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Abstract
In the restricted assignment problem, the input consists of a set of machines and a set of jobs each
with a processing time and a subset of eligible machines. The goal is to find an assignment of
the jobs to the machines minimizing the makespan, that is, the maximum summed up processing
time any machine receives. Herein, jobs should only be assigned to those machines on which they
are eligible. It is well-known that there is no polynomial time approximation algorithm with an
approximation guarantee of less than 1.5 for the restricted assignment problem unless P=NP. In this
work, we show hardness results for variants of the restricted assignment problem with particular
types of restrictions.

For the case of interval restrictions – where the machines can be totally ordered such that jobs
are eligible on consecutive machines – we show that there is no polynomial time approximation
scheme (PTAS) unless P=NP. The question of whether a PTAS for this variant exists was stated as
an open problem before, and PTAS results for special cases of this variant are known.

Furthermore, we consider a variant with resource restriction where the sets of eligible machines
are of the following form: There is a fixed number of (renewable) resources, each machine has a
capacity, and each job a demand for each resource. A job is eligible on a machine if its demand is at
most as big as the capacity of the machine for each resource. For one resource, this problem has
been intensively studied under several different names and is known to admit a PTAS, and for two
resources the variant with interval restrictions is contained as a special case. Moreover, the version
with multiple resources is closely related to makespan minimization on parallel machines with a low
rank processing time matrix. We show that there is no polynomial time approximation algorithm
with a rate smaller than 48/47 ≈ 1.02 or 1.5 for scheduling with resource restrictions with 2 or 4
resources, respectively, unless P=NP. All our results can be extended to the so called Santa Claus
variants of the problems where the goal is to maximize the minimal processing time any machine
receives.
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1 Introduction

Consider the restricted assignment problem: Given a set of machinesM and a set of jobs J
with a processing time or size pj and a subset of eligible machinesM(j) ⊆M for each job j,
the goal is to find a schedule σ : J →M with σ(j) ∈M(j) for each job j and minimizing
the makespan Cmax(σ) = maxi∈M

∑
j∈σ−1(i) pj .

In a seminal work, Lenstra, Shmoys and Tardos [19] presented a 2-approximation for
restricted assignment and also showed that there is no polynomial time approximation
algorithm with rate smaller than 1.5 for the problem, unless P=NP. Closing this gap is
a prominent open problem in approximation and scheduling theory [26, 33]. If there are
no restrictions, i.e.,M(j) =M for each job j, we have the classical problem of makespan
minimization on identical parallel machines (machine scheduling) which is already strongly
NP-hard. On the other hand, machine scheduling is well-known to admit a polynomial time
approximation scheme (PTAS) due to a classical result by Hochbaum and Shmoys [10]. In
recent years, the approximability of special cases of restricted assignment has been intensively
studied (see, e.g., [3, 7, 12, 14]) with one line of research focusing on the existence of
approximation schemes (see, e.g., [8, 13, 23, 24]). The present work seeks to contribute in
this research direction. Omitted details and proofs can be found in the long version of the
paper [22].

Interval Restrictions. Arguably one of the most natural variants of the restricted assignment
problem is the case of scheduling with interval restrictions (RAI). In this variant, the machines
are totally ordered and each job is eligible on consecutive machines. More precisely, we
have M = {M1, . . . ,Mm}, and for each job j we have some indices `, r ∈ [m] such that
M(j) = {M`, . . . ,Mr}. Several special cases of RAI are known to admit a PTAS: the
hierarchical case [24], where for each job the interval of eligible machines starts with the first
machine; the nested case [23, 8], whereM(j) ⊆M(j′),M(j′) ⊆M(j) orM(j)∩M(j′) = ∅
for each pair of jobs (j, j′); and the inclusion-free case [27, 17], whereM(j) ⊆M(j′) implies
that j and j′ share either their first or last eligible machine. Furthermore, for general RAI, a
2−2/(maxj∈J pj)-approximation due to Schwarz [27] is known (assuming integral processing
times); and the special case with two distinct processing times is even polynomial time
solvable [32]. Note that the problem has also been studied in the context of online algorithms
(see [18, 21]).

The question of whether there is a PTAS for RAI has been posed by several authors
[15, 27, 32]. As the main result of the present work, we resolve this question in the negative:

I Theorem 1. There is no PTAS for scheduling with interval restrictions unless P=NP. 1

We prove this theorem in Section 2.

Resource Restrictions. The second variant considered in this work, is the problem of
scheduling with resource restrictions with R resources (RAR(R)). Herein, a set R of R
(renewable) resources is given, each machine i has a resource capacity cr(i) and each job j
has a resource demand dr(j) for each r ∈ R. Job j is eligible on machine i if dr(j) ≤ cr(i) for
each resource r. For R = 1, the problem is equivalent to the mentioned hierarchical case and

1 There is a paper [16] claiming to have found a PTAS for RAI. However, according to [29], the result is
not correct and the authors published a revised version of the paper [17] claiming a less general result,
namely, a PTAS for the inclusion-free case.
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has been studied intensively [20, 21]. Furthermore, it is not hard to see that RAI is properly
placed between RAR(1) and RAR(2) and hence there is a close relationship between the
two problems. For arbitrary R, the problem was mentioned in a work by Bhaskara et el. [1]
under the name of geometrically restricted scheduling2 but to the best of our knowledge it
has not been further studied up to now. There is, however, a close relationship to the low
rank version of makespan minimization on unrelated parallel machines (unrelated scheduling)
introduced in [1]. For scheduling with resource restrictions, we show:

I Theorem 2. There is no approximation algorithm with rate less than 48/47 ≈ 1.02 or 1.5
for scheduling with resource restrictions with 2 or 4 resources, respectively, unless P=NP.

We prove this theorem in Section 3. In the long version of the paper [22], we provide more
details concerning RAR(R), e.g., a comparative analysis of RAR(R), RAI and low rank
unrelated scheduling.

Santa Claus. The problems of restricted assignment and unrelated scheduling are also stud-
ied with the reverse objective of maximizing the minimal machine load mini∈M

∑
j∈σ−1(i) pij .

Machine scheduling problems with this objective are sometimes called the Santa Claus version
of the respective problem. We remark that all our results can be transferred to the Santa
Claus versions of the considered problems in a straight-forward fashion.

Further Related Work. First note that if the number of machines is constant, there is a
fully polynomial time approximation scheme (FPTAS) already for unrelated scheduling [11].
Furthermore, for some broad overview concerning parallel machine scheduling with different
kinds of restrictions in the context of online and approximation algorithms, we refer to the
surveys by Lee et al. [18] and Leung and Li [20, 21].

We already discussed many variants of restricted assignment that admit a PTAS. In
particular, Ou, Leung and Li [24] presented a PTAS for the hierarchical case; Epstein and
Levin [8] and Muratore, Schwarz and Woeginger [23] for the nested case; and Schwarz [27]
and Khodamoradi et al. [17] for the inclusion-free case. Another case that has been studied
in the literature is the tree-hierarchical case, where the machines can be arranged in a rooted
tree such that for each job the set of eligible machines corresponds to a path starting at
the root. It was shown to admit a PTAS by Epstein and Levin [8] and Schwarz [28]. It is
not hard to see that all of the above cases contain the hierarchical case as a subcase, and
that the tree-hierarchical, nested and inclusion-free case are distinct. There is, however, a
variant admitting a PTAS that covers both the nested and the tree-hierarchical case: For
each instance of the restricted assignment problem the corresponding incidence graph is a
bipartite graph whose nodes are given by the jobs and machines and a job j is adjacent to a
machine i if j is eligible on i. Jansen, Maack and Solis-Oba [13] showed that there is PTAS
for restricted assignment for the case that the clique- or rank-width of the incidence graph is
constant. Furthermore, if the incidence graph is a bi-cograph the clique-width is well-known
to be small and this case covers the nested and tree-hierarchical case. The inclusion-free
case, on the other hand, is equivalent to the case that the incidence graph is a bipartite
permutation graph [17] which does not have a bounded clique-width [2]. Note that RAR(1)
or RAI are equivalent to the cases that the incidence graph is a chain [9] or convex graph [16],
respectively.

2 The demands d(j) and capacities c(i) may be interpreted as points in R-dimensional space.
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Preliminaries. We consider polynomial time approximation algorithms: Given an instance
I of an optimization problem, an α-approximation A for this problem produces a solution in
time poly(|I|), where |I| denotes the input length. For the objective function value A(I) of
this solution it is guaranteed that A(I) ≤ αopt(I), in the case of an minimization problem,
or A(I) ≥ (1/α)opt(I), in the case of an maximization problem, where opt(I) is the value
of an optimal solution. We call α the approximation guarantee or rate of the algorithm. In
some cases a polynomial time approximation scheme (PTAS) can be achieved, that is, an
(1 + ε)-approximation for each ε > 0. If for such a family of algorithms the running time is
polynomial in both 1/ε and |I| it is called fully polynomial (FPTAS).

Nearly all the reductions in this work follow the same pattern: Given an instance I of
the starting problem, we construct an instance I ′ of the variant of the restricted assignment
problem considered in the respective case. For I ′, all job sizes are integral and upper bounded
by some constant T such that the overall size of the jobs equals |M|T . Obviously, if for such
an instance a machine receives jobs with overall size more or less than T , the makespan of the
schedule is greater than T . Then we show that that there exists a schedule with makespan T
for I ′, if and only if I is a yes-instance. This rules out the existence of an approximation
algorithm with rate smaller than (T + 1)/T (or T/(T − 1) for the Santa Claus version) and
a PTAS in particular.

2 Interval Restrictions

The sole goal of this section is to prove Theorem 1, that is, the non-existence of a PTAS for
RAI (given P6=NP). Our starting point for the reduction is a satisfiability problem 3-SAT∗
that we tailor to our needs. We show that 3-SAT∗ is NP-hard via a straight forward reduction
from the 1-in-3-SAT problem, which is well-know to be NP-complete [25] and discussed in
more detail below. Next, we provide a reduction from 3-SAT∗ to the classical restricted
assignment problem (with arbitrary sets of eligible machines). This reduction introduces some
of the needed gadgets and ideas for the main result which is discussed in detail thereafter.

Starting Point. An instance of 1-in-3-SAT is a conjunction of clauses with 3 literals each.
Each clause is a formula depending on 3 literals that is satisfied if and only if exactly one
of its literals takes the value >. We call such formulas 1-in-3-clauses in the following and
define 2-in-3-clauses correspondingly. Note that we denote the truth values “true” and “false”
by > and ⊥ in the following. An instance of the problem 3-SAT∗ also is a conjunction of
clauses with exactly 3 literals each. However, each of the clauses is either a 1-in-3-clause or a
2-in-3-clause and there are as many clauses of the first as of the second type. Furthermore,
we require that each literal occurs exactly twice. In the following, we denote a 1-in-3-clause
or 2-in-3-clause with literals z1, z2 and z3 by (z1, z2, z3)1 or (z1, z2, z3)2, respectively.

To see that 3-SAT∗ is NP-hard, consider an instance of 1-in-3-SAT with n variables
x1, . . . , xn andm clauses. We now construct an equivalent 3-SAT∗ instance. Let di be the num-
ber of times the variable xi occurs in the given 1-in-3-SAT formula. For each variable xi, we in-
troduce new variables xi,1, . . . , xi,di and yi,1, . . . , yi,di along with clauses (xi,1,¬xi,2, yi,1)2, . . . ,
(xi,di−1,¬xi,di

, yi,di−1)2, (xi,di
,¬xi,1, yi,di

)2 and clauses (yi,j ,¬yi,j ,¬yi,j)1 for each j ∈ [di].
Note that each variable yi,j has to take the value > in a satisfying assignment, due to
the clause (yi,j ,¬yi,j ,¬yi,j)1. The remaining clauses ensure, that for each i the variables
xi,1, . . .xi,di

have the same value in a satisfying assignment. Furthermore, for each of the
clauses of the original problem, we introduce one 1-in-3-clause and one 2-in-3-clause. The
1-in-3-clauses are obtained by exchanging the j-th occurrence of each variable xi with xi,j .
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Table 1 The sizes and sets of eligible machines of the jobs in the simple reduction. The entry for
CMachi,s marks the private load of the machine. The target makespan is given by T = 322.

Job Size Eligible Machines

CMachi,s 111 CMachi,s
CJob>i,s′ 100 CMachi,1, CMachi,2, CMachi,3
CJob⊥i,s′ 101 CMachi,1, CMachi,2, CMachi,3
TJob>j 100 TMachj,1, TMachj,2
TJob⊥j 102 TMachj,1, TMachj,2
VJob>j,t 111 TMachj,dt/2e, CMachκ(j,t)

VJob⊥j,t 110 TMachj,dt/2e, CMachκ(j,t)

Moreover, the 2-in-3-clauses are obtained by copying the new 1-in-3-clauses, negating all the
literals and turning them into a 2-in-3-clause. Hence, each 2-in-3-clauses evaluates to >, if
and only if its corresponding 1-in-3-clause does. It is not hard to verify the correctness of the
reduction. Similar constructions are widely used, see, e.g., [31] or [5]. The remarkable aspect
of the present construction lies in its symmetrical structure which helps to avoid additional
dummy gadgets in the following reductions.

Simple Reduction. In the following, we assume that an instance of 3-SAT∗ with m 1-in-
3-clauses C1, . . . , Cm, m 2-in-3-clauses Cm+1, . . . , C2m and n variables x1, . . . , xn is given.
Note that we have 2m clauses with 3 literals each, and 4n occurring literals in total, hence
3m = 2n. In addition to the ordering of the variables and clauses, we fix an ordering of
the literals belonging to each clause, and an ordering of the occurrences of each variable
by assigning an index t ∈ [4] to each of them. In particular, for each variable xj , t = 1, 2
correspond to the first and second positive and t = 3, 4 to the first and second negative
occurrence of xj . Furthermore, let κ : [n]× [4]→ [2m]× [3] be the bijection defined as follows:
κ(j, t) = (i, s) implies that the t-th occurrence of xj is positioned in clause Ci on position s.

We now define the restricted assignment instance. For some of the machines, we introduce
private loads which is a synonym for jobs of the corresponding size that have to be scheduled
on the respective machine because its the only eligible one. The sizes and sets of eligible
machines of the introduced jobs are presented in Table 1 and the target makespan is given
by T = 322.

For each clause Ci, there are three clause machines CMachi,s with s ∈ [3] corresponding to
its three literals, as well as three clause jobs CJob◦s′

i,s′ with s′ ∈ [3] and ◦s′ ∈ {>,⊥}. We
have ◦1 = > and ◦3 = ⊥, as well as ◦2 = ⊥ if Ci is a 1-in-3 clause, and ◦2 = > otherwise.
Furthermore, each clause machine has a private load of 111.
For each variable xj , there are two truth assignment machines TMachj,q with q ∈ [2]
corresponding to the positive (q = 1) and negative (q = 2) literal of xj , as well as 2 truth
assignment jobs TJob◦j with ◦ ∈ {>,⊥}.
For each variable xj , there are eight variable jobs VJob◦j,t with t ∈ [4] and ◦ ∈ {>,⊥}
corresponding to the two occurrences of the positive (t ∈ {1, 2}) and negative (t ∈ {3, 4})
literal of xj .

Counting the different machines and jobs and adding up the job sizes yields:

B Claim 3. The overall size of all the jobs is exactly |M|T .

We will show that there is a satisfying truth assignment for the 3-SAT∗ instance if and only
if there is a schedule in which each machine receives jobs with load exactly T .

STACS 2020
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Table 2 Each set indicates one of the possible job assignments for each machine in a schedule
with makespan T .

Machine Possible Schedules

TMachj,1 {TJob>j , VJob>j,1, VJob>j,2}, {TJob⊥j , VJob⊥j,1, VJob⊥j,2}
TMachj,2 {TJob>j , VJob>j,3, VJob>j,4}, {TJob⊥j , VJob⊥j,3, VJob⊥j,4}
CMachi,s (1-in-3-clause) {VJob>κ−1(i,s), CJob>i,1}, {VJob⊥κ−1(i,s), CJob⊥i,2}, {VJob⊥κ−1(i,s), CJob⊥i,3}
CMachi,s (2-in-3-clause) {VJob>κ−1(i,s), CJob>i,1}, {VJob>κ−1(i,s), CJob>i,2}, {VJob⊥κ−1(i,s), CJob⊥i,3}

For any job Job◦ with ◦ ∈ {>,⊥}, we refer to ◦ as its truth configuration and say that
Job◦ has ◦-configuration. The rationale of the reduction is as follows: Each clause machine
CMachi,s should receive exactly one variable job corresponding to the literal placed in position
s in the clause. The truth configuration of this variable job should correspond to the truth
value the variable contributes to the clause. To ensure that the jobs VJob>j,t belonging to
variable xj contribute consistent truth values, the truth assignment jobs and machines are
introduced. In the following, we sometimes talk about the truth assignment gadget and thus
refer to these jobs and machines. Similarly, the clause machines and jobs are sometimes
called the clause gadget. Note that the basic approach of using some kind of truth assignment
and clause gadget for reductions in the context of restricted assignment has been used before,
see, e.g., [7, 4, 5].

Next, we present a sequence of easy claims concerning the properties of a schedule for
the above instance with makespan T . Due to Table 1 and Claim 3, we have:

B Claim 4. Each machine receives exactly 3 jobs (including private loads).

Since each digit of each occurring size is upper bounded by 2, the above claim implies that
there can be no carryover when adding up job sizes of jobs scheduled on each machine. Hence
the digits of the numbers involved can be considered independently, e.g., there can be at
most two jobs with a 1 in the third (or second) digit of its size scheduled on any machine.
This together with the given job restrictions already implies:

B Claim 5. Each truth assignment machine receives exactly one truth assignment and two
variable jobs; and each clause machine receives exactly one clause and one variable job.

B Claim 6. The jobs scheduled on a truth assignment or clause machine all have the same
truth configuration (excluding private loads).

B Claim 7. Let j ∈ [n]. The truth configuration of any job scheduled on TMachj,1 is distinct
from the truth configuration of any job scheduled on TMachj,2.

The resulting possible schedules for each machine are summed up in Table 2, and Figure 1
depicts the resulting two possible schedules for each pair of truth assignment machines.
Lastly, we have:

B Claim 8. For each i ∈ [2m], the three clause machines corresponding to i receive exactly
one variable job with >-configuration if Ci is a 1-in-3-clause and exactly two such jobs if Ci
is a 2-in-3-clause.

Using the above claims, we can easily show:

I Proposition 9. There is a satisfying truth assignment for the given 3-SAT∗ instance if and
only if there is a schedule with makespan T for the described restricted assignment instance.
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TMachj,1 TMachj,2

TJob>j

VJob>j,1

VJob>j,2

TJob⊥j

VJob⊥j,3

VJob⊥j,4

VJob⊥j,1
VJob⊥j,2

VJob>j,3
VJob>j,4

TMachj,1 TMachj,2

TJob⊥j

VJob⊥j,1

VJob⊥j,2

TJob>j

VJob>j,3

VJob>j,4

VJob>j,1
VJob>j,2

VJob⊥j,3
VJob⊥j,4

Figure 1 The truth assignment gadget: There are two possible schedules of the truth assignment
machines TMachj,1 and TMachj,2 that already determine the schedule of the variable jobs.

Refined Reduction. When trying to adapt the above reduction to the more restricted
problem of RAI, we obviously have less leeway defining the restrictions. To deal with this,
we introduce additional gadgets and encode much more information into the job sizes. The
idea of the reduction can be described as follows. We arrange the truth assignment gadgets
on the left and the clause gadgets on the right. Consider the case that a truth assignment
decision is made in the left most truth assignment gadget. Information about this decision
– called signal in the following – has to be passed on to the proper clause gadgets passing
multiple other truth assignment and clause gadgets on the way. This signal in the simple
reduction simply corresponds to a variable job that is to be scheduled on its corresponding
clause machine, and in order to prevent interaction with other gadgets, we could encode
information about the corresponding variable into the size of the variable job. However, this
would lead to a super constant number of job sizes. To avoid this, we introduce a new gadget
called the bridge and highway gadget. Very roughly speaking, the signal is passed on to
the highway via gateways; the highway passes each following truth assignment gadget using
bridges and carries the signal to the proper clauses. Next, we give a detailed description and
analysis of the refined reduction.

We adopt all the machines and jobs introduced in the simple reduction, but change the
sizes and sets of eligible machines and introduce additional jobs and machines as well as
private loads for every machine. We introduce the following jobs and machines:

For each j ∈ [n] and t ∈ [4], we introduce one gateway machine GMachj,t.
For each j ∈ [n], t ∈ [4] and j′ ∈ {j + 1, . . . n}, we introduce two bridge machines
BMachInj,t,j′ and BMachOutj,t,j′ . Furthermore, we introduce two bridge jobs BJob>j,t,j′
and BJob⊥j,t,j′ .
For each j ∈ [n], t ∈ [4] and j′ ∈ {j, . . . n}, we introduce two highway jobs HJob>j,t,j′ and
HJob⊥j,t,j′ .

In order to define the intervals of eligible machines, we first need a total order of the machines.
We partition the machines into blocks, define an internal order for each block, and then define
an order of the blocks. Remember that κ : [n]× [4]→ [2m]× [3] is a bijection indicating the
positions of the occurrences of variables in the clauses. In particular, κ(j, 1) = (i, s) indicates
that the first positive occurrence of variable xj is in clause Ci on position s, and κ(j, 2),
κ(j, 3), and κ(j, 4) indicate analogue information for the second positve, first negative, and
second negative occurrence of xj .

For each j ∈ [n], we have a truth assignment block Tj containing the truth assignment
machines TMachj,1 and TMachj,2 in this order.
For each i ∈ [2m], we have a clause block Ci containing the clause machines CMachi,s for
each s ∈ [3] and ordered increasingly by s.

STACS 2020
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For each j ∈ [n], we have a successor block Sj containing the gateway machines GMachj,t
for each t ∈ [4] and the bridge machines BMachOutj′,t,j for each t ∈ [4] and j′ < j. For each
machine, we define an index, namely κ(j, t) for GMachj,t and κ(j′, t) for BMachOutj′,t,j , and
order the machines by the decreasing lexicographical ordering of their indices. For example,
if BMachOutj1,t1,j , BMachOutj2,t2,j , GMachj,t3 ∈ Sj and κ(j1, t1) = (1, 2), κ(j2, t2) = (1, 1)
and κ(j, t3) = (2, 3), then GMachj,t3 precedes BMachOutj1,t1,j which in turn precedes
BMachOutj2,t2,j .
For each j ∈ [n] with j > 1, we have a predecessor block Pj containing the bridge
machines BMachInj′,t,j for each t ∈ [4] and j′ < j. Machine BMachInj′,t,j has index κ(j′, t)
and the machines are ordered by the increasing lexicographical ordering of their indices.

The blocks are ordered as follows:

(T1,S1,P2, T2,S2, . . . ,Pn, Tn,Sn, C1, . . . , C2m)

The sets of eligible machines are specified in Table 3, and in Table 4 the job sizes as well as
the target makespan T are given3. Figure 2 gives some intuition on the overall structure.
Due to counting and basic arithmetic, we have:

B Claim 10. The overall size of the jobs is exactly |M|T .

Like for the simple reduction, we prove a sequence of easy claims concerning the properties
of a schedule for the constructed instance with makespan T . First note:

B Claim 11. Each machine receives exactly 4 jobs if it is a truth assignment machine and
exactly 3 jobs otherwise (including private loads).

Since each machine receives at most 4 jobs and each digit in the job sizes is bounded by 2,
we may consider each digit of the involved numbers independently, e.g., if two jobs and the
makespan have a 1 at the `-th digit, we already know that these jobs cannot be scheduled on
the same machine. This already implies a series of claims:

B Claim 12. The jobs TJob>j and TJob⊥j can exclusively be scheduled on TMachj,1 and
TMachj,2, for each j ∈ [n], and each of the two machines receives exactly one of the two jobs.

B Claim 13. The jobs VJob>j,t and VJob⊥j,t can exclusively be scheduled on TMachj,dt/2e and
GMachj,t, for each j ∈ [n] and t ∈ [4], and each of the two machines receives exactly one of
the two jobs.

B Claim 14. Bridge jobs can exclusively be scheduled on bridge machines and each bridge
machine receives exactly one bridge job.

B Claim 15. Highway jobs can exclusively be scheduled on bridge, gateway and clause
machines and each such machine receives exactly one highway job.

B Claim 16. Each clause machine CMachi,s receives exactly one of the corresponding clause
jobs CJob◦s′

i,s′ with s′ ∈ [3].

At this point, we already know that variable (and truth assignment) jobs can exclusively be
scheduled on the first or last machine of their respective interval of eligible machines. The
next step is to show that the same holds for highway and bridge jobs. To do so, the ordering
of the bridge and highway machines is of critical importance.

3 Note that we have prioritized comprehensibility over small sizes. For instance, it is not hard to see that
the columns in Table 4 corresponding to the highway and clause jobs could be deleted and the reduction
would still work.
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Table 3 The sets of eligible machines for each job or job type, defined by the first and last eligible
machine in the ordering. Note that in case of the highway jobs all four combinations of first and last
machine are possible.

Job First machine Last machine

Clause job CJob◦s
i,s CMachi,1 CMachi,3

Truth assignment job TJob◦j TMachj,1 TMachj,2
Variable job VJob◦j,t TMachj,dt/2e GMachj,t
Bridge job BJob◦j,t,j′ BMachInj,t,j′ BMachOutj,t,j′
Highway job HJob◦j,t,j′ BMachOutj,t,j′ , if j′ > j,

GMachj,t, if j′ = j

BMachInj,t,j′+1 if j′ < n,
CMachκ(j,t), if j′ = n

Table 4 Table of job and machine types with job sizes and private loads and the makespan. The
second column states the number of jobs and machines of the respective types. Each horizontal
sequence of numbers following the second column indicates the size of the respective job or private
load. Each of the corresponding columns serves a function in the reduction: the first bounds the
number of jobs on each machines; the following eight implement restrictions for the bridge, highway,
clause, truth assignment and variable jobs; and the last encodes truth values.

# B H C T V V V V
CJob>i,s 3m = 2n 1 0 0 1 0 0 0 0 0 0
CJob⊥i,s 3m = 2n 1 0 0 1 0 0 0 0 0 1
TJob>j n 1 0 0 0 1 0 0 0 0 2
TJob⊥j n 1 0 0 0 1 0 0 0 0 0
VJob>j,1 n 1 0 0 0 0 1 0 0 0 0
VJob>j,2 n 1 0 0 0 0 0 1 0 0 0
VJob>j,3 n 1 0 0 0 0 0 0 1 0 0
VJob>j,4 n 1 0 0 0 0 0 0 0 1 0
VJob⊥j,1 n 1 0 0 0 0 1 0 0 0 1
VJob⊥j,2 n 1 0 0 0 0 0 1 0 0 1
VJob⊥j,3 n 1 0 0 0 0 0 0 1 0 1
VJob⊥j,4 n 1 0 0 0 0 0 0 0 1 1
BJob>j,t,j′ 2n(n− 1) 1 1 0 0 0 0 0 0 0 0
BJob⊥j,t,j′ 2n(n− 1) 1 1 0 0 0 0 0 0 0 1
HJob>j,t,j′ 2n(n+ 1) 1 0 1 0 0 0 0 0 0 1
HJob⊥j,t,j′ 2n(n+ 1) 1 0 1 0 0 0 0 0 0 0
CMachi,s 6m = 4n 1 1 0 0 1 1 1 1 1 1
TMachj,1 n 0 1 1 1 0 0 0 1 1 0
TMachj,2 n 0 1 1 1 0 1 1 0 0 0
GMachj,1 n 1 1 0 1 1 0 1 1 1 1
GMachj,2 n 1 1 0 1 1 1 0 1 1 1
GMachj,3 n 1 1 0 1 1 1 1 0 1 1
GMachj,4 n 1 1 0 1 1 1 1 1 0 1
BMachInj,t,j′ 2n(n− 1) 1 0 0 1 1 1 1 1 1 1
BMachOutj,t,j′ 2n(n− 1) 1 0 0 1 1 1 1 1 1 1
Makespan T 3 1 1 1 1 1 1 1 1 2
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Sn−1 Pn Tn Sn C1 C2m

VJob◦
n,3

VJob◦
n,2

Figure 2 The bridge and highway gadget. The intervals of eligible machines of highway, bridge
and variable jobs are depicted in blue, red and orange, respectively. In this example, variable xn
occurs for the second time in its positive form in the last clause at the first position, and for the
first time in its negative form in the first clause at the first position.

B Claim 17. The jobs BJob>j,t,j′ and BJob⊥j,t,j′ can exclusively be scheduled on BMachInj,t,j′
and BMachOutj,t,j′ , for each j ∈ [n], j′ ∈ {j + 1, . . . , n} and t ∈ [4], and each of the two
machines receives exactly one of the two jobs.

Proof. The claim can be proved with a simple inductive argument: Let j′ ∈ {2, . . . , n} and,
furthermore, (j`, t`) ∈ [j′ − 1]× [4] denote the `-th element from [j′ − 1]× [4] when ordering
the pairs (j, t) ∈ [j′ − 1]× [4] by the increasing lexicographical ordering of the pairs κ(j, t).
Considering the ordering of the machines and the job restrictions, BJob>j1,t1,j′

and BJob⊥j1,t1,j′

are the only bridge jobs that can be scheduled on BMachInj1,t1,j′ and BMachOutj1,t1,j′ (see
Figure 2). Hence, the claim has to hold for (j1, t1). But then again BJob>j2,t2,j′

and
BJob⊥j2,t2,j′

are the only remaining bridge jobs that can be scheduled on BMachInj2,t2,j′ and
BMachOutj2,t2,j′ , and so on. C

B Claim 18. The jobs HJob>j,t,j′ and HJob⊥j,t,j′ can exclusively be scheduled on machine X and
Y, for each j ∈ [n], j′ ≥ j, and t ∈ [4]; where X = BMachOutj,t,j′ if j′ > j, and X = GMachj,t
otherwise, and Y = BMachInj,t,j′+1 if j′ < n, and Y = CMachκ(j,t) otherwise. Furthermore,
each of the two machines receives exactly one of the two jobs.

Proof. We can use the same argument (with reversed orderings) as we did in the last claim.
It is only slightly more complicated, because more machine types are involved. C

Summing up, each job except for clause jobs may only be scheduled on the first or last
machine of their interval of eligible machines, and each of these machines receives either the
respective job in >- or ⊥-configuration. Considering this distribution of the jobs and the
last digit of the size vectors, we get the following two claims:

B Claim 19. For any machine, the jobs assigned to this machine all have the same truth
configuration (excluding private loads).

B Claim 20. For each i ∈ [2m], the three clause machines corresponding to i receive exactly
one highway job with >-configuration, if Ci is a 1-in-3-clause, and exactly two such jobs, if
Ci is a 2-in-3-clause.

The former property together with the possible job distribution determined so far implies
that there are only few possible schedules for each machine. We summarize these schedules
in Table 5. Furthermore, we can infer that the truth assignment gadget works essentially the
same as before (see Figure 1):

B Claim 21. Let j ∈ [n]. The truth configuration of any job scheduled on TMachj,1 is distinct
from the truth configuration of any job scheduled on TMachj,2.
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Table 5 For each machine there are only few possible jobs that may be assigned to it in a schedule
with makespan T . Each set corresponds to one of the possible schedules.

Machine Possible Schedule

TMachj,1 {TJob>j , VJob>j,1, VJob>j,2}, {TJob⊥j , VJob⊥j,1, VJob⊥j,2}
TMachj,2 {TJob>j , VJob>j,3, VJob>j,4}, {TJob⊥j , VJob⊥j,3, VJob⊥j,4}
GMachj,t {VJob>j,t, HJob>j,t,j}, {VJob⊥j,t, HJob⊥j,t,j}
BMachInj,t,j′ {BJob>j,t,j′ , HJob>j,t,j′−1}, {BJob⊥j,t,j′ , HJob⊥j,t,j′−1}
BMachOutj,t,j′ {BJob>j,t,j′ , HJob>j,t,j′}, {BJob⊥j,t,j′ , HJob⊥j,t,j′}
CMachi,s (1-in-3) {CJob>i,1, HJob>κ−1(i,s),n}, {CJob⊥i,2, HJob⊥κ−1(i,s),n},{CJob⊥i,3, HJob⊥κ−1(i,s),n}
CMachi,s (2-in-3) {CJob>i,1, HJob>κ−1(i,s),n}, {CJob>i,2, HJob>κ−1(i,s),n},{CJob⊥i,3, HJob⊥κ−1(i,s),n}

Lastly, we can show that the bridge and highway gadget works as well:

B Claim 22. Let j ∈ [n] and t ∈ [4]. The variable job scheduled on TMachj,dt/2e and the
highway job scheduled on CMachκ(j,t) have the same truth configuration.

Proof. Note that the truth configuration of the variable job scheduled on GMachj,t compared
with the one of the variable job scheduled on TMachj,dt/2e is reversed. Hence, the highway
job scheduled on GMachj,t also has the reversed truth-configuration while the highway job
that is passed on again has the original truth-configuration. This argument can be repeated
with the bridge and highway jobs in the following, yielding the asserted claim. C

Using the above claims, we can conclude the proof of Theorem 1 via the following Lemma:

I Lemma 23. There is a satisfying truth assignment for the given 3-SAT∗ instance, if and
only if there is a schedule with makespan T for the constructed RAI instance.

Proof. First, we consider the case that a schedule with makespan T for the constructed
RAI instance is given. For each variable xj and occurrence t ∈ [4], let HJob◦j,t

j,t,n be the
highway job scheduled on CMachκ(j,t) (see Table 5). We choose the truth value of xj to be
◦j,1. Considering the distribution of jobs on the truth assignment machines (see Table 5), as
well as Claim 21 and 22, we know that for each variable xj and occurrence t ∈ [4], the truth
configuration ◦j,t corresponds exactly to the truth value xj contributes to the clause given
by κ(j, t). Furthermore, we know that for each clause Ci, there are exactly three variable
jobs scheduled on the corresponding clause machines, and exactly one or two of these has
>-configuration, if Ci is a 1-in-3-clause or 2-in-3-clause, respectively (Claim 20). Hence, Ci
is satisfied.

Now, let there be a satisfying truth assignment, and /j be the corresponding truth value
of variable xj and .j its negation. We set 4j,t = /j for t ∈ {1, 2} and 4j,t = .j for t ∈ {3, 4}
and assign HJob4j,t

j,t,n to CMachκ(j,t). Let 5jt be the negation of 4jt. All the other jobs are
assigned as indicated by the claims and Table 5 in particular: Each machine receives its
private load; CMachκ(j,t) additionally receives one of the eligible remaining clause jobs with
4j,t-configuration (this can be done because the truth assignment is satisfying); BMachOutj,t,j′
receives HJob5j,t

j,t,j′ and BJob5j,t

j,t,j′ ; BMachInj,t,j′ receives HJob4j,t

j,t,j′−1 and BJob4j,t

j,t,j′ ; GMachj,t
receives HJob5j,t

j,t,j and VJob5j,t

j,t ; TMachj,1 receives VJob4j,1
j,1 , VJob4j,2

j,2 and TJob4j,1
j ; and

TMachj,2 receives VJob4j,3
j,3 , VJob4j,4

j,4 as well as TJob4j,3
j . It is easy to verify, that all jobs are

assigned and each machine has a load of T . J
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Figure 3 The left picture visualizes that each RAI instance can be seen as a RAR(2) instance
and the right one depicts an RAR(2) instance that is not a RAI instance. In both pictures, each
dimension corresponds to a resource, the squares mark the capacities of machines and the circles
the demands of jobs. If the capacity of a machine is at least as big as the demand of a job in both
dimension, the job is eligible on the machine.

3 Resource Restrictions

In this section, we briefly discuss scheduling with resource restrictions and provide the proof
of Theorem 2 in particular. First note that RAI is properly placed between RAR(1) and
RAR(2), that is, with a slight abuse of notation, RAR(1) ⊂ RAI ⊂ RAR(2). The ideas
needed to see RAI ⊂ RAR(2) are given in Figure 3.

The result in Theorem 2 concerning 4 resources is proven by showing that the restrictions
in a reduction due to Ebenlendr et al. [7] can be modeled using 4 resources. Concerning the
result for 2 resources, we first discuss the corresponding result for 3 resources. The reduction
is based on the classical result by Lenstra et al. [19] and very similar to a reduction by
Bhaskara et al. [1] for rank four unrelated scheduling. However, there is a problem with the
choice of processing times in the latter reduction (see [22]), and the present result can be
used to fix it. Combining the ideas in that reduction with a result by Chen et al. [6] yields
the result for 2 resources.

Four Resources. In the classical 3-SAT problem, a conjunction of m clauses is given and
each clause is a disjunction of at most three literals of variables x1, . . . , xn. In the result due
to Ebenlendr et al. [7], the modified 3-SAT problem, where each variable occurs exactly three
and each literal at most two times in the formula, is reduced to the graph balancing problem,
that is, restricted assignment with the additional property that each job is eligible on at most
two machines. To show that the modified 3-SAT problem is NP-hard, we can use techniques
already applied in Section 2: We may replace the dj occurrences of variable xj with new
variables zj1, . . . , zjdj

and add new clauses (zj1 ∧ ¬zj2), . . . (zjdj−1 ∧ ¬zjdj
), (zjdj

∧ ¬zj1).

I Theorem 24 ([7]). There is no polynomial time approximation algorithm with rate smaller
than 1.5 for the graph balancing problem unless P=NP.

Proof. Given an instance of modified 3-SAT, we introduce clause machines vi corresponding
to the clauses Ci, and literal machines uj,1 and uj,0 corresponding to the literals xj and ¬xj .
Furthermore, we introduce truth assignment jobs ej for each variable xj with size 2 and
eligible on uj,1 and uj,0; and clause jobs fi,j,α for each clause Ci and literal yj occurring in
Ci with α = 1 if yj = xj and α = 0 if yj = ¬xj . The job fi,j,α has size 1 and is eligible on
vi and uj,α. Lastly, we introduce a dummy job di for each clause Ci with less then three
literals. Its size is 1 if Ci contains two literals, and 2 if Ci contains only one literal.
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In a schedule with makespan 2, there is at least one clause job fi,j,α for each vi that is
scheduled on uj,α and not on vi. Hence, the job ej has to be scheduled on uj,|α−1|. Now, it
is easy to see that there is a schedule with makespan 2, if and only if there is a satisfying
assignment. The construction works as follows: Given a schedule with makespan 2, we set
variable xj to > if ej is scheduled on uj,0, and to ⊥ otherwise. Moreover, given a satisfying
truth assignment we assign the truth assignment jobs correspondingly, and the machines uj,α
that did not receive a truth assignment job receives all eligible clause jobs (at most two). J

We reproduce the restrictions in the above reduction using four resources and get:

I Corollary 25. There is no polynomial time approximation algorithm for RAR(4) with rate
smaller than 1.5 unless P=NP.

Proof. We set R = [4]. The clause machine vi has a resource capacity vector of (2n +
1, 2n+ 1, i, (m+ 1)− i), and the literal machine uj,α has capacity vectors (2j − α, (2n+ 1)−
(2j − α),m+ 1,m+ 1). Furthermore, the truth assignment job ej has a resource demand
vector of (2j − 1, (2n+ 1)− 2j,m+ 1,m+ 1); the clause job fi,j,α has a demand vector of
(2j − α, (2n+ 1)− (2j − α), i, (m+ 1)− i); and the dummy job di has a demand vector of
(2n+ 1, 2n+ 1, i, (m+ 1)− i). It is easy to verify that the resulting sets of eligible machines
are the same as described in Theorem 24. J

Three Resources. In the 3-DM problem, the input consists of three disjoint sets A, B and C
with |A| = |B| = |C| = n ∈ N, as well as a set of triplets E ⊆

{
{a, b, c}

∣∣ a ∈ A, b ∈ B, c ∈ C}.
The goal is to decide whether there is a subset F ⊆ E that perfectly covers A, B and C,
that is, for each x ∈ A ∪B ∪ C there is exactly one triplet e ∈ F with x ∈ e. The set F is
called a 3D-matching. We assume that the elements of A, B and C are indexed, that is,
A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cn}. Furthermore, we assume
that for each x ∈ A ∪B ∪ C there is at least one e ∈ E with x ∈ E.

We present a reduction from 3-DM to RAR(3). Given an instance (A,B,C,E) of 3-DM,
let E(x) = {e ∈ E |x ∈ e} for each x ∈ A ∪B ∪ C. Furthermore, we set αA = 12, αB = 13,
αC = 22, βA = 14, βB = 15 and βC = 18. Let R = {A,B,C} and M = E. For each
machine e, we define the resource capacities as follows. Let X ∈ {A,B,C} and xi ∈ X ∩ e
be the element of x with index i. We set cX(e) = i. Furthermore, for each element xi ∈ X
with index i in X ∈ {A,B,C}, we introduce one element job with size αX and |E(x)| − 1
dummy jobs with size βX . The resource demand for each of these jobs is given by d(i) with
dX(i) = i and dY (i) = 0 for Y ∈ {A,B,C} \ {X}.

B Claim 26. We have αA + αB + αC = 47 = βA + βB + βC ; any four numbers taken
from Γ = {αA, αB , αC , βA, βB , βC} = {12, 13, 22, 14, 15, 18} sum up to a value bigger than
47; any selection of less than 3 numbers sums up to a value smaller than 47; and for any
three numbers γ1, γ2, γ3 ∈ Γ with γ1 ≤ γ2 ≤ γ3 and γ1 + γ2 + γ3 = 47, we have either
(γ1, γ2, γ3) = (αA, αB , αC) or (γ1, γ2, γ3) = (βA, βB , βC).

Proof. The first three assertions are obvious, and the fourth holds due to a simple case
analysis:

If γ1 > 15, we have γ1 ≥ 18, and hence 47 = γ1 + γ2 + γ3 ≥ 3 · γ1 = 54: a contradiction.
Note that γ3 ≥ (γ2 + γ3)/2 = (47− γ1)/2. Hence, γ1 ≤ 15 implies γ3 ≥ 16 and therefore
γ3 ∈ {18, 22}.
If we have γ3 = 22 = αC , then γ1 ≤ (γ1+γ2)/2 = (47−γ3)/2 = 12.5. Hence, γ1 = 12 = αA
and γ2 = 13 = αB .
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If we have γ3 = 18 = βC , than γ2 ≥ (γ1+γ2)/2 = (47−γ3)/2 = 14.5. Hence, γ2 ∈ {15, 18}.
If γ2 = 15 = βB , then γ1 = 14 = βA, and if γ2 = 18, then γ1 = 11 /∈ Γ.

This concludes the proof of the claim. C

By brute force, it can be verified that 47 is the smallest value such that suitable numbers
αA, αB , αC , βA, βB and βC exist and the above claim holds.

B Claim 27. The summed up size of all the element and dummy jobs is 47|M|.

Proof. We have exactly n element jobs with size αA, αB and αC , respectively, yielding an
overall load of 47n. The dummy jobs have an overall load of:

βA
∑
a∈A

(|E(a)| − 1) + βB
∑
b∈B

(|E(b)| − 1) + βC
∑
c∈C

(|E(b)| − 1)

=(βA + βB + βC)(|E| − n) = 47(|M| − n)

In this equation, we used the simple fact that {E(x) |x ∈ X} is a partition of E for each
X ∈ {A,B,C}, and hence |E| =

∑
x∈X |E(x)|. C

These two claims imply:

B Claim 28. In any schedule for the constructed instance with makespan 47, each machine
receives exactly three jobs with sizes γ1, γ2, γ3 such that (γ1, γ2, γ3) = (αA, αB , αC) or
(γ1, γ2, γ3) = (βA, βB , βC).

Using these claims, we can show:

I Proposition 29. There is a perfect matching for the given 3-DM instance, if and only if
there is a schedule with makespan 47 for the constructed RAR(3) instance.

Proof. Let F be a perfect matching for the 3-DM instance. For each x ∈ A∪B∪C we assign
the corresponding element job to the machine e with x ∈ e and e ∈ F . Furthermore, the
dummy jobs corresponding to x ∈ X with X ∈ {A,B,C}, are distributed to the machines e
with x ∈ e and e /∈ F such that each machine receives exactly one job in this step. Hence,
each machine e ∈ E receives exactly three eligible jobs either with sizes αA, αB and αC (if
e ∈ F ) or βA, βB and βC (otherwise).

Next, we assume that there is a schedule with makespan 47 for the scheduling instance.
For each X ∈ {A,B,C}, there are exactly |M| many jobs with size αX or βX , and due to
the above claims, we know that each machine receives exactly one of these jobs. For each
j ∈ [n], let xj ∈ X be the element with index j in X ∈ {A,B,C}. The machines

⋃n
j=iE(xj)

are the only machines that may process jobs corresponding to xi, . . . , xn for each i ∈ [n]
and we have exactly

∑n
j=i |E(xj)| many such jobs. Hence, the machines from E(xi) receive

exactly the jobs corresponding to xi. Now, considering this and Claim 28, we get a perfect
matching by selecting the machines that process three element jobs. J

Two Resources. We are able to refine the result for three resources to work for two
resources as well by using another variant of 3-DM as the starting point of the reduction.
The problem 3-DM∗ was introduced by Chen et al. [6] to get an improved lower bound for
the approximation ratio of rank four unrelated scheduling.

In this problem, a set of six disjoint sets E = {A,A′, B,B′, C, C ′} is given. For each X ∈ E ,
we have |X| = 3n for some n ∈ N and the sets are indexed by [3n], e.g., A = {a1, a2, . . . , a3n}.
Furthermore, there are two sets of triplets E1 ⊆

{
{ai, bj , cj}, {a′i, bj , cj}

∣∣ i ∈ [3n], j ∈ [3n]
}
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Table 6 The resource demands and capacities for the different job (types) and machines.

Jobs Resources Machines Resources

ai (2i, 0) {ai, bj , cj} (2i, 3n+ j)
a′i (2i− 1, 0) {a′i, bj , cj} (2i− 1, 3n+ j)
bj (0, 3n+ j) {ai, b′i, c′i} (2i, i)
cj (0, 3n+ j) {a′i, b′i, c′ζ(i)} (2i− 1, ζ(i))
b′i (2i− 1, 0)
c′i (0, i)

and E2 =
{
{ai, b′i, c′i}, {a′i, b′i, c′ζ(i)}

∣∣ i ∈ [3n]
}
with ζ(3k + 1) = 3k + 2, ζ(3k + 2) = 3k + 3

and ζ(3k + 3) = 3k + 1 for each k ∈ {0, . . . , n− 1}. Note that the second set of triplets is
determined by the element sets in the input. Similar to the classical 3-DM problem, the goal
is to decide whether there is a subset F ⊆ E1 ∪E2 that perfectly covers the element set, that
is, for each x ∈

⋃
X∈E X there is exactly one triplet e ∈ F with x ∈ e. We assume that for

each x ∈
⋃
X∈E X there is at least one e ∈ E with x ∈ E (otherwise the problem is trivial).

Let αA = αA′ = 12, αB = αB′ = 13, αC = αC′ = 22, βA = βA′ = 14, βB = βB′ = 15
and βC = βC′ = 18. We set M = E1 ∪ E2 and R = [2]. The corresponding resource
capacity vectors are presented in Table 6. Furthermore, for each element x ∈ X in X ∈ E ,
we introduce one element job with size αX and |E(x)| − 1 dummy jobs with size βX . The
vector of resource demands for each such job is given in Table 6. Note that Claim 26-28 hold
for this reduction as well and with the same reasoning. A simple case analysis yields:

B Claim 30. For each x ∈
⋃
X∈E X, a (dummy or element) job corresponding to x is eligible

on each machine e with x ∈ e.

Using these claims, we can conclude the proof of Theorem 2:

I Lemma 31. There is a perfect matching for the given 3-DM∗ instance, if and only if there
is a schedule with makespan 47 for the constructed RAR(2) instance.

Proof. Let F be a perfect matching for the 3-DM∗ instance. For each x ∈
⋃
X∈E X, we

assign the corresponding element job to the machine e with x ∈ e and e ∈ F . Furthermore,
the dummy jobs corresponding to x ∈ X with X ∈ E , are distributed to the machines e with
x ∈ e and e /∈ F such that each such machine receives exactly one job. Hence, each machine
e ∈ E receives exactly three eligible jobs either with sizes αA, αB and αC or βA, βB and βC .

Next, we assume that there is a schedule with makespan 47 for the scheduling instance.
There are exactly |M| many jobs with size αA = αA′ or βA = βA′ corresponding to elements
of A∪A′, and due to Claim 28 we know that each machine receives exactly one of these jobs.
The machines corresponding to triplets from E(a3n) are the only ones that can process the
|E(a3n)| jobs corresponding to a3n, and hence each of these machines receives exactly one of
these jobs. Now, the machines corresponding to triplets from E(a′3n) are the only remaining
ones that can process the |E(a′3n)| jobs corresponding to a′3n. Iterating this argument, we get
that each machine e receives exactly one job corresponding to some x ∈ A ∪A′ with x ∈ e.
Note that the above argument was based on the first resource value. Considering the second
resource value yields the same result for each x ∈ C ∪ C ′. For the elements x ∈ B ∪B′ both
resource values have to be considered, namely the second for b ∈ B and the first for b′ ∈ B′,
but the argument stays the same. Summing up, each machine e = {x, y, z} receives exactly
three jobs corresponding to x, y and z. Now, considering this and Claim 28, we get a perfect
matching by selecting the triplets e that processes three element jobs. J
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4 Conclusion

In this paper we provided hardness of approximation results for scheduling with interval and
resource restrictions. We list some possible future research directions:

From the perspective of complexity, tighter hardness results seem plausible. In particular,
we have the same inapproximability results for RAR(2) and RAR(3) and it would be
interesting to find a better result for RAR(3).

From the algorithmic perspective, it remains open whether any of the studied problems
and RAI in particular admits an approximation algorithm with a rate smaller than 2. There
have been some results [32, 27] for RAI using promising linear programming relaxations
that may be useful in this context. Another possibility is the application of the local search
techniques originally used by Svensson [30] for the restricted assignment problem. This
approach recently yielded a breakthrough for the graph balancing problem [14].

Finally, while a PTAS for RAR(1) is known [24], it is unclear whether the problem
admits a so called efficient PTAS with a running time of the form f(1/ε)poly(|I|) for some
computable function f .
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