, so the right hand side is the minimal length
of a program that produces output y given input x. The classical Solomonoff–Kolmogorov
theorem says that there exists an optimal U that makes CU minimal up to an O(1)-additive
term. We fix some optimal U and then denote CU by just C. See, e.g., [11, 14] for the details.

Now we want to define the information distance between x and y. One can try the
following approach: take some optimal U from the definition of conditional complexity and
then define

EU (x, y) = min{|p| : U(p, x) = y and U(p, y) = x},

i.e., consider the minimal length of a program that both maps x to y and y to x. However,
there is a caveat, as the following simple observation shows.

I Proposition 1. There exists some computable partial function U that makes CU minimal
up to an O(1) additive term, and still EU (x, y) is infinite for some strings x and y and
therefore not minimal.

Proof. Consider an optimal function U and then define U ′ such that U(Λ, x) = Λ where Λ
is the empty string, U ′(0p, x) = 0U(p, x) and U ′(1p, x) = 1U(p, x). In other terms, U ′ copies
the first bit of the program to the output and then applies U to the rest of the program and
the input. It is easy to see that CU ′ is minimal up to an O(1) additive term, but U ′(q, ·)
has the same first bit as q, so if x and y have different first bits, there is no q such that
U(q, x) = y and U(q, y) = x at the same time. J

On the other hand, the following proposition is true (and can be proven in the same way
as the existence of the optimal U for conditional complexity):

I Proposition 2. There exists a computable partial function U that makes EU minimal up
to O(1) additive term.

Now we may define information distance for plain complexity as the minimal function EU .
Some examples. If x has small complexity, then EU (x, y) = C(y) + O(1). Let x and y be
n-bit strings, and let ⊕ denote the bitwise xor-operation. We have EU (x, y) 6 n + O(1),
because x⊕ (x⊕ y) = y and y⊕ (y⊕x) = x. It turns out that the original argument from [2]
can be easily adapted to show the following result (that is a special case of a more general
result about several strings proven in [15]):

I Theorem 3. The minimal function EU equals max(C(x|y),C(y |x)) +O(1).

Proof. We provide the adapted proof here for the reader’s convenience. In one direction we
have to prove that C(x|y) 6 EU (x, y) + O(1), and the same for C(y |x). This is obvious,
since the definition of EU contains more requirements for p: it should map both x to y and
y to x, while in C(x|y) it is enough to map y to x.

To prove the reverse inequality, consider for each n the binary relation Rn on strings (of
all lengths) defined as

Rn(x, y) ⇐⇒ C(x|y) < n and C(y |x) < n.

By definition, this relation is symmetric. It is easy to see that Rn is (computably) enumerable
uniformly in n, since we may compute better and better upper bounds for C reaching
ultimately its true value. We think of Rn as the set of edges of an undirected graph whose
vertices are binary strings. Note that each vertex x of this graph has degree less than 2n
since there are less than 2n programs of length less than n that map x to its neighbors.

STACS 2020

46:4 Information Distance Revisited

For each n, we enumerate edges of this graph (i.e., pairs in Rn). We want to assign colors
to the edges of Rn in such a way that edges that have a common endpoint have different
colors. In other terms, we require that for every vertex x all edges of Rn adjacent to x have
different colors. For that, 2n+1 colors are enough. Indeed, each new edge needs a color that
differentiates it from less than 2n existing edges adjacent to one its endpoint and less than
2n edges adjacent to other endpoint.

Let us agree to use (n+ 1)-bit strings as colors for edges in Rn, and perform this coloring
in parallel for all n. Now we define U(p, x) for a (n+ 1)-bit string p and arbitrary string x as
the string y such that the edge (x, y) has color p in the coloring of edges from Rn. Note that
n can be reconstructed as |p| − 1. The uniqueness property for colors guarantees that there is
at most one y such that (x, y) has color p, so U(p, x) is well defined. It is easy to see now that
if C(x|y) < n and C(y |x) < n, and p is the color of the edge (x, y), then U(p, x) = y and
U(p, y) = x at the same time. This implies the reverse inequality (the O(1) terms appears
when we compare our U with the optimal one). J

I Remark 4. In the definition of information distance given above we look for a program
p that transforms x to y and also transforms y to x. Note that we do not tell the program
which of the two transformations is requested. A weaker definition would provide also this
information to p. This modification can be done in several ways. For example, we may
require in the definition of E that U(p, 0x) = y and U(p, 1y) = x, using the first input bit
as the direction flag. An equivalent approach is to use two computable functions U and U ′
in the definition and require that U(p, x) = y and U ′(p, y) = x. This corresponds to using
different interpreters for both directions.

It is easy to show that the optimal functions U and U ′ exist for this two-interpreter
version of the definition. A priori we may get a smaller value of information distance in this
way, because the program’s task is easier when the direction is known, informally speaking.
But it is not the case for the following simple reason. Obviously, this new quantity is still
an upper bound for both conditional complexities C(x|y) and C(y |x) with O(1) precision.
Therefore Theorem 3 guarantees that this new definition of information distance coincides
with the old one up to O(1) additive terms. For the prefix versions of information distance
such a simple argument does not work anymore, see below.

We have seen that different approaches lead to the same notion of plain information
distance (up to O(1) additive term). There is also a simple and natural quantitative
characterization of this notion as a minimal function in a class of functions.

I Theorem 5. Consider the class of functions E that are non-negative, symmetric, upper
semicomputable, and for some c, all n and all x, satisfy

#{y : E(x, y) < n} 6 c2n. (*)

For every optimal U this class contains EU , and for any E in this class, we have EU 6
E +O(1).

Recall that upper semicomputability of E means that one can compute a sequence of
total upper bounds for E that converges to E. The equivalent requirement: the set of
triples (x, y, n) where x, y are strings and n are natural numbers, such that E(x, y) < n, is
(computably) enumerable.

Proof. The function max(C(x|y),C(y |x)) is upper semicomputable and symmetric. The
inequality (∗) is true for it since it is true for the smaller function C(y |x) (for c = 1; indeed,
the number of programs of length less than n is at most 2n).

B. Bauwens 46:5

On the other hand, if E is some symmetric upper semicomputable function that satisfies
(∗), then one can for any given x and n enumerate all y such that E(x, y) < n. There are less
than c2n strings y with this property, so given x, each such y can be described by a string
of n+ dlog ce bits, its ordinal number in the enumeration. Note that the value of n can be
reconstructed from this string by decreasing its length by dlog ce, so C(y |x) 6 n+O(1) if
E(x, y) < n. It remains to apply the symmetry of E and Theorem 3. J

I Remark 6. The name “information distance” motivates the following question: does the
plain information distance satisfy the triangle inequality? With logarithmic precision the
answer is positive, because

C(x|z) 6 C(x|y) + C(y |z) +O(log(C(x|y) + C(y |z))).

However, if we replace the last term by an O(1)-term, then the triangle inequality is no
more true. Indeed, for all strings x and y, the distance between the empty string Λ and
x is C(x) + O(1), and the distance between x and some encoding of a pair (x, y) is at
most C(y) +O(1), and the triangle inequality for distances with O(1)-precision would imply
C(x, y) 6 C(x) + C(y) +O(1), and this is not true, see, e.g., [14, section 2.1].

One may ask whether a weaker statement saying that there is a maximal (up to an O(1)
additive term) function in the class of all symmetric non-negative functions E that satisfy
both the condition (∗) and the triangle inequality, is true. The answer is negative, as the
following proposition shows.

I Proposition 7. There are two upper semicomputable symmetric functions E1, E2 that both
satisfy the condition (∗) and the triangle inequality, such that no function that is bounded
both by E1 and E2 can satisfy (∗) and the triangle inequality at the same time.

Proof. Let us agree that E1(x, y) and E2(x, y) are infinite when x and y have different
lengths. If x and y are n-bit strings, then E1(x, y) 6 k means that all the bits in x and y
outside the first k positions are the same, and E2(x, y) 6 k is defined in a symmetric way for
the last k positions. Both E1 and E2 satisfy the triangle inequality (and even the ultrametric
inequality) and also satisfy the condition (∗), since the ball of radius k consist of strings that
coincide except for the first/last k bits. If E is bounded both by E1 +O(1) and E2 +O(1)
and satisfies the triangle inequality, then by changing the first k and the last l positions in a
string x we get a string y such that E(x, y) 6 k + l + O(1), and it is easy to see that the
number of strings that can be obtained in this way is not O(2k+l), but Θ((k + l)2k+l). J

3 Prefix complexity: different definitions

The notion of prefix complexity was introduced independently by Levin [6, 8, 4] and later
by Chaitin [3]. There are several versions of this definition, and they all turn out to be
equivalent, so people usually do not care much about technical details that are different.
However, if we want to consider the counterparts of these definitions for information distance,
their differences become important if we are interested in O(1)-precision.

Essentially there are four different definitions of prefix complexity that appear in the
literature.

STACS 2020

46:6 Information Distance Revisited

3.1 Prefix-free definition
A computable partial function U(p, x) with two string arguments and string values is called
prefix-free (with respect to the first argument) if U(p, x) and U(p′, x) cannot be defined
simultaneously for a string p and its prefix p′ and for the same second argument x. In other
words, for every string x the set of strings p such that U(p, x) is defined is prefix-free, i.e.,
does not contain a string and its prefix at the same time.

For a prefix-free function U we may consider the complexity function CU (y |x). In this
way we get a smaller class of complexity functions compared with the definition of plain
complexity, and the Solomonoff–Kolmogorov theorem can be easily modified to show that
there exists a minimal complexity function in this smaller class (up to O(1) additive term,
as usual). This function is called prefix conditional complexity and usually is denoted by
K(y |x). It is greater than C(y |x) since the class of available functions U is more restricted;
the relation between C and K is well studied, see, e.g., [14, chapter 4] and references within.

The unconditional prefix complexity K(x) is defined in the same way, with U that does
not have a second argument. We can also define K(x) as K(x|y0) for some fixed string y0.
This string may be chosen arbitrarily; for each choice we have K(x) = K(x|y0) +O(1) but
the constant in the O(1) bound depends on the choice of y0.

3.2 Prefix-stable definition
The prefix-stable version of the definition considers another restriction on the function U .
Namely, in this version the function U should be prefix-stable with respect to the first
argument. This means that if U(p, x) is defined, then U(p′, x) is defined and equal to U(p, x)
for all p′ that are extensions of p (i.e., when p is a prefix of p′). We consider the class of all
computable partial prefix-stable functions U and corresponding functions CU , and observe
that there exists an optimal prefix-stable function U that makes CU minimal in this class.

It is rather easy to see that the prefix-stable definition leads to a version of complexity
that does not exceed the prefix-free one, since each prefix-free computable function can be
easily extended to a prefix-stable one. The reverse inequality is not so obvious and there is no
known direct proof; the standard argument compares both versions with the forth definition
of prefix complexity, (the logarithm of a maximal semimeasure, see Section 3.4 below).

Prefix-free and prefix-stable definitions correspond to the same intuitive idea: the program
should be “self-delimiting”. This means that the machine gets access to an infinite sequence
of bits that starts with the program and has no marker indicating the end of a program.
The prefix-free and prefix-stable definitions correspond to two possible ways of accessing this
sequence. The prefix-free definition corresponds to a blocking read primitive (if the machine
needs one more input bit, the computation waits until this bit is provided). The prefix-stable
definition corresponds to a non-blocking read primitive (the machine has access to the input
bits queue and may continue computations if the queue is currently empty). We do not go
into details here; the interested reader could find this discussion in [14, section 4.4].

3.3 A priori probability definition
In this approach we consider the a priori probability of y given x, the probability of the event
“a random program maps x to y”. More precisely, consider a prefix-stable function U(p, x)
and an infinite sequence π of independent uniformly distributed random bits (a random
variable). We say that U(π, x) = y if U(p, x) = y for some p that is a prefix of π. Since U is
prefix-stable, the value U(π, x) is well defined. For given x and y, we denote by mU (y |x)
the probability of this event (the measure of the set of π such that U(π, x) = y). For each

B. Bauwens 46:7

prefix-stable U we get some function mU . It is easy to see that there exists an optimal U
that makes mU maximal (up to an O(1)-factor). Then we define prefix complexity K(y |x)
as − logmU (y |x) for this optimal U , where the logarithm has base 2.

It is also easy to see that if we use prefix-free functions U instead of prefix-stable ones, we
obtain the same definition of prefix complexity. Informally speaking, if we have an infinite
sequence of random bits as the first argument, we do not care whether we have blocking or
non-blocking read access, the bits are always there. The non-trivial and most fundamental
result about prefix complexity is that this definition, as the logarithm of the probability, is
equivalent to the two previous ones. As a byproduct of this result we see that the prefix-free
and prefix-stable definitions are equivalent. This proof and the detailed discussion of the
difference between the definitions can be found, e.g., in [14, chapter 4].

3.4 Semimeasure definition
The semimeasure approach defines a priori probability in a different way, as a convergent
series that converges as slow as possible. More precisely, a lower semicomputable semimeasure
is a non-negative real-valued function m(x) on binary strings such that m(x) is a limit of an
increasing sequence of rational numbers and

∑
xm(x) 6 1 that is computable uniformly in x.

There exists a lower semicomputable semimeasure m(x) that is maximal up to O(1)-factors,
and its negative logarithm coincides with unconditional prefix complexity K(x) up to an
O(1) additive term.

We can define conditional prefix complexity in the same way, considering semimeasures
with parameter y. Namely, we consider lower semicomputable non-negative real-valued
functions m(x, y) such that

∑
xm(x, y) 6 1 for every y. Again there exists a maximal

function among them, denoted by m(x|y), and its negative logarithm equals K(x|y) up to
an O(1) additive term.

To prove this equality, we note first that the a priori conditional probability mU (x|y) is a
lower semicomputable conditional semimeasure. The lower semicomputability is easy to see:
we can simulate the machine U and discover more and more programs that map y to x. The
inequality

∑
xmU (x|y) also has a simple probabilistic meaning: the events “π maps y to x”

for a given y and different x are disjoint, so the sum of their probabilities does not exceed
1. The other direction (starting from a semimeasure, construct a machine) is a bit more
difficult, but in fact it is possible (even exactly, without additional O(1)-factors). See [14,
chapter 4] for details.

The semimeasure definition can be reformulated in terms of complexities (by taking
exponents): K(x|y) is a minimal (up to O(1) additive term) upper semicomputable non-
negative integer function k(x, y) such that∑

x

2−k(x,y) 6 1

for all y. A similar characterization of plain complexity would use a weaker requirement

#{x : k(x, y) < n} < c2n

for some c and all y. (We discussed a similar result for information distance where the
additional symmetry requirement was used, but the proof is the same.)

3.5 Warning
There exists a definition of plain conditional complexity that does not have a prefix-version
counterpart. Namely, the plain conditional complexity C(x|y) can be equivalently defined as
the minimal unconditional plain complexity of a program that maps y to x. In this way we

STACS 2020

46:8 Information Distance Revisited

do not need the programming language used to map y to x to be optimal; it is enough to
assume that we can computably translate programs in other languages into our language;
this property, sometimes called s-m-n-theorem or Gödel property of a computable numbering,
is true for almost all reasonable programming languages. Of course, we still assume that the
language used in the definition of unconditional Kolmogorov complexity is optimal.

One may hope that K(x|y) can be similarly defined as the minimal unconditional prefix
complexity of a program that maps y to x. The following proposition shows that it is not
the case.

I Proposition 8. The prefix complexity K(x|y) does not exceed the minimal prefix complexity
of a program that maps y to x; however, the difference between these two quantities is not
bounded.

Proof. To prove the first part, assume that U1(p) is a prefix-stable function of one argument
that makes the complexity function

CU1(q) = min{|p| : U(p) = q}

minimal. Then CU (q) = K(q) + O(1). (We still need an O(1) term since the choice of an
optimal prefix-stable function is arbitrary). Then consider the function

U2(p, x) = [U1(p)](x)

where [q](x) denotes the output of a program q on input x. Then U2 is a prefix-stable
function from the definition of conditional prefix complexity, and

CU2(y |x) 6 CU1(q)

for any program q that maps x to y (i.e., [q](x) = y). This gives the inequality mentioned
in the proposition. Now we have to show that this inequality is not an equality with
O(1)-precision.

Note that K(x|n) 6 n+O(1) for every binary string x of length n. Indeed, a prefix-stable
(or prefix-free) machine that gets n as input can copy n first bits of its program to the output.
(The prefix-free machine should check that there are exactly n input bits.) In this way we
get n-bit programs for all strings of length n.

Now assume that the two quantities coincide up to an O(1) additive term. Then for
every string x there exists a program qx that maps |x| to x and K(qx) 6 |x|+ c for all x and
some c. Note that qx may be equal to qy for x 6= y, but this may happen only if x and y
have different lengths. Consider now the set Q of all qx for all strings x, and the series∑

q∈Q
2−K(q). (**)

This sum does not exceed 1 (it is a part of a similar sum for all q that is at most 1, see
above). On the other hand, we have at least 2n different programs qx for all n-bit strings x,
and they correspond to different terms in (∗∗); each of these terms is at least 2−n−c. We get
a converging series that contains, for every n, at least 2n terms of size at least 2−n−c. It is
easy to see that such a series does not exist. Indeed, each tail of this series should be at least
2−c−1 (consider these 2n terms for large n when at least half of these terms are in the tail),
and this is incompatible with convergence. J

Why do we get a bigger quantity when considering the prefix complexity of a program
that maps y to x? The reason is that the prefix-freeness (or prefix-stability) requirement for
the function U(p, x) is formulated separately for each x: the decision where to stop reading

B. Bauwens 46:9

the program p may depend on its input x. This is not possible for a prefix-free description of
a program that maps x to y. It is easy to overlook this problem when we informally describe
prefix complexity K(x|y) as “the minimal length of a program, written in a self-delimiting
language, that maps y to x”, because the words “self-delimiting language” implicitly assume
that we can determine where the program ends while reading the program text (and before
we know its input), and this is a wrong assumption.

3.6 Historical digression

Let us comment a bit on the history of prefix complexity. It appeared first in 1971 in Levin’s
PhD thesis [6]; Kolmogorov was his thesis advisor. Levin used essentially the semimeasure
definition (formulated a bit differently). This thesis was in Russian and remained unpublished
for a very long time. In 1974 Gács’ paper [4] appeared where the formula for the prefix
complexity of a pair was proven. This paper mentioned prefix complexity as “introduced
by Levin in [4], [5]” ([7] and [8] in our numbering). The first of these two papers does not
say anything about prefix complexity explicitly, but defines the monotone complexity of
sequences of natural numbers, and prefix complexity can be considered as a special case
when the sequence has length 1 (this is equivalent to the prefix-stable definition of prefix
complexity). The second paper has a comment “(to appear)” in Gács’ paper. We discuss it
later in this section.

Gács does not reproduce the definition of prefix complexity, saying only that it is “defined
as the complexity of specifying x on a machine on which it is impossible to indicate the
endpoint2 of a master program: an infinite sequence of binary symbols enters the machine and
the machine must itself decide how many binary symbols are required for its computation”.
This description is not completely clear, but it looks more like a prefix-free definition if we
understand it in such a way that the program is written on a one-directional tape and the
machine decides where to stop reading. Gács also notes that prefix complexity (he denotes
it by KP (x)) “is equal to the [negative] base two logarithm of a universal semicomputable
probability measure that can be defined on the countable set of all words”.

Levin’s 1974 paper [8] says that “the quantity KP (x) has been investigated in details
in [6,7]”. Here [7] in Levin’s numbering is Gács paper cited above ([4] is our numbering)
and has the comment “in press”, and [6] in Levin’s numbering is cited as [Levin L.A., On
different version of algorithmic complexity of finite objects, to appear]. Levin does not have
a paper with exactly this title, but the closest approximation is his 1976 paper [9], where
prefix complexity is defined as the logarithm of a maximal semimeasure. Except for these
references, [8] describes the prefix complexity in terms of prefix-stable functions: “It differs
from the Kolmogorov complexity measure 〈. . .〉 in that the decoding algorithm A has the
following “prefix” attribute: if A(p1) and A(p2) are defined and distinct, then p1 cannot be a
beginning fragment of p2”.

The prefix-free and a priori probability definitions were given independently by Chaitin
in [3] (in different notation) together with the proof of their equivalence, so [3] was the first
publication containing this (important) proof.

Now it seems that the most popular definition of prefix complexity is the prefix-free one,
for example, it is given as the main definition in [11].

2 The English translation says “halting” instead of “endpoint” but this is an obvious translation error.

STACS 2020

46:10 Information Distance Revisited

4 Prefix complexity and information distance

4.1 Four versions of prefix information distance
Both the prefix-free and prefix-stable versions of prefix complexity have their counterparts
for the information distance.

Let U(p, x) be a partial computable prefix-free [respectively, prefix-stable] function of two
string arguments having string values. Consider the function

EU (x, y) = min{|p| : U(p, x) = y and U(p, y) = x}.

As before, one can easily prove that there exists a minimal (up to O(1)) function among all
functions EU of the class considered. It will be called prefix-free [respectively prefix-stable]
information distance function. We clarify the difference between these variants.

Note that only the cases when U(p, x) = y and also U(p, y) = x matter for EU . So we
may assume without loss of generality that U(p, x) = y ⇔ U(p, y) = x waiting until both
equalities are true before finalizing the values of U . Then for every p we have some matching
Mp on the set of all strings: an edge x–y is in Mp if U(p, x) = y and U(p, y) = x. This is
indeed a matching: for every x only U(p, x) may be connected with x.

The set Mp is enumerable uniformly in p. In the prefix-free version the matchings Mp

and Mq are disjoint (have no common vertices) for two compatible strings p and q (one
is an extension of the other). For the prefix-stable version Mp increases when p increases
(and remains a matching). It is easy to see that a family Mp that has these properties,
always corresponds to some function U , and this statement holds both in the prefix-free and
prefix-stable version.

There is another way in which this definition could be modified. As we have discussed
for plain complexity, we may consider two different functions U and U ′ and consider the
distance function

EU,U ′(x, y) = min{|p| : U(p, x) = y and U ′(p, y) = x}.

Intuitively this means that we know the transformation direction in addition to the input
string. This corresponds to matchings in a bipartite graph where both parts consist of all
binary strings; the edge x–y is in the matching Mp if U(p, x) = y and U ′(p, y) = x. Again
instead of the pair (U,U ′) we may consider the family of matchings that are disjoint (for
compatible p, in the prefix-free version) or monotone (for the prefix-stable version). In this
way we get two other versions of information distance that could be called bipartite prefix-free
and bipartite prefix-stable information distances.

In [2] the information distance is defined as the prefix-free information distance with the
same function U for both directions, not two different ones. The definition in section III
considers the minimal function among all EU . This minimal function is denoted by E0(x, y),
while max(K(x|y),K(y |x)) is denoted by E1(x, y), see section I of the same paper. The
inequality E1 6 E0 is obvious, and the reverse inequality with logarithmic precision is proven
in [2] as Theorem 3.3.

Which of the four versions of prefix information distance is the most natural? Are they
really different? It is easy to see that the prefix-stable version (bipartite or not) does not
exceed the corresponding prefix-free version, since every prefix-free function has a prefix-
stable extension. Also each bipartite version (prefix-free or prefix-stable) does not exceed the
corresponding non-bipartite version for obvious reasons: one may take U = U ′. It is hard
to say which version is most natural, and the question whether some of them coincide or

B. Bauwens 46:11

all four are different, remains open. But as we will see in Theorem 13, the smallest of all
four, the prefix-stable bipartite version, is still bigger than E1 (the maximum of conditional
complexities), and the difference is unbounded. Hence, for all four versions, including the
prefix-free non-bipartite version used both in [2, 12, 13], the equality with O(1)-precision is
not true, contrary to what is said in [13]. This was conjectured in [2, Section VII].

However, before going to this negative result, we prove some positive results about the
definition of information distance that is a counterpart of the a priori probability definition
of prefix complexity.

4.2 A priori probability of going back and forth
Fix some prefix-free function U(p, x). The conditional a priori probability mU (y |x) is
defined as

Pr
π

[U(π, x) = y],

where π is an infinite uniformly randomnly generated bitsequence, and U(π, x) = y means
that U(p, x) = y for some p that is a prefix of π. As we discussed, there exists a maximal
function among all mU , and its negative logarithm equals the conditional prefix complexity
K(y |x).

Now let us consider the counterpart of this construction for the information distance.
The natural way to do this is to consider the function

eU (x, y) = Pr
π

[U(π, x) = y and U(π, y) = x].

Note that in this definition the prefixes of π used for both computations are not necessarily
the same. It is easy to show, as usual, that there exists an optimal machine U that makes eU
maximal. Fixing some optimal U , we get some function e(x, y). Note that different optimal
U lead to functions that differ only by O(1)-factor. The negative logarithm of this function
coincides with E1 from [2] with O(1)-precision, as the following result says.

I Theorem 9.

− log e(x, y) = max(K(x|y),K(y |x)) +O(1).

Proof. Rewriting the right-hand side in the exponential scale, we need to prove that

e(x, y) = min(m(x|y),m(y |x))

up to O(1)-factors. One direction is obvious: e(x, y) is smaller than m(x|y) since the set of
π in the definition of e is a subset of the corresponding set for m, if we use the probabilistic
definition of m = mU . The same is true for m(y |x).

The non-trivial part of the statement is the reverse inequality. Here we need to construct
a machine U such that

eU (x, y) > min(m(x|y),m(y |x))

up to O(1)-factors.
Let us denote the right-hand side by u(x, y). The function u is symmetric, lower

semicomputable and
∑
y u(x, y) 6 1 for all x (due to the symmetry, we do not need the other

inequality where y is fixed). This is all we need to construct U with the desired properties;
in fact eU (x, y) will be at least 0.5u(x, y), (and the factor 0.5 is important for the proof).

STACS 2020

46:12 Information Distance Revisited

Every machine U has a “dual” representation: for every pair (x, y) one may consider the
subset Ux,y of the Cantor space that consists of all π such that U(π, x) = y and U(π, y) = x.
These sets are effectively open (i.e., are computably enumerable unions of intervals in the
Cantor space) uniformly in x, y, are symmetric (Ux,y = Uy,x) and have the following property:
for a fixed x, all sets Ux,y for all y (including y = x) are disjoint.

What is important to us is that this correspondence works in both directions. If we have
some family Ux,y of uniformly effectively open sets that is symmetric and has the disjointness
property mentioned above, there exists a prefix-free machine U that generates these sets as
described above. This machine works as follows: given some x, it enumerates the intervals
that form Ux,y for all y (it is possible since the sets Ux,y are effectively open uniformly in
x, y). One may assume without loss of generality that all the intervals in the enumeration
are disjoint. Indeed, every effectively open set can be represented as a union of a computable
sequence of disjoint intervals (to make intervals disjoint, we represent the set difference
between the last interval and previously generated intervals as a a finite union of intervals).
Note also that for different values of y the sets Ux,y are disjoint by the assumption. If the
enumeration for Ux,y contains the interval [p] (the set of all extensions of some bit string p),
then we let U(p, x) = y and U(p, y) = x (we assume that the same enumeration is used for
Ux,y and Uy,x). Since all intervals are disjoint, the function U(p, x) is prefix-free.

Now it remains (and this is the main part of the proof) to construct the family Ux,y
with the required properties in such a way that the measure of Ux,y is at least 0.5u(x, y).
In our construction it will be exactly 0.5u(x, y). For that we use the same idea as in [2]
but in the continuous setting. Since u(x, y) is lower semicomputable, we may consider the
increasing sequence u′(x, y) of approximations from below (that increase with time, though
we do not explicitly mention time in the notation) that converge to u(x, y). We assume that
at each step one of the values u′(x, y) increases by a dyadic rational number r. In response
to that increase, we add to Ux,y one or several intervals that have total measure r/2 and do
not intersect Ux,z and Uz,y for any z. For that we consider the unions of all already chosen
parts of Ux,z and of all chosen parts of Uz,y. The measure of the first union is bounded by
0.5

∑
z u
′(x, z) and the measure of the second union is bounded by 0.5

∑
z u
′(z, y) where u′

is the lower bound for u before the r-increase. Since the sums remain bounded by 1 after the
r-increase, we may select a subset of measure r/2 outside both unions. (We may even select
a subset of measure r, but this will destroy the construction at the following steps, so we
add only r/2 to Ux,y.) J

I Remark 10. As for the other settings, we may consider two functions U and U ′ and the
probability of the event

eU,U ′(x, y) = Pr
π

[U(π, x) = y and U ′(π, y) = x]

for those U,U ′ that make this probability maximal. The equality of Theorem 9 remains valid
for this version. Indeed, the easy part can be proven in the same way, and for the difficult
direction we have proven a stronger statement with additional requirement U = U ′.

One can also describe the function e as a maximal function in some class, therefore
getting a quantitative definition of E0. This is essentially the statement of theorem 4.2 in [2].
In terms of semimeasures it can be reformulated as follows.

I Proposition 11. Consider the class of symmetric lower semicomputable functions u(x, y)
with string arguments and non-negative real values such that

∑
y u(x, y) 6 1 for all x. This

class has a maximal function that coincides with min(m(x|y),m(y |x)) up to an O(1) factor.

B. Bauwens 46:13

Indeed, we have already seen that this minimum has the required properties; if some
other function u(x, y) in this class is given, we compare it with conditional semimeasures
m(x|y) and m(y |x) and conclude that u does not exceed both of them.

In logarithmic scale this statement can be reformulated as follows: the class of upper
semicomputable symmetric functions D(x, y) with string arguments and real values such that∑

y 2−D(x,y) 6 1 for each x, has a minimal element that coincides with max(K(x|y),K(y |x))
up to an O(1) additive term. Theorem 4.2 in [2] says the same with the additional condition
for D: it should satisfy the triangle inequality. This restriction makes the class smaller and
could increase the minimal element in the class, but this does not happen since the function

max(K(x|y),K(y |x)) + c

satisfies the triangle inequality for large enough c. This follows from the inequality K(x|z) 6
K(x|y) + K(y |z) + O(1) since the left hand size increases by c and the right hand size
increases by 2c when K is increased by c.
I Remark 12. To be pedantic, we have to note that in [2] an additional condition D(x, x) = 0
is required for the functions in the class; to make this possible, one has to exclude the term
2−D(x,x) in the sum (now this term equals 1) and require that

∑
y 6=x 2−D(x,y) 6 1 (p. 1414,

the last inequality). Note that the triangle inequality remains valid if we change D and let
D(x, x) = 0 for all x.

5 A counterexample

In this section we present the main negative (and most technically difficult) result of this
paper that shows that none of the four prefix distances coincides with

E1(x, y) = max(K(x|y),K(y |x)).

I Theorem 13. The bipartite prefix-stable information distance exceeds E1(x, y) more than
by a constant: the difference is unbounded.

As we have mentioned, the other three versions of the information distance are even bigger,
so the same result is true for all of them. We will explain the proof for the non-bipartite
prefix-stable version (it is a bit easier and less notation is needed) and then explain the
changes needed for the bipartite prefix-stable version. Our proof also provides a lower bound
in terms of the length: for strings of length n, the difference can be as large as

log logn−O(log log logn).

The proof can be found in the ArXiv version of this paper [1]. It uses game approach:
We first explain the game rules, then show that a computable winning strategy in the
game implies that the difference is unbounded, and finally, present that computable winning
strategy. Both the game and the winning strategy has similarities with the game in [5].

6 Equality if the distance is superlogarithmic

Given the previous result, all distances become equal for pairs of strings of equal length,
provided their distance is not too small.

I Theorem 14. If |x| = |y| and E1(x, y) > 6 log |x|, then all four prefix information distances
are equal to E1(x, y) +O(1).

This seems to be the first equality in information theory whose precision becomes smaller
if the quantity becomes larger. The proof can be found in the ArXiv version of this paper [1].

STACS 2020

46:14 Information Distance Revisited

References
1 Bruno Bauwens and Alexander Shen. Information distance revisited. arXiv preprint, 2018.

arXiv:1807.11087.
2 C. H. Bennett, P. Gács, M. Li, P.M.B. Vitányi, and W. H. Zurek. Information distance. IEEE

Transactions on Information Theory, 44(4), 1998.
3 G.J. Chaitin. A theory of program size formally identical to information theory. J. Assoc.

Comput. Mach., 22(3):329–340, 1975. doi:10.1145/321892.321894.
4 P. Gács. On the symmetry of algorithmic information. Soviet Math. Dokl., 15(5):1477–1480,

1974.
5 P. Gács. On the relation between descriptional complexity and algorithmic probability. Theor.

Comput. Sci., 22:71–93, 1983.
6 Leonid A Levin. Some theorems on the algorithmic approach to probability theory and

information theory. PhD thesis, BostonUniversity, MA, UnitedStates, 1971. Dissertation
directed by A.N. Kolmogorov; turned down as required by the Soviet authorities despite
unanimously positive reviews. Translated in English in [10].

7 Leonid A Levin. On the notion of a random sequence. Soviet Mathematics-Doklady, 14:1413–
1416, 1973.

8 Leonid A Levin. Laws of information conservation (nongrowth) and aspects of the foundation
of probability theory. Problemy Peredachi Informatsii, 10(3):30–35, 1974.

9 Leonid A Levin. Various measures of complexity for finite objects (axiomatic description).
Soviet Mathematics Doklady, 17(2):522–526, 1976.

10 Leonid A Levin. Some theorems on the algorithmic approach to probability theory and
information theory. Annals of Pureand Applied Logic, 162:224–235, 2010. 1971 dissertation
directed by A.N. Kolmogorov; turned down as required by the Soviet authorities despite
unanimously positive reviews.

11 Ming Li and Paul M.B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applica-
tions, 4th edition. Springer, 2019. 1 ed., 1993; 2 ed., 1997, 3 ed 2008,.

12 Chong Long, Xiaoyan Zhu, Ming Li, and Bin Ma. Information shared by many objects. In
Proceedings of the 17th ACM conference on Information and knowledge management, pages
1213–1220. ACM, 2008.

13 MM Hassan Mahmud. On universal transfer learning. Theoretical Computer Science,
410(19):1826–1846, April 2009.

14 Alexander Shen, Vladimir A Uspensky, and Nikolay Vereshchagin. Kolmogorov complexity and
algorithmic randomness, volume 220. Mathematical Surveys and Monographs, volume 220,
xviii+511 pages. American Mathematical Society American Mathematical Soc., 2017. Draft
version: http://www.lirmm.fr/~ashen/kolmbook-eng.pdf.

15 Paul M.B. Vitányi. Exact expression for information distance. IEEE Transactions on
Information Theory, 63:4725–4728, 2017. arXiv:1410.7328.

http://arxiv.org/abs/1807.11087
https://doi.org/10.1145/321892.321894
http://www.lirmm.fr/~ashen/kolmbook-eng.pdf
http://arxiv.org/abs/1410.7328

	Introduction
	Plain complexity and information distance
	Prefix complexity: different definitions
	Prefix-free definition
	Prefix-stable definition
	A priori probability definition
	Semimeasure definition
	Warning
	Historical digression

	Prefix complexity and information distance
	Four versions of prefix information distance
	A priori probability of going back and forth

	A counterexample
	Equality if the distance is superlogarithmic

